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Théorie de la convergence et généralisations de la transformation :

o0 N —{ oo

ol b)

sont données. Des exemples montrent comment cette technique de compa-
raison peut étre accélerée davantage par l'application de I’g-algorithme.

Generalisations of, and a convergence theory for, the transformation
| o a)
where b)

are given. Illustrations are given of how this comparison technique may
further be accelerated by application of the g-algorithm.

Gegeben sind die Konvergenztheorie und die Verallgemeinerung der
Transformation

a)

WO ‘ ' b)

Beispiele zeigen, wie dieses Vergleichsverfahren noch weiter beschleunigt
werden kann durch die Verwendung des g-algorithmus.

* Part I of this paper appeared in Chiffres, Vol. 4, 1961ip,. 177-210.
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ABTOp paeT TEOPHIO CXONMMOCTH U 0606lueHHEe npeoGpazoBaHUs :

a)
rpe 6)

[IpumMepn yxashBalOT KakuM OGPasOM 3Ty TEXHMKY CpABHEHHsI MOMKHO €lle
oonee yCKOpUTh NPHMEHEHHEM s-aaropudma.

Second and Higher Order Versions of the Euler Guderman Trans-
formation.

7-1. It will have been noticed from the preceding discussion and
examples, that the success of the transformations depends to a large
extent upon whether or not the quantities v, are slowly varying
functions of n. An artifice, the use of which may feasibly increase

the efficiency of the transformations, is to use an expression of the
form

@ &) (R)
Vo = [ (N; Un, Un, ..., Dn) (7-1-1)
o 0 @ (R)
where the variation with n of the quantities Un, Uns, -..5 Un

1s slower than that of v,. The differences A®*v, may then, in suitable

cases, be expressed in terms of the differences of the quantities
O @) (R)

Un, Un, ..., Dy and 1t may well transpire that the rearranged
form of the Euler-Gudermann transformation is more suitable for

numerical computation than the original version.

7-2. An example will assist in cIariinrig the discussion. Suppose
that, either by reference to an explicit formula for »,, or by reaso-
ning based upon a difference equation satisfied by v,, it is possible

to show that
- +q_ (
--. In | O 1( Z V

§ = —p

S

)n—3> o (7-2-1)

.. (s) : . .
where the coefficients V  are constant. Then, writing

T (s) (q+1)
Dy = Z V n—% 4+ b, n—a—t (7-2-2)
S 8=-=p
1t may transpire that the variation of v, with n is less than

that of v,. The Euler-Gudermann transformation may then be
modified to read
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&
' (3) -5 (a+1) -ﬂ*‘ r
Zoc.vx,-cva-; {érv L }:c.

- e (- V) VO @ 2= V4 x> V46
x{ 1+1 4’(2:)\/ q“')""l' “*44’(3:)A QH) 'ET ﬂ+4¢ﬂ(")AV@ " }

(7.2.3)

-r}

where :
oo -y k‘*‘{

,.‘Pa('x) = c . x r=-p,~pt1,..,-4,4,...,9,9+1 (7.2.4)

hzd

It the quantities v, satisfy a linear difference equation, then such

(q+1)
an equation for v, may easily be constructed.

The foregoing analysis clearly permits at least the formal possi-
bility of substituting

q+1
Z un n—s (7-2-9)
§ = —p
(8)
where all the coefficients Uy $S=—p,—p-+1,...,qg -+ 1 are

slowly varying functions of n. This involves the further difficulties

(8)
of obtaining initial values v, and obtaining a law of formatior

(8)
for the quantities Un . It may be possible to overcome the first

by interpretation of an explicit formula and the second by rearran-
gement of a linear difference equation in congruent powers of n.
The Euler-Gudermann transformation then evolves to the form

o0 8 o0 q+1. (3) < (})
Z Cg US A~ CO UQ + Z Z 7"110 A vo (7"'2"6)

s = 0 §=0 1'=——

where, in addition to equations (7-2-4),

oPo () = ¥ Co1 (7-2-7)

g§==0

It is of interest to derive recursion systems between the quantities

(8) 3_,8
Uy = (I)o (ac)S"“Ol r=—p,—p-+1,..,9+1 (7-2-8)
S
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The quantities ,u, = ,0,@) r=12,.. must be determined by
successive integration. In particular

Do () = =1 (B, () — Co) (7-2-9)

and further

P () = x~! j; r—1 Do (1) di r—= 1,2, .. (7-2-10)

(8)
For the function iU, there obtain
(1) (0) (0)
W, = -1 (U — Co) — 1l (7-2-11)
and thereafter
(s+1) (s+1) (8) (s—1)
i, = x~1 (s41)1 % U, —ax (2s+1)1u, — & 1Uo g

—u, $=0,1,.. (7-2-13)

For negative r the functions "y satisfy in turn

(s) B G2 2 ) B
—qUy = (S+1) .’13""{ U, S — 0,1, see (7“2*‘14)

and
(8) - o (8 4+1) (s)
—rlly —= (3+1> —r+1lo + —r+1lo 2

S == 0‘:19 eee 5 I == 2333 s (7‘2“15)

| '7-3: An auxiliary substitution, alternative to (7-2-1), which may
in conjunction with linear difference equations, be easier to handle,
is

—S$)
g+t (0)

Zi H(nml) (n-——-3+’i) \”n Z mn(n-{—i) (I‘l-}—S-—-l) -+ \“n |
8 == $==1
n=—12,.. (7-3-1)
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The Euler-Gudermann transformation then becomes

©0 q+1 (8)

Z Cs Vs X5 ~ Co Vo + & Z Z rUo A° \“o (7-3-2)

§ = () s =20 )y =

where

& () =r (). e, +(.-+«).-(.-...4) Dc x4+ (7.3.5)

and again

ﬁ.(x)-:gcmf (7.3.6)

The following recursion syskems oblain between ‘the quantities

?%o(x): x‘:’.j trd r-dctv (t) k r=4;2,.,.,?+1 (7 .3.7 )

(1) o)
411-‘--3‘ (“ “C)'“ (o (7.3.8)

arnd thereafler

(“4) (.s+4)“4 { W — x(25+1 (s) Lt(jd)} (+.3.9)

4

(s)
and for the funcFions AL.  r=2,3,...
1
R CRIR (PO G, G340
For negalive r
(o) "y (o) (’“)
D=t = (s+4)x"-,, (7.3.4)
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For both systems of transformations (7-2-3) and (7-3-2) the func-
(s) (s) (s) (s)
tions ,uUn and ,um may be built up from ,u, and ,u,

as described in section 2.

If the function ®,(xr) satisfies a linear differential equation,
(8) (<}
further recursion systems for the functions ,u,, and ,u,, may

be derived as in section 2, and again the inquiry is greatly facilitated
if @,(x) is a hypergeometric function.

7-3. Example : The initial members of the sequence v,, m=0,1, ...
derived from equation (5-3-22) (which relates, it will be recalled,
to the comparison of Wilson’s integral with Dawson’s integral) are

as follows :

n 0 1 2 3 4
D, 1.075819 1.034540 1.016440 1.010675 1.000794

It will be noted that the limit of this sequence (as is easily
verified by use of equation (5-3-7)) is unity, and that the sequence
(v, —1)/n n=1,2, ... is approximately constant. Accordingly the
series (5-3-5) is transformed in the following manner : The terms

1 the series

\/3}:_
I — x + 2 g3 ,~1_-— + ... = e—x/; et di  (7-3-1)

S
2

% —
2

A R

are subtracted from those of the original series. The resultant series
(starting with the second term) is now to be transformed, and the
fundamental series is taken to be

1 x 1 9 i o * h 2 w2
“r—*t)“g”—l-m';{g,m—...:Qh“?f e"’odmf et dt
T2 T 273 0 -~ 0

(7-3-2)
where
2h —x ‘ (7-3-3)

Numerical values of (7-3-2) may be extracted from tables in [8] The

(8)
functions U4, are computed from
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4 o) (o)
4LL(°).~={ u.f -4 -2w (7.3.4)
- 1)
4 (:):-.: i..{ u?):c - 4‘3-5‘)“34“9 } (7.3.5)

and , since CE(!) salisfies the differentiaf equaﬁon

xg"+(-’:‘,:-x)5’-5=o (7.3.6)
and the funelions ‘E(x) and 4{(1) are refated 53
d (%) + 2P, )+ 1= P (») (7.3 .7)

there foflows

W ...’L{/l - (M-2x) 4uﬁ')... (!21.“4 x) 4u.(:) — ?) -2 x)} (7.3.8)

{6 Vx+5 -32?- 7x+.s(4!-3x+3s~3))} (s+1)

w
(s+4)(s+3)(s+2) 1

1133 7x+5(44-3x+35} (uz) {Ss-t-ﬂg ~Xf (43 (#.3.9)
(s+4)(s+3) (3+4) A 520/,

The quantities v, = (w,,,—1)/(n + 1) n=0,1,.. may be com-
puted from the recursion

2 2 (n 2
10, = g_n_-jilf*—a ) {1070 — w 105 -9 e ,_,:{___ n — 2, 3, ,
n nn—1) 2n
(7-3-10)

If the result of the ensuing Euler-Gudermann transformation is ©’
then the value of the original sum may be recovered as

v,— 1 4+ P, (x) — 20’ (7-3-11)
In the event, when o = 0.0625 , § = 2.8865 (i.e.x = 11.56) and
{0)
®’ — {llg {U()

the numerical value of expressmn (7-3-11) 1s — 0.126, so that the
effect of using a second order transformatlon is quite striking in
this case.
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8. Variants of the Euler-Gudermann Tranformation.

8-1. Two further transformations which are akin to that dis-
cussed in section 2 and which may easily by derived by formal
operational methods are :

8-2. (due to Euler and Gudermann [4]).

(4) x(l)-“
CV+CV, X+ 6V,

= ¢(x)y;+(})A¢(x~4)A~4 +(3§) AP(x-2)AV, +... (8.2.4)

whc.r'e 'Jt‘.(’): X(JC*”)-H (1"5'\'4)‘ _ (8.2.2)
and q‘.’(x-) = Zo c.sx“) (8.2.3)
S .

The derivation is as follows : the operators E, A operate only
2 2
upon the quantities v,, whilst E , A operate only on ®(x).
1

Then

{4’(0) '
C,= — $=04,... (8.2.4)
=l St
Fhus oo ) x
2 v, x’= (1+ AE) v, P@)
sx0
= (4 +Z} + é%) VOCP(O)
= B (1+AE7A) . P0)
- 3> (::.)[4154’6:--5)9\; (8.2.5)

$=0

8.3.
1) -2)
CV,+ VX 4 GV, X ...
= PGe)v + (X)APG)AY, +(14) APE)AN+... (8.3.4)
where '
2 =+ 1) @ +s—1) (8-3-2)
and . , -
PE)= Yy ¢ (8-3-3)
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Assuming again that E , y operate only upon v, and E, ¢y only
2 2 11
upon ®(x) there follows

(8.3.4)

8-4. A third transformation given by Cherry [12], which has

certain points of similarly with the Euler-Gudermann transforma-
tion 1s

Z Cs U (S) 8 = Z 3* d (x) D* v (0)/s! (8-4-1)
§=0 §=10
where
d (x) = S Cs X° (8-4-2)
s§0
and
d
o= —or
dx

(In the event Cherry gives a generalised and truncated form of
(8-4-1) with a description of estimating the remainder for details
of which reference may be made to his paper.)

It may be formally demonstrated as follows

(8.4.3)
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Since this transformation requires an explicit formula or at least
a differential equation for v(s) to be known, rather than just nume-
rical values, it belongs more to the province of Analysis than
Numerical Analysis, and is not pursued further here.

9. Integral Transforms of the Euler-Gudermann Transformation.

9-1. The scope of the Euler-Gudermann transformation may
considerably be extended by multiplying equation (2-1-3) throughout
by a weight function w(x) and integrating the result with respect
to x along a suitable contour C. The final result then reads

o0 oo o (s)
Z Cs vs[ms w () dxr ~ Z A !U_gf P (x) w(x)ydxr (9-1-1)
C | S C
8§==0 ¢ §=={)

S (8)

If the functions % ® () satisfy a linear recurrence relation

‘ (s}
in s it is by no means certain that the functions f ‘:E; ¢ (x)w(xr)dx
¢ S

satisfy a similar relationship, and it would appear that each case
must be judged individually upon its merits.

Some results, relating to a particularly simple choice of w(x)
and C, may however be stated.

Firstly, if

b (x) ~ .1:‘"1/; e—x t S (1) dt (9-1-2)
then _
S (1) ~ °° Cs (sI)— &8 (9-1-3)

This result will be of use in a later section in which a convergence
theory of the Euler-Gudermann transformation, based upon the
properties of S(#), will be given. In particular, if

S(EH) = (1 +4- t?““”} (9-1-4)

the result is effectively the Laplace transform of the Euler trans-
formation. In this case

O(x) = — zet!Ei(— z)  z=x—1 (9-1-5)

and the transformation ma: y be recognised as a particular case

a==>b=1 of those discussed in section 6.
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The Euler transformation may be integrated to yield further
useful results. Using the Pochammer double loop integral for the

Beta function

(+),009),(4-) ),(0-)

-1
B(x,go r'()b) f'(g {(4 ﬂl’»x)(/t_ 2#»3)} ftx~4(4“t):-x
‘ F(x*—g’) (9.1.6)

there {ollows

___1___{% +......35:.....;..... =- 3 (x+4) v, +- }
lé-x. )c-lg-l-'l (x-.j.;./[)(x_ %+2)
i _ x(x#d) A
- 2 Av, +—% x+1) N
3 %(';}*’0 '3(‘3*4)(g+2) (9.1.7)
This may be recognised as a particular case of (8-3-1) in which
1 1 X x(x + 1)
) =—--~—F —-«— + ~+ ...  (9-1-8)
y—x y  yy-+1  ygl@+Dy+2)
() (0)
For this transformation the quantities w©w, and u,, are
generated by the recursions
W \!" wPe  (xrs-d) (O g (9.4.9)
o A J - O
() (©) x (x44). (x+m“4) _ m=4,2,... (9.4.40)

' (x—2+4)(x-%+2)“.;(::...\é-t-m) I

The more general result (8-3-1) may be derived from (9-1-8) by

1
multiplying throughout by —— ®(x-}-y) and 1ntegratmg the result

231:,5
along the Schliafli contour (— «,0 4+, + «) in the y-plane The
result (8-2-1) follows by reversing the sign of y and the disposition
of the Schlifli loop, and carrying out the same procedure.
The important facility which is available when deriving further
results from the Euler transformation is that an estimation of the
remainder term may feasibly be obtained, based upon the formulae

(1—x)—! = Z xt 4+ R, - (9-1-11)

oo Ry=arld—a)— (9-1-12)
thls 1S the case Wlth formulae (9-1-5) and (9- 1-7) S
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10. Convergence Theory.

- 10-1. The first task of this section will be to derive an expresSion

)
for Ry, where

m—1 -1 ( )
chvsw8~ Z Cs Vs X° + Z xmts @ )Asvm-!—Rm
§==0 §=20 (10 1"1)

For the purposes of convenience we assume that the representation

_ { v(t) ‘
e =575 | s dt s=0L.. (10-1-2)

exists, and that the rearrangement of terms in the following work
is valid. There follows

e r————— o v b & --—-—-—-WS!'
Tm (E-m)(t-m-4) ™ +(t‘- m)(t-m-i)...(t-m-s)}dt

Sy 4+3-4)...(s+4
t-vni(t-m-‘l (t’-m)(t'-m«-J) (b-wuwp-s }&t

meq

ch x+2x“"” 4’(’(3:)6\( +R(P (40.4.3)
Where :
PR < K p .
R'ﬂq" up """ {(p : AV + ?:-5 ¥ +A Vss p} (10.4.4)

- 10-2. Cherry’s Theory [12].

The result (10-1-4) is due to Cherry; his use of it to discuss the

convergence behaviour of the Euler-Gudeann transformatlon will
be summarised here.




TRANSFORMATION OF SLOWLY CONVERGENT SERIES 17

(p) — —
D If R,, is a real oscillating sequence for p=p,p -+ 1, ..

then quantitive bounds can be given for O(x).

IT) If
=) b
R, = w,AVJ (10.2.1)
H‘\Qh : P!' ﬁ:), < ﬁf:)g 5(.‘3-4)...(S-'P'l-")lch*,x‘*“ (40.2.2)

IIT) If A?v, decreases monotonically to zero as s=m, m 4 1, ...
(it may be possible to deduce this information from the difference

equation (2-5-6)) then

{ (;::) AP Um + (::?) AP Ut + ... + AP Dpys—p ; /(;)
(10-2-3)

decreases as s increases; if ¢ and c,,,, are real and positive, then

p) p)
O <p! R, <axmtr @, (x) AP vy
(p) (p}
or O<R,,<u, A? v,, (10-2-4)
Example : This result obtains for the transformation discussed in

§ 4-2.

IV) A further bound for the remainder term may be derived by
making the following assumptions :

a) that Z csrt = P,(xr) has a convergence radius of unity;
s==0

b) that v(z) (where v, = v(s) s = 0,1, ...) is real for positive real z,

is regular when Re(z) > 0, and as }zl tends to infinity has the
asymptotic expansion

0(z) = Az% + Az%1 | A,z%2 | ., (10-2-5)

uniformly for | arg(z) | =< n/2 and a — 0y , @ — @z , ... are all not
less than a certain positive constant;

> o
c) that on certain arcs of [r| = 1, ®,(x) is regular and 2 Cs § x°
converges. §=1)

b) and ¢) imply that Z cs x*v(s)  converges on the said

8=0
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arcs of |r| =1; b) implies that if a < 0, v(z) may be represented
by the absolutely convergent integral

v (2) =ﬁ e~ h(s) ds (10-2-6)
if z is real and positive, and there exists the representation
AP v (2) :/ e % h, (s)ds (10-2-7)

| ¥

Thus, using (10-1-4) and assuming |z | < 1

) Cure X U-tste?) ™

(10.2.9)

(10.2.40)

fheh:

P, @] omak |
Rm < n._ E: lx A Vm‘/P! (10.2.14)

This result may be applied to the transformation of Mestel’s integral
(cf. equation (3-4-1)) as discussed in this paper, when A < 1.0.
10-3. Van Wijngaarden’s Theory [11].

In the ensuing work attention is directed not to the transforma-
tion ‘ ‘ -

o0 o 's) y |
Z Cs Vs I° ~ Z s @ (J.?) ' As vQ RS S (1 0“3"'1)
s=1{ |

§={()
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Lut to the integral transform

Z J" Cs Vs (t-——-a)s € (t,.’:) dt ~ Z [ (t___a)s S(S}(t_____a) AS D, e (f,Z) dl
C s=0"" ° (10-3-2)

s==0

where

S (1 —a) ~ Cs (t—a)’ (10-3-3)

It may at first seem a little artificial to introduce the process of
integration into the transformation, but the following convergence
theory embraces the possibility that both sides of equation (10-3-1)
diverge, and it is by regarding these series as divergent expansions
of an integral that they may be given meaning.

If necessary the convergence theory developed in this section,

involving properties of S(Z), may be transmuted to the consideration
of ®,(x) by use of the result

O O

PICE DY z] Cs)etdt z=azx—! (10-3-4)
0 0 °

8§ =— § o

In particular, if
O, (x) = F (01,02, 0050, 5 015025 o5 0g 3 L) (10-3-5)
then S(t) = Fyi1(0;1,02, 505 5 015025 «ee5 Qg» 15 1) (10-3-6)

The following development is due to van Wijngaarden, a few
additions and generalisations are made but the theory is essentially

his.

Initially the following assumptions are made
a) S(t— a) is regular upon C, and S®(a) %0 s = 0,1, ...
b) There exists a region D of the z-plane in which

/ (t—a)te(z,t) < oo, / (t—a) S8/ (t—a)e(z,t))dt < oo s = 0,1, ...
C C

- (10-3-7)
c) and a subregion D* of D in which

f(t"“‘a)ste(zyt)ldt < o0, .[(tma)gs(s)(t—a)le(z,t)ldt < o0 8§ = 0,1’ ..

(10-3-8)
The fundamental series is taken to be

oo (8

$(2) ~ Z S ’(a)/' (t—a)® e (z,t) dt (10-3-9)

s!
8 ==
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and the series to be transformed

OO {s)

[(z) ~ Z S (a) v, [ (1—a)s e (z,t) dit (10-3-10)

:qa! T i

8 =1{

van Wijngaarden’s fundamental result is

Theorem 1 :

If the series

u (f) = E ﬂ:a)%_____wm | (10-3-11)
§=0 | 1

converges uniformly in | #| =3 where part of C lies in this circle,

then for all zin D for which f U(t) |e(z,l)|dt < o the series

s!

(t—a) S (i ) di
Z A* v, f U=a)> (t—a) e(z]) di (10-3-12)

converges to f(z).
The proof proceeds firstly by noting that under the stated

conditions the series (10-3-12) is equal to f v(t)e(z,t) dt where
C

0O ($) B
D (1) = 2 (i—a)*S (t—a) A® v,

s!

(10-3-13)
8 =0 |

converges uniformly for all tin |t —a | = J.
Secondly it is shown that

lim (i)’“ ; (t—a)® smu —a)

n

t—>a \ di sl 1 m=x=s
so that | - (10319
(m) (m) [ m N
p (@) =S (a) Z ( < ) Af D, (10-3-15)
m
= S (a) vnm

Finally, since (t — a)*S®t — a)A®v,/s ! and v(f) are analytic in
t| =J the series (10-3-12) is, by virtue of (10-3- 15), equal to f(2).



TRANSFORMATION OF SLOWLY CONVERGENT SERIES 381

The main problem then is that of establishing the convergence
of (10-3-11). Since

(s) I

(=ay> {(—=a) || Asp,| (10-3-16)
s! |

(s)
(t—a)* S (t—a) A® v,
s!

-

and both constituents of the right hand side of this inequality in
many practical applications satisfy linear difference equations it may
be possible to deduce the required information from these equations.

It will be recalled that if, in the difference equation

Z (Z Ay, 4 S ) x(st+u) =0 (10-3-17)

=0

Wo == Wgp == U1 Uz » - > Uy then x(s) has an asymptotic development

of the form
k—1

2(s) ~ Y bups pu (s, log (s)) (10-3-18)

ti==()

where the quantities g, s = 0,1, ..., k— 1 are roots of the indicial
equation 1

Z Up poo” = 0 (10-3-19)

n==\)

and p,(s, log(s)) 1s a polynomlal expression in s and log(s).

If the quantities As,, (t — a)*S(s)(t — a)/s ! both satisfy diffe-
rence equations of the form (10-3-17) and the largest root of the
indicial equation corresponding to the first is p;(#) and that corres-
ponding to the second is g l(t), then the series (10 3-14) converges

for all t such that ,
Ql(t)Q 1(t) < 1 (10 3-20)

An alternative approach to the g problem of obtammg a majorant
series for (10-3-11) adopted by Van Wijngaarden 1is his

Theorei':h 9 -

The follo\mng additional assumptmns are made :

d) C lies in the inclusion of the circle |t—a | =&  and a half plane
formed by a line through a. (Without loss of generality in'the
ensuing work a will be taken to be the origin and the region in
question as the inclusion of | | =3 and Re(?) > 0.)
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e) In this region S(#) is analytic and furthermore
S | = A0+ |t ] (10-3-21)

where A, p=0. _
f) | A%p, | = B(1 + $)¢ (10-3-22)
where B,g = 0 (and ¢ may be taken to be an integer).

If d), ¢) and f) obtain, then for all z in D* (10-3-12) converges
to f(z).

The proof proceeds as follows :

Using a Cauchy integral representation for the s** derivative
and e) it is shown that

t+€)' S (t‘+€)
s

A{‘I +2(E4 g‘),i}r {L‘ (tz;r gl)-%}‘ (10.3.23)

where lél < 5
From §) il follows hHhal -

' A‘VJ < (“4)sq! ("ﬁ"‘f) (10.3.24)

or, using (40.3.23) and (0.3.24) :

U(t+€) = £|(t+€)'S "’(t+e)A v,
<qlABERS )" {4+2(J’+ §{s% "

so that the series for U(#) converges uniformly for all || =¥
Further

{2 S8 1) ar
<(1+2y2§ ’)’:];(tﬂ- 5’2)‘!*4, e(zt) , ab

+f G 2VZ E) (e 8" e o )] e

where C’ is that part of C lying within 1] =98 and C” the remamde’.l"
of C. But by virtue of ¢) both integrals in (10-3-26) certainly exist.

Thus f U®) | e(z,t) | dt < w and the conditions of Theorem 1 are

satisfied.
A trivial corollary to Theorem 2 is

q-l»‘l

(10. 3. 25)

(10.3.26)
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Theorem 3 :

If the conditions of theorem 2 are satisfied then the Euler-
Gudermann transformations using the line of differences A‘v,
m = 1,2, ... also converge to f(z).

Remark : All the numerical examples given 1n this paper, with
the exception of those illustrated in Table II and VIII, converge.
In these exceptional cases (and they are typical) the Euler-Guder-
mann sums approach the required result and then diverge. The
usefulness of the Euler-Gudermann transformation in these cases
therefore depends upon the accuracy required in the final result.

The only remaining difficulty is that of establishing the inequa-
lity (10-3-22). This may be made possible by appealing to the diffe-
rence equation satisfied by Asp,. Alternatively the following func-
tion-theoretic result was given by Van Wijngaarden, Theorem 3.

A necessary and sufficient condition for the inequality (10-3-22)
to hold is that it

oD

G~ D, vt C10-3-27)

§=0

then ®(?) is analytic and satisfies

. ; | t -
|G(t);,_4_c<1-—h+t‘> ?
C, r=0, for Re(t) > — 1/2. (10-3-28)

I1. Application of the ¢ —Algorithm.

11-1. The g-algorithm provides in certain cases a very powerfui
techmque for the transformatlon of a slowly convergent sequenoe

S, m=—20,1, ... .
The g-algorithm relatlonslups are [13]

(m) m+) 4 01
Sert = ot + Gmn e 8= 0L
Eg -— g s | | |
Cm) (m)

and it is a fundamental result i1n th
that if o -



hopah

; m O o

m = d s a, p m" (11-1-3)
§=0 h==0

Z (vs + 1) = n ' (11-1-4)

S$= |

Eop — A | m — 0,1’ . (11_‘1‘”

£ . &
I

éi

it is a matter of numerical experience that if the sequence
m=0,1, ... is dominated by a term of the form (11-1-3), then
0
ees §=1,2, ... converges far more rapidly to a than
ence S, m =0,1,.. (which may in the event diverge
without affecting the validity of (11-1-5))
Since it was remarked in the preceding section that in certain

, 0 x _
cases the sequence Us A* D, s=0,1,... may well be dominated

by a term of the form | ¢ (1) ;; ) s Pr (s, the‘ Euler-Gudermann

f f T !

transformation appears to offer a promising point of apphcatmn for
' statiated by numerical experience.

e first the initial wvalues

ven. In t

sums along the line
‘ormation of Wilson’s

been inserted, secondly
and indeed in
ixed length

:

urposes of

e __.:’:- =
B

R -
. F A h-
e }h -
e T
B .

'-{"E’ ”t’r




= O
N

N

0.0
-674,426088
-1,338442
-0.479093

, 251002

174700
145572

133515

128267
, 125912
128838
124345

-0.124016

%37 547987
-0. 477994
. 168587

=0.125933

-0.250266
136331
125465
124179
123942
. 123914

-0.127578
124179
125911
125011
122919
, 123887
. 123940

-0.125957

Table IX

-0.123942
125911
123911
123943
123937

-0,123937

10

-0,125919
123943
1239357
‘125935

12

-0,123937
| - O . E‘ 2




W O ~1 O\ U1 &= \uU NN = O B

N
O

el
N

TABLE X

0 2 4 6 8 10 12
0.000
0,091  0.220
144 .259 0.295
181 281 . 308 0.318
.208 .295 315 .323 0.326
228 . 304 .320 .32k 327 0.328
244 . 310 . 303 . 306 328 . 328 0.328
257 315 324 327 . 328 0.328 ;
268 318 . 326 328 0.328
276 . 320 . 326 0.328
284 . 322 0.228
, 290 - 0.325
0.295



TABLE XI

0.0
0,64043830 0.62188138
62132764 .577;1154 0.60430379
60799329 ,60409910 , 60486619 0.60514597
, 60497931 60472503 60511319 60515164 0.60514817
L60UTULB ,6048487%9 , 60514958 60514436 60513126 0.60513304 _
., 604930373 60541280 60514361 60509908 60513299 60513341  0,605133%66
. 60506432 60516378 60513824 60513256 .6051333% 0.60513364
,60512140 ,60514499 60512514 60513323 0.60513354
.60513809 60513992 60513380 0.60513342
60513974 , 60513882 0,60513340
60513765 0, 60504045
0.60513560



88 P. WYNN

Acknowledgements :

The formulae relating to the expansion of Wilson’s integral in
ascending and asymptotic series were taken from the investigation
of the integral by F. W. J. Olver and E. T. Goodwin. The author is
grateful to them for drawing his attention to this example. The
results displayed in the Tables of this paper were computed upon
the X1 computer at the Mathematical Centre, using the ALGOL-
compiler constructed by E. W. Dijkstra and J. A. Zonneveld.

The list of References to Part II occur at the end of Part 1.



