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(Communicated by Prof·. A. VAN WIJNGAARDEN at the meeting of September 30, 1961) 

The numerical computation of a mathematical function by use of a 
recursive process may only be carried out if the number of times which 
the process must be repeated in order to achieve a prerequired accuracy, 
for given values of the arguments, is known. A useful device for the 
investigation of the numerical efficiency of a recursive process for 
computing a function of one argument, is a two argument table of tl1e 
fallowing form : 

TABLE I 

• • • 

• • • 

• • • 

• • • • 

• • • • 
• 

• • • 

This table indicates the necessary number nr,r' of r·epetitions of the process 
for which a relative error less than or equal to (½)p-s (where p is a given 
radix) when the argument has the value z, may be attained. 

The two arguments are derived from the sequence of s values 
81, 82, •.. , 8 ha and the sequence of z values z1, z2, ... , Zka• It is usually true 
that the arguments may be chosen such that Zr, r = l, ... , ka and 

• 
Sr', r' = 1, ... , ha are monotonic sequences, and nr ,r' is a monotonic 
function which increases with both r and r'. For the consideration of 
processes for computing functions of more than one argument, a set of 
such tables may be given. 

For the construction of a subroutine for computing a function by use 
of a power series or continued fraction expansion, there must be provided 
a) an auxiliary subroutine which computes the coefficients and b) a 
table having the form of Table I, or a set of such tables. 

If the relative error in the computation of the function value must 
not exceed ½p-8

, the argument value is z', Zr<z' <Zr+1 and Sr' <s' <Sr1 +1 

then the index of the required partial sum or convergent is nr+l,r'+I· 

The requirement a), however exacting, is unavoidable. The requirement 
b) may be dispensed with if, in the case of the computation of a function 

1 ) Communication MR 36 of the Computation Department of the Mathematical 
Centre at Amsterdam. · 
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of one argument, a numerical efficiency profile function n(z, s) of con­
tinuous variables s and z may be given, for which 

n(zr, Br')> nr,r' r = I , 2, ... , ka ; r' 1 9. h ' ""', ... , a. 

The use of this function may result in the computation of a partial sum 
or convergent of higher order than is necessary, but this, if the profile 
function itself is easily computed, may easily be outweighed by the 
advantage of being able to dispense with the input of sets of tables of 
nun1erical data. Of course the profile function should be so chosen that 
the quantities n(zr, 8r 1 )-nr,r' are as small as possible. The general 
statement of the problem of constructing profile functions which occur 
in the computation of functions of more than one argument, is obvious 
by extension of the preceding considerations. 

It is possible to verse the problem as a linear programmi11g problem. 

It is assumed that 
m 

(1) n(z, s) = I bu' <pu(z, s). 
u-o 

There then result the ha x ka linear inequalities 

(2) 
m . 

nr,r' < ~ bu' <pu(Zr, Br') 
u-o 

r = I, 2, ... , ka ; r' = 1, ... , 1ia 

and the linear function to be maximised is provided _by the condition 
that the double integral 

m Sha Z,ka 

(3) '!, bu'· ~ <.pu(z, s) dzds 
u-o 81 Z]. 

is to be a minimum. (A cosmetic generalisation is possible at this point. 
It is formally possible to introduce a weight function /(z, s) inside the 
integral sign in (3). This may be of use, for example, if it is known that 
the subroutine is to be used f~r more over certain ranges of z and s than 
for others; /(z, s) would then be an approximation to a frequency function.) 

If, however, the function n(z, s) is taken to be 

h-nd h 

(4) n(z, s) L I b h, u zh-uau 
h-0 u-o 

with nd 3, ha= 11, ka=6 (referring to Tables given in [I]), and the 
determination of the coefficients in (4) is embarked upon as a straight­
forward linear programming problem (including the introduction of 
artificial variables), it may easily be shown that repeated operation 
upon an array of some 73 (72+ 20+ 72+ 1) 12,045 quantities is required, 
and that the construction of profile functions for functions of more than 
one argument require operation upon an astronomical number of quantities. 
Nevertheless certain economies can be effected, as will become apparent 
by considering the following exposition. (It is assumed that the reader 

• 
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ia f't1lljr Ct>Il \'ers11,1·1t witt1 tl1e li11ear· 1)r<)gt·!tt11111.i11g IJI't) l)lt.'ltl at1<l tl1t~ si 111 J>l<· x 

111etl1c>d, a8 <iescril>ed .ir1te1~ alia ir1 [2] 11.n<l [:JJ). 

i) 1'lie 11u111erio&.l efficiericy 1·>r<.)filt~ fu11ct,i<>r1 is t;~iker1 t,-<> l>-e 

~-na A 
{5.) ]' ·"·· 2 I bi.u zli-u,,~u 

.1&-0 ~-o 

w·he1 .. t1r P .:,, 111ax 1lr ,r·. By n1ear1s <)f this 11.1"tifict:~ th{; ir1t1·<xiucti<)r1 c>f i1rtificial 

'\l"&riables as a l>asic ft,asible sc>luti<>11 is <lis1>t,1tst;<.i witl1. 

ii) Since it is not a f}ritlri kr1()Wr1 if the cot,fficie11ts i11. t1l1t, ex1>rE~ssic>r1 

(5) are positive or r·1egative, (5) irr11>lies the exister1ce of (nd-t· l)(·rid--t· 2) '"'-:c,·ni 

ur1kno\v11 1><>sitive <1ua1·1tities b11,. • pos, b.,,,, • nee where .. 

iii) Tl1ere are N == ha x ka i11eqt1alitiea of tl1e form 

h-u 1f. 

P- 2 .L b14,,11, z,JJ-•s,.,•>nr,r' 
i-o u-o 

Thus the variables occurring ir1 tl1e linear Jlfl)grt1,rnrning proble1n are the 
set x. ,u =--= l, ... , m '\vhere 

and tl1e residual va1"iables x.+, 8 ,rz:. l, ... , N give11 by 

P._ 
.· A,ti~.' -•sr1 •+xm+(r 1 -l).t111+,.. , ::::: I I.-. 

A.-o •-o r = , ... , fl;(,£ 

(6) 

• 
iv) The linea,.r fl1r1ction to be maximised i.s I c,x, , __ 

C1 -- 1.1 

(z!18 ....... z1!) (si,a - s1) 
Cs c/ll3!l@Hi! 9 1· 

Iii-'. 

• • • • • • 

The coefficients Cm+• 1i ::::1,, l, ... , N corresponding to the resid11al variables 
Xm+u, are zer·o. 

v) The simplex method- requires reJleated operation upon quantities 
in an N x ( m + N) array a,,1• I11itially the first m columns of this array 
are as f o.llows 
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I 1 Z1 Z1 81 81 • • • z1s1nd-1 Z181nd-I s1nd s1nd 

l 1 Z2 Z2 81 81 • • • Z2s1nd-l Z281nd-l 81nd s1nd 

1 1 Z3 zs 81 81 • • • Z381nd-l Z381nd-l s1nd sind 

• • • • • • • • • • • • • 

• • • • • • • • • • 

• 
• • • • • • • • • • 

1 1 Zka Zka 81 81 • • • Z"kaBlnd-1 ZkaBlnd-l sind 81nd 

l I Z1 Z1 82 82 • • • Z182nd-l Z1s2nd-l s2nd s2nd 

• • • • • • • • • • 

• • • • • • • • • • 

• • • • • • • • • • 

-I Zka 

(These may easily be built up by forming sets of 2(h-l- l) columns 
h 2. 3, ... , nd by partitioned multiplication.) 

The further N rows of the array (corresponding to the variables 
Xm+u u = I, ... , N which at the start are non-zero) possess but one 
non-zero element. 

vi) The basic feasible solution is taken to be 

Xu=O U= 1, 2, ... , m 

Xm+u P-nr,r' u= (r'- I)ka+ r r = 1, ... , ka; r' = 1, ... , ha 

vii) As the solution proceeds N of the variables Xu will be non-zero; 
their values are appended as a column to the a-array, their indices are 
appended as a further column. 

viii) The simplex method proceeds by the rec1.1rsive exchange of 
variables between the zero set and the non-zero set. The index of the 
variable to be discarded from the zero set is determined by selecting 
the most negative of a set of m quantities ( each of which corresponds to 
one of the zero variables). These quantities are appended as a further 
row to the a-array (their initial values are - Cu u I, 2, ... , m). The 
indices of the zero variables are appended as a further row to the a-array. 

ix) Principal interest attaches to the numerical values of the variables 
Xu U= I, 2, ... , m. In this instance it is convenient to adjoin a further 
row, the uth member (u= 1, 2, ... , m) of which indicates the row number 
of the extended a-array which contains the value of the variable Xu, 

should this be non-zero. In this way a tag is kept upon the variables 
Xu, u I, 2, ... , m during the co11rse of the computation. 

The extended array just described will be referred to as the /-array. 
The computation now runs as follows : 
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Prepare Comment 

Compute /i,j 
• • 

l(l)N, j v) l(l)m i 

/N+I,j 
• l(l)m viii) Cj ? 

/i,m+l p • l(l)N (vi)+ vii) nr,r' i 

li,m+2 m+i • l(l)N vii) 1, 

/N+2,j 
• • l(l)m vi)+ viii) J J 

/N+3,j 0 • l(l)m ix) 1 

Simplex Algorithm 

Determine e from 

e zero1 

/N+1,e=max neg /N+l,i j I(l)m 

yes • > Output 

I 
no 

Determine v from 

fv, m+I 

fv,e 

• = min pos i =I(I)N 

v zero1 yes )v Process chronically unstable. 
Repeat using greater precision. 

no 

new fv,,· = old f ",1 

f v,e 
j= l(l)m+ 1, j =/=e; new fv,e 

new f ,r,,1 = (old f t,j)-f",i x f t,e i = I ( I )N + 1, i ¥= v ; j 

i = I ( 1 )N + 1, i ~ v ; new /1,,e ( old /-t,e) x f v,e 

if ind=/N+2,tJ<m then /N+3.e=V ix) 

ix) 

1/(old /v,e); 

I ( 1 )m + I, j =I= e ; 

if ind'= fv,m+2 < m then /N+s, tnd' = 0 

Interchange /N+2,e and fv,m+2 vii)+ viii) 

Repeat Simplex Algorithm 

Output 

pos j = I N+3,21-1, neg j=/N+s,2J 

Print b1=f pos J,m+1-f neg J,m+l 
• 

J l(l)m/2 ii) 

The calculations may be finally checked (and indeed at any inter­
mediate stage) by printing out the values of the variables Xu u I(I)m+N 
and evaluating equations (5) and (6). 

By carrying out the computations in the manner described above 
the array referred to at the beginning of section has been reduced to 
one of (20+2) (72+3)=1650 quantities. 
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If the p1--ofile functio11 is taken to be a pla11e (i.e. nd= 1 in equation ( 4) 
and the given values of nr,r' lie on a ,vholly convex surface, an upper 
lin1it to the number of steps in tl1e simplex algorith1n may be given . 
.... ~t any stage of the process (other than the first two) the values of the 
residual variables at three neigl1bouring points in the z - s plane are 
zero. Tl1e computation proceeds by removing one of tl1e points from the 
group of' three, and choosing another which is neighbour to the remaining 
two. Indeed the progress of the computation may in this case be regarded 
as a slow waltz by a three-legged Thing on the z -s plane. The most 
prolonged calculation possible occurs when the waltz takes place from 
one corner of the plane to the opposite corner, that is, taking N + m steps. 
(Note: the values of nr,r' displayed in Table II (to be given) do not, as 
is revealed by inspection of Table III, lie on a surface which is wholly 
convex in tl1e sense described). 

The progress of the waltz may, if desired, be observed by printing 
out and inspecting the quantities /N+2,i j= I(I)m at each stage of the 
Simplex Algorithm. 

It does not appear that any such upper limit to the extent of the 
computation may be given when the profile function is a surface of higher 
degree than one, and indeed in this case the progress of tl1e computation 
with regard to the positioning of the successive zero residuals recalls one 
of the wilder moments in the Patagonian Rhumba. 

If the greatest value of nr,r' occurs at the point Z=Zka, S=Sha then it 
is quite clea1-- that the step which reduces the value of the integral (3) 
by the greatest amount from that given by substitution of the basic 
feasible solution (whe11. the value of the integral (3) is of course 
PX (sha-81) (Zka-z1)) is that whicl1 makes X1=P-nka,ha,Xm+kaxha=O. 

But this is not necessarily the step carried out by normal application of 
the Simplex algorithm. (The step taken is usually that which makes 
Xm+kaxha=O, but some other of the variables Xu u= I(I)m than x1 non­
zero.) Nevertheless the most advantageous first step may be forced by 
entering the Simplex algorithm loop for the first time at the stage 
immediately after e has been chosen, with e artificially made to be 1. 

For general values of z and s the linear function ( 1) will of course be 
non-integral, and the additional computation [n(z,s) + I] must be per­
formed. 

Numerical Example 

An example is provided by the continued fraction expansion 

(7) 
z I 2z l 2z 22z 22z r 2z r2z 

A specimen having the form of Table I for this expansion is 
Table II (nr,r' here is the order of the convergent On of (7)) 

• • given in 



z' s 1 2 

1 2 2 
2 2 3 
3 2 4 
4 3 5 
5 4 6 
6 6 9 

3 

3 
4 
r:. .) 

7 
9 

12 
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TABLE II 

4 5 

4 5 
5 6 
6 8 
8 10 

11 14 
16 19 

6 7 8 9 10 

6 6 7 8 9 
7 8 9 10 11 
9 10 12 13 14 

12 14 15 17 19 
l t> 18 21 23 26 
22 25 29 32 35 

• 

Table II shows the values of [n(zr', sr,)+ I] r= 1(1)6, r' 1(1)10 whe1·e 
z=2z'-s, when the linear function (1) is the plane 

(8) 

and Table IV corresponding values when the linear function ( 1) is the 
quadric 

(9) 

TABLE III 

z' B 1 2 3 4 5 6 7 8 9 10 

1 2 5 8 11 14 17 20 23 26 29 
2 4 7 10 13 16 19 22 25 28 31 
3 5 8 11 14 17 20 23 26 29 32 
4 6 9 12 1'5 18 21 24 27 30 33 
5 7 10 13 16 19 22 25 28 31 34 
6 8 11 14 17 20 23 26 29 32 35 

TABLE IV 

z' s 1 2 3 4 5 6 7 8 9 10 

I 6 6 6 7 7 8 8 8 9 9 
2 4 5 5 6 7 8 9 10 11 12 
3 3 4 6 7 8 10 11 13 14 16 
4 4 6 7 9 11 13 15 17 19 21 
5 6 8 11 13 15 18 20 23 25 28 
6 9 12 15 18 21 24 27 29 32 36 

In the event the coefficients bu in (8) and (9) determined as the 
solutions of linear programming problems are, for (8) 

(10) 

and for (9) 

( 1 I) 

bo = - 2.2, b1 = + 1.2, bs = + 3.0 

bo = + 9.092025, b1 = - 4.577710, b2 = - 0.284254, 

bs + 0.682004, b4 = + 0.501022, b5 + 0.016360 

This example has only been chosen to illustrate the feasibility of the 
method, and not for application. The logarithm of real argument should 
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()f course lle cornputed by TsCHEBYSCHEFF expansions as given in [4], 
and by means of optimal rational approximations when these have been 
discovered. 

In conclusion there are two dangers inherent in the method which 
should be poi11ted out. 

The first is that although the inequalities (2) must be satisfied, 
inequalities of a similar kind at points in the range s1 < s < 811,a, z1 < z < Zka, 

other than those which are tabulated, should also hold. In the final 
solution of the linear programming problem some of the residual va1 .. iables 
will be zero. In the neighbourhood of these points such inequalities may 
not hold. This can only be verified by judicious experimenting, repeating 
the solution of the linear programming problem (taking into account 
the new information obtained) should the results be unsatisfactory. 

Secondly it must be remarked that the linear programming problem 
proposed is extremely ill-conditioned, and it may well occur that rounding 
off errors propagate to such an extent that after a few steps it is senseless 
to prolong the computation. This difficulty may be overcome in two ways. 
Firstly the initial data is available to infinite accuracy so that repetition 
of the computation with suitable precision will always guarantee that 
the mathematical and the computational realities conform. Secondly 
the linear function (4) and the inequalities (2) may be evaluated as a 
check at each stage. If (4) ceases to decrease or (2) cease to obtain (within 
a certain accuracy) then the intermediate set of constants bu may be 
accepted as a solution. It will not of course be the optimal solution but 
it will be a reasonable one. 

It will be noted that considerable freedom is left in the choice of the 
functions r/>u(z, s) occurring in (1). The convergence theory of power 
series and continued fractions may provide powerful hints as to which 
functions to choose. Numerical experience indicates that for many power 
series and continued fractions the rate of convergence as z varies in the 
complex plane is dependent upon r =lzl and substantially independent 
of 0 = arg(z). This would encourage the adoption of polar coordinates, 
since the profile function might very accurately be approximated by 
a short double series in r and 0, but not by such a series in x Re(z) and 
y · Im(z). 

Again, the convergence theory of continued fractions indicates that 
certain continued fractions converge when the argument lies in a 
parabolic domain in the complex plane. This implies that the equation 

(12) n(x, y, Bconst) = constant 

is approximately that of a parabola, and would encourage the choice 
of a system of parabolic cylinder coordinates in (1). Light will no doubt 
be thrown upon these speculations by subsequent work upon the com­
putation of fun•ctions of a complex argument. 
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