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We consider n points (nodes), all pairs of which are connected by 
branches of given positive lengths. A tree between these n nodes is a 
subgraph with one and only one path between any two nodes; a tree 
consists of n - 1 branches. 

For the sake of simplicity we assume the lengths of the branches to 
be such that there are no trees of equal length, the length of a tree being 
defined as the sum of the lengths of its branches; by To, T1, T2, ... ,we 
shall denote all possible trees in order of increasing length. Furthermore 
we assume n to be sufficiently great for our arguments to hold, and state 
that we shall never make use of the fact that each pair of nodes is connected 
by exactly one branch. As a matter of fact a number of branches may 
be missing, provided that the remaining set is large enough for our 
problems to make sense; we also allow pairs of nodes to be connected 
by more than one branch. 

A closed loop between m branches is defined as a subgraph of m branches 
with exactly two paths between any two of the m nodes, these two paths 
being such that they have no branch in common. 

Theorem 1. The longest branch of a closed loop never belongs to the 
shortest tree. 

This theorem can be proved by showing that, from a tree containing 
the longest branch of a closed loop, we can always construct a shorter 
one. For: remove the branch in question from the tree; the latter now 
falls apart into two pieces A and B, each node belonging to either A or B. 
In the closed loop the branch in question connects a node from A to 
a node from B; when we scan the other path in the loop between these 
two nodes, we must meet a branch that connects a node from A to a node 
from B. This branch is shorter than the branch that we removed and is 
selected to replace the latter. As it connects the two pieces A and B, 
the resulting set of branches again forms a tree, which is obviously shorter. 
Theorem 1 is proved in this way. 

*) Communication MR 32 of the Computation Department of the Mathematical 
Centre, Amsterdam. 
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Theorem 2. The criterion mentioned in Theorem 1 is sufficient to 
determine To. 

We make use of the fact that one loop at most, is closed by adding 
one branch to a graph without loops, and conversely, by removal of a 
branch of the only loop in a graph, the graph is converted into one without 
loops. To prove Theorem 2 we consider the following construction. We 
consider the given branches in an arbitrary order. The first branch is 
laid down and so is the second one; we continue in this way until a loop 
is closed. As soon as a loop is closed, we remove the longest branch of 
the - only t - loop before proceeding to the next branch. When the last 
branch has been considered, all nodes are connected by the set of branches 
that has been retained (provided that in the original graph at least one 
path exists between any two nodes). Furthermore, the remaining graph 
is one without loops, i.e. it is a tree. Applying Theorem 1, we rejected a 
number of branches that definitely do not belong to the shortest tree To, 
from the set of all branches. As the remaining graph, however, is a tree, 
it must be To and Theorem 2 has therefore been proved. 

Remark: Every time a new branch is accepted, the"intermediate tree" 
is shortened, otherwise it remains unaltered. 

To my knowledge, two practical methods for finding T 0 have been 
published, see [l], [2]. They are both special cases of the above process; 
in both methods the order in which the branches are investigated is 
chosen in such a way as to facilitate the analysis. We shall now make 
use of the freedom in this choice of order to prove some theorems. As our 
construction shows, To is invariant for such modifications of lengths that 
do not disturb the order of increasing length of the branches. This need 
no longer hold for T1, T2, etc., nevertheless we can prove some theorems 
concerning them. 

Theorem 3. If m branches of the shortest tree To are not contained 
in the tree T k, the index k must satisfy the inequality: k >. 2m - 1. 

To prove this theorem we carry out the given construction of the 
shortest tree, starting the investigation with the branches of Tk, i.e. 
with the tree T1c. We now continue our investigation with an arbitrary 
non-empty selection from the m branches of T 0• At every such step the 
new branch will be accepted because it belongs to To, and another branch, 
not belonging to To, will be rejected: at every step our intermediate tree 
is shortened. As the number of non-empty selections from m branches 
equals 2m- 1, we have produced 2m- 1 trees, all shorter than Tk and all 
different from each other. Theorem 3 has therefore been proved. Another 
way of stating this result is the following: 

If k satisfies the inequality k< 2m- I, than the trees Tk and To have 
at least n - m branches in common. 
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From this it follows immediately that both T1 and T2 have exactly 
n - 2 branches in common with To. 

If we remove the only branch of To that does not belong to T1, the 
latter becomes the shortest tree of the modified graph. The actual 
construction of T1 presents some difficulty as we do not know beforehand 
which branch of To to omit. We therefore omit each of the n-1 branches 
of To in turn, and determine the shortest tree from the remaining graph 
every time. The tree T1 must be one of the n - I trees found in this 
manner, viz. the shortest one. To see what this construction amounts to 
(once To has been found) we again start the construction of the shortest 
tree, but postpone the investigation of the n - I branches of To, i.e. we 
determine the shortest tree from the graph that remains when all the 
branches of To have been removed; let this tree be denoted by T(O). 
From this point onwards we can proceed in n - I different ways, omitting 
a different branch of To each time. If we should include such a branch, 
we would find T 0• From our construction it is clear that the n - I trees, 
from which T1 will be selected, each consist of n - 2 branches of To and 
(n-1)-(n-2)=1 branch of T(O). In other words, the n-1 trees are 
found by omitting a branch from To and by then reconnecting, in the 
shortest possible way, its two parts with a branch of T(O). Every time 
our "loss" with respect to To is the difference between a branch of T(O) 
and one of T 0• The tree T1 is the one for which this difference is minimal: 
evidently T1 need not be invariant for such modifications of lengths that 
leave the order of increasing length of the branches unaltered. 

Theorem 4. Every tree-except the shortest one-contains at most 
one branch that does not belong to the union of the shorter trees. 

We consider an arbitrary tree T i=To. Either all its branches are 
contained in the union of the trees shorter than T, or not. In the first 
case the conditions stated by Theorem 4 are satisfied, in the second 
case we must prove that only one of its branches lies outside the union 
of the shorter trees. To prove this we carry out the construction of the 
shortest tree, starting the investigation with the branches of T, i.e. with 
the tree T. From then onwards we investigate the remaining branches 
in an arbitrary order. We now continue the construction process until 
a new branch is accepted for the first time. Then one of the branches of 
T is replaced by another and as a result of this substitution, the tree 
- being shortened! -is now completely contained in the union of the 
trees shorter than T. The branch of T that has been replaced at this step 
was therefore its only branch outside the union and Theorem 4 is proved. 

We now consider the trees To, T1, T2, Ta, ... , in this order. From 
Theorem 4 it follows that for every tree one branch or none is added to 
the union of the trees considered. This process, therefore, defines a unique 
order for the branches except for those of To. This order of the branches 
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does not coincide with the order of increasing length, although there will 
be a tendency for the shorter branches to appear in the beginning. 

For all our results, the dual statements obtained by interchanging 
"shorter" and "longer" hold as well. In an analogous manner we can 
therefore find an order of the branches except for those contained in the 
longest tree: the longer branches tend to appear in the beginning. 
Restricting ourselves to branches that belong to neither the shortest, nor 
the longest tree, we can ask whether the one order is equal to the reverse 
of the other. An example shows that this need not be the case. Let each 
pair of the five nodes A, B, C, D, E be connected by a branch, their 
lengths being given in the following table. 

B 1 

C 80 100 

D 20 10 2 

E 24 15 81 77 

A B 0 D 

The shortest tree is (AB, OD, BD, BE); the longest tree 1s (BC, CE, 
AC, DE). The remaining branches are AD and AE; the branch AE, 
however, occurs in the shortest tree but one as well as in the longest 
tree but one (these trees being (AB, OD, BD, AE) and (BO, OE, DE, AE) 
respectively). 
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