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In two previous papers [1], [2] the confluent form 

{as+1(t)-as-1 (t)}a;(t) = 1 

of the &-algorithm [3] 

(I) 

(2) 

was established, ·and various properties which the confluent form of the algorithm possesses 
were discussed. It was shown, among other things, that if in (I) 

and the notation 

is used, then (1) is satisfied by 

J<m>(t) 
j(m+ll(t) 

J<m+ l)(t) . , . J(m+k- l)(t) 
J(m+2)(t) ... J(m+kl(t) 

j(m+k-ll(t) j(m+k)(t) ... j(m+2k-2)(t) 

and further that under certain conditions, and for a certain n, 

a2,.(t) = limf(t) 
t-+OO 

(3) 

(4) 

(5) 

(6) 

identically. It is the purpose of this note to derive another confluent form of the a-algorithm 
and to discuss its properties. 

The a-algorithm has as its main application the transformation of the slowly convergent 
or divergent series 

(7) 

and if in (2) the initial conditions 

m-1 
a~l = 0, abm) =Sm= L U8 (m = 1, 2, ... ), abO) = 0 (8) 

s=O 
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are used, then, under favourable conditions, the sequence B~~(n = l, 2, ... ) provides increasingly 
good estimates of S. This principle will be applied to the transformation of the sum 

a:, 

h "fJ(a+sh). (9) 
s=O 

Under the assumption thatf(t) is infinitely differentiable for a~ t ~ oo, limiting forms for the 
expressions for ai0> as h tends to zero will be derived. 

It may be shown that if the initial conditions (8) are used in (2), then [3, p. 91] 

So S1 ... Sn 

I 
1 1 ... 1 

8(0) = ASO AS1 ... ASn ASO AS1 ... ASn 
2n ······························ ······························ 

ASn-1 ASn ... AS211-l AS,,_ 1 AS,, ... AS2n-l 

On substituting 

in (8), making the changes of notation 

where 
t = a+mh, 

(11) 

(12) 

(13) 

(14) 

and letting h tend to zero, there follow, after appropriate operations upon rows and columns 
of the determinantal expressions (10) and (11), 

H<- 1l{f(t)} 
(t) _ s+l 

B2s - H?>ff(t)} ' 

where, in ( 4) 
j(- ll(t) = 0. 

These may be shown to satisfy the difference-differential relations 

· {82s+2(t)-B2,(t)}e;s+1(t) = 1, 

{e2,+1(t)-B2s-1(t)}{e;.(t)+f(t)} = 1, 

with the initial conditions a_ 1 (t) = e0 (t) = 0. 

The latter will be proved in detail; it is slightly the more difficult of the two cases. 
Using an expansion of Schweins [ 4, p. 108] there follows firstly 

(15) 

(16) 

(17) 

(18) 

-1 -1 -{H!ll{j(t)}}2 
{B2s+ 1 (t)} -{B2s-1 (t)} = H?l{f(t)}H!:\ {j(t)} (19) 

and, upon multiplying this result by the product e2.+ 1 (t) Bzs- l (t), the result 

{H(ll{j(t)}}2 

8zs+1(t)-82s-l (!) = H!~\{j(t)}H!Ol{j(t)}. (20) 
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Further 

{ H!i>{f(t)} }ze~.(t) 

0 di dz ... ds di ... ds 
dz d3 ... ds+i dz ... d,+i 
d3 d4 .•• ds+z + d3 ... ds+z 

ds-Z d.-i ds ... dzs-Z 
d5 ds+i ds+Z ... dzs 

d1 dz d3 ••• d. 
dz d3 d4 ... d.+i 

-H!~\{f(t)} d3 d4 d5 ••• d.+z , (21) 

d~~~ ··a:· d~~: ·.:.-a~:· J 

where 
d. = J<•>(t) (s = 0, 1, ... ); 

this may be transformed into 

{H~1>{/(t)}}2{e~.(t)+f(t)} 

di ... d.-1 1 
dz ... d. 0 
d3 ••• d.+i 0 

d.-1 d. . .. dzs-z 0 
d. d.+i ... d2.-1 0 

d0 d1 ... d._ 1 0 
d1 dz ... d. d0 

d2 d3 •·· ds+l di 

d._ 1 d. · ·· dz._z ds_z 
ds ds+l ··· d2s-i ds-i 

di ... ds-1 0 
dz ... d. d0 

d3 ... d.+1 di 

d.-1 d. ··· dzs-z d.-2 
d.+i d.+z ... dz. d. 

d0 di ... d._ 1 1 
d1 dz ... d. 0 
dz d3 ••• d.+ 1 0 

ds-1 ds ··· d2s-2 0 
ds+i ds+Z ... dz. 0 

which reduces, by using a theorem on compound determinants [ 4, p. 49] to 

H!0 >{f(t)}H!<V1 {f(t)}. 

Thus (18) has been established and (17) follows in a similar manner. 
These results may be generalised by letting 

f(a+t) =e-z1cp(a+t). 

The determinantal expressions (15) then become, ash tends to zero, 

Bz.(Z ; a) = x.J Y., 

where 

(22) 

(23) 

(24) 

(25) 

(26) 
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and 

where 

0 

X = Co 
s 

cs-1 

1 

Y= 
Co 

s 

c. 

z z2 

C1 Cz 

Cs+l 

... z• 

... cs 

... zs- 1co+z•- 2c1+ ... +cs-1 
Cs 

Czs-1 

0 1 z ... Z8 ... Cs 
1 Co c 1 ... C8 Ci ... Cs+i 

e2.+ 1(z,a)= z Ci c2 ... C5 +i I 
Co 

. . . . . . . .. . . . . . . . , 

............... 
z• C5 Cs+i ... Czs c. Cs+1 ... Czs 

c. = <jJC•> (a), 

and these expressions satisfy the relationships 

{e2s+ i (z; a)-e2.-i (z; a)}{ <p(a)-ze2.(z; a)+ :a e2.(z; a)}= z, 

(27) 

(28) 

(29) 

(30) 

(31) 

{ 825+ 2 (z ; a)-e2.(z ; a)}{ ze2s+ i (z, a)+ :a 8z5 + i (z ; a)} = z. (32) 

In a subsequent paper a convergence theory for the process (17), (18), (31) and (32) will 
be discussed; in order to prepare the assault, a number of results will be established. 

Expression (26) may be recognised [ 6] as the sth convergent of the Stieltjes J-fraction 
[7] 

<p(a) Ei (a) 

z-Qi (a)- z-Q2(a)-
E,(a) 

z-Q,+i(a)-
(33) 

equivalent to the formal power series 

J
oo oo 

F(z) = e-z1<jJ(a+t)dt ~ I <jJ<•>(a)z-•- 1. 
0 · s=O 

(34) 

The sequence of functions e2.(z; a) may therefore be constructed in a number of ways. For 
example, the discrete e-algorithm relationships (2) may be applied to the initial conditions 
(8) in which 

u. = <jJ(•>(a)z-s- i (s = 0, 1, ... ), (35) 

when 

(36) 



.. 
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In this context it may be remarked that 

(37) 

(This follows by comparing formula (3.8.4) of [6, p. 160] with (29).) 
Alternatively the coefficients in (30) may be constructed by application of the q- d 

algorithm [8] relationships 

q(m)+e<m) = q(m+ 1l+e(m+ 1) q(m) e(m) = q<m+ l)e(m+ 1) 
r r r r- 1 ' r+ 1 r r r ' 

to the initial conditions 

The coefficients in (30) may also be constructed by use of the confluent form [9] 

E,(t)-E,- 1 (t) = Q;(t), Q,+ 1 (t)-Q,(t) = E;(t)/E,(t), 

Q,(t) = </>' (t)/<p(t), E1 (t) = 0, 

of the quotient-difference algorithm. 
Relationships (41) may be used to show [10] that 

Q,(t) H~';\ { <p(t)} H~0 >{ <p(t)} H~~\ { </J(t)}H~~\ { <f>(t)} 
H~~\{</>(t)}Hf>{</J(t)} + H~0 >{</J(t)}H~1>{</J(t)} ' 

H~°:) 1 {</>(t)}H~~\ {qi(t)} 
E,(t) [ H~O){ <p(t) }]2 

The successive numerators A,, and denominators B, (s = 0, 1, ... ) of (30) are given by 

A,= X,/H}0 >{<f>(a)}, B, = Y,/H~0 >{</J(a)}, 

and satisfy the recursions 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

A,= {z- Q.(a)}A._ 1 + Es-l (a)A.- 2, B, = {z-Q,(a)}B,_ 1 + E,- 1 (a)B,-2, (46) 

where 

(47) 

based on 

(48) 

Finally 

e2.(z; a) = A,/ B, (s = 0, 1, ... ). (49) 

The quantities q~0 >, e~0 > may easily be recovered from the quantities E,(a), Q,(a) by 
application of equations (39). This remark, in conjunction with equations (36) and (37) 
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implies that the theoretical possibility exists of varying the mode of application of both the 
q- d and e-algorithms at any desired stage, changing from the discrete forms (38) and (2) 
to the differential forms (41) or (31) and (32), or back again at will. 

The functions produced by the confluent form of the e-algorithm may also be derived 
from those produced by application of the confluent form of the q-d algorithm, simply by 
using formulae (46), (49), (32) and (37) in that order. The reverse is also made possible by 
observing that A, and B, may be extracted from e2.(z, a) from the condition that the coefficient 
of z• in B, is unity; the recursions (46) are then solved for Q.(a) and E,_ 1 (a). 
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