STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

REKENAFDELING

Rapport M.R.34
On the Design of Machine Independent Programming Languages
by

Dr. E.W. Dijkstra

NATHEATIENH CEUTRUM
REKENAFRELING

-

Introduction.

Tn the 1light of the subject matter of this report it is not
surprising that a number of problems will be discussed here that
also turn up regularly in connection with the so-called "ALGOL
Maintenance”° In order to avoid misunderstanding, however, I should
like to stress that this;report does gggvdeal with ALGOL Maintenance.
For instance, the semantic definition of ALGOL 60 does not specify
in which order the primaries of an expressién are to be evaluated;
in consequénce; syntactically admissible but semantlcally ambiguous
expressions may be written down. When,in the following, I express
a marked preferencé for semantic definitions in which, amongst
others, the order in which primaries are to be evaluated is fixed
uniquely, this must not be regarded es a proposal for the ALGOL
Maintenance to supplement the official ALGOL 60 Report to this
effect. In my opinion it is really too late for this now, when one
thinks of the considerable amount of time and energy that has al-
ready gone into the construction of ALGOL 60 translators.

Ihsteédvof discussing in detail all sorts of proposals for the
improvement of AIGOL 60 -or let us rather say: proposals for new
languages- and judging them on their merits, I would prefer to
pose (and try to answer) the question what the stendards should be
in judging these language proposals. This report has been written
in order that we shall have in mind as clearly as possible what
we are alming at when we create a new machine independent program-
ming language, and by which ways we could reach these goals.

I shall restrict myself to programming languesges that, like
ALGOL 60, aré intended for the description of numerical processes.
As the most important application I regard the possibility of using
such a language to formulate processes in such & way that they can
‘then be executed by‘ankautomatic computer. Naturally, such a language
c¢an be used fruitfully in the lecture room and in publications, but
I prefer to regard those as secondary fields of application. I do so
because the language requirements that seem to be dictated by "human
consumption of texts" can easily lead us astray: I am fully aware
~that an algorithm of some complexity, published in ALGOL 60, is
utterly unreadable to most people, but this fact does not shock me.
Such unreadability is in no way caused by the usuaslly émphasized
"defects and shortcomings" of ALGOL 60; it is rather due to the not
unusual (and often very seﬁsible) superficiality of the reader, who

2

would prefer to be spared the overpowering number of particulars.It
therefore seems a wise thing to focus our attention on the "mechani-
cal'COnsambtién“SnvLextS”:“We shall mainly regard the programming
language ‘as a'means of communication between man and machlne, more

‘precisely: with man as the "speaker" and machlne 8s the "listener"

On gooa use’ of a machlne

h Nows 1f we regard a programmlng 1anguage primerily as a. means:
of feedlng problems 1nto a maehlne,.the guality of a programming:
language becomes dependent on the degree in which it promotes
"good use of @ machine”, Having ah,opinion'on the quality of a
programming language thus,implies an opinion on what should be
esteemed "good use of a machine". As long as our ideas on this
matter diverge we shall never reach an agreement on an ideal program-
ming 1enguage and I therefore'propose to scrutinize our opinions on
good machine use. | '

For a large group of people good use of & machine is synonymous
with efficient use of a machine. And the only two criteria by which
they Jjudge theVQuality of a program or of a programming syetem are.
requirements of "time and space". I have a suspicion, however, that
in forming their judgement'they restrict themselves to these two
criteria not because they are so much more important than other
p0351b1e criteria, but beceuse they are so much easier to apply on
account of thelryquantltatlve nature .

Some quotations may show that the sacrosanctity of these two
crlterla 1s a w1despread phenomenon., Thus, Prof.dr. Bruno Thiring ..
wrltes in blnfuhrung in die Methoden der Programmierung', page 65:

Raum - Sparen bedingt Zeitverlust,:Zeit-Sparen bedingt

eRaumverlust» Wir wollen dieses Gesetz als das "Reziprozitdts - Gesetz’

der Programmierung' bezeichnen. Dass die Gliltigkeit dieéses Gesetzes
nicht auf-.das Beispiel des § 26 beschrénkt ist (womit es ja kein
"Gesetz" mehr widre) geht aus dem rein logischen Umstande hervorg

dasS oo etc etc.

(In translation: Economlzlng on space 1mplwes loss of time, econo-
mizing o time implies loss of space° We shall oall thls 1aw the)
"Reciprocity Law of Programmlag That the valldlty of this law is

not restricted to the example of @ 26 (1n which case it would not be
"1aw"™ at all) follows from the pureély logical

circumstance that.,.."etec.) All of this sounds most impressive, yet
it is really nothing but disguising, by pompous terminology, a
triviality as a scientific theory. As soon as space and time are

the only two criteria and there are two competing programs for the
same problem, then they can only compete with each other if the

one program 1is better in one respect and the other better in the
other respect. Of course, The whole paragraph is equivalent to
"There are two possibilities, because.... I have not thought of

any others." And, alas, this narrowness of outlook is not confined
to Thuring: in a book by Prof. E. Billeter, published in 1961, we
find this "Reciprocity Law" guoted with full approval. In 19671 the
"University Mathematical Laboratory Technical Memorandum no., 61/5:
Some proposals for improving the efficiency of ALGOL 60" was publish-
ed, written by nobody less than C., Strachey and M,V, Wilkes, in which
they write "Our concern is largely with the production of efficient
object programs., It is in this respect that an automatic programming
system will ultimately be judged." And they mention their standards
for efficiency explicitly in the next sentence:"....when the shoe
begins‘to pinch; by way either of machine speed or of storage
1imitation,,,;,”, All in all,‘there is sufficient reason to call for
some attention to the more imponderable aspects of the quality of

a program or of a programming system.

By way of introduction, I should like to draw attention to the
not unknownfact that it is impossible to prove a mathematical
theorem completely, because when one thinks that one has done so, ore
still has the duty to prove that the first proof was flawless, and
so on, ad infinitum., 8o much for human fallibility. One can never
guarantee that a proof is correct, the best one can say is "I have
not discovered any mistakes." We sometimes flatter ourselves with
the idea of giving watertight proofs, but in fact we do nothing but
make the correctness of our conclusions plausible., And let us be
honest: even extremely plausible., We achieve this high degree of
plausibility by a means specially designed for this purpose, viz.
theorems. On the one hand, so many people have, each in their own
way, derived these theorems, that there is a non-negligible
probaﬁility that they do indeed follow from the axioms, on the
other hand, the pretended conclusions are subject to conditions so
orderly that the user's task of showing that he has applied the

theorem correctly is not too cumbersome,

The}programmer is in-exactly the same position, since it is
not'possiblg fpr him to prove tbe correctness of his programs.
And yet'the correctness oft the programs is of vital importance: Co
everybody working with an automatic computer knows from sad :
eXperience that 1t is very easy to produce an awful lot of numbers,
but he also knows that they are worthless if their correctness is
subject to doubt., Instead . of only staring with envy at the fabulously
convincing power of the proofs in pure mathematics, 1t seems more '
fruitful to me to inquire whether we can learn from the way the pure
mathematiclan works. He has theorems, we have subroutines., A theorem,
however, is (see above) only useful if we can apply it under a ‘
minimum number of clear condiftions. In the same way the usefulness
of a subroutine (or, in a language, a grammatical construction)
increases as the chance. decreases, that it will be used l1lncorrectly.
From this point of view we should aim at a programming language
consisting of a small number of concepts,the more general the better,
the more systematic the better, in short: the more elegant the better,

In particular I would require of a programming language that
it should facilitate the work of the prbgrammer as much as possible,
especially in the most difficult aspecté of'his task,'such as
creating confidence in the correctness of his program, This is
already difficult in the case of a specific program that must
produce a finite set of results., But then the programmer only has
the duty to show (afterwards) that if there were any flaws in his
program they apparently did not matter (e.g. when the converging
of his process is not quaranteed beforehand). The duty of verification
becomes much more difficult once the programmer sets himself the task
of constructing algorithms with the pretence of general applicability.
But the publication of such algorithms is precisely one of the
important fields of application for a generally accepted machine
independent programming language. In this connection, the dubious
quality of many of the ALGOL 60 algorithms published so far is a

warning not to be ignored. .

I am convinced that these problems will prove,to be mu¢h<more
urgent than, for example, the exhaustive'exploitation of specific

machine features, if not now, then aﬁ any rate in the near .future,

In order to get as clear a picture as possible of the real
needs of the programmer, I intend to pay, for a while, no attention

to the well-known criteria "space and time", Those who on the
ground of this remark now doubt the honest fervour with which the
following is written, should remember that, in the last instance;
a machine serves one of its highest purposes when its activities
significantly contribute to our comfort,

Oh the needs of the user,

I should now 1like to investigate those needs of the user that
are not a direct consequence'of his own specific problems. Somebody
who only integrates ordinary diffefential eduations will in all
probability not be very interested in matrix operations but somebody
else might perfectly well want to operate on quaternions, For yet
another person it may be vital to be able to exercise control on the
precision in which (parts of the) computation should be performed,

I would like to focus my attention on the linguistic demands he
may make, irrespective of "the representative problem" that always
dnderliee the design of a particular language.

When I speak of the user of the language I mean the man that
programs, Jufortunately I feel obliged to mention this explicitly,
as there 1s a tendency to design programming languages so that they
are easlly readable for a semi -~ professional, semi - Interested
reader. (Symptoms of this tendency are languages the vocabulary of
which includes a wild variety of English words to be used in a
nearly normal sense, and some translators that even allow a eteadiiy
expanding list of synonyms and misspellings for these words.
Particularly, 1anguages degigned under commercial pressure have) k
suffered seriously from this tendency.) It looks so attractive:
"Everybody can understand it immediately." But giving a plausible
semantic interpretation to a text which one assumes to be correct
aﬁd meaningful, i1s one thing; writing down such a text in accordance
with all the.syntactical ruies'and expressing exactly what one

wishes to say, may be quite a different matter!

For purposes of clarification let us consider ordinary English
as language, in theé use of which, however, certain additional rules
must be obeyed. The simplest of these may be of the following nature:
words of more than 15 letters are forbidden; the total number of.
letters of three consecdﬁive wefds may not be greater than 40;
sentences of more than,éO'words are not allowed; in one and the
same sentance the same word may not be used twice as a subject;

furthermore a list of, say 2000, words is given, that are so

rarely used that they have been forbidden for the sake of
convenience, etc.ete... There is no reason to assume that these
extra conditions will be detrimental to the readability of the
text, and what is more, one can read and understand such a text
Jjust as well without knowing of the existence of these restrlctlons,
But if the number of such restrictions is sufflclently 1arge and
particularly if they impose highly implicit conditions, it becomes
almost 1mp0331b1e to construct a correct text, In'the extreme case
one would need a large computer with a complicated program to check
whether one's text does not v1olate the rules!

Of course, this example was an exaggeration, but it clearly
shows us the direction which we must definitely not take., We muStnmke
it asesmy as possible for the user to master the language. And we
can immediately indicate two ways of making this diffieult. In the
first place, implicit conditions for which it is difficult to check
whether a given text satisfies them or not, in the second place
condltlons that forbid a construction with a straightforward semantic
implication, A language which neatly caters for algebraic expressions
‘but for example, restricts the number of en01081ng bracket pairs
to elght 1s one which I would discard. The requirement is too
1mp1101t to my taste and I do not 1like to burden the programmer
with the extra task of countlng to see whether he has exceeded the
maxlmum depth and this really is an extra duty because a priori
there is nothing to prevent him from writing more than eight nested
bracket pairs: for even then the semantic 1nterpretatlon is perfectly

clear,

From this one should not draw the conclusion that I am an
ardent supporter of so deeply nested bracket pairs, On the contrary,
for the correspondence between opening and closing bracket becomes
increasingly difficult to see at a glance when the depth increases.
If, however, someone Wishes,‘under certain circumstances, to write
down such a perfectly sound expression, I see no acceptable reasons
from the point of view of the user to disallow this.

£

In exactly the same way I have not the slightest‘inclination
to forbid, as some people suggest type procedures with so- -called
"side effects" in ALGOL 60. Under certain circumstances such
procedures can be very useful and perfectly natural constructidns,

7

and I completely;fail to see how it can serve the user to impose
such an extra condition on his language, thereby restricting

his power of expression,

On semantic definition and the need for conversation.

As already mentioned, I do not regard the supposed readability
for a general reader as a valid criterion. I have good reasons for
this. In human communication the "unpredictability" of those we
address plays a fundamental role., If we now_apply the norms of human
communication to an artificial language, in which we wish to addresé
a computer, then we ignore one of the most essential characteristics

of the automatic computer, viz. the "predictability" of its behaviour.

When I ask myself what my words actually mean, 1.e. when I ask.
for the semantics of my language, I can say nothing about it without
consldering the listener, Without listeners -e.g. when I deliver a
monologue on an otherwise uninhabited isle- 1t makes remarkably
little difference whether I speak nonsense or not, so little, in fact,
that under these circumstances 'meaning' becomes an empty concept.

My utterances can only have meaning by virtue of a listener, and
what 1s more, the reaction of my listener determines what my

utterances mean,

Whether I explain something to a six-year-old or t. nis father,
has a mapked influence on the choice of my words. The limited voca-
bulary of the boy imposes'definite restrictions on the choice of my
words: there are many words that are "meaningless'" as far as he is
concerned and if I do'not respect these restrictions my explanation

will very soon (and in a very real sense) become "meaningless',

A more striking example of how the listener defines the semantics
of my language will perhaps be given by a somewhat more artificial
setting, viz. the writing of an article. When it has been cempleted:
one reads it over To see whéther 1t actually says what one wanted to
say. For this purpose one'trieé to read it as if one had not written
it oneself. one invents an "average reader" and tries to play the
role of this imaginary person as well as possible. And if, in reading,
this imaginary person 1is startled’by a rash conclusion, one alters
the paragraph;'The way in which the imaginary person reacts becomes
one's norm;‘bé détermines'whetherASOmething is clear or not, he
defineé the”ﬁeéhang of our text, iiéc the semantics of our language.

In this light we only know what we have said, when we have
seen how our listener'reacted to it we only know whét the thihgs
we are going to say w111 mean in as far as we can predlct his
reaction, However, we only know other people up to a (low') p01nt
and in human communlcatlon every message is therefore to a hlgh
degree a trial, a gamble to see whether the other w1ll understand
us:as we had hoped. As we do not master the behaviour of the other,
we badly need in speaking the feed back, known as '"conversation",
(Testing a program is in a certain sense conversation with a
machine, but for other purposes. We have to test our programs in
order to guard ourselves against mistakes, which is something else
than imperfect knowledge of the machine., If a program error shows
up, one has learnt nothing new about the machine -as in real
conversation~-, one just says to oneself "Stupid:i".)

We can fully master, however, the way in which a computer
reacts and this is precisely the reason why addressing an automatic
computer presents us with undreamt-of linguistic possibilities.
Mastery of the reaction of the computer must not only be a theoreti-
cal possibility but a real, practical one, if one is to able to
make full use of those linguistic possibilities. It is therefore
mandatory that our machine be not prohibitively complicated.

(From this point of view the way in which ALGOL 60 is defined is
rather alarming., "Pure ALGOL 60" is defined by the official
"Report on the Algebraic Language ALGOL 60", edited by Peter Naur,
but feasonably speaking one cannot expect a user of'the 1ahguage
to know this Report by heart. Specific implementations of the
language are defined by translators etec. of a couple of thousand
machine instructions, a quantity which exceeds our powers of
comprehension evan further,) '

As the aim of a programming language is to describe processes,
I regard the definition of its semantics as the design, the '
description of a machine that has as reaction to an arbitrary
proéess description in this langauge the actual execution of this
process, One could also give the semantic definition of the. ’
language by stating all the rules accordlng to which one could |
execute a process, given its descr 1ptlon in the 1anguage
Fundamertally, there is nothing agalnst thls, prov1ded that
nothlng is left to my imagination as regards the way and the order
in whlch these rules are to be applled But if nothlng is 1eft to‘

my imagination I would rather use the metaphor of the machine that
by its very structure defines the semantics of the language., In

the design of a language this concept of the "defining machine"
should help us to ensure the unambiguity of semantic interpretation
of texts.

When we have thus defined our language, its semantics are
completely fixed and its syntax - I owe this remark to Prof.dr.ir,
A.van Wijngaarden- does not have a definig function aﬁymore: we
can do without the syntax as it is merely a summary of
"admissible constructions', i.e. all constructions to which the
machine does not produce the uninteresting reaction "Meaningless"
(Such a possibility of escape is very useful for our machine, when
we remember that we may feed it with an entirely arbitrary séquénce
of symbols., We shall return to this subject later.) '

At this moment it is very definitely not my intention to
give any suggestions for the design of this defining machine
Yi,e. for the design of a next programming language); I would rather
direct the reader's attention to some propérties of this machine
that seem desirable to me if it is to serve its purpose.

For the sake of uniqueness I would prefer a strictly sequential
machine, i.e. a machine for which at every (discrete) moment there
is not the sllghtest doubt as to what is happenlng I feel on the
safest ground if this machine is conceived éé-c6n51st1ng of a
- finite arithmetic unit coupled to a store that is, by definition,
sufficiently large. In particular: whenever an operation has to
process an arbitrarily great amount of information, it should do so

in finite portions and in a well defined order.

In this respect our defining machine reflects'one,of the
most important discoverieskembodied in present day automatic™
computers, viz, that in the evaluation of arbltrarlly compllcated
algebralc expressions one need not resorf to an arbitrarily
complicated arithmetic unit, but that this evaluation can always
be performed byra finite arithmetic unit, provided that the
anonymous. intermediate results (now no longer produced simultane-
ously) can be stored until théy are needed again. Ih other words:
we can choose the strictly sequentlal machine w1thout the slightes
loss of generallty And as we ohall require the concept of

"sequencing'" sooner or later anyway, I see no reason why we should

10

not introduce it right from the start.

‘Furthermore, we should be prepared to face the fact that our
defining machine will become incredibly unpractical and unrealistic:
it will be so wasteful of storage space and number of operations
that it will hurt the eyes of every honest programmer, For, in
how far does our defining machine differ from a real one that is
provided with a good translator? This translator probably demands
thousands of instructions and istheréfm%z scarcely a realistic
proposition as language definition. We should realize, however,v
that the size of the translator is*largély due to the fact that
. the process has to be carried out as efficiently as possible |
{and furthermore by a machine not specially designed for this
- language). By disregarding all efficiency requirements and
tailoring the machine to the language we can obtain a much
simpler organization, so simplein fact that it can very well be
used as a means of language definition,(Tbié must be possible;
otherwise, how could we, poor humans, ever master the 1anguage?)_
If, on being confronted with our defining machine, a programmer
now jumps up, protesting against this waste: "It can be done far,
more efficiently, if oné;..“eto,, then we can be content., We have
sown our seed in fruitful ground: he has accebted the challenge
and.hasvdlready started on the construction-of his translator!

-On _unnecessary redundancy and optionai'inFOPmatioh

There are two declarations in ALGOL 66 with a hybrid nature,
Viz, the switch declaration and the procedure declaration, Like
all declaration, they reserve an ldentifier for a special sort
of object but, besides, they immediately define this object and do
so statically., In this respect they are comparable to the so-called

"eonstant" declaration, which has been suggested:fof numerical

quantities, We all know that by replacing static definitions by
dynamic ones one can only gain in'flexibility° Furthermore,

ALGOL 60 includes the assignment statement that assigns a value
dynamically but, alas, only in the case that this value is a
logical value or a number. By extending'the/cbncept ”assignment

of a value" so that lists, statements etc. can also act as
"agssigned values'", one can remove the valué*defining function of
theswitch and procedure declaration, The declarators switch and
procedure should then only be followed by a list of identifiers,
to which suitable assignments should eventually be made. (I regard

11

such a modification as an improvement: the language then becomes
more systematic and more powerful at the same time, as all velue-

relations have now become dynamic.)

If, as a next step, we regard the notorious logical expression
"if'B then C else D = E" as slip of the syntax, because the

syntactical grouping of these symbois depends on the guestion
whether the variable C is logical or not, then the type-declaration
Boolean has become superfluous: whether it is a logical varisble

or not will become apparent from the Way 1n which it 1s used.

Finally we can omit all type 1indications in the declarations if

we furthermore assume that there is no logical necessity fto introduce
the type integer (semantically it only pPlays 2 role in two wminor
cases, viz. in the definition of aTb and in the implicit rounding

of f on assignment to an integer variable).

The array declaration is Then left as the only odd case, és_
the subscript bounds must be specified there. Fortunately, howevef,
the explicit specification of subscript bounds is logically speaking,
not necessary: during the course of the computétion 1if will
transpire which array elements occur. Ve therefore omit the
subscript bounds, since they can be regarded as redundant informaftion

Finally, we reduce the number of declarations to one; the
function of this universal declarator is merely to introduce new
identifiers local to the block in guestion.

In this way the programmer's powers of expression are
increased considerably. There is no longer the slightest reason for
an array to be rectangular, the triangular array, for instance, is
automatically included in the langusge. It 1s no longer necessary
that an array be homogeneous: some elements of an array may even
be arrays again, or procedures or logical values, etc. Once the
type of é'variable is always defined dynsamicsally, there is not even
a réasbn fgr it to be constant in time. The power of expression
is inceased as the language contains a2 smaller number of different
kinds of elements and all kinds of artificiel barriers have fallen
away . Kh Ordinary varisble is nothing but & trivisl example of a
parameterless procedure. In short, the programmer now no longer
needs to sqgueeze the relevent information into the rigid forms
permitted by ALGOL 60.

12

This increase in expressive power 1is a practical advantage;
from the linguistic point of view I think it even more important that
in this way the language can be made less redundant. For: the
redundancy of the ALGOL 60 declarations has two undesirable
effects (even apart from the duty of inserting a number of extra
symbols). As the declarations are obligatory, the user is forced
to state explicitly a number of properties of the remainder of the
block: the declarations lay down conditions which the rest of the
block must satisfy and as such they are highly implicit restrictions.
In the second place, if the redundant information is to be a vital
part of the language, the defining machine gggﬁ take note of it,
i.e. it must detect whether the rest of the program is in
accordsance with it and this makes the definﬁng maChine’considerably
more complicated. By excluding redundant information from the o
language, means of contradicting himself have been taken away from
the user and languege Cesigners are spared the temptation of
assigning (afterwards) a specisal meaning to a partlcular_v
contradiction (as in ALGOL 60 in which "go to" followed by a switch
element may, under certain circumstances, be equivalent .to a
dummy statement).

As I am probably not using the word "redundant" in its
official, technical sense, I should like To insert some clarification
of my point of view. Our defining machine should be so complete as
to react in a well-defined way to every arbitrary string of symbols
presented to it. The special signal "Meaningless" may be one of its
possible reactions. The concept "redundancy"” only has a right of
existence as long as it is not our intention to provbke this
special signal "Meaningless"” as the machine's reaction: as soon
as we. include this reaction in the set of "intended reactions”
no program can sin against the language rules anymore and we must
therefore. regard every arbitrary text as acceptable. I &ssume
that evoking the reaction "Mesningless' will never be our intention
and our language therefore remains redundant ss long as the signal
"Meaningless" belong to the set of possible reactiong of the
defining machine. In itself I have no objection to this, I only
have:obgections to "unnecessary redundancy" i.e. langusge rules
that I can regard as restrictions. R

I hope that my distinction petween "rules" and "restrictions"
is not purely emotinal. Roughly speaking, a language rule enables

13

me to express something, whereas a restriction prevents me. from
d01ng S0, ihe language deflnltlon consists of a number of rules of
readﬁibh some of these rules may under certaln c1rcumstanoes
prescribe the reaction “Meanlngless . When, however, the reactlon
”Meanlngless” is prescrlbed in a situation for which the remalnlng
rules cater, ‘then I speak of a restrlctlon, of unnecessary redundan-

ey. This in contrast to a rule that prescrlbes the reaction
"Meanlngless in a case for which the other language do not cater.

Then I do not regard this rule as an obgectlonable restriction: it

is Just a consequence of the fact that we can write down a strihg

of symbols for which we will not take the trouble to define a meaning-
ful reaction (at the cost of who knows how many complications of

the defining machine).

On behalf of the user I envisage a not unnecessarily'fedundant
language, the semantics of which have been completely fixed by our
defining machine. But now it is time for us to remember that it was
also our intention that the processes described should be executed
by a real computer in a reasonably efficient way. V ’

In this connection I should like to quote from the "University
mathematical Laboratory Cambridge Technical lemorandum no 61/2: &
Some reflections on Automatic Programming and on the design of - -
Digital Computers." by M.V, Wilkes the follow1ng remarks, with
which I wholeheartedly agree:

"If a small machine is used for compiling, however,it is desi-

rable for the programmer to be able to lighten the task of

the compiler by providing extra information; much of the in="
formation given in the declarations in ALGOL is of this type.

I believe that, in designing future automatic programming = '~

languages, a clear distinction should be made between the

thread of essential information necessary +to define thétprdé

gram and the additional information put in to help the compiler."
This paragraph expresses exactly my own sentiments,

Frdﬁ a linguistié point of view it may. be very attractive to
formulate our process 1n a not unnecessarily redundant language, thus
only‘beﬁu;dﬂlged to glve the absolute mlnlmum that is needed to
define the process. But what is the translator going to do with
this? 1 assume that the structure of many a.machine is such that it

14

is desirable that the translator thoroughly analyzes this program
and tries to detect all kinds of "special cases" of our genersal
concepts, for example whether anvarray has 8 regular form
(rectangular, trisngular etc.), whether an array is perhaps
homogeneous, whether a variable is always simple and never defined
in the form'of‘a"ﬁfoCedufej whether a procedure is usedArecursively
or not, ete. In‘short, the translator will search for "unused
geﬁerality”with the aim of gaining something. These analyses are

no child's play and furthermore, as the analysis is carried out
statically, the trenslator must always remain on the safe side.

But we can hardly speak of "good use of a computer" when the
translator spends a considerable amount of time and trouble in
trying to come to discoveries that the programmer could have told
i1t as well! It may be 2 nuisance that ALGOL 60 arrays must be
rectangular, but we should not close our eyes to the fact that a
rectangular array is a fairly common phenomenon, and that the user
is usually aware of its rectangularity. It is undesirable that the
programmer is forced to give this extra information, but it is
unwise to prevent him from inserting such additional information
"for the possible benefit of the translator”. I would like %o

call this "optional information", optional in the sense that a
correct and complete program remains when it is left out.

For translator makers particularly I cannot stress enough
that they sctually have no right to this optional information: the
whole concept 1s a concession to the weakness of the flesh. The
quality of & translator naturally diminishes if it simply does
not accept certain parts of the language or if 1t demands
unconditionally certain forms of optional information -for then we
have fallen back into the rigorous scheme of ALGOL 60-; it is also
to the detriment of a trenslator, when the efficiency loss as result
of omission of the optional information is so large that the user is
virtually compelled -be it not "de jure'then "de facto'"- to insert
it. In this connection I should like to point out that the reactions
to ALGOL 60 have shown that suggestions for so-called improvement
of ALGOL 60 should f£ill us with great suspicion, especially if
these s;ggestions come from unéuccesful translator makers.

The fact that this helpful information is kept outside the
language improves the machine independence, because one machine will
want to be helped in quite another way than another machine. The

%

15

second advantage could be that the language itself may remain

up to date longer: information which is very helpful now may

be of no interest at all in @ number of years, when there may be
more suitable machines and more sophisticated translators, It

would be very sad if we were then bound by restrictions which

can then no longer be justified (say the rectangulsrity of an array).

It is of course desirable that the possible forms of optional
information be standardized. And for the making of proposals in
this direction probably just as much tact and wisdom are required
as for the design of the language itself. The general language
may be very attractive logically and linguisticelly, but its
practical merits may very well depend on the specisl cases for

which we want to be able to give the translator a hint, as long

as they are of interest but prohibitively difficult to detect
automatically. In any case it is an advantage thet the defining
machine will provide a clear terminology in which we can express’
these special cases (in ALGOL 60, it is ~-see below- not clear,
when a procedure is used recursively).

One final remarlk about the béaring of the seméntic definition
and the consequent task of a translator. Our défihing machine
incarnates a detailedprescription of how one ggg execute a2 given
process as described by a text in the language; how one can
compute the required result. By this we do not mesn that every
implementation should be an exact copy or detailed simulation
of the defining machine. VWhen, for example, the defining machine
leaves no doubt about the order in which the primaries. of an
expression should be evaluated, then this 1s only with the intention
of defining the answer uniquely as soon as it depends on this order. As
long as 1t does not depend on this order, every implenenter is
free to change the brder as he sees fit. I regard every implemen;
tation as a correct one as long @8s the answer is correct, i.e,
undistinguishable from ﬁhevanswer that our defining machine
would have given. In this sense, the "net semantics" of a language
is only defined if we know what "the snswer" is and we must
include output statements as an essential factor in the semantic
implication of a program. Regarded in this light, the net semantics
of a program in pure ALGOL 60. which, as we know, contains no
output statements, is empty. (The semantics of our language is
defined bv the reaction of our listener. buft can we sneak ahnut his

16

reaction if no part of it reaches us?)

On some proposals by Strachey and Wilkes.

Those who have read the Technical Memorandum 61/5 by C. Strachey
and M.V, Wilkes, quoted earlier, will not be surprised after all thls,

- that the only one of thelr suggestions that attracts me is in ‘the

'last section, in whlch the concept of optional information has
been worked out in more detail., I will giVe a simple example, One

of their proposals is:

"Procedures shall be recursive if introduced by the declarator
recursive procedure; otherwise they may be treated as non-

recursive,"

Considered in the light of the concept of the optional informa-
tion introduced earlier by Wilkes (Technical Memorandum 61/2) it
would have been more elegant to present the non-recursive procedure
as the special, restricted case, and not the recursive oneas the
exceptlon A competing preposal would be: S

"In general all procedures may be used recursively. If the
programmer, however, happens to know for certain that one

of his procedures will not be used recursively in his program,
he may state so, for the possible benefit of the translator,

by inserting the prefix '"nonrecursive" immediately in front,

of .its declaration,"

In passing -to underline my desire for'rigorous, striptiy
sequential semantics~- I should like to point out that’l do not
feel much inclined to support this proposal, not even in its
. mitigated form, because the question whether a brbcedure call
gives rise -to recursiveness in the object program is not answered
by the language but by the implementation. Thus, in the ALGOL 60 |
translator developed by the Computétion'Deﬁartﬁent of the Mathematical
Centre, Amsterdam, the call "sqrt (sqrt(x))" does not givenfiSe'to
any recursiveness when the identifier "sqrt" vefers to ﬁhe'uhdeclared
standard procedure for the square root, but it does so in,all

other cases.

THe authors' motivation for their proposal is very illuminating;

"An example of unnecessary generality‘is provided by the
requirement that all proCedures»éhould be recursive. In ordinary

17

computing -as distinct from symbol manipulation- it will be found f
that the need for procedures to be recursive is the exception'rather
than the rule, and the requirement'that all procedures should be |
recursive leads to inefficiency, since a recursive procedure 1is

both longer and slower than a non-recursive one,"

Let us assume that their observation is correct and not purely the -
result of the fact that until recently most programming systems did not
cater for recursiveness. I hope to have made clear in the above that

I regard such a statistical observation as insufficient grounds to
Justify the conclusion "unnecessary generality'". Finally they make an
appeal to the fact that "... a recursive procedure is both longer and
slower than a non-recursive one,'" But the recursive procedure is such

a neat and elegant concept that I can hardly imagine that it will not
have a marked influence on the design of new machines in the near
future., And this influence could quite easily be so considerable, that
the possible gain in efficiency that can still be booked by excluding
recursiveness, will becoﬁe negligible. Personally, it will not surprise
me 1f this will prove to be the case. To me the whole proposal shows

too great a similarity to a proposal along the following lines: "As in
most multiplications both factors are positive, we propose that the
ordinary multipiication sign may only be used 1f both factors are

indeed positive; for multiplication of factors without sign restriction
the new opefator‘“general mult"” is introduced." Perhaps there are still

machines in which a special multiplication of positive factors 1s
executed faster than the general one; otherwise we can easlly design
such a machine. '

The same sort of remarks can be made with regard to their proposal
to abolish the "left to right precedence rule", a rule which they
fortunately extend to the order of primary evaluation. I do not feel the
slightest inclination to do this. The result of such shaky semantics is
clearly shown at the end of the paragraph in question, where the
authors write:

"If, however, compllers become so sophisticated that they can
rearrange whole sequences of statements in the interest of
compiling efficlent programs, it may be necessary to resort to a
note which, prefixed to a compund statement, would indicate
that it was to be compiled in the order in which it was written."
If we read this carefully we see that it 1s suggested here, that the

18

advent of more sophlstlcated translators would glve us the duty, .
under certain circumstances, of adding an extra ”gggg” to the
program, because otherwise the translator would translate somethlng
else If the semantlcs of the 1anguage arewell -defined, then, in

my oplnlon such a '"sophisticated translator" is just plainly wrong.
The paragraph quoted creates the impression that these authors have
in mind a sort of floating semantics, that becomes more and more
vague the translators should like to have more and more freedom,

A disturbing picture for the future: a program belng correct today,
false tomorrow!

Furthermore, these authors write:

"The above restrictions appear to be sufficient to enable

the termg of an expression to be evaluated in any order.

We would, therefore, abolish the left to right precedence

rule and, if further investigation shows that there‘arebloop- |

holes that we have overlooked, we would seek to close them o

rather than re-introduce the precedence rule.
This is plain language: rather than closing the gap in the semantlcs
they propose restrictions to prevent all 01rcumstance51n whlch ‘this
lack of definition matters, no matter how 1mp1101t these restrlctlons
may- prove to be, If these authors had their way, I should have few
illusions left about the ease with which the eventual language
could be used, Their proposals strike me as fighting the symptoms
rather than the illness, as solving a minop-problem-at the expensé

of a major one,

Acknowledgement,

I should very much like to add that, wherever the oplnions
stated above should prove to make some sense, this could very well
ththé result of the numerous discussions I was privileged:to have
with the staff. members of the Computation Department of the
Mathematical Centre, Amsterdam, about these and allied subjects.
They are, however, not in the slightest way responsible for
the contents of this report.

Y
It is a pleasure to express my sincere thanks to Mrs. J.M.

Goldschmeding - Feringa, who assisted in the translation of this
report. o .

