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MA THE MA TICS 

ON A CONNECTION BETWEEN 
TWO TECHNIQUES FOR THE NUMERICAL TRANSFORMATION 

OF SLOWLY CONVERGENT SERIES 1) 

BY 

P. WYNN 

(Communicated by Prof. A. v AN WIJNGAARDEN at the meeting of September 30, 1961) 

1. BICKLEY and MILLER have proposed difference equation methods 
for obtaining converging factors for two types of slowly convergent 
series. The two types of series 

(1) 

are those for which 

(2) 1. {Un+1} 1m -- = x,t, 1 
n-H,o Un 

and a series expansion of the form 

Un+I {l A1 A2 } (3) -=x +-+-+ ... 
Un n n2 

may be given, and those for which a development of the form 

(4) Un+1 = I _ A1 + A2 + ... 
Un n n 2 

exists. 

2. The converging factor, defined by 

(5) 
00 

UnOn ,..._, 2Un+s 
s=O 

is, for the series of the first type, expanded as 

(6) 
ix1 i:x2 

On = ixo + - + 2 + .... 
n n 

The coefficients in (6) are determined (l] by substitution in the difference 
equation 

(7) UnOn =Un+ Un+1Gn+I 

or 

(8) 

1 ) Communication MR 38 of the Computation Department of the Mathematical 
Centre at Amsterdam. 
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There follow 

(9) 1 - xA1 -{(1-)A zA2 A} 1 
1Xo= l-x' 1X1- (l-x)Z' 1X2- x x 2+x 1 -x 1 (l-x)S' 

This method can be applied to the transformation of the asymptotic series 

Letting 

(11) 

00 

zeZEi(-z) "'!nl(-z)-n. 
n-o 

z=(n+h){J 

and taking h to be small (so that the transformation is applied at the 
smallest term) there follows 

(12) 

from which coefficients in the appropriate converging factor may be 
derived. 

The accuracy obtainable by use of the series (10) may also be 
improved if lzl is reasonably large by applying the Euler transformation 

(13) oo 1 oo ( {J )8 L ( - /J)8Un+s _, __ L -=- f:o. 8Un 
s=O 1 + /J s=O 1 + {J 

to the series starting with the smallest term. 
BARKELEY ROSSER [2] ha$ pointed out that if the terms obtained by 

applying (13) to (10) in the manner explained are expanded in inverse 
powers of n (leaving a factor ( - l)nntz-n outside the summation), and 
rearranged, there results a series of the form (6) identical to that obtained 
by the Bickley-Miller method; (in the event, equivalent to a series given 
by AmEY which may most expeditiously be derived by the Bickley­
Miller method). The first purpose of this note is to point out that this 
equivalence is general and not confined to a specific example. 

The generalised Euler transformation may be written 

(14) 
00 

1 { X ( X )
2 

} L X8Un+s "-' -1 _ Un+ -1 _ /:o. Un+ -1 _ /:o. 2un + . . . . 
s=O X X s X s 

But if (3) obtains, then 

(15) [:o.run = Unf:o.r {cpo} 
B B 

where 

(16) 
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Evidently 

(17) 

and 

(18) DtUn = Un{0(n-r)} 
• 

Substituting the results (17) in (14) and rearranging, there follows 

(19) 

where 

(20) 

00 

L Un+sX8 ,..._, Un Fn 
8=0 

in agreement with (9). 
It still remains to be shown that F n and On are in fact the same 

function. However they both satisfy the same first order linear difference 
equation of the form (7) and are therefore linearly dependent; inspection 
of the leading coefficients in (9) and (20) shows that they are equal. 

3. The converging factor expansion appropriate to series for which 
relation (4) obtains, is 

(21) 

Substitution in (7) then yields [4] 

from which the coefficients 

(23) 
1 A2+A1-A12 A1As+A22 

ix-i = l -A1' ao = A1(l-A1) _, ai = (A1 + l)A1(l-A1)' 

may recursively be obtained. (The notation and working adopted in 
this and the previous example are slightly at variance with that occurring 
in Bickley and Miller's original treatment). 

Now there is a further transformation suitable for accelerating the 
convergence of slowly convergent series. 
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It is 

(24) 
Vn + l Vn+1 + ( l) ( 2) Vn+2 + ... x-y+ x-y+ x-y+ 

) 

x x(x+l) 

_ {Vn x x(x+l) 2 } 
-(y-x) y - y(y+l) l:::,.vn + y(y+l) (y+ 2) !:::,. Vn-••· 

and is applied to the transformation of the series 

(25) 

by writing successively 

(26) 

Vn = Un 

x-y+l 
Vn+l = ---Un+1 

X 

(x-y+ l)(x-y+2) 
Vn+2 = x(x+ l) Un+2 

for appropriately chosen values of x and y. If the sequence Vn+s s = 0, 1, .. . 
so derived remains approximately constant, the sequence t:::,.rvn r = 0, 1, .. . 
diminishes rapidly, and the numerical convergence of the series upon 
the right hand side of equation (24) is more rapid than that of the series 
upon the left. This transformation, together with the Euler transformation 
is one of a family of transformations of Euler-Gudermann type, of which 
a comparative survey is given in [5]. 

By writing 

(27) x=n-A1+l, 

(24 becomes 

n-Ai+l (n-A1+l)(n-A1+2) 
(28) Vn + n+ 1 Vn+1 + (n+ l)(n+ 2) Vn+2+ ... 

_ _ n_ n(n-A1 + 1) n(n-A1 + 1) (n-A1 +2) 2 
(29) - A1- l Vn + (Ai -1) (A2-2) l:::,.Vn + (A1- l)(A1-2)(A1-3) !:::,. Vn + ··· 

and relations (26) become 
r 

(30) Vn+r = IT <ps Un r=O, 1, ... 
8=0 

where 

(31) 
S= 1, 2, .... 

But, as is easily verified 
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where cpr(s) is a polynomial of degree r in s. Thus 

(33) r=l, 2, ... 

and the only linear term in n in F n is contributed by the first term in 
expression ( 28), or 

(34) 
n 

Fn = l-Ai + 0(1). 

Again the F n and C n of this case satisfy the same first order linear 
difference equation, have the same leading term, and are therefore the 
same functions. 

4. The final point to be made and indeed it is the purpose for which 
this note was written is this: numerical experience shows that the 
Bickley-Miller difference equation techniques are extremely powerful 
when applied to a suitable example, but in most practically meaningful 
cases the· coefficients A8 B= 1, 2, ... in (3) or (4) are difficult to determine. 
The results of this note show how numerically equivalent techniques 
may be applied, which demand only the previous determination of 

(35) 1. (Un+l) X = Im --,,,....,co u,,, 

or 

(36) A 1. ( Un+l) 1= 1mn 1---
n---oo Un 

Remark. It is interesting to note that the order relationships (18) 
and (33) show why in certain cases the Euler transformation is successful 
and the transformation (28) is not. The result (18) implies that successive 
terms in the Euler transformation behave like a power series with 
argument -x/{n(l +x)}; the result (33) implies however that the first 
term in On is O(n) (actually n/(A1 -1)), but that the remaining terms are 
of the same order of magnitude and do not rapidly decrease. Series for 
which relation (4) obtains are more favourably treated by means of the 
e-algorithm [6]. 
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