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Une théorie formelle de la transformation

o0 m—1
Z Cs Vg X8 ~v Z Cs Vs X5 -+ Z xm+s d)("") () AS vm a)
§=() | 8§ = () S=()

otl B () ~ Z Cmts XS b)

est donnée. Les cas ou la fonction (I) (:r) satisfait une équation différen-
tielle linéaire en x et ou les quantiteés v, satisfont une relation récurrente

linéaire en s, sont traités en détails. Des exemples numériques sont
donnés.

A formal theory of the transformation

a)

where b)

1s given. The cases in which the function P, (x) satisfies a linear diffe-
rential equation in x and in which the quantltles v, satisfy a linear
recurrence relation in s are treated in detail. Numerlcal examples are

grven

Gegeben ist eine formale ‘Theorie des Transformations :
N . ’ 2)
wo - b)

Die Fille, wo die Funktion @, (x) eine lineare Differentialgleichung in «
erfiillt und wo die Quantititen v, eine lineare Rekurrenzbeziehung in s
erfullen, werden ausfiihrlich abgehandelt. Numerische Beispiele sind
beigegeben.

* Communication MR 39 of the Computation Department of the Mathema-

tical Centre, Amsterdam?¥
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ABTOp nmaer GOpPMAILHYIO TEOPUIO NMpeOoOparKEeHUsI
a)
rmpe 6)

HeranbHo wuayyarorcsa Te caydaum ecan QyHkuuasd Do (X) sABAAETCH peIUEHHEM

JTUHEAHOTO AUt hepeHNaNBLHOIO YPAaBHEHHUS U €CJAH Vs YIOBJETBOPSET BO3BPATHOIM
JTUHEMHOH 3aBHCHMMOCTM B S. ABTOp [aeT YUCJIECHHLIE NMPUMEPHI.

1. Introduction.

1-1. This paper concerns itself with a method, having a wide
range of application, for improving the performance of series
which are numerically slowly convergent. A number of techniques
have been developed for this purpose (particularly powerful among

these being the use of the converging factor [1]) but most of these
assume that the terms u,(x) of the series

o
N
2 u @

N ==()

S(x) ~ (1-1-1)

satisfy a linear difference equation in n [2], or that the ratio
u,.,(x)/u,(x) may easily be developed as a Laurent series in n [3],
or that S(x) satisfies a linear differential equation [2]. |

The behaviour of most macroscopic physical phenomena may
be described by partial differential equations or systems of such
equations. The solution to any such equation in which interest is
being taken may often be developed as a series expansion, but
series of this type do not usually satisfy the requirements of the
techniques for improving convergence mentioned above. _

For the success of the method to be described however it 1s
merely necessary that the numerical behaviour of the terms in the
series to be computed should be similar, in a sense later to be
described, to that of those in a series whose sum is known and
whose behaviour may be easily be investigated.

Before proceeding to a description of the method it 1s stated
that the term slowly convergent, as it is used generally in Nume-
rical Analysis and as it will be understood here, 1s an euphemism
implying a variety of computational misfortunes, among these.

a) straightforward slow convergence as occurs for example
with the series

ab ata-+1) b(b-+}+1)
x4+ 24 ... (1-1-2)
cl'! c(c+1) 2!

when | x| is slightly less than unity;

gFl(a, b; C, :l:) — ] ‘+—
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b) straightforward divergence, as occurs with (1-1-2) when
x| >>1;

c) excessive cancellation, as occurs for example with ascending
series of the form

\ /| x? n i <;L~% )2 A ! 12 \3
Jo () =1 (1 4 7 (21 \ 4 (3 1) (4> T
(1-1-3)
and T 12 3
exp(—xr) =1 — — | e (1-1-4)
1 ! 2! 3 !

with large argument;

d) delayed convergence, as occurs for example with the series

@ =1+"01 1 T @ <4> T @ <4> !
(1-1-5)

and T X2 3

exp@) =1+ —— 4+ —— 4+ —
1! 2 ! 3 !

—+ ... (1-1-6)
with large argument.

e) Series which are asymptotically convergent and yield a
limited, and often inadequate, amount of information about the
function with which they are associated. An example of such a
series 1S 1! 9 g |

— ze?!Ei(—z) ~ 1 — —+
Z z2 z3
The method to be described meets with success in all these cases.

ik

4 (1-1-7)

2. The Euler-Gudermann Transformation [4].

2-1. The transformation to be used is simply the following :

Theorem 1

If
h

O(x) ~ Z C X8 _ (2-1-1)

then =

- h ..

O(x) ~ Z CgDeX® (2-1-2)

Smo

h - :
~ ) Bs)(x) A*v, (2-1-3)
!

Smo 3 .
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If h is infinite and any of the series (2-1-1), (2-1-2) or (2-1-3)
diverges then the sign ~ is taken to indicate formal equivalence.
If h is finite the result is exact. A discussion of the circumstances
under which the series (2-1-3) converges and of the function O(x)
which it then defines will be given in a later section.

An operational demonstration of the result (2-1-3) proceeds as
follows :

If _ Ev, = v, r=1,2, ...
and A=E—1
then
h h
Z C, X3 = Z c.xiEsv,
§==() §=0
!
= Z (I)(;I:E)Da
S=()

I

h
2 d(x + xA)v,
s==()

h

xs
b3 O(*)(x) A*D, (2-1-4)

<=0 s |

I

This result includes the generalised Euler transformation

O — o _
— )Y D, = - ' - - A¥ v (2-1-5
Z_—-—_o( 4 (4+x>;o<'+x> o (2-1-9)
and the well known transformation
---—a; S X
PE = Y ED s, e
s =0 s---O .

2-2. Delayed Application.

It is a matter of numerical experience that it is frequently
advantageous to delay the point of application of the Euler trans-
formation. This is also so in the case of the transformation (2-1-3).
Accordingly (2-1-3) is generalised to the form

m—1 h—mm

Z Cs Vs X% ~ Z Cs Vs X° + Z uﬁ‘;’ ASv,, h>m (2-2-1)

§ =0 8 =10
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where

aCﬂQ+ﬂg CD&;) % &
ufﬁ) _ ' () (2-2-2)
s |
and
h—m
D@ ~ ¥, Cpy el (2-2-3)
e

(The result (2-1-3) thus corresponds to (2-2-1) with m = 0).

. (S {0
If the function ug’ s=0, 1,.. and u,,, m=20, 1,... have

been computed, a simple recursion system serves to provide the

. S}
further functions ui% m,s=—1, 2, ...

For
D, (T) = Cpy + 2D,y 11(2) (2-2-4)
accordingly
O (x) = Py (2) + s PG () (2-2-5)
or
xmts O (@) amtett Oy (1) amts 9 (2)
T = + = ——= (2-2-6)
s ! s ! (s — 1) !
that is
u = uldy + ulsi? (2-2-7)

For the purposes of display the following array (the ® — array)
may be constructed. It gives the various partial sums of (2-2-1)

which may be constructed when the quantities v, s =0, 1, ..., m
are given.

0
(s
Z w )Av
£330 ¢ A )
$
> u.(sA
o ) Zu,o Av
$x0 o
S vate SN .
$z0 5 3 $=8 4 \a .
o . % : <
S
A Zuvx’-e-Zu“Av
o ‘%2 2 &) .8 3:=0 53 $=0 wm- -2
UV, x + Ay
,’l’ S s nr Ru e ~4 -
Z TRVE +Z )AV ¢ $20 R W

350 35
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2-3. General Forms.

It is a consequence of equation (2-2-7) and the relation

A®v,, = Asv,,, 1 — A% 1D, (2-3-1)

that
uss? AS™! vy 4w AS U = Uit A Upyy A+ Uit A® Dy
(2-3-2)

The quantities occurring in equation (2-3-2) may be placed in the
following lozenge

(5-4)) s-1
‘____.,.—' u’lf" A Vm \ u(s)
- S
Av
— —___.’u(S) n

"4

when equation (2-3-2) merely asserts that the sum of the quantities
occurring along the upper edges of the lozenge is equal to that
along the lower edges. Placing a number of such lozenges in conti-
guity the following diagram is arrived at

Assuming that either u, m=20,1,..o0r A'v, m=20, 1,... are
consistently zero for s > s (so that all terms in the Euler-Gudermann
series vanish after s = s) then repeated application of the result
(2-3-2) shows that the sum of the terms encountered along any
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path from left to right in the above diagram is invariant with
respect to the path chosen. (This is of course a well known property
of all finite differénce formulae. In a later section transformations
will be developed in which ®,(x) is a factorial series and not a
power series. Relationship (2-3-2) still obtains, though its a priori
method of derivation is different.)

A number of different forms of the Euler-Gudermann transfor-
mation may be therefore be given, among them the Gauss-forward

form
mM~—1
(© K (2 3
G () ~ Z Cs Ds X% + u'y) v, 4 ufn) A Dy + W A2 Dm—1 + uﬁf,,)__i A3 Dmpy ...
s =1

2 2r+1 :
U§,12r+1 AY Dy + uw(nr-:-t-) AT s + L (2-3-3)

the Gauss-backward form

m—1
. | (0) {). (2 (3
e (x) ~ EE Cs Vs X% + Uy Um + u.ﬁn’ A UVnp_a + um”__, A? Dp—y + um).__.i A3 Um—9
§ = (
2:) (2r<4+1 2ri-1
+ Umts AT Uy + Uy’ A4 + ... (2-3-4)

and the mean of these, the Stirling form :

m—1
G (’I)) Ce Do XS + u(m D + u(ﬂ 3 _}__ (2) (2) 29
. o~ s Us m Um m W@ Dn "l" 9 Um + Uin—1 ¢ Um
§s=0 |
(3) q i.. (27) (2r) r (r+1 22741
T Um—1 [ e Unm + *°° <) Um—r+1 + UmZlr | 3°7 Uiy '+' Un—r P ©C Om + - - -

(2-3-5)

This latter form is of use when the quantities v, are one-signed and
reach a turning point when r = s. The odd order differences change
sign along a horizontal line through this point and the mean central
differences of odd order therefore tend to be relatively small along
this line, in this instance one may expect the numerical convergence
of the series (2-3-5) to be rapid. This idea has been applied to the
Euler transformation in [5].

2-4. Recursions for the quantities u o

The transformation (2-2-1) relates to a quite general class of
functions ®,,(r) and requires only that a reasonable number of

quantities &, (x)may easily be derived. Clearly it is a matter of
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great assistance in the derivation of the quantities B (x) if @, (x)
satisfies a linear differential equation of the form

t

Z pi (x) @0 (x) = fo () (2-4-1)

re=={)
in which the polynomial p, (x) is of degree n* and f,(x) is a poly-
nomial of degree k. r-fold differentiation of equation (2-4-1) yields,
when r = k, a system of linear inhomogeneous recursions between

the quantities ¢, (x), whilst if r > k and max (n*—n) =nh a
system of linear homogeneous recursions between the quantities

1 (x) , of order t -} h, is established. The recursions for the
quantities llif‘ follow from use of the formula

B (x) =s! x~s uy’ s=20,1,.. (2-4-2)

The quantities uy m=1,2,.. are of course constructed by

use of the recursion
uf{i’ = u,ﬁfﬁl;i S— Cm___lxm’“‘l m=—1, 2, ... (2*1-3)

Use of (2-2-7) then enables the whole of the u -~ array to be
constructed.

It 1s also a consequence of equation (2-4-1) that the quantities

S . . . .
5 m=1, 2, .. should safisfy a system of linear recursions in s,

which may be used if desired as a check. For substituting

m——{i
Do@) = ¥, €t + 2P, (a) (2-4-4)
§=20 ‘
in (2-4-1), there follows
l
E P (:r>§ " ®,,(X) } (") = x™f () (2-4-5)

where the polynomial f,(x) is also of degree k. By use of Liebnitz’
theorem equation (2-4-5) may be written

m (X)) = wtf,,(x) (2-4-6)
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. vg e (
A system of recursions for the quantities u i

up as in the case of the quantities u,’ .

may now be built

Example :

An example which illustrates the preceding theory and which
will be invoked in later sections, 1s provided by the series

@g(a:) — qu(alsaQQ eney %;Qlag_‘?,: s2s9y Qq ;x) (2""'4"‘8)
Here

(s)_ (o(;s) (ot+5) U+ 8) I )1"( r'( )1

o = Mo+ 9 T(p+s). r‘(ﬁ+ 5 r(u.)r(a ) BECVEY

(2.4. a)
ol (o&-l-s HgF Sy K F S Q¥ Sy et Syney PqFS5%) 820,

where

R

’ i‘i’

k — max(q, pP— 1)
the fundamental series satisfies the differential equation

| 33+01—1) .. @0 —D—aB+ar) .. ®Fa) | y=0  (2-4-10)

d
Where 8 — Y ——
dx

from which a recursion system, involving the further functions

i, , may be constructed.

Furthermore

(”(x)a (e mes)T(kgtmes).... (R prm+9) (g W (pn).... F(py) x
r(eﬁmﬂ)r(e‘-&-n«-s) T'(e’i-m*r&) C )l (ett).. f'(dp) P(m+4+s)

b 1.4@*"““ sy, Bpbmes, o4 0, pnss, Brbmas,., Cobmes, m+s+d; x)

m:",zluu ;) 3= 0)4,....)k*4 (2444)

and the series ®,(x) satisfies the differential equation

3@+ 0—1D B +0r—1D)-.(3+0—1) B+m) —x(B +-a1) (3+-a2)..
®4a,)3+1) { y =10 | (2-4-12)
from which a further recursion system involving the quantities
;) s =k + 2, k4 3,... may be constructed.

The recursion system between the functions usy m=290,1,..1s
simply '



186 P. WYNN

(0) (o)

W =u, 4
@ il o (@& +4)... (rm) oty (o4 4).... L), @ m) ™
s h’" Palpir).-. "’")ft.(fa"") 61 (61 '(f{’"“ (m+1
mso,4,.... (2.4.43)

Remark :

It will be observed in the previous example that the recursion
for uy) m=1,2,..is in general slightly more complicated than

that for uy’ . If, however, some o, In (2-4-8) is unity (this is the
case for example when the fundamental series is an Incomplete
Beta Function, or an Incomplete Gamma Function with ascending

or descending powers of the argument), the recursion for u ;)

1s obtained from that for u, (%)

remaining parameters a, and p,.

merely by adding m to all the

Summation Checks :

The formation of the quantities u ¥ may be checked by use
of the results

o0

Dun of =2, |21 4 o) ] (2-4-14)

S==

or

n o0
. n-+s .
Z (-—-1)3 lli'fz) — Z Cmi4n+s+1 (.._.._._i)n ( s ) xmints+l Loc, ™
s=() §=0
(2-4-15)
or, if the quantities u m decrease in magnitude with sufficient

rapidity

2 (—1) ulf = ¢ am (2-4-16)

s=={)

Two further checks, based on relation (2-2-7) are

(3-4)
hu-k P:‘f,z,..
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2-5. Recursions for the quantities Asvp,,

If the quantities v, satisfy a linear recursion of the form

D 8oy, =0 n—o, 1,.. (2-5-1)
r==U

where §,(n) r = 0, 1, ..., k is a polynomial in n of degree r, a number
of further recursion systems may be derived.

Using the result that

[ =8

Asp(n)q(n) == Z

l=o0

it follows, by applying the operator A¢ to equation (2-5-1), that

(? ) Atp(n)As—tq(n -}- t) (2-5-2)

I=s

Z Z ( ) AtU.,,,_;_,-AS--—wtﬁr(H —+ 1) = 0 (2-5-3)

r=y t==U

which involves, and may be used to check the formation of, the
block of differences Asvn.{_r > ASWIDﬂ_}_f 3 vae 3 AS““"MD,,,,,_,., r — 0, 1, cesy k.

A recursion formula Involving a vertical line of differences,
which is perhaps easier to apply, may be derived as follows. Suppose

that max(F = F, so that As"—ivﬂ_{_r 1S the lowest order difference

in the double sum (2-5-3) without a zero coefficient. Then, by use
of the result

s-RAet’ J't ti‘ ‘ 5...."

a recursion involving the line of differences As—"v,, ., r =— O 1,
A further recursion which relates to a diagonal line of diffe-

rences, Alv, [ =s—o0, s—o0 -+ 1,
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may also be derived from equation (2-5-3). Using the relation

Atvn“ — Z (f) At‘}"'il)n (2-5"6)

=t

the recursion (2-5-3) becomes

1=y

L=
Z 2. ( > Ar—fo (n +- 1) Z ¢ >N+*v = 0 (2-5-7)

r==) =1 =0
which again may be used to check the formation of the quantities
Asv,.,., or to provide a method for prolonging the computwtion
of the quantities A%v,, alternative to differencing the quantrtles D,

In the following sections a number of examples will be glven
which indicate how the Euler-Gudermann transformation copes with
the different types of slow convergence described in the intro-
duction.

3. The Case in which the Fundamental Series is a Hypergeometric

Series.

3-1. The series now being considered are of the form

ab ata+1)b(b+41) '
O(@) ~v, + xv, + —m———————— 2p, + ... (3-1-1)
1!¢ 21c(c+4+1)
where the fundamental series
ab ala+1)b(b-41)
Q,(x) =1+ x4 — x4 . (3-1-2)
1lc 2'c(c+1)

satisfies the differential equation

x(1—x)y + jc—@a+b4 Dx |y —aby=0 (3-1-3)
Thus '
ab

uy) = ,Fia,bic;x), Uy =— ok (a + 1,b + 1;¢c + 1;x) (3-1-4)

and furthermore

(s+a) {(cu s)(hs)x Rs [c+s-(a+5+25+1)x.](5+4) (f’” ?

(A-—x)(s+ 2)(s+4) (3. 1. 5)
$s=0,4,...

_ | o . .
The recursion belween the dquantities w() m=04,... Is:

(o) (o) 4 ' (o) (o) - CA-I'M E(B‘M) (5*"‘“) -t
u:‘ e =12 4 2 =
mé n+4 (M‘?4)! C(C"'")..u (C"-"ﬂ)

(3.1.6)
m::.,o’,4 ,’t__-;‘h
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(Mm F(B-Hn)r(c) F(‘. ‘+m,4;¢+m,4+hn,x)

f'(m+4)[‘(¢+m) F(p) 32 (3.14.7)

.sat‘isfics

x(4- x)ym {(a+b+2m+ 4)x—c- 2,_“_2} xy”
[{ (@+m+2)(b+m+2)- Z}x-— (m+c) (m'l)] y- _ (@+m)(b ""“),Y"

upon which may be based The recursion :

(s+3) (x__/o [5(4 -2~ {(at+b42m+4)x - 2m~ 2}):. (s+2)

(3.4.8)

(s+3)
(a-wm- Z)(b+rm+2)- 2}:1'. (mac)(med)+s 2(0.1-5+2m+4)x—- c-2m-5 -3}1 et
(s+3)(s+2)
(a+ m)(bem) + 5{(&1» m+2)(b+m+2)-2+ (s~-1)(a+b+2m+ 4)} x W, ()
(s +3)(5+2)(s+1)
(3.4.9)
Note that when
O, (x) = F,(1,b;c;x) (3-1-10)

the simpler recursion system

(4)__(4 x) {(c_.”,,_,g) . [‘: ((:::?)I;f(j) +{(a.+n)x+4-c-w}u ] (3.4.4)

u(“-t) B+m+s)‘x Cs)-- C**""'S“(L"""*ZH'Z)J‘} o (3.1.42)

) (41-2)(s+2)
obt—ains ( nole the Remar& ) 2,4) o

3-2. The Generalised Euler Transformation.

Since '
(1 + )1 =F,(1,1;1; — x) (3-2-1)
the generalised Euler transformation is subsumed within those
being considered in this section. In the event, however, the recur-
sion systems relating to this transformation are far simpler.

[ 8)

The general term u,, may be written in the simple closed form

Uy == (— z)m+s(l } x)——1 (3-2-2)
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which leads to the trivial recursions

uSt! — i, m, s =0, 1, (3-2-3)
1 +x
and
Uy = — xuf) m, s=0, 1,. (3-2-4)

3-3. The Logarithmic Series.

Particular interest also attaches to the series (3-1-1) when
a=—>b=1, c= 2 and x is replaced by — xr. Equations (3-1-4) then
become

uy) — r—ilog(l 4+ ), u\’ =1 4+ x)—! — 2x—1log(1l 4+ x) (3-3-1)

and the recursion (3-1-5) becomes

— {s+2+ @2s+ x| uf Y L (s1) 2 ul®

U?“’m e e e s=20,1, ...
1+ x)(s + 2)
(3-3-2)
Furthermore
(0) (0) (—x)™
Um_l_i e am T m — O, ]., see (3""'3""3)
(m 4 1)

and the recursion system for the u's becomes

{ m-+s-+ 2+ 2s +m4-3)x % us ™ 4 (m+s+1) x ut)
42+ 2)

(842
u,:j- )m

(3-3-4)
3-4. Mestel’s Integral.
An opportunity for contrasting the numerical performances of

the two transformation just described, is provided by the evaluation
of the integral

HhalA)TG0) = ﬁ (1 + e2/1)
é

© 2dt

~ Z (s + 1)—372(—p)® (3-4-1)
which occurs in the theory of the conductivity of dense stars [6].

Two obvious substitutions which can be made to transform the
series (3-4-1) are

UV, = (Il + 1)““3/2 (3-*4--2)
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corresponding to the generalised Euler transformation, and
D, = (n + 1)—1/2 (3-4-3)

corresponding to the fundamental series of (3-3-1). The ©-arrays
for these two transformations when A = 10 are displayed in Tables
I and II. Since a more accurate value of (BIN(3/2))—1((10) is 0.3285
it will be seen that the latter transformation provides, in this case,
the better result. (For the sake of completeness it is remarked that

Mestel was primarily Interested, not in the integral G(1), but in
the ratio F(Q)/G(L) where

5| YA —

D (sH1)—5r2(—)0 (3-4-4)

4-' s={

FQL) = f t2log(1 -} Ae—**)dt ~
0

F(\) may also be evaluated by recourse to the two transformations
described. For this integral the fundamental series

X a2 (— 1)
d,(x) =1—— + — .+ o
1.2 2.3 r(r + 1)

= 2 — x1tlog(l 4+ x) — log(1 + x)

x4+ ... (3-4-5)

may also be used. It is not subsumed within those hitherto consi-

)

. . . . |8 .
dered in this section; the functions U, are given by

u(:)..-.:,- 4~ Log(4+32)~ uy’ (3.4.6)

(2) 4 { X
u.. = w*‘é"{"""" +

2 L (3.4.%)

44

(3 {(2::-&-4) S+ 4)&4-3}

s+2) g0 4
u(. +3(s+4) L&(r ) (3.4.8)

“ (s+3)(4+%)




0.0

1.0

-2.536

+16.709

108,294

+786.137

-6018.800

+47976.923

-393964.815

+2309735G . 8E9

~28313037.713

+245782184 .630

0 1 2 3
+0,091
+0.144
4+0.679 +0.,181
. +0.545 +0.208
-0.786 +0.475
~0.229 +0 . 433
+5. 346 o +0,011
2,407 +0.132
-26.979 5 +1.344
.9.292 +0.879
+167.5719 3,766
451,492 1642
-1109,372 +19.594
~299.295 +8.651
+7800.402 -100.774
+1885.412 -39,252
57264478 5% 964
=12518.524 +206., 269

+434941 , 016 -3490.680
+86787.,762

= 239444 TT3

0.228
+0. 406
+0.200
+0.650
-0.707

+4,296

-16.932

Table I

+0.244

+0, 367

+0.241

+0.527

-0.252

+2, 366

+0.257

+0.374

+0,267

+0.456

-0.014

+0.268

. 264

284

+0.4173

+0.276

357

+0,296

+0,284

+0.351

10

+0,290



11

10

S O
0.0
+0,240
1.0
+0.,462
-2.5%6
? -0.,088
+16.709
;J +2.163
o -9.498
+786.137
- © +59.825
-6018.800 o
 =391.028
+47976.923
o ‘ +2732.648
-393964.815
' O -19954.672

+3}09738.889
 +150914.204

-26313057.713
-1273724.402
+245788184 .630

+0283
_ +0.501
+0.383 +0.210
+0. 557
+0.193 +0. 245
+0.,270
+0.618 +0.299
+0.510
-1.883 +0.409
-0.380
- +11.866 +0.051
+%,582
-66.265 +1 ., 468
-16.419
+414 302 x -4.969
+94.219
-2723%,126 +27.388
-561,922
+18735,504

+0.316

+0.559

+0.312

+0, 368

+0.205

+0.790

1.627

+ 0.519

ke

. 019

. 350

268

+0.536

Table 11

+0.%21

222

o =¥

D

+0.296

+0. 325
+ 0.3%24
o Jo 2=
.51
324
+ 0.326
+0.336

+0. 525

+0. 550

+0, 326
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4. The Case in which the Fundamental Series is a Bessel Type Series.

4-1. The series now being considered are of the form

)

x a2
Ox) ~ v, + — vy + ———— Vs + ... (4-1-1)
1lc 2'c(c+1)
where the fundamental series
X x2
P, (x) =1 -+ 4 — 4 .. (4-1-2)
1le 2!'c(c+4+1)
== 0F1(C; x)
satisfies the differential equation
xy# - Cgr - y — O (4“1“3)
Thus
(0) ) 1y T .
U, == oF]_(C: :C) Ug =—— 0F1(C + 1 > .’E) (4-—1-4)
C
and thereafter
. X (s—¢)
Y — gl ug (4-1-5)
(s+2)(s+1) (s-+2)
The recursion between the quantities ul) m=0, 1, .. is
| xmT1
U(im — Ug))*l, Higz).;.gm ll;«?»,}.;.i - - e m=090,1,...
(m—+1)!'c¢ (c+1) ... (c+m)
.. (4-1-6)
In this case
| I'(c)
¢, (r)=——"————Fs(1l;¢c+m,1 4+ m; x) (4-1-7)

I'm—+1) I'(lc-+m)
and satisfies the differential equation
2y +(c+2m—+2)xy” -+ { (m—+4-c¢)(im-+1) —x } y —y =0 (4-1-8)

which leads to the recursion system

uf::z N (¢+2m+s+4)s+(m+c)(m+4)-x, u.(’“)
. (s+3)(s+2) ™
-. L (4.1.9
_Ct+2m+2542  (Gs2) s<od, ... )

(s+3) ™
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4-2. Example :

A simple example of the application of the transformations of
this section is provided by the transformation of the series

OO

(Z/2)"8
I,(2) = : (4-2-1)
§ =4 (S 1)‘}
using as the fundamental series the expansion
z—1sinh(z) = 1 + = 1 _ z + ___.__....._,__..}_.........._____. z?\* 1
o 3 11 4 3 91 \ 4 T (4-2-2)

. 6 .
2 2 2

This corresponds to the substitution

@) ()
D, = - — — — amad § § —— O, 1, vee (4"2"3)

The recursion system between the quantities v, 1s

v, =1

2r+1
21"

. U,.,__,l r— 1, 2, cow (4"2"4)

|

D,

whilst that between the functions llﬁﬁ), 1S

u‘.:):: “‘A“Jl (J'-) ’ x=22‘4 (4.2.5)
U= { x “"e‘(") ~ sink (1)}/(2:.) (4.2.6)

(s... 2 (’“) }/(S*Z) s=0d.. (4.2.7)

‘:O"}.u (4 . 2 ’ 8)

(su)
{ zs+4

(o) (-) (o)

mtl

(m-u)'}{. (mhi)

The @-array for this example, when z = 16, is displayed in Table
IIT. It will be recalled that I,(8) == 428.
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m o\ S 0 1 2 3
0 0
186
1 1 512
279 358
2 17 454 425
344 406
3 81 - 436
388
4 195
Table III

5. The Case in which the Fundamental Series is a Confluent Hyper-
geometric Series.

o-1. The series now being considered are of the form

ar a(a-+1)x?
Ol) =v, + v, + — Dy = aes (5-1-1)
1lc 21 ¢ (c+1)
where the fundamental series
a a(a+1)x2
O,(x) =1 - xr 4+ —— 4 ... (5-1-2)
1!c 21 ¢ (c+1)
satisfies the differential equation
xy” - (cgm:z:)-y' —ay =0 - (5-1-3)
Thus - .
(0) iy 9
u, =,Fila;¢;x) , Uy = Fila + 1;¢ + 1;x) (5-1-4)
and furthermore
ust? — | (at8)x uy” — (ct-s—a)(s+1) to " | /(s+1)(s+2)  (5-1-5)
‘ S §=0,1,..

The recursion between the quantities uy, m=0, 1, ... is
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(a) (o) _ A (o)

¥ WO u®_ _a(@+1).. (@+m)x™
A me2

e —————— 30;,‘1,“. (54 *6)
" (m+1)!e(c+1 ).,,(c+m) "

ln this case:

F(C)r§a+m2 N
b = P(m+4)T c+m)M(a) ® (‘H'\’ﬂ jormy T, x) s

and salisfies :
I m

Xy + (c +2m +2-—x)xy + {(m+4)(m+c,)-- (a+m+2)'x.}j
--(a.-l-lm)y... (5.41.8)

giving rise to the recursion

(s+9) 5(¢+m+s+4)+a+m % U (” 5(c+2m+s+4 2;:)+(m+4)(h\+c. ~(a+m+2)x (m)

- —

== TG+3)GE)(41) " (s+3)(s+2) 0

_ c+2m+284+2-Xx u(’*‘) (5.14.9)

(s+3) ™
Note that when
D, (x) = ,F,(1;c;x) (5-1-10)

the simpler recursion system

Do (etd-c-m)u & (5.4.44)
2) ($) (s+4) |
u(:: = xuh — (¢+m+5"1)\.&~ }/(‘4.2)_ (5.1.42)
obtains.
5-2. The Exponential Series.
Since '
exp(x) = ,F,(1;1;x) (5-2-1)

the transformation based upon the use of the exponential series as
fundamental series is subsumed within those considered i1n this

section. In the event, however, the recursion systems relating to this
transformation are far simpler.

In this special case

w =exp@ . (5-2-2)
S o *

uos’ — "; uﬁf b § = 1, 2, ... (5-2-3)

0, — g ¥ m=0,1,.. (5-2-4)



(5-2-5)
between the functions

in *’?% %; %t%

S o O, 1, oo {5“?‘6)

(5-2-7)

g .-? : _
} + r ! ; "‘ 1

MNc—a--$)I(c)
— (W 1}& S ————— €5-2-8)
['(c+s) (c—a)

, as is easily verified

ation
F.a;c;x) = e*,F(c — a;c; — x) (5-2-9)
special case of the Euler-Guderma

Thus Kummer’s transform

1in transformation in which

formation there follows

(5.2.40)

will be of use later.

5-3. Wilson’s Integral

A practical example of the mann
being discussed in this section may
computation of the integral
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which has been investigated by Goodwin and Olver. Subsequently
integrals of the more general form

/2 ~a? sec? §
F,.(0,8) = /{; sec”™e cos(fsec®)d®d (5-3-2)

were studied and computed for extensive values of a« and § by

Wilson ([7]. Integrals of this form quite clearly satisfy partial
differential equations of the form

oF,, O2F,,

o(a?) op?

and occur in problems concerned with surface waves.

= { (5-3-3)

Expanding the term cos(fsec®) in powers of 3, and noting the
result

i =/a — a2 cec?
3 e—*/a K (02/2) = f; secPe Fsect § d® (h-3-4)
it follows that
°© ‘3273
FaloB) = 2, A, (o) (5-3-5)
n=0 (212) !
where
]. d n-+1 | a?
A,(a2) = — —( ) e—a*/a K, 5 (5-3-6)
2  d(a?)
For large values of n
A,(a2) ~ const (— 1)»nlg—2n (5-3-7)

and hence it follows that the series (5-3-5) is ultimately convergent.
However, for large values of §2/02 the initial terms increase rapidly
in magnitude, and summation is accompanied by considerable
cancellation of figures. This is illustrated in Table IV which gives
certain of the terms in the series (5-3-5) when f§ = 1.7, a = 0.25.

Il n Il

0 1.0758186 11  —73590.7192816 43  —0.0000098
1 239185633 12  +73957.0426119 44  10.0000026
2

—+131.1074373 13 —68381.6903476 45 —0.0000007

—0.1239364
Table IV
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As a first attempt to transform this series the substitution

‘32?: e
A, (a2) = D, (5-3-8)
(2n)! n'
1s made, where
32
— 4 (5-3-9)
o2 -

The fundamental series is thus exp(— x), and the recursion systems

prevailing between the functions iy, have already been given.

The quantities v, are given by

o> . ' _
rel {x($) K (%)) (5310
AT LK (L) 4 oK, (£)} (5300

and, by manipulating the differential equation satisfied by K,(x)

2(11-}—0-2)01&—1 2a20n—~2
T — (5-3-12)
2n — 1 2n — 3

A

!

a<
Il

The ©-array for this choice of fundamental series is displayed in
Table V.

A somewhat more sensitive cholce of fundamental -series,
yielding better results, s obtained by writing

A, (a2) = (— a2)*n!v, (5-3-13)

The fundamental series is then

ot f ik £e]

(5.3.44)
(see (5-2-10)), where :

(5-3-15)

Numerical values of (5-3-14) may be extracted from [8].
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. (s) .
The subsequent functions u,, are obtained from

More generally

¢ (V) = 2 (2“)‘ Fo(4,me it - {-) (5.3.48)

2’

3fvinﬂ rise to Lthe recursion:

1)
(s*” {.&’_ ($)+ (m+$+-~'+“) c“ }/(5+2) (5.3.19)
S=0A1,...

Tl‘\t quanhhe.& V are now 35\/2!‘\ By :

+K (ﬁ)} (5.3.20)
o(g K ( ) (4+o(")K ("l)} (5.3.21)

ot A
v —(m-7) v me23.. (5.3.22)

m(m-/l) m-2

The ©-array for this choice of fundamental series is displayed in
Table VI.

(The transformations illustrated here are useful but their effect
1s not particulary striking. It is not difficult to choose a more
favorable example, but that given was drawn to the author’s
attention by Dr F. W. J. Olver as having arisen as a source of
difficulty in a practical computation and has therefore the merit of
authenticity in contrast with a carefully contrived, totally convin-
cing but, in the light of subsequent application, misleading display.
The entries in Table IV were computed by Dr Olver and subse-
quently recomputed by the author.)



o=

10

11

12

15

14

15

S .o 0 3 5 3 4 5 6 7 B G 10 11 12 13 14
0.000
+1.0758 -0.0001
-0.9932 -0.0003
-22.8427 -0.3519 -0.0009
+5.7802 0.2342 -0.0022
+158.2647 +0.7741 -0.1882 -0.0049
-23.6788 +0.1607 , 1650 -0.0097
674 . 4261 -2.571% -0.0105 1515  -0.0171
B +67.2710 -0.7028 L0740 1430 -0.0273
+2068 ., 3845 +4,9990 -0.2057 1010 L1373 ~-0.0%99
-151.5158 +0,8091 . 1895 L1133 1334 -0.0541
4966, 3127 -8.9829 +0,1096 1495 .1190 . 1306 -0.0686
+280,6251 - -1.,408B1 5496 L1343 1218 .1285 -0.0822
+9603 . 6684 +12.9938  -0.3860 1015 L1282 .1230 1270 -0.0940
- 4441808  +1.4309 1882 1162 1207 L1236 ,1260 -0.1035
164453608 ~17.1468 0.1402 .1k6 L1212 1247 1238 -0.1253
+612.8662 -1.809k4 0692 1291 1229 .1eke -0.1239
+23989.7695 +19.5644 -0.73665 1111 L1255 1236 ~0.1241
-751.3996 +1.5324 1670 1207 1244 -0.123¢
-30976.5512  =20.6813 +0.0810  .1%27 1231 -0.1241
+828.2586  -1.6142 0924 1259 -0.,1237
+35885.3647 +19.,14526 -02843  .118%  -0.1244
-~ .8%0.6170  +1.1132 1456 -0.1228
-37705. 3546 ' -17.2679 ~0.0069 -0.1273
L. +763.4631 -1.0778 ~2.1099
,fsjgf - . 413,7783 -0.2039
o -648.6284 ' 40.5629
25 -10.6238
+511.,7122
- Mabhle W



O =

10
11

12

14

15

. 0 1 2 3 4 5 6 7
0.
-0.0546
+1 . 0758 -0.0571
- -0.0112 -0.0589
-22 . 8427 -0.0314 -0.0600
- -0.4107 -0.04604 -0,0602
+158,2647 -0,2899 0580 -0.C595
+0, 4893 -0.2%00 + L0685 -0.0575
674, 4261 +0.11G4 1948 .07¢0 -0.0555
-1.%384 -0.0102 1721 ,0C6T
+2068. 2645 -0.4791 + 0662 1568 , 0946
: +1.9745 -0.2510 - ,09321 1461
-4966,3127 +0.3522 L1747 1072 1368
- =3,2920  +0.0118 1456 1148
+G803; 6654 -0.7015 0798 L13%5 , 1189
+4,1055 -0.2589 . 1084 1283
- 16444, 3608 +0.5117 - ,1604 L1182 . 1259
=5,1773 +0.C00% C1IBNT 1216
+23980.7695  -0.7625 0954 1273 1231
+5.%%571 .« =0,2303 1197 1250
-30976.5512 , +0,4657 4449 .1220 12473
- -5.,5.,101 -0.03%92 . 1285 12734
+35885 . 2647 -0.,627% - .1094 ,1250 -0.1238
+h, 7612 -0.1871 1211 -0 1242
-57705.2516 +C.2755 1335 -0,1233
-4,2251 -0.0798 -0.1256
+ 36251, 6E80 -0.4201 -0.1180 :
+%,0809 -0.2530

2150.,0027

AN

_2. 4664
+26414 6771

+O s i'ai

D

8 > 10 11 12 1%
~0.0257
~-0.0540
L2017 ~0,0570
. 107¢ -0.0631
. 1336 1127 -0.0716
. 1501 1165 -0.0515
12172 1277 1195
1225 1262 -0,1212
1248 1232 -0.125
12473 -0,1235
1236 -0.1241
-0.12%8
-0.1241
Table VI

14
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6. The Case in which the Fundamental Series is a Certain Asymptotic
Series.

6-1. The series now being considered are of the form

abx a(a+1)b(b+1)

0y 4 ———
1! 2!

O(x) = v, -+ X205 + .. (6-1-1)

where the fundamental series

abx a(a+1)b(b—+-1)
x + ——— et sttt :L'2 + aan (6"1""2)
1! 2 |

O, (x) =1+

satisfies the differential equation
12y” { (@+b+Dx—1]y + aby =0 (6-1-3)

Thus

o) = Fola,b;x) , Uy = abxoFola 4 1,b 4 1:2)  (6-1-4)

and furthermore

('*Eﬂx [ a+B+25+42x~ (“"3 ga+5+s!+a <')] (6.1.6)

(s+2) (5+2)(s+4) 5204,...

The reeursion belween the quanhheﬁs uf‘) - m=04,... is:
©) (o) ' |

4= LL“"

LL() (‘) a(a+i).. (ﬁ+m)5(5+4)m(5+m) w1

2= ,,H_ _—-'——'————-—'—-———-———-x (6-4*7)
" 7 (m+4)! m=0,1,...

In this case :

¢, (%) = [(a+m) T‘(B-r-mz
((m+4)C(@)C(B) 3

and salisfies Fhe equahon

x3.ytfl+ { (n.—&-[a +2m+4))¢- ’l} xyh_., [{(aﬁ-m +2)(B+m+2)-2}x_.. h‘\*—’l] yr
+(a+m)(5+m)y:0 (6.1.9)

(a+m,5+m"f;m+’l;"x) ”(iéﬂa, 8.) o

.....
,,,,,,,,
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‘From Wkic,lr\ may be derfved Hne Y‘téur‘sioh sysh.m :

(s+3) 4 (a4+b42m +3s+4)x -4  (s+0)
U, = —~X [*ﬂ———*""“-(*::;s'—-m-———w ..
{(2&+2B+4m+35+ 5)x~4}+{(4+m+2)&+m+2)~2 X~m-4 (M)

(5+3)(s+2)

+ +W\)(B+m +5 a+m+2)‘+m+2)—$~4){a-5+2m++2 _' u(:)]

(5*3)(5*2)(5*’4) $<0,4,... (6.4.10)
Note that when ~

Q,(xr) = F(1,b;x) (6-1-11)

the simpler recursion system

«) e [{(B+m)x- } (0) x“r[f(i‘;h)] - (6.1.142)

(s+4)

% [ (b +m+25+2)x~4t 4
" x(s+2)

oH"aihs )

)
(S*L"H‘n)x A ] (6 4.43)

6-2. The Integral of Goodwin and Staton [9].

The preceding theory may be illustrated by the evaluation of
the integral

;100 emtﬂ ,
[ i s
Jo 7 +

o0
yr
8s=0
(This may be shown [10] to be equal to o

: et ‘ ! =
12 f e? dt — = Ei (2%
") 2

T

)

i
. A L)
t} L

The fundamental series is taken to be
JF,(1,1:x) = — zezEl(---—- z) (6-2-2)

where N - (6-2-3)

This corresponds to the substitutions
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The recursion system between these quantities 1s

1
v, — — 3.[1/2
2
U]_ —_— 1.0
2
Dp 42 = D, m=—20, 1, ... (6-2*5)
m -+ 2
The recursions among the functions ,y are
(.) =—-Ze Eb("Z) (6.2.6)
umz{d +(z+1)e EL("‘Z)}Z' (6.2.7)

w‘”‘l (2s+m+3) %~ Py sem+4)eus (6.2.8)
- (s5+42) x
(0) (0) (o) ™
4 4 b(, = uh“VYI!G‘x) m=o)4:"* (629)
The @-array for this example, when x = — 0.5, is displayed in Table

VII. (The results along the line m = 0 have already been produced
by van Wijngaarden [11].)
6-3. Wilson’s Integral.

A second example is provided by the transformation of the asymp-
totic series for the integral (5-3-1). The series is derived by expan-

ding the term e~ **3¢¢*Y in ascending powers of o2 and noting the
result
2 7lg
,}(B) == ( ) ﬁ secBcos(Bsec)dd (6-3-1)
iu s’ | o | |
there follows _ o
T N ot |
Fowp) ~5 2 7 Y,@+2(p) (6-3-2)
' T =0 |
Since
BYSD (B) + (n+2) Y'Y (B) + B Y("'H)(B) -+ (H—H Y.'(B) =0

(6-3-3)
it follows that for large f

Y, () ~ const(m 1)"(11 — DI (6-3-4)
and further that the series (6-3-2) diverges.
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The transformation of the asymptotic series is based on relation
(6-3-4): the substitution

2
Y,@2r+2)(B) = — (2r) |p—2—2p, r=20,1, .. (6-3-5)
JU

1s made and the quantities v, computed by means of (6-3-3).

The corresponding fundamental series is

(6.3.6)
(6.3.7)
The functions u( ) m,s — 1, 2, ...
are computed by means of the recursions
UL = (6.3.8)
(s)
LD Y- Fu%h selmes+) s (6.3.9)
™ M,Sno,4,...

w'= -4 mxd,2,... (6.3.40)

The inifial values‘ for X(G. 3.3) are : ‘
X(‘,(P) : };.( | ) ’y X(“tﬁ == )’ (?) ’ Xm(‘a) =1 ‘ {)’ (f’) - @X (P) }

The O-array for this example When a = 0. 2 f = 1.0 are displayed
in Table VIII. | \




<

12 15 14
0.0

C.8862269
0.3862693

| m 6049303
50518 +0.605064 3

-~ .6052655  +0.6(5121hF
054051 6052144 +0,6051381

0.£293404

+b.329}404

o~ SAN O}

\O

+0.9940106
-0,0059594
+1.6556861
-1.2443129

1, A e -
+4,47155073

6051673

6050757
6050921

6051309

©.6052541
6051455

6048133
6050226

- -.‘1m. - i Y -'- .
-~ ke 2 Aty A
3 o W X iy .
Do , x i o : “_; P
& Rl Lo &+ 2 R
- . AR ‘ 2
s g . n L ane .
PR . o .
T ks x r W 5 ; -3
Ny e VR : X : :&E : 4 &
A HE : 5 ' it
. i ! ) iz
g . - | i i of H
. : g . il
‘A\:?'t,“ Frm TR R . :
g 3
) TR
A r.‘-.,.v\- y K\ﬁh“}
- e PR _y '-..l " Jﬂb:
s :"- ‘- X, . ' il . 4 \3, )
1] g ¥
i £ ! "
. . J - 3 M |
.
v
| o
.

6051430
60511}3
6051645

6051594
6051159

6051157

+0,6051397

+0.6051376

6051335 +0.6051356

6051264

6051482

6051317

6051313 +0,6051344

+0.6051338

L6051%24 ,6051325+0.6051336

6051344
~L6051400 +0.6051347

6051154 +0.6051355
+0,6051219

+0.6051 331

- 40.,6051434
+0.6052521

6042370

- - +0.6045160

6492002  +0.6057169
40, 51‘6654

+O 46507}4

~5.2295279 {
-1.163%2462  +
+9.5257795 0.1875615

~41, 3570607 +4 9404207 - 40, 2629630
-21,0120322 2. 6670525 B

’cm 2370

Table VII
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0.0

-1.36576

1,559%4

1.64862

1.69693

1.75525

1.76744

1 .8008E

1.84103

1.89568

-1.97876

-1.97043

1.722 05

1.74776

1.74851

1.74675

1., 74878

1.74875

1. 74671

1,74866

~-1.74861

-1.63352

1,74256

1,74746

1.74784

1.74830

1.74851

1.74860

1,74864

-1.74865

-1.46136

1.79001

1.74840

1.74835

1.74832

1.74842

1.74850

-1.74856

0 4
-1.9115
-2.,27267
1.772E9
-1.71122
1.74846
1.74682
1.74894
1.74903
1.74854
1.74869
1.74847
-1.74856
-1.74849
Table VIII

-2,01729

-1.67727

1.75006

1.74872

-1.74870

-1.35586

1.70991

1.75096

-1.74833

-0.89120

-1.78709

-1.75004

-1,05066

-1.85212

-1.79073
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