
STICHTING

MATHEMATISCH CENTRUM
2e BOERHAA VESTRAAT 49

AMSTERDAM

REKENAFDELING

Rapport M.R.34

On the Design of Machine Independent Programming Languages

by

Dr. E.W. Dijkstra

l\'iATi~Er,1lATriStrn ti;EZN1iiHH.'I
REKENAFOEblN@

October 1961
lllll llllll llll lliijf lll~'lmil~l]l~illll II IIIIII IIIII

3 0054 00077 3185

Introduction.

In the light of the subject matter of this report it is not

surprising that a number of problems will be discussed here that

also turn up regularly in connection with the so-called 11 ALGOL

Maintenance". In order to avoid misunderstanding, however, I should

like to stress that this report does not deal with ALGOL Maintenance.

For instance, the semantic definition of ALGOL 60 does not specify

in which order the primaries of an expression are to be evaluated;

in consequence, syntactically admissible but semantically ambiguous

expressions may be written down. When,in the following, I express

a marked preference for semantic definitions in which, amongst
others, the order in which primaries ~re to be evaluated is fixed

uniquely, this must not be regarded as a proposal for the ALGOL

Maintenance to supplement the official ALGOL 60 Report to this

effect. In my opinion it is really too late for this now, when one

thinks of the considerable amount of time and energy that has al­

ready gone into the construction of ALGOL 60 translators.

Instead of discussing in detail all sorts of proposals for the

improvement of ALGOL 60 -or let us rather say: proposals for new

languages- and judging them on their merits, I would prefer to

pose (and try to answer) the question what the standards should be

in judging these language proposals. This report has been written

in order that we shall have in mind as clearly as possible what

we are aiming at when we create a new machine independent program­

ming language, and by which ways we could reach these goals.

I shall restrict myself to programming languages that, like

ALGOL 60, are intended for the description of numerical processes.

As the most important application I regard the possibility of using

such a language to formulate processes in such a way that they can

then be executed by an automatic computer. Naturally, such a language

c·an be used fruitfully in the lecture room and in publications, but

I pr~fer to regard those as secondary fields of application. I do so

because the language requirements that seem to be dictated by 11 human

consumption of texts 11 can easily lead us astray: I am fully aware

.that an algorithm of some complexity, published in ALGOL 60, is

utter1¥ unreadable to most people, but this fact does not shock me.

Such unreadability is in no way caused by the usually emphasized
11 defects and shortcomings" of ALGOL 60; it is rather due to the not
unusual (and often very sensible) superficiality of the reader, who

2

would prefer to be spared the overpowering number of particulars.It

the~~fore seems a wise thing to focui our attention on the ''mechani­
cal consumption bf texts". We shall mainly regard the programming

langtlag~ ~s ~ 1~e~ris of riommunication between man and machine, more

-precisely: •with man as the 11speaker 11 and machine as the "listener 11
•

~!1. go?_.9~ ~§_e: of a machine.

Now, if we regard a programming language primarily as a means

of feeding problems into a machine,.the quality of a programming

language becomes dependent on the degree in which.it promotes

"good use of a machine". Having an opinion on the quality of a

programming language thus implies an opinion on what should be

esteemed 11 good use of a machine". As long as our ideas on this
matter diverge we shall never reach an agreement on an ideal p~ogram­

ming language and I therefore propose to scrutinize. our oi;:,inions on

good machine use.

For a large group of people good use of a machine is synonymous

with efficient use of a machine. And the only two criteria by wh1ch

they judge the quality of _a program or of a programming system ~re"

requirements of "time and space 11
• I have a suspicion, however :1 that

in forming their judgement they restrict themselves to these two

criteria, not because they are so much more important than other
·, ' .

possible criteria, but because they are so much easier to apply on

account of their quantitative nature.

Some quotations may show that the sacrosanctity of these two

criteria is a. widespread phenomenon. Thus 3 Prof .dr. Bruno Thliring .
writes \~: "Eil1fuhrung in qi,e Methoden der Programmierung", page 65:.

11 Raum - Sparen bedingt Zeitverlust,: Zei t-Sparen bedingt

R~up-1verlust .; Wir _ wollen dieses Gesetz als das 11 Reziprozi Uits - Gesetz ·

der Programmierung 11 bezeichnen. Dass die Gultigkeit d:i..eses Gesetzes

nicht auf-_ das Beispiel des § 26. beschr~nkt is t (womi t es ja kein
11 Gesetz 11

. mehr wEfre) geht aus dem rein logischen Urns tande hervbr,

dass •... "etc.etc.

(In translation: "Economizing on space -implies loss o~ time, econo­

mizing orf time implies loss of space. vJe shall call this. law the

"Reciprocity Law of Programrriing 11
• That the validity of this law is

not restricted to the example of§ 26 (in which case it would not be
a "1aw 11 at all) follows from the pui~ly logical

3

circumstance that ... 11 etc.) All of this sounds most impressive, yet

it is really nothing but disguising, by pompous terminology, a

triviality as a scientific theory. As soon as space and time are

the only two criteria and there are two competing programs for the

same problem, then they £.fil!. only compete with each other if the

one program is better in one respect and the other better in the

other respect. Of course. The whole paragraph is equivalent to

"There are two possibilities, because I have not thougl:!t of

any others.'' And, alas) this narrowness of outlook is not confined

to Thuring: in a book by Prof. E. Billeter, published in 1961, we

find this "Reciprocity Law" quoted with full approval. In 1961 the

"University Mathematical Laboratory Technical Memorandum no. 61/5:

Some proposals for improving the efficiency of ALGOL 60 11 was publish­

ed, written by nobody less than C. Strachey and M.V. Wilkes, in whic~

they write "Our concern is largely with the production of efficient

object programs. It is in this respect that an automatic programming

system will ultimately be judged." And they mention their standards

for efficiency explicitly in the next sentence:" when the shoe

begins to pinch, by way either of machine speed or of storage

limitation, ...• ". All in all, there is sufficient reason to call for

some attention to the more imponderable aspects of the quality of

a program or of a programming system.

By way of introduction, I should like to draw attention to the

not unkno¼~fact that it is impossible to prove a mathematical

theorem completely, becau~e when one thinks that one has done so, ore

stJll has the duty to prove that the fi~st proof was flawle~s, and

so on, ad infinitum. So much for human fallibility. One can never

guarantee that a prGO f is correct, the best one can say is "I have

not discovered any mistakes. 11 We sometimes flatter ourselves with

the idea of giving watertight proofs, but in fact we do nothing but

make the correctness of our conclusions plausible. And let us be

honest: even extremely plausible. We achieve this high degree of

plausibility by a means specially designed for this purpose, viz.

theorems. On the one hand, so many people have, each in their own

way, derived these theorems, that there is a non-negligible

probafiility that they do indeed follow from the axioms, on the

other hand, the pretended conclusions are subject to conditions so

orderly that the user~ task of showing that he has applied the

theorem correctly is not too cumbersome.

4

The programmer is inexactly the same position, since it is

not possible for him to prove the correctness of his programs.

And yet the correctness of the programs is of vital importance: •.

everybody working with an automatic computer knows from sad

experience that it is very easy to produce an awful lot of numbers,

but he also knows that they are worthless if their correctness is

subject to doubt. Instead of only staring with envy at the fabulously

convincing power of the pr~ofs in pure _mathematics, it seems more

fruitful to me to inquire whethBr we can lear.n from the way the pure

mathematician works. He ~as theorems, we have subroutines. A theorem,

however, is (see above) only useful if we can apply it under a

minimum number of clear conditions. In the same way the usefulness

of a subroutine (or, in a language, a grammatical construction)

increases as the chance decreases, that it will be used incorrectly.

From this point of view we should aim at a programming language

consisting of 2. small number of concepts, the more general the better,

the more systematic the better, in short: the more elegant- the better.

In particular I would require of a programming language that

it should facilitate the work of the programmer as much as possible,

especially in th8 ~ost difficult aspects of his task, such as

creating confidence in the correctness of his program. This is

already difficult in the case of a specific program that must

produce a finite set of results. But then the programmer only has

the duty to show (afterwards) that if there were any flaws in his

program they apparently did not matter (e.g. when the·converging

of his_process is not quaranteed beforehand). The duty of verification

becomes much more difficult once the programmer sets himself the task

of constructing algorithms with the pretence·of general applicability.

But the publication of such algorithms is precisely one of the

important fields of application.for a generally accepted machine

independent programming language .. In this connection, the dubious

quality of many of the ALGOL 60 algorithms published so far is a.

warning not to be ignored.

I am convinced ·that these problems will prove to b_e much f11ore

urgent than, for example, the exhaustive exploitation of specific

machine· features, _if not now, then at any rate in the near .. future.

In order to get as clear a picture as p6ssibl~ of the real

needs of the programmer, I intend to pay, for a while, no ·attention

5

to the well.,.known criteria "space and time". Those who cm the

ground of this remark now doubt the honest fervour with which the

following is written., should remember that, in the last instance,

a machine serves one of its highest purposes when its activiti~s

significantly contribute to our comfort.

On the needs of the user.

I should now like to investigate those needs of the user that

are not a direct consequence of his own specific problems. Somebody

who only integrates ordinary differential equations will in all

probability not be very interested in matrix operations but somebody

else might perfectly well want to operate on quaternions, For yet

another person it may be vital to be able to exercise control on the

precision in which (parts of the) computation should be performed.

I would like to focus my attention on the linguistic demands he

may make, irrespective of "the representative problem" that always

underlies the design of a particular language.

When I speak of the user of the language I mean the man that

programs. U11fortunately I feel obliged to mention this explicitly,

as there is a tendency to design programming languages so that they

are easily readable for a semi - professional, semi - interested

reader. (Symptoms of this tendency are languages the vocabulary of

which includes a wild variety of English words to be used in a

nearly normal sense, and some translators that even allow a steadily

expanding list of synonyms and misspellings for these words.

Particularly, languages designed under commercial pressure have

suffered s~riously from this tendency.) It looks so attractive:

"Everybody can unde.rstand it immediately. 11 But giving a plausible

semantic interpretation to a text which one assumes to be correct

and meaningful, is one thing; writing down such a text in accordance

with all the syntactical rules and expressing exactly what one

wishes to say, may be quite a different matter!

Fo-r pur;::ioses 8f clarification let us consider ordinary English

as language, in the use of which, however, certain additional rules

must be obeyed. The simplest of these may be of the following nature;

words of more than 15 letters are forbidden; the total number of

letters of three consecutive words may not be greater than 40;

sentences of more than 60 words are not allowed; in one and the

same sentance the same word may not be used twice as a subject;

6

furthermore a list ·of., say 2000, words is given, that are so

rarely used that they have been forbidden for the sake of

convenience., etc.etc ... There is no reason to' assume that these

extra conditions will be detrimental to the readability of the

text, and what is more, one can read and understand such a text

just as well without knowing of the existence of these restrictions.

But if the number of such restrictions is sufficiently large and

particularly if they impose highly implicit conditions, it becomes

almost impossible to construct a correct text. In the extreme case

one would need a large. computer with a complicated program to check

whether one 1 s text.does not violate the rules!

Of course, this example was an exaggerati0n, but it clearly

shows us the direction which we must definitely not take. We mustmal{e
it asec6y as possible. for the user to master the language. And we

can immediately indicate two ways of making this difficult. In the

first place, implicit conditions for which it is difficult to check

whether a given text sa·ti sfies them or not., in the second place

conditions that forbid a construction with a straightforward semantic
implication. A language which neatly caters for algebraic expressions

but, for example, restricts the number of enclosing bracket pairs

to eight, is one which I would discard. The requirement is too

implicit to my taste and I do not like to burden the programmer

with the extra task of counting to see whether he has exceeded the

maximlIDl depth, and this really is an extra duty because a priori.

there is nothing to prevent him from writing more than eight nested

bracket pairs: for even then the semantic interpretation is perfectly

clear.

From this one should not draw the conclusion that I am an

ardent supporter of so deeply nested bracket pairs. On the contrary,
for the correspondence between opening and closing bracket becomes

increasingly difficult to see at a glance when the depth increases.

If, however, someone wishes, under certain circumstances, to write

down su.ch a perfectly sound expression, I see no acceptable reasons

from the point of view of the user to disallow this.

In exactly the same way I have not the slightest inclination

to forbid, as some people suggest, type procedures with so-called

"side effects" in ALGOL 60. Under certain circumstances such

procedures can be very useful and perfettly natural constructions,

7

and I completely fail to see how it can serve the user to impose

such an extra condition on his language., thereby restricting

his power of expression.

On semantic definition and the need for conversation,

As already mentioned, I do not regard the supposed readability

for a general reader as a valid criterion. I have good reasons for

this. In human communication the nunpredictability 11 of those we

address plays a fundamental role. If we now apply the norms of human

communication to an artificial language., in which we wish to address

a computer., then we ignore one of the most essential characteristics

of the automatic computer, viz. the "predictabili ty 11 of its behaviour.

When I ask myself what my words actually mean, i.e. when I ask

for the semantics of my language, I can say nothing about it without

considering the listener. Without listeners -e.g. when I deliver a

monologue on an otherwise uninhabited isle- it makes remarkably

little difference whether I speak nonsense or not, so little, in fact,

that under these circumstan.ces 1'meaning 11 becomes an empty concept.

My utterances can only have meaning by virtue of a listener, and

what is more., the reaction of my listener determines what my

utterances mean.

Whether I explain something to a six-year-old or t~ his father,

has a marked influence on the choice of my words. The limited voca­

bulary of the boy imposes definite restrictions on the choice of my

words: there are many we,rds that are 11 meaningless 11 as far as he is

concerned and if I do not respect these restrictions my explanation

will very soon (and in a very real sense) become "meaningless".

A more striking example of how the listener defines the semantics

of my language will perhaps be given by a somewhat more artificial

setting, viz. · the writing of an article. When it has been c c1mpleted

one reads it over to see whether it actually says what one wanted to

say. For this purpose one tries to read it as if one had not written

it oneself; one invents an "av·erage reader II and tries to play the

role of this imaginary person as well as possible. And if, in reading,

this imaginary person is startled by a rash conclusion, one alters

the paragraph! The way in which the imaginary person reacts becomes

one 1 s norm; he determines whether something is clear or not., he
·: ' : ·,·:

defines the meaning of our text, i~e. the semantics of our language.

8

In this light we only know what we have said, when we have

seen how our listener reacted to it; we only know what the things

we are going to say will mean in as far as we can predict his

reaction. However, we only know other people up to a (low!) point

and in human communication every message is therefore to a high

degree a trial, a gamble to see whether the other will understand

us as we had hoped. As we do not master the behaviour of the other,

we badly need in speaking the feed back, known as "conversation".

(Testing a program is in a certain sense conversation with a

machine, but for other purposes. We have to test our programs in

order to guard ourselves against mistakes, which is something else

than imperfect knowledge of the machine. If a program error shows

up, one has learnt nothing new about the machine -as in real

conversation-., one just says to oneself "Stupid! 11
.)

We can fully master, however, the way in which a computer

reacts and this is precisely the reason why addressing an automatic

computer presents us with undreamt-of linguistic possibilities.

Mastery of the reaction of the computer must not only be a theoreti­

cal possibility but a real, practical on~, if orte is to able to

make full use of those linguistic possibilities. It is tnerefore

mandatory that our machine be not prohibitively complicated.

(From this point of view the way in which ALGOL 60 is defined is

rather alarming. 11 Pure ALGOL 60" is defined by the official

"Report on the Algebraic Language ALGOL 60 11
, edited by Peter Naur,

but reasonably speaking one cannot expect a user of the language
to know this Report by heart. Specific implementations of the

language are defined by translators etc. of a couple of thousand

machine instructions, a quantity which exceeds our powers of

comprehension even further.)

As the aim of a programming language is to describe processes,

I regard the definition of its semantics as the design, the

description of a machine that has as reaction to an arbitrary

process description in this 1angauge the actual execution of this

process. One could also give the semantic definition of the

language.by stating all the rules according to which one could

execute a process, given its description in the language.

Fundamentally, there is nothing against this, provided _that

nothing is left to my imagination as regards the way and the ord~r

in which'these rules are to be applied. But if nothing is left to

9

my imagination I would rather use the metaphor of the machine that

by its very structure defines the semantics of the language. In

the design of a language this concept of the "defining machine"

should help us to ensure the unambiguity of semantic interpretation

of texts.

When we have thus defined our language, its semantics are

completely fixed and its syntax - I owe this remark to Prof.dr.ir.

A.van Wijngaarden- does not have a definig function anymore: we

can do without the syntax as it is merely a summary of

"admissible constructionsn, i.e. all constructions to which the

machine does not produce the uninteresting reaction "Meaningless".

(Such a possibility of escape is very useful for our machine, when

we remember that we may feed it with an entirely arbitrary sequence

of symbols. We shall return to this subject later.)

At this moment it is very definitely not my intention to

~ive any suggestions for the design of this defining machine
1

\i.e. for the design of a next programming language); I would rather

direct the reader's attention to some properties of this machine

that seem desirable to me if it is to serve its purpose.

For the sake of uniqueness I would prefer a strictly sequential

marihine, i.e. a machine for which at every (discrete) moment there

is not the slightest doubt. as to what is happening. I feel on the
·- ~-·• --- -· -··· --- -----···•·

safest ground if this machine is conceived as consisting-of a

finite arithmetic unit coupled to a store that is, by definition,

sufficiently large. In particular: whenever an operation has to

process an arbitrarily great amount of information, it should do so

in finite portions and in a well defined 0rder.

In this respect our defining machine reflects one of the

most important discoveries embodied in present day autom~tlri

computers, viz. that in the evaluation of arbitrarily complicated

algebraic expressions one need not resort to an arbitrarily

complicated arithmetic unit, but that this evaluation can always

be performed by a finite arithmetic unit, provided that the

anonymous intermediate results (now no longer produced simultane­

ously) can be stored until they are needed again. In other words:

we can choose the strictly sequential machine without the slightes

loss of generality. And as we shall require the concept of
11 sequencing 11 sooner or later anyway, I see no reason why we should

10

not introduce it right from the start.

Furthermore, we should be prepared to face the fact that our

defi~ing machine will beqome incredibly unpractical and unrealistic:

it will be so wasteful of storage space and number of operations

that it will hurt the eyes of every honest programmer. For, in

how far does· our defining machine differ from a real one that is

provided with a good translator? This translator probably demands

thousands of instructions and is there:fori scarc·ely a realistic

proposition as language definition. We should realize, however,

that the size of the translator is largely due to the fact that

the process has to be carried out as efficiently as possible

(and furthermore by a machin~ not specially designed for this

language). By disregarding all efficiency requirements and

tailoring the machine to the language we can obtain a much

simpler organization, so simplein fact that it can very well be

used as a means of language definition.(This must be possible;

otherwise, how could we, poor humans, ever master the language?)

If, on being confronted with our defining machine, a programmer

now jumps up, protesting against this waste: nrt can be done far.

more efficiently, if one ... "etc., then we can be content. We have

sown our seed in fruitful ground: he has accepted the challenge

and has already started on the construction of' his translator!

On unnecessary redundancy and optional information

There are two declarations in ALGOL 60 with a hybrid nature,

viz. the switch declaration and the procedure declaration. Like

all declaration, they reserve an identifier for a special sort

of object but, besides, they immediately define this object and do

so statically. In this respect they are comparable to the so-called

"constant" declaration, which has been suggested for numerical

quantities. We all know that by replacing static definitions by

dynamic ones one can only gain in flexibility. Furthermore.,

ALGOL 60 includes the assignment statement that assign~ a value

dynamically but., alas, only in the case that this value is a

logical value or a number. By extending the concept "assignment

of a value" so that lists., statements-etc. can also act as

"assigned values", one can remove the value-defining function of

the, ··switch and procedure declaration. The declarators switch and

procedure should then only be followed by a list of i~entifiers,
to which suitable assignments should eientually be made. (I regard

11

such a modification as an improvement: the language then becomes

more systematic and more powerful at the same time, as all value­

rela~ions have now become dynamic.)

If, as a next step, we regard the notorious logical expression
11 if B then C else D = E11 as slip of the syntax, because the

syntactical grouping of these symbols depends on the question

whether the variable C is logical or not, then the type-declaration

Boolean has become superfluous: whether it is a logical variable

or not will become apparent from the way in which it is used.

Finally we can omit all type indications in the declarations if

we furthermore assume ·that there is no logical necessity to introduce

the type integer (semantically it only plays a role in two minor
cases, viz. in the definttion of ajb and in the implicit rounding

off on assignment to an integer variable).

The array declaration is then left as the only odd case, as

the subscript bounds must be specified there. Fortunately, however,

the explicit specificat:J,.9r, _of subscript bounds is logically speaking,

not necessary: during the course of the computation if will

transpire which array elements occur. Fe therefore omit the
subscript bounds., since they can be regarded as redundant information.

Finally, we reduce the number of declarations to one; the

function of this universal declarator is merely to introduce new

identifiers local to the block in question.

In this way the programmer's powers of expression are

increased considerably. There is no longer the slightest reason for

an array to be rectangular, the triangular array, for instanceJ is

automatically included in the languege. It is no longer necessary

that an array be homogeneous: some elements of an array may even

be arrays again, or procedures or logical values, etc. Once the

type of a variable is always defined dynamJ_cally, there is not even

a reason for it to be constant in time. The power of expression

is inceased as the language contains a smaller number of different

kinds of elements and all kinds of artificial barriers have fallen
•

away. An ordinary variable is nothing but a trivial example of a

parameterless procedure. In short, the programmer now no longer

needs to squeeze the relevant information into the rigid forms

permitted PY ALGOL 60.

12

This increase 1n expressive power 1s a practical advantage;

from the linguistic point of view I think it even more important that

in this way the language can be made less redundSnt. For: the

redundancy of the ALGOL 60 declarations has two undesirable
. . .

effects (even apart from the duty of inserting a number of extra
symbols). As the declarations are obligatory 3 the user is forced··

to state explicitly a number of properties of the remainder of the

block: the declarations lay down conditions which the rest of the

block must satisfy and as such they are highly implicit restrictions.

In the second placeJ if the redundant information is to be a vital

part of the language, the defining machine must take note of it,

i.e. it must detect whether the rest of the program is in

accordance with it and this make~ the defining machine considerably

more complicated. By excluding redundant information from the

language, means of contradicting himself have been taken away from

the user and language Cesigners are spared the temptation of

assigning (afterwards) a special meaning to a particular
contradiction (as in ALGOL 60 in which "go to 11 followed by a s_witch

element may, under certain circumstances, be equivalent.to a

dummy statement).

As I am probably not using the word 11 redundant 11 in its

official 3 technical sense, I should like to insert some clarification

of my point of view. Our defining machine should be so complete as

to react in a well-defined way to every arbitrary string -of .symbols

presented to it. The special signal "Meaningless" may be one of its

possible reactions. The concept 11 redunda11cyll only has a right of
•

ex;'LJ3 tence as long as it is not our intention to provoke this
special signal "Meaningless 11 as the machine 1 s reaction: as soon

as we include this reaction in the set of "intended reactions"

no program can sin against the language rules anymore and we must

therefore regard every arbitrary text as acceptable. I assume·

that evoking the reaction "Meaningless 11 will never be our intention

and our. language therefore remains redundant as long as the signal
11 Meaninglessn belong to the set of possible reactions of the

defining machine. In itself I have no objection to this, I only
fc

have objections to 11 unnecessary redundancy 11 i.e. language rules

that I can regard. as restrictions.

I hope that my distinction between 11 rules II and "restrictions 11

is not purely emotinal. Roughly speaking 3 a language rule enables

me to express something, whereas a restriction prevents me fro~

doing so~ The language definition consists of a number of rules of

reaction; some of these rules may under certain circumstances

prescribe the reaction 11 Meaningless 11
• When, however, the reaction

"Meaningless" is prescribed in a situation for which the remaining

rules dater, then I speak of a restrictiont of unnecessary redundan­

cy. This in contrast to a rule that prescribes the reaction

"Meaningless" in a case for which the other language do !:2.Qi cater.

Then I do not regard this rule as an obJe~tionable restriction: it

is just a consequence of the fact that we can write down a string

of symbols for which we will not take the trouble to define a meaning­

ful reaction (at the cost of who knows how many complications of

the defining machine).

On behalf of the user I envisage a not unnecessarily redundant

language, the semantics of which have been completely fixed by our

defining machine. But now it is time for us to remember that it was

also our intention that the processes d~scribed shoJld be executed

by a real computer in a reasonably efficient way.

In this connection I should like to quote from the "University

Mathematical Laboratory Cambridge Technical Memorandum no 61/a:
Some reflections on Automatic Programming and on the design of

Digital Computers. 11 by iv1. V. Wilkes the following remarks, with

which I wholeheartedly agree:

"If a small machine is used for compiling., however.,it is desi­

rable for the programmer to be able to lighten the task of·

the compiler by providing extra information; much of the in~·

formation given in the declarations in ALGOL is of this type~

I believe that, in designing future automatic programming

languages, a c.lear distinction should be made between the·

thread of essential information necessar-y to· define the prd-'

gram and the additional information put in to help the compiler. 11

This paragraph expresses exactly my own sentiments.

From a lingui~tic point of view it may be very attractive to

formulate our process in a not unnecessarily redundant language,thus

only bemg cblige d t~ give t_he absolute minimurq. that is needed to

define the pr6cess. But what is the translator going to do with

this? I assume that the structure of many a,machine is such that it

14

is desirable that the translator thoroughly analyzes this program

and tries to detect all kinds of "special cases" of our general

concepts, for example whether an array has a regular form

(rectangular., triangular etc.); .whether an array is perhaps

homogeneous, whether a variable is always simple and never defined

in the form of a 1Yrocedure, whether a procedure is used recursively

or not, etc~ In short, the translator will search for "unused

generality 11 with the aim of gaining something. These analyses are

no child's play and furthermore, as the analysis is carried out

statically, the translator must always remain on the safe side.

But we can hardly speak of "good use of a computer" when the

translator spends a considerable amount of time and trouble in

trying to come to discoveries that the programmer could have told
it as well~ It may be a nuisance that ALGOL 60 arrays must be

rectangular, but we should no-c close our eyes to the fact that a

rectangular array is a fairly common phenomenon, and that the user

is usually aware of its rectangularity. It is undesirable that the

programmer is forced to give this extra information, but it is

unwise to prevent him from inserting such additional information
11 for t 1:e possible benefit of the translator 11

• I would like to

call this "optional informationn, optional in the sense that a

correct and complete program remains when it is left out.

For translator makers particularly I cannot stress enough
that they actually have no right to this optional information: the

whole concept is a concession to the weakness of the flesh. The

quality of a translator naturally diminishes if it simply does

not accept certain parts of the language or if it demands

unconditionally certain forms of optional information -for then we
have fallen back into the rigorous scheme of ALGOL 60-; it is also

to the detriment of a translator, when the efficiency loss as result

of omission of the optional information is so large that the user is

virtually compelled -be it not 11 de jure 11 then 11 de facto 11
- to insert

it. In this connection I should like to point out that the reactions

to ALGOL 60 have shown that suggestions for so-called improvement

of ALGOL 60 should fill us with great suspicion, especially if ,.
these suggestions come from unsuccesful translator makers.

The fact that this helpful information is kept outside the

language improves the machine independence, because one machine will
want to be helped in quite another way than another machine. The

15

second advantage could be that the language itself may remain

up to date longer: information which is very helpful now may
--

be of no interest at all in a number of years; when there may be

more suitable machines and more sophisticated translatbrs. It'

would be very sad if we were then bound by restrictions which
can then no longer be justified (say the rectangularity of an array).

It is of course desirable that the possible forms of optional

information be standardized. And for the making of proposals in

this direction probably just as much tact and wisdom are required

as for the design of the language itself. The general language

may be very attractive logically and l1nguist1callyJ but its

practical merits may very well depend on the special cases for

which we want to be able to give the translator a hint 3 as long

as they are of interest but prohibitively difficult to detect

automatically. In any case it is an advantage that the defining

machine will provide a clear ter~inology in which we can ~xpre~s

these special cases (in ALGOL 60 3 it is -see below- not clear,

when a procedure is used recursively).

One final remark about the bearing of the sem~ntic definition

and the consequent task of a translator. Our defining machine

incarnates a detailed prescription of how one c3n execute a given

process as described by a text in the language, how one ..£.§.9:.

compute the required result. By this we do not mean that every

implementation should be an exact copy or detailed simulation

of the defining machine. When, for example, the defining machine

leaves no doubt about the order in which the primaries .of an

expression should be evaluated, then this 1s only with the intention

of defirIW.g the answer unique]y as so:)11 as it depends on ttds order. As

long as it does no~ depend on this order, every implementer is

free to change the order as he sees fit. I regard every implemen­

tation as a correct one as long ~s the answer is _correct, i.e.

undistinguishable from the .answer thc;1t our defining machine

would .have given. In this se_nse, the "net semantics" of a language

is only defined if we know what 11 the answer 11 is and we must
(i,

include output statements as an essential factor in the semantic

implication of a program. Regarded in this light, the net semantics

of a program in 2ure ALGOL 60. which, as we know, contains no
output statements, is empty. (The semantics of our language is

• defined bv the react:1on of mrr liRb~nRY'_ 1-mt e:Rn WP RnPRk- :=ihm1t hiR

16

reaction if no part of it reaches us?)

On some proposals by Strachey and Wilkes.

Those who have read the Technical Memorandum 61/5 by C. Strachey

and M.V. Wilkes, quoted earlier, will not be surprised after a11 this,

that the only one of their suggestions that attracts me is in the

last section, in which the concept of optional information has

been worked out in more detail. I will give a simple example. One

of their proposals is:

"Procedures shall be recursiv_e if introduced by the declarator

recursive procedure; otherwise they may be treated as hon­

recursive."

Considered in the light of the concept of the optional informa­

tion introduced earlier by Wilkes (Technical Memorandum 61/2) it

would have been more elegant to present the non-recursive procedure

as the special, restricted case, ~nd not the recursive oneas the

exception. A competing preposal would be:

11 In general all procedures may be used recursively. If the

programmer, however, happens to know for certain that one

of his procedures will not be used recursively in his program,

he may state so, for the possible benefit of the translator,

by inserting the prefix "nonrecursive" immediately in front.

of.its declaration.ff

In passing -to underline my desire for rigorous, strictly

sequential semantics- I should like to point out that I do not

feel much inclined to support this proposal, not even in its

mitigated form, because the question whether a procedure call

gives ~ise to recursiveness in the object program is not answered

by the language but by the implementation. Thus; in the ALGOL 60

translator developed by the Computation Department of the Mathematical

Centre, Amsterdam, the call "sqrt (sqrt(x))i1 does not give rise to

any recursiveness when the identifier 11 sqrt 11 refers to the undeclared

standard procedure for the square root, but it does so in all

other cases. ,,

The authors' motivation for their proposal is very illuminating;

11 An example of unnecessary generality is provided by the

~equirement that all procedures ~hould be recursive. In ordinary

17

computing -as distinct from symbol manipulation- it will be found

that the need for procedures to be recursive is the exception rather

than the rule, and the requirement that all procedures should be

recursive leads to inefficiency, since a recursive procedure is

both longer and slower than a non-recursive one."

Let us assume that their observation is correct and not purely the

result of the fact that until recently most programming systems did not

cater for recursiveness. I hope to have made clear in the above that

I regard such a statistical observation as insufficient grounds to

justify the conclusion "unnecessary generality". Finally they make an

appeal to the fact that" ... a recursive procedure is both longer and

slower than a non-recursive one." But the recursive procedure is such

a neat and elegant concept that I can hardly imagine that_ it will not

have a marked influence on the design of new machines in the near

future. And this influence could quite easily be so considerable, that

the possible gain in efficiency that can still be booked by excluding

recursiveness, will become negligible. Personally, it will not surprise

me if this will prove to be the case. To me the whole proposal shows

too great a similarity to a proposal along the following lines: "As in

most multiplications both factors are positive, we propose that the

ordinary multiplication sign may only be used if both factors are

indeed positive; for multiplication of factors without sign restrictioq

the new operator 11 general mult 11 is introduced." Perhaps there are still

machines in which a special multiplication of positive factors is

executed faster than the general one; otherwise we can easily design

such a machine.

'l'he same sort of remarks can be made with regard to their proposal

to abolish the 11 left to right precedence rule", a rule which they·

fortunately extend to the order of primary evaluation. I do not feel the

slightest inclination to do this. The result of such shaky semantics is

clearly shown at the end of the paragraph in question, where the

authors write:

"If, however, compilers become so sophisticated that they can

rearrange whole sequences of statements in the interest of ,.
compiling efficient programs, it may be necessary to resort to a

note• which 9 prefixed to a compund statement, would indic.ate

that it was to be compiled in the order in which it was written."
If we read this carefully we see that it is suggested here, that the

18

advent of more sophistic_ated translators would give us the duty.,

under certain circumstances, of adding an extra "note" to the

program, because otherwise the translator would translate something

else. If the semantics of the language arewell-defined, then, in

my opinion., such a "sophisticated translatorll is just plainly wrong.

The paragraph quoted creates the impression that these authors have

in mind a sort of floating semantics, that becomes more and more

vague the translators should like to have more and more freedom.•

A disturbing picture for the future: a program being correct tbday,

false tomorrow!

Furthermore, these authors write:
11 The above restrictions appear to be·sufficient to enable

the terms of an expression to be evaluated in any order.

We would, therefore, abolish the left to right precedence

rule and, if further investigation shows that there are loop­

holes that we have overlooked, we would seek to close them

rather than re-introduce the precedence rule.If

This is plain language: rather than closing the gap in the semantics

they propose restrictions to prevent all circumstances in which"this

lack of definition matters, no matter how implicit' these restrittions

may prove to be~ If these authors had their way, I sho~ld have few

illusions left about the ease with which the eventual language

could be used. Their proposals strike me as fighting the symptoms

rather than the illness, as solving a minor problem at the expense

of a major one.

Acknowledgement.

I should very much like to add that, wherever the opinions

stated above should pro_ve to make some sense, this could very well

b~.the result of the numerous discussions I was privileged to have

with the staff members of the Computation Department of the

Mathematical Centre, Amsterdam, about these and allied subjects.

They are, however., not in the slightest way responsible for

the contents of this r~port. ii.

It ~s ~ pleasure to express my sincere thanks to Mrs. J.M.

Goldschmeding - Feringa, who assisted in the translation of this

report.

