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{ propose to discuss certain m&ﬁ@d&a for acceleraune
ﬁﬁ?zm% G

%

the convergence m“
C&ﬁ‘iph%&%@ﬂﬁ Proby
1S an account of w m% ‘Wgﬂm%i DE¢
out, and it 1s g}uhﬁm fair to state at the outset th
order Lo invest it with some coherence and unity 1 he
borne in mind a remark rk of Hew@%m In human affairs
nothing very much happens at all and certainly the right
thing never happens at th féghg time; tiae conscientious
aistorian will remedy this.

The problem v 'ﬁ vich weare w%}cﬁ?mﬂig as foliows:
We are g%vw 3 sequence So, S1, Se, . .., and there 15 «¢

mhﬁy S which is in some way associa
sequence. If the se agwmu converges, Sis 1s

ﬂ‘%@ ﬁ% ng of S 1s 1nte W& m SOMK
Oﬁ EEGW ﬂx@ S L] >

7

1rst p&m of the
f‘f‘&fﬁmm involved

are scalar.

2. CROCRUSTEAN TECHNIQUES

One way of solving the problem in hiand 1s by the use

of procrustecan techn qmm The --
' . 1t 1s asserted that ﬂ

techniquesis as foliow
behaviour of the 5% 1$ Vea‘y much 11}
simple ﬂlﬁuimﬂ of n, let us call it ¢(n). g«
polynonual 1n 1/(n -+ U a mmem% )

unction of ﬁ,
Lﬁ@?ﬂ‘ combination of exponential functions -m“ i,
n. ¢(n) will contain certain g}fzm meters. -
it ¢{n) 1s a rational function of », then the
are its coeilicients
Let us sum}@ ¥ ﬁm*{ these
number. We determ ] .
on the values S’ W%‘}eﬁ, n = mg nr = 1, ..., in |
wm g const ﬂ 18 f ﬁﬁ@ﬁ@ﬁ Wit % : h@ W% D Of

iﬁ’

f ES t%mﬁ our %H .
ti f unction o exirap olate the smmﬁ
oV varving the va EH@ G f ?%E We GO

Centre, Amsle

raam, Netheriands

1 . % e value of m, and th
1 parameters minus one. In the first
i s of S W%m are to be

en Gf the sequence alone. In
ve have estimates derived from

col umn we

o w f ﬂyﬁ

*E;H{:“‘ consecutive members of the S@@Muﬁ@% .
derived from Si, Ss and Ss, for example. In the ¢
Wﬁ% suilix 4 we have estimates derived fmm fiv
wmmmw memoers of the sequence, and s0 on.
We now add to the even column g-array quantities ¢

Wi Lh 2},

o
cd (ﬁ
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3. THE 0-ALGORITHM 1}

Let us consider the case in which ¢{(n) is a rational
tunction of z, the quotient of two polynomials of the
st degree:

&
z arR7
T s ()

3
}: br?ﬁr

7 == ()

formaHy, we can find the coefficients a, and b, in thi

expression Dy letting 1t take the values S, wien
n=mn,m- 1,...,m + 2s. The value o1 this expres-
sion as x tends to infinity is, of course, as/bs. Let us
call this quotient p{™. These eiuotieﬂ‘is together with
further auxiliary quantities, we may pia ce In the p-array
(1.e. the - array with the letter ¢ replaced by g).

I have spoken of letting the rational ifunction take
certain values, determining 1ts coeflicients, letting #
tend to in ﬁm%:y, and so on. This i1s enormousiy compli-
cated and totally unnecessary. The quantities of the
p-array may be constructed by means of the very
simple non-linear recursion:

Oy =0T+ 5+ 1) {outnD— g, )
from the initial values

m=0 (m=1,,2...), po™=5,, (m=0, 1, ...).

3

4. THE &-ALGORITHM =

This may be considered in the same way. Thc simpie
function 1s a constant pius a linecar combination of s
exponential terms

8
a-t+ > by

7==1

Excht in certain singular cases the parameters of such
a function may be de‘i‘:ermmed so that it takes on the
vaiues

Sm, Sm-i—l, coey Sm-&-ﬁs

when

no=m,m+1,...,m+2s
If all the 2’s are less in modulus than unity the limiting
value of this function as # tends to infinity 1s the constant
term. Let us denote by & the estimate of this constant

term derived from the quantities

S‘??l: S’??Z'i"l: s ey S?;’l"i“?;.&'-

Decterminantal expressions for the &% in terms of
Sy Sm+l, - - -5 Sma2s Were given by Shanks 3).

When s = 1, this transformation recuces to the
d2-process studied by Aitken4) and Lubkin ®). It 1s not
difficult to construct, and certainly there occur in
practice, cases in which repeated application of the
d2-process yields misleading results, whereas application
of the more general transformation i1s successiul.

As in the case of the previous algorithm, gquantities

es(™) may be placed in an array in which the super-

script m indicates a diagonal, and the suflix s a column.
The central result of the e-algorithm is that the quantities

es{™ may be produced by means of the relationship

— -+ 1 | -~
ey = Y {ey (e — ()

from the initial values

g™ =0 (m=1,2,...), &™=S8, (n=0,1, ...).

it

5. A FURTHER TECHNIQUE

I mention In passing that the same idea can Dbe
applied 6.7) using as a simple function a polynomual 1n
1/(n + 1

6. THE e-ALGORITHM AND THE PADE TABLE

in a series of numerical studies 8:910) it was shown
taat application of these non-linear algorithms to
quantities produced by linear methods, could produce
very striking improvement.

Furthermore 1t appeared that application of the
g-algorithm was successful over a very large range of
problems. It 1s interesting to enquire why this should
be so.

Shanks has shown that if Sp, Si1, So, ... are the
successive partial sums of a power series, then the
quantities &% are Padé quotients. Indeed the e-array
with odd order columns omitted 1s half a Pade table.
(By inserting the appropriate boundary conditions the
g-algorithm may be used to construct the whole of the
Pade table 11).)

rurther research 12) has shown that the e-algorithm 1s
very closely related to the tl‘u,ory of contmued fractions

of a certam type.

7. CONTINUED FRACTIONS

A continued fraction may be written as

[43] o
C=byg+ ——— —— ...
bi+ ba+ ’

C 1s the Iimit (if 1t exists) of the sequence of convergents
Ca(n = 0,1, ...) given by

a1 a;‘.'.’i dn

Cn=bot = bi+ bat+ T ba

C, may be evaluated by dividing a, by &, and adding
the quotient to bu-1; an-1 1s divided by this sum and the
qguotient added to bn—2, and so on. More conczsely,
we evaluate the sequence D;s given by

DO —= bn -
Ds-i-lmbnﬂ.s“l*i‘\Ds_laﬂms (Smo,} g oy }?.--—1) N

when -
Cﬁ:—"" Dﬁ,.

More economically, the  successive convergents
Cn(n=20,1,...) may be computed by evaluating the

- sequences Apn and B, by means of the recursions

An=0bny Aﬂ“l+aﬁ Ap—o
‘Br%mbﬂ Bﬂ“l"i‘“an Bg—o
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from the initial values

A—i=1, Ao=0bgy, B-1=0, By=1,

for then

C?L:anlzzjﬂ (J'ZMQ, :%., ...‘)‘

§. CORRESPONDING AND ASSGCCIATED CONTINUE
FRACTIONS

We now turn to continued fractions of the form

—1 i
m? Cs 7—8-—*1—{- =171 { - Ql(m) ez(m) gf(m} €§-<T’1) E
= z— 1— z— l— z—

The nth convergent of this continued fraction is a
rational function of z. If we are given a power series

o0
S B 2 632“3_1,

&§==(

then (except in certain singular cases), the coeflicients
gr-(M e, in this continued fraction may be determined,
and detcrmmr.,d umqueiy, from the condition that the
power series expansion of thesth convergent agrees with
that of 13,148} as far as the term c¢p-sz~?5"1, For this
reason we may speak of such a continued f{raction as
corresponding to the power series for 5. Such expansions
have been extensively studied by Chebychev 153,
Stieltjes 19), Markofl 18,19,20,21,25,23) - and others.

- The rthh convergent of the continued fraction

m—1
g = ‘
: o
Con ﬁ 0(7/1) P;-n-— 1 %
zmag(?rz)__. zmal(m) — ", Q:T(m)m ' }

is a rational function of z. The coefficients o(™), gim),
in this continued fl‘action (again ehcw‘img certain
singular cases) may be uniquely determined fromi the
condition that the power series expansion of the rih
convergent agrees with that of § as far as the term
Cm+orZ~ ™ 21—l We say that this second continued
fraction 1s associated with the power series for S.

The denominators of the successive convergents of the

associated expansion are polynomials in z. Let us write

them as
(m) ( Z} ‘S‘ k(m} 78

smo

These polvnommls arec orthogonal polynomials: they
are orthogonal 1n the sense that the scalar product

,
> Cm+h+s Ks (m)

iyl
8 == ()

i1s zero for h = 0,1..., r—1 and non-zero for 2 = r.
The successive convergents of the associated continued
fraction are identical with the successive convergents of

even order of the corresponding expansion.
- If
| m—1

So(m)m Z 683”8““1
8=

(m=0, 1, ...),

the successive convergents of the associated fraction lie

on the diagonal g¢(™), g2(™), g4(m) ... of the e-array; the

W
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successive convergents of the corresponding expansion

-1e on the staircase

go(M), go(m+1) g,(m) golm+l) g (m) g,(m+1)

& » @

of the e-array (fig. 3).

(
X l \ ‘
0
% > i
x Gﬂ)

8 o 8 l \x\
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X 74 w

X * %
X 4
x >
%
Fig. 3. The sequence of convergents.

9. SoME CONVERGENCE CRITERIA

Corresponding continued fractions in which the
grim, e m) (r = 1,2,...) are real and negative, are
known as S-iractions. A considerable theory of such
fractions has been established. It is known, for example,
that if the series

OO
> s
' 8 == ()
aiverges, where *’
1 Js (m) e (172}
lo=1, /; : 193m los—2, logt1 = [os—1
- Nt Ty
g1t 25 (%) Jsin

then the S-fraction converges for all z not lying on the
negative real axis19), Thxs continued fraction also
converges for these values of z if the series

OO

E (C m—i—s) L/2s

§ =0
diverges =4).
The corresponding continued {raction is a convergent

S-fraction if and only if the moment problem

{15 d P (£)= Cpues (s=0, 1, ...)
O

1s determinate 2°). That 1s to say, if given the real
constants Cm, Cm+1, Cm+2, ---, We can find one and only
one function w{)(¢) which 1s finite and non-decreasing
in the interval 0 < 7 <€ oo. The existence of such
Stieltjes integrals has close connections with the exis-
tence of solutions to the Dirichlet and Neumann
problems =9).

The S-fraction converges for values of z which are
not real and negative, if the bound ‘

le \Us
lim inf ( e ‘3)
g== OO0 (23)1 '

is finite and there exists some function Fp{(z) which has
the asymptotic expansion

z Cmts 27571
§we
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in the domain ¢ <a +g(z) < @ — ¢, where 0 < ¢ < 7/2,
if F.(z) 1s analytic and 7, F;,,:(.:)' < O for I(z) > 0
and furthermore if Fju(z) has the asymptotic represen-

tation =),
c?ﬁ, + 0{\})

Fo(z)= ———
7?3( .u:; .21??;;(2')

The bechaviour of the quantities in the e-array may thus
be scen to depend on ithe behaviour of the {unctions
1, (: ) in the laree.

fL i often true thal ihe corresponding continued
fraction converges in domains of the z-nlane in which
the power series £(z) diverges. The use of continued
fractions to transform divergent power series, or the
method of Sticltes suf’a:'zma“%:}iiii:y as tiis 1s somieiimes
called, 1s well known. As 1 have S&id, in the context of
Numumal Analysis, application oi a non-linear trans-
formation often effects a considerable improvement
upon results produced by linear opcerator :m:...,zuoas, but
this 1s hardly surprising since we are catching up with a
situation which prevailed 1n classical analysis eighty
years 2z2o. However, let us on this occasion attempt to
make some progress.

10. THE QD — ALGORITHM

The coeflicients of the corresponding expansion obey
- the relationsiips

Er(?)z+l) qr(??Z"i'l) — q,{?f:;}l e:r(?n)

grmtl 4 et =g (M) g .(m)  (m=0,1,...;r=1,2,...)
where

Go(m)mo, QI(Yn)m Can4+1 C?};ml (i‘?zmo, E, ,.-.)
These arc the QD-algorithm relationships of H. Rutis-
hauser 27). The quantities ¢ and e may be¢ piaced In an
array similar to the p-array, the quantities g occur
in the even order columns, the quantities e (") in the

odd order columns.
If

is the power series expansion of a rational functon,
the quantities ¢, tend, for increasing »2, to the roots
of 1ts denominator. (This has important applications

to the eigenvalue problem 2930), F. L. Bauer®!) has
shown that the same information may be deduced irom

‘the quantities & with odd suilix.

11. LOZENGE ALGORITHMS

The p, € and QD-algorithms arc lozenge algorithm
relatzonsths The quantities involved occurin a loz,n.nfrc
in the analogue of the p-array. The quantities of ’ihe

g-algorithm, for example, occur as follows in the
g-array:
£:Mm)
H i &5y
83(??1"}"1)‘

Such algorithms are not the only lozenge algorithms.
auer 32:99) has shown that the e and \{umi gorithms

F-# L-t A

are members of a class of such algorithms. I b.,,“l 9
give his formulae in extenso, but in gencral term %
results may be described as follows: there are quahtm

‘) which are defined in terms of the polynomic

ps{™)(z), these quantities satisfy a lozenge algorithr

there are quantities (" defined 1n terms of the
there are quantities 7;5’73) defined in terms of the 73“*
and finally the quantities ;" are defined in terms of t!
ns{™; all these quantities satisfy lozenge algorithrr
The local propagation of error in such glzorithms h.
been studied °%). Singular ruies, which may be applic
when the quantities invoived become 1ndeterminat
have been established 3%). Confluent forms of the:
algorithms, which result in a sequence of non-line:
difference — differential relationships, have been coi
structed 396,37,98,39,40,41,42,43) " Finally, a class of parti:
differential equations which may be associated Wit
these algorithms, has been derived =%).
The g, =z, and »-algorithms are, of course, of interes
1n their own right, but here we may regard them as .
bridge between the QD and e-algorithms. 3

12. THE COMPUTATION OF LOZENGE ALGORITHMS

. wish now to embark upon a tactical digressior,
concerning the computation of the quantities in thé
-array by means of a lozenge algorithm relatlonsth
The fact that we are concerned with a lozenge algorithmr
means that we are required to store, not a two dimen-
sional array, but a vector of quantities which lie upon
what would, in a table of a function and its differences,
correspond to a line of backward differences (fig. 4).

@)
A miq

Fig. 4. Programming lozenge algorithms.

With reference to the e-algorithm this vector, let us
call 1t /, stretches from the & with a superscript m and
suflix nought, to the & with a superscript nought and
suflix m (that 1s, along the dotted line); we arrive with
a new quantity S+, and in stages push the backward
diagonal / down one place (that 1s to the dashed line).
The process requires two auxiliary storage boxes qux 2
and aux 1 and a working space aux 0. In the diagram,
the process has not been completed. The wvector !/
contains quantities lying along the solid line. The
contents of /s-1, /5, aux 0 and aux 1 form a lozenge.
The contents of aqux 0 are computed from those of
[s—1, [s and aux 1; the contents of qux 2 are transferred 10
[s—1, those of qux 1 to aux 2, and those of qux O to aux 1.
The value of s 1s increased by unity and the process is
repeated. If the quantities involved are scalar all this !

casily done; if the quantities involved are matrices it is
pa..rhaps easier to change the labels on the boxes than

- to move their contents around.



13. EXTENSION TO INON-SCALAR QUANTITIES

The relationships of the e-algorithm involve addition,
subtraciion and the process of obtaining &n inverse.
These operations are defined for square matrices. The
formal possibility theretfore exists of applying the
g-algorithm to a siowly convergent sguare-matrix
scquence. Such sequences arise 1n the numerical solution
of partial differential equations in the following way:
We are given a partial differential equation with two
indepeﬂdcnt variapies x and y, and GOLPdBﬂ‘y vajues on
a square in the (x, y) plane. We wish to obrain th
soiution to this equation. Ve replace ?hu square i the
(x, v) plane by a square mesh of points and the solution
becomes a square matrix of function values. We solve
the problem 1teratively, and obtain a sequence of
square matrices.

14. CONTINUED FRACTIONS WHOSE FELEMENTS OBsyY A
NoN-COMMUTATIVE LAW OF MULTI PLICATION

Numerical expez*immts revealed that in some cases
the transtormed matrix sequences of the even e-arra
converged far more rapidly than the original seqguence4s).
Having obtained these promising results we are called
upon to explain them: indeed to construct a theory of
continued fractions whose elements obey a non-commu-
tative law of muitiplication.

You will recall that the n-th convergent of a continucd
fraction could be defined by a recursive process oOf
division and addition. In the new %Ewory 463} division
must be replaced by multiplication by the inverse. There
1S a meozy of two types of continued iraction: those for
which premultiplication i1s consistently used and those
for which postmultiplication takes place. The funda-
mental formulae relating to continued {ractions which
have been given so far (the definition of Cy, the recursions
for A, and B, the orthogonality condition for p.0"{z),

the QD-algoritiim, and so on) relate to the pre-system.
The corresponding formulae for the post-system may
be obtained by reversing the order of the products
which occur in these formulae. The relationships of the
e-algorithm do not involve multiplication; they are the
same 11 both cases.

15. DEGENERATE THEORY

With regard to all the algorithms whiclhi have been
mentioned so far, there exists what might be called a
degenerate theory. If the p-algorithm i1s applied 1o a
sequence of values of a rational function the quantities
o™ in a certain column will all be the same; if the
QD-algorithmis applied to the power series development
of a rational function, the quantitics ezt of a certain
order are all zero; and so on. In these cascs, we are not
dealing with infinite continued fractions, merely with
finite sequences of rational operations. Such a degene-
rate theory has been established for the new continued
fractions.

In the theory of continued fractions of scalar quan-
tities, many of the results just quoted were proved DY
an appeal to the theory of determinants. Regrettadbly,
the theory of determinants whose elements obey a non-
commutative law of multiplication (in so far as this has
been established) cannot be used for such a purpose in
the theory of the new continued fractions.

DIFFERENTIAL AND INTEGRAL EQUATIONS
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'f:;m gsuits rclating to the QD -algoritiirn may be esta-

she d y induction, adapting Rutishauser’s addition
thcoren fm‘ continued {ractions. The results relating to
the other algorithms may be derived by adapting %&m S
WOT K.

- 1he result reiating to the e-algorithm may be stated
as iollows: If the quantities S, (m = G, 1, ...) satisty
a non-cummutative law of multiplication, and a recur-
sion of the form

7L T
> bsSpm+s = S{> bs) (m=0, 1, ...)
§=0 8= {
ex.sts, in which the bs(s = 0, 1, ..., ) are scalar, and

the e-algorithm relationships are appilied to the initial
vaiues

M =0, (m=1,2,...), €™ =8y (m=0,1,...),

aen

e = 8§ (m=0,1,...).

16. ITERATED VECTOR SEQUENCES: THE SAMELSON

AINVERSE

We come now to the point of application of the
theory of this talk: the application of acceleration
techiiniques to sequences of vectors.

Before, we may apply the e-algorithm to such se-
cuences, it 1s first necessary to define the inverse of a
vector. Use has been made of a suggestion due to
Sanrelson. He defines the inverse of a vector by the

relationship

* 3 .}"‘?l)“lw ( 2 yfy?‘)“l(yh Y2y eves yﬂ):

7=l

()’h Y25 oo

wiiere the bars indicate a complex conjugate. When

= 1 this definition reduces to the conventional
reciprocal of a complex number. y—1 1s of course the
inverse point of y with respect to the unit sphere in
n-space.

17. SOME APPLICATIONS

{terated vector sequences occur, of course, 1n compu-
tational problems of linear algebra. It 1s a simple
consequence of the theorem just stated, that application
of the e-aleorithm to the iterated vectors produced by
the Gauss-Seidel relaxation process, resuits in an n-step
nrocedure for the exact solution of a set of n linear
equations.

Iterated vector sequences also occur in a number of
optimisation problems: here again application of the
g-algorithm has been shown to be useful 47).

18. PrOBLEMS IN ONE INDEPENDENT VARIABLE

Iterated vector seguences occur most naturally in
Numerical Analysis in the following way: We are
concerned with the function f(x) which is -defined for

Q x < b, and satisfies a functional equation of some

ort (an m’wgm} equation, for example). This equation
18 noﬁved numerically using finite difference approxima-
oS we are concerned with a vector of solution values.
The equation is solved iteratively and we obtain a
seguence of vectors.
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and sec if this 1s also less than d. (In the numerical
results to be given 1t 1s assumed that the magnitude of
the truncation error 1s 1ndicated by the last terms in the
opcrational formulae for the integral).

The acceleration technique is only a device for dis-
ensing with a muillion or so iteration steps; we raust
ccide whether or not to accept a transiormed iterate
¢ same way as belore: we must go throuali one
cvcle oi the original integral equation, examine tie
distance octween the {ranstormed Iteraic and its succes-
sor, cxamine our esumate of the truncation error, and
then, and only then, decide whetiher to accent
transformed 1werate,

-+ ;’é R
bddw

In order to :llustrate the application of the e-algorithm

to the iterated vectors produced in the above example,
I have performed the following computation: with
k=75 N=72 and ¢WW = 0, the vector seguence
g™ (m = 0, 1,...) has been produced. The e-alcorithm
has been applied to these vectors. To each of the vectors
in the even columns of the resultant e-array, one cycle
of the original 1ntegral equation has becn applied. The
corresponding distances and estimates of the truncation
errors are given in tables 1 and 2.

Table 1
m s G 2 4 S
O — 5.41101 *
1 - 3.85450 — 0.50711
2 — 2.69179 —+ 0.04957 — 0.01263
3 -+ 1.89641 ~— 3.01810 -+ $.00203 — 0.00031
4 — 1.36144 —+ 0.00912 — (.00042
5 -+ 0.9962 1] - (3.003508
6 — 0.73976
Table 2
m S O 2 4 o
0 0.0
O 0.0
1 0.00007 0.0CG05
2 0.00004 0.0C00s 0.60C05
3 0.00005 0.00004 0.60005 G.00005
4 0.CC004 0.00003 0.C0005 -
5 0.00005 "0.00005
6 0.00004

g

It must be cmphasised that the application of the
integral equation to each of the entries in the even order
g-array 1s, In usual circumstances, unnccessary; it is
done here merely for the purpose of display, and should
in general be carried out, with a small value of N and
for a few steps only, in a provisional investigation into
the cilect that the acceleration technique might have.
Here we can sce that the convergence of the original
scheme (represented by the distances in the first column)
1s slow, whilst that of the sequence & of the trans-
formed vectors is relatively rapid.

In a final programme, the strategy adopted is as
follows: the iteration of the integral equation is con-
tinued, and the e-algorithm applied until the distance
between & and &2, if m1is even, or between &, and
emeg if m is odd, is less than a stipulated quantity.
Thevectorell (or &}’ ,)is then submitted to the original

integral equation cycle; if the distance between the two

successive estimates is sufficiently small, then the itera- -

tion process is regarded as finished. The estimate of the
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truncation error 1s then examuned, and il this 1s sufii-
cienily small then the iterate resulting from &l (or ell! )
1s accented as the final answer. (If the truncation erroris
too large, then the whole process may of course be
repcated with a smaller finite difference 1nterval.)

~Using this programme, with A = 7.5, N = 72 and a
stinulated agreement of the order of & x 1073, 1t was
found that 6 iterations of the integral equation were
necessary. -

The aporoach of the 90 to a limit 1s like that of a
cecometric series of ratio — (K — 1)/(k + 1), thus
concoximately 54 1terations of the original equation are
nccessary o produce an agreement of & x 1073, |

When N = 72, one iteration of the integral equation
on the X 1 computer (using an ALGOL compiler)
takes of the order of 7 minutes, agreement to within
5 X 1073 may be produced in about 50 munutes with

")

et

acceleration, and six and a quarter hours without
acceleration (this last figures 1s an estimate).™

21. CONCLUSION

We have secen the active interplay of ideas from
Classical Analysis, Numerical Analysis, and Digital
Computer Usage. As so often in the past, fundamental
progress has been made, following the confrontation of
alien disciplines. On the one hand, the numerical
experiments which I have described hint that there exist
a comprehensive theory of continued {ractions in
n-space; on the other, acceleration techniques will play
an increasingly important role 1n enlightened computa-
tional practice, and their use increases the range of
proolems which may feasibly be solved on a digital

computer.
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