
STICHTING

MATHEMATISCH CENTRUM
2e BOERHAAVESTRAAT 49

AMSTERDAM

REKENAFDELI NG

MR 46

An attempt to unify the constituent concepts of serial program execution.

by

Edsger W. Dijkstra

Paper to be presented at the Symposium
on Symbolic Languages in Data Processing. Rome March, 1962

Januari 1962

lllllllllllllllll~~)//ij)m)~l~i~~lllllllll/111111
3 0054 00077 3235

A machine defines (by its very structure) a language,

viz. its input language; conversely, the semantic definition

of a language specifies a machine that understands it. In

other words: machine and language are two faces of one and

the same coin. I am going to describe such a coin. I leave

it entirely to you to decide which of these two aspects of

the subject matter of my talk you think the most important

as it is rather ridiculous in both aspects. The language I

am going to sketch is prohibitively difficult for a human

user and the machine I am going to describe is of a perverse

inefficiency.

Therefore, if my mental construction, nevertheless, has

a right to exist it should derive this from other qualities.

My machine derives this, to my taste and judgement at least,

from its extreme simplicity and elegance, from the uniform

way in which it performs its (at a first glance) rather

different operations; the justification for my language are

its clearness and the unusually high degree of unambiguity,

derived from a strict sequential interpretation and an explicit

indication in the program to perform operations, which are

usually implicitly understood (and therefore apt to misunder­

standing). If one wishes to do so one may regard my machine

and my language as being conceived for the purpose of

clarification.

Before I really start with my description I should like

to warn you of two intentionalomissions. The system I am

going to present is the result of a careful choice between

a great number of "neighbouring possibilities 11
• I shall not

give my motivations for these choices, I shall even leave

the consciously rejected alternatives unmentioned. In other

words, I refrain from introducing my system at least in some

respects as, say, a 11 local optimum 11
• As this diminishes the

convincing power of my presentation, I personally regret ,,

this omission. I have to omit these motivations, however,

for the sake of brevity.

-2-

The other question I shall not touch is the question

of how to implement this system with the aid of a conventio­

nal machine. One might even raise the question - as I did

myself to check that I was not thinking nonsense - whether

it can be implemented at all, no matter how crudely. You

have to take my word for it that it can be done. I have

worked out a method of implementation to a degree that could

convince, I think, the most suspicious auditor of the

possibility. But it is my intention not to show you the

particulars of this implementation, because I had to incorporate

too many arbitrary decisions in it which, when mentioned,

would only divert the attention from the essentials. In

particular, the question of storage allocation will remain

untouched.

My machine operates on (and under control of) units of

information which I call 11 words". Without loss of generality

I can restrict myself to a finite number of different words,

each represented by the same number of bits.

The machine distinguishes between different kinds of

words, say numbers, operators, variables and separators. For

the time being we shall confine our attention to the first

two of these, 11 number words 11 and "opera tor words 11
•

A normal arithmetical' operation, say the addition or the

multiplication of two numbers, has two number words as input

and one word, also representing a number, as output. The

rules according to which a numerical value should be attachE:-1

to (i.e. derived from the bits of) a number word are embodied

in the workings of the arithmetic unit, which has the usual

property that these same rules apply to both input and output:

the output of the arithmetic unit can be fed into it again at

some later stage of the process. As we assume that the pro­

perties of the arithmetic unit are constant in time,we may ,
say that the number words have 11 a fixed meaning 11

• As the

fixed interpretation of number words is coupled to the constant

-3-

properties of the arithmetic unit it is not so sucprising that

we shall denote the basic arithmetic operations by operator

words (11 + 11
,

11
-

11
,

11 * 11
,

11
/

11
, etc.) the meaning of which can

also be regarded as fixed.

The machine works under control of a program which

primarily consists of a string of words. For the time being

I shall confine myself to pieces of program prescribing the

evaluation of arithmetic expressions.

Let us consider the expression that would normally be

written down as

5 + 39 / (7 + 2 * 3) - 6 ;
in the usual postfix notation (also known under the name

"Reversed Polish Notationu) this would give rise to the

following sequence of numbers and operators (successive items

in this sequence for the sake of representation on paper being

separated by spaces)

5 39 7 2 3 * + / + 6 -
The well known mechanism especially devised for the sequential

evaluation of such an expression is what I prefer to call a

u stack 11
• (This device has been invented and generalized

independently .. by so many people that it is known now under a

great variety of names, such as 11 push down list", 11 nesting

store 11
,

11 cellar 11
, "last-in-first-out-memory 11 etc.) If we regard

the above sequence of numbers and operators as the string of

words representing a piece of program, the machine reads this

string word by word from left to right. If it reads a number

word, this number (i.e. a copy of this number word) is added

to the top of the stack, if it reads an operator word the

operation in question is performed at the top of the stack.

In illustration I give on successive lines the successive

pictures of the top of the stack where the top is at the right

hand side of the line.

e, 0 0 0 C

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

• 0 0 0 0

111 o o o a

0 0 0 0 0

0 41 0 0 0

0 (l ~ 0 0

o o e e o

0 0 ♦ 0 0

and the

program

to the

5
5 39
5 39 7
5 39 7 2

5 39 7 2

5 39 7 6

5 39 '13
5 3
8
8 6

2

net result

is that the

stack.

3

of the

value

execution of this little piece of

of this expression has been added

As clearly shown in the above example the machine starts

by copying the program text word by word onto the top of the

stack. Sooner or later this has to be interrupted, otherwise

our machine would just be a copying machine. In the above

system the process of copying is interrupted by the occurrence

of an arbitrary operator in the program text. The function of

an operator, therefore, is a double one: firstly it indicates

that the copying has to be interrupted for a while 3 because

now an operation has to be performed, secondly it specifies

this operation. I propose to separate these two completely

different functions: from now on arithmetic operators are

primarily treated in exactly the same way as numbers are treated,

i.e. the operator word is copied into the stack as well.

Everytime the process of copying has to be interrupted I shall

indicate this in the program explicitly by the insertion of a

special word, introduced now and represented by 11 E 11
(from

"Evaluate"). My machine now takes the following form. It reads

the program text word by word, from left to right. By "reading"

is m.eant the following: if the word read is unequal to llE 11 a

copy of it is added to the stack, if the word read is equal

to nErr, it is not copied but, instead, the operation takes

-5-

place as specified (primarily) by the top word of the stack.

According to these rules the program prescribing the

evaluation of the expression of our previous example will

now consist of-the following string of words:

5 39 7 2 3 * E + E / E + E 6 - E

and under control of this piece of program text (i.e. when
this string of words is 11 read by the machine 11

) the top of

the stack will be in succession as shown in the following

lines:

0 0 0 0 0 5
0 0 0 0 0 5 39
0 0 0 0 0 5 39 7
0 0 0 0 0 5 39 7 2

0 0 0 0 0 5 39 7 2 3
0 0 0 0 0 5 39 7 2 3 •\\-'

0 0 0 0 -0 5 39 7 6
0 0 0 0 0 5 39 7 6 +
0 0 0 Cl 0 5 39 13
o Cl o o o 5 39 13 I
0 0 0 0 0 5 3
0 0 0 $ 0 5 3 +
0 0 0 0 0 8
0 0 0 0 0 8 6
Q O O O 0 8 6
0 0 0 0 0 2

As said above the rnacl1tne performs the operation specified
by the top word of the stack when it reads the word 11Err in

the program text. We shall restrict ourselves to such pro­

grams that at such a moment the top word of the stack is

indeed an operator word (and not, for instance, a number word).

Furthermore we shall restrict ourselves to the case that the

immediately underlying stack words are in accordance with

any requirements that the execution of the operator at the

top may set. (For instance, in the case of the binary

arithmetic operations illustrated above the two immediately

--6-

underlying words must be numbers.)

In other words: if an operand of an arithmetic operation

happens to be an expression wesul~titute for this expression

its numerical value before the operation is called into

action, thus appealing to the fact that, primarily, the

arithmetic operations are defined only when supplied with

numerical operandE'

We regard the replacement of a (sub)expression by its

numerical value as a "substitution 11
, and we indicate

explicitly when these substitutions have to be performed,

although, linguistically speaking, this is rather redundant:
!!3 + 4 11 will always be equal to 117n, no matter when we

perform this addition.

This situation, however, changes radically as soon as

variables - in contrast to constant numbers - are taken into

account. (In the following we shall denote variables with

small letters, reserving capital letters for 11 special words 11 ,

such as rrE 11 and others, to be introduced below.) Let us

assume that we have to compute the value of the expression

"x+l.J.11

at a moment that the value of the variable x equals 3, This

means that in the above expression we must substitute for
11xll its numerical value at that moment; only after having

done so we can perform the arithmetic substitution (11 3 + 4 11

being replaced by 11 7 n). G:i_ ven something dependent on x

(viz. the expression 11 x + 4 11
) we create a result (viz. "7")

which, thanks to the fact that we have substituted for x

its present value, is made jndependent of the future history

of x. We have fixed an "instant2.neous picture 11 of the

variable x. Obviously I insist upon indicating explicitly

when this instantaneous picture of the variable x (which is

varying in time!) has to be taken.

hTow we are going to harvest the first fruits of our
labour for the mecnanism for this explicit indication is

already introduced. The piece of program prescribing the

-7-

evaluation of the expression

It X + 4 It

now takes the following form:

ll x E 4 + E tt

and under the above assumption the successive pictures of the

stack are

0 !II • j) • X

QI O O ❖ 0 3
0 0 fll O 0 3 l.~

• /J O O • 3 4 +

0 0 0 0 0 7

Our machine invites us to describe the fact that 11 the

value of the variable x equals 311 in slightly other wordings,

viz. that the state of the process is such that reading the

word 11 E 11 at a moment that the top word of the stack is ''x"

results in the replacement of this top word by the number

word "3t1. 'l'he variable on the top of the stack is thus

regarded as a variable operator which, upon evaluation, is

replaced by something dependent on the state of the process

at that moment; in this case it is an operator the execution

of which sets no special requirements on the immediately

underlying stack words. (The similarity between operators

and variables will be further stressed by our next example.)

All words read in the text are added to the stack except

the word 11 E 11 which causes the machine to perform a substitution.

For reason to be explained below we should like to have also

the possibility of adding the word 11 E 11 to the stack. The

framework for this extension, however, is already present.We

introduce a special opera tor, denoted by the word 11 P 11
(from

"Postponementn), which effects upon evaluation a fixed

substitution, viz. its replacement by the word 11 E 11
• We shall

illustrate the use of the operator "P" in the next example.

-8-

In this example we have three variables, named 11 x 11
,

"y 11 and "plinus". Suppose the state of the process to be

such that reading 11 plinus 11 "E 11 generates the word 11 +" on top

of the stack. When reading the text:

11 x P E y P E plinus E P E 11

the top of the stack will show in succession

0 e • e 0 X

0 0 0 0 0 X p

0 0 0 0 0 X E

GI I(! 0 & 0 X E y

0 0 0 O @ X E y p

4' e ti! 0 0 X E y E

0 0 0 ti: 0 X E y E plinus

Ill O O O Iii X E y E +
0 0 0 0 6 X E y E + p

0 4' GI @ 0 X E y E + E

and the top of the stack thus contains the string of words

which, when read as a piece of program, would effect the

evaluation of the expression 11 x + ·y 11
• If the value of the

variable 11 plinus" had been 11
-

11 we would have generated (the

string of words corresponding to) the expression "x - y".

What we have done amounts to a partial evaluation of

the expression 11 x plinus y 11
, the result again being an

expression. In our previous examples the final addition to

the stack always consisted of a single number. But a number

is a trivial example of an expression and generating not only

numbers but also more general expressions as intermediate

results is therefore an obvious extension of the normal

practice.

Up till now we have described the generation of words

on, top of the stack but not what we are going to do with

these words. Furthermore we have assumed that with respect

to a given variable the process could be in such a state

-9-

that evaluation of this variable would give rise to a

previously defined substitution, but how this definition

should take place is not mentioned in the above. These two

gaps in our picture will both be filled by the introduction of

the assignrnQnt operators.

For the assignment of a single word value, as in
11 x := 3 11 we could write in our program

II 3 X := E

resulting in the stack pictures:

. 3

. 3 X

. 3 X .-

.
Upon evaluation of the assignment operator":=" the

machine investigates the immediately underlying word. This

must be the variable to which an assignment has to take place;

the next underlying word is assigned to this variable (a

process, about which more below) and the three words on top

of the stack (which have now been processed) are removed

from the stack. Until further notice -i.e. a new assignment

to the variable !fx"- the evaluation of this variable will

result in the replacement of the top word of the stack by the

word "3".

But for the interchanging of left and right hand sidethis

is closely analogous to the assignment statement as known in

ALGOL 60. But we need more than that for, in general, the

assigned value will not consist of a single word, but of a

string of words and we must therefore have a means of

indicating how deep in the stack the assigned value extends.

The simplest way to do this is to insert in the stack a

marker, say the special word 11 T" (from "Terminal") at the
,,

bottom side of the assigned value. Furthermore we introduce

another assignment opera tor 11
: - " (called the 11 string assignmmt11

in contrast to the !!word assignment!! introduced in the

-10-

previous paragraph). Upon evaluation of this operator the

machine investigates the top of the stack in the downward

direction. The first word (immediately under the operator
11
:-

11
) must be the variable to which a value has to be

assigned. Thereafter the machine continues its word by word

investigation in the downward direction until it meets the

special marker "T": the words passed in this way form

together the string that acts as the assigned value.

The simplest way to add a 11 T11 to the stack would be

just to insert the word "T" in the proper place in the

program under control of which the stack is being filled.

This arrangement, however, will not do; for reasons to be

explained later we need the possibility of generating a 11 T"

on top of the stack under control of a program that itself

does not contain this word. We can do this with the same

trick that enabled us to generate an "E 11 on top of the

stack. We introduce a new operator, denoted by the word 11 S11

(say from "Sepera tor" or because it precedes the 11 T11 in the

alphabet) which upon evaluation is replaced by the word 11 T11

and we make it a rule that this will be the only way in which

words 11 T11 are added to the stack.

Usingall this we have an alternative way to write the

assignment statement 11 x . - 311
, viz.

JI S E J X E 11

giving in the top of the stack in succession:

. s

. T

. T 3

. T 3 X

. . . • . T 3 X : -

.
,,

The net effect of this is equivalent to the previous

form using theword assignment II 0 _11 .-

-11-

Let us use the more powerful assignment in an example

which is an extension of one of our earlier ones, viz. the

one describing the partial evaluation of the expression
11 x plinus y ". The result of this partial evaluation was

an expression depending on the variables "x" and "y";suppose

that we want to call this expression "z". For this purpose

we write in the program:

If SE x PE y PE plinus E PE z E II

When the last 11 E 11 of this string is going to be read the top

of the stack will be as follows (under the same assumption

with respect to the value of "plinus"):

T x E y E + E z

and after the execution of this assignment the above words

will have been removed from the stack, the word "T" inclusive.

Until further notice the evaluation of the variable "z" will

imply the execution (the "reading") of the string assigned

to it. Upon evaluation of the variable "z" the machine

therefore must have access to the first word of this string;

when it starts reading this string? however, it must detect

the last word of this string. We propose that the assignment

operator sees to this by adding again an end marker and for

this purpose we can use the very same word "T". Upon

evaluation of the variable 11 z 11 the string assigned to it will

be read as a piece of program, from left to right, until the

end marker 1'T 11 is met. The new situation resulting from the

last assignment can conveniently be represented by:

ll Z ➔ xEyE + ET ll

In exactly the same way our previous assignments

II 3 X .- E II or II S E 3 X : - E ll

will both give rise to the situation, represented by

II X ➔ 3 T II

One of the most illuminating aspects of this arrangement

is that the usual distinction between 11 numbers" and

-12-

"instructions" has completely vanished. The value of a

variable is defined as a piece of program, evaluation of

this variable implies the execution of this piece of program.

Furthermore we should like to draw attention to a

certain form of duality between the assignment on the one

hand and reading a text on the other. When the machine reads

a piece of program text, the top of the stack is filled under

control of this program text. In the assignment "readable

text" is created under control of the contents of the stack.

The duality can also be illustrated by taking into cons:ideraticn

the acc~S:Jibility requirements. The words in the stack need

only be accessible in the direction from top to bottom. If

an assignment statement converts the top of the stack into

readable text, however, the consecutive words thereby become

accessible in the other direction.

Finally, the stack is reserved for "anonymous intermediate

results 11
, whereas readable text -in principle, at least- is

always 11 named 11
, for we create it by assigning it to a variable.

The attentive reader will have noticed that, along

with the representation of the value of a variable, we have

silently introduced two more complications in our machine.

The first one, the occurrence of the word 11 T" in

program text and the machine's "immediate reaction" to it is

a relatively simple one. As we have described the organization,

the word 11 T11
, when read in the text, is not copied on top of

the stack! Instead, it causes the machine to go on reading

at the first word following in the string after the 11 E11

that caused this evaluation of the variable in question. In

other words, it acts as a "Return'' at the end of a closed

subroutine.

• But the evaluation of a variable may call for the

evaluation of other variables (even for the evaluation of

itself): the pragmatic definition of the evaluation of a

-13-

variable is basically a recursive one and the mechanism one

needs to follow a recursive definition is ..•. another stack!

I call this second stack 11 the stack of ac ti va tions" in

contrast to the first which I call 11 the anonymous stack 11
•

One of the functions of the stack of activations is to control

the reading process. When the evaluation of a variable

starts the stack of activations e~pands, when the correspond­

ing word "T" is read, it shrinks to its previous size. (In

the usual terminology of machine structure: the stack of

activations contains a stack of "order counter values", its

top element being, by definition, "the present order counter";

in this same terminology its older elements act as a stack

containing the "return addresses 11
.)

Note. We could try to merge our two stacks into one. This

merging would present itself in a completely natural fashion

if the two should expand and shrink 11 in phase 11 with one

another. In general, however, this is not the case and

trying to merge the two stacks into a single one would give

a highly unnatural construction.

We shall use the stack of activations for yet another

purpose, to satisfy a very fundamental need, viz. the creation

of new variables. In the above I have used special words

("x", "y", "plinus 11 etc.) to denote variables and I have

carefully avoided using the term 11 identifier 11
• I have used

the term "variable" in connection with a single, unique

object, existing for some period of time and capable of

taking on different values in succession. This concept of a

variable is to be distinguished carefully from the

"identifier" as used in ALGOL 60, because one and the same

identifier may be used to point to a host of objects, to a

great number of different variables.

First of all we meet the fact that one and the same

identifier may play different roles thanks to the fact that

it occurs in more than one declaration. A lexicographical

rule then tells us which one of these declarations applies

everywhere, where the identifier in question may be used.

This form of multiple use of one and the same identifier

could be removed by a simple process of renaming.

But there is a much more subtle case of "multiple use

of one and the same identifier", viz. as soon as a certain

block occurs in one or more nested activations (as in the

case of a recursive procedure). In other words: one and the

same identifier then refers sometimes to this variable,

sometimes to another.

In actual fact: the identifier stands for a variable

and in order to indicate clearly for which variable it

stands I intend to denote explicitly the moment when a

variable has to be substituted for an identifier.

For the sake of convenience -to be more exact:

convenience for the machine and not for the hypothetical

user- I intend to use the same identifiers for the local

variables of every activation. (What I call "an activation"

is closely analogous to a block or a procedure body, as

known in ALGOL 60.) I use for this purpose the special

identifier words "L0", 11 11 11
,

11 12 11
, etc ..

When the machine starts the evaluation of a variable,

the stack of activations increases by one item. At the start

this item also contains a note that up till now no local

variables have been introduced in this activation

If the machine reads the word "E" at a moment that the

top of the anonymous stack contains one of the identifier

words (say 11 12 11
) then it investigates the top item of the

stack of activations. If it is the first time that this

iQentifier has to be evaluated in the present activation the

machine creates a new variable for it (and may give this

variable an empty value) and makes in the youngest item of

the stack of activations a note to this effect. Then it

replaces the top word of the anonymous stack by the variable

just created for it. At a next evaluation of the same

identifier at a moment that the same activation is still

(or again) the present one, the machine finds in the top

item of the stack of activations the note left there at the

first evaluation of this identifier and the top word of the

stack is replaced by the very same variable.

Now we can show a more complicated example. Let the

values of the variables IIXI!, "y" and 1fcomplus 11 be as

represented by:

ff
X ➔ '10 23 T II

II Y-+ 5 -2 T II

fl complus ➔ LO E E .-
L '1 E .- E

L2 E .- E

L '1 E E + E

L2 E E LO E E + E

T II

If we now read the text

II S E x E y E complus E z E II

the net effect will be that we can represent the new value

of 11 z If by:
II

Z ➔ '15 2'1 T II

and what we have done can be interpreted as the addition of

two complex numbers.

In ALGOL terminology; 11 complus 11 is a procedure with

four numerical parameters, all called by value. The simple

structure of the process allows the first of these to remain

anonymous even in the procedure body. Furthermore, it is a

kind of 11 type procedure 11
, be it one that, syntactically

speaking, takes the place of two primaries.

-16-

Let me end with a trivial example. Suppose that we

want to write 11 plus 11 instead of 11 + 11
• After the

assignment

II s E + p E plus :- E II ,

which gives rise to the situation

II plus,,,. + E T II

the expressions

!I X E y E plus E II

and
II ,r E y E + E If

.A

are completely equivalent. ~his example is included to

show as clearly as possible the arbitrariness of our

primitives.

Conclusion.

I am fully aware that the sketch is definitely

incomplete. In particular conditional reaction and some

equivalent of the go to statement should be incorporated

if one wishes to make a system out of this. For tho

moment I leave these out and I do so for two reasons.

Firstly for the sake of brevity and secondly because I

have not decided yet: I know of several possible ways but

none of them fully sati2fies me.

With some versions of these facilities I have made

slightly more el2borate programs. They showed me both the

power and the weakness of my Language, its power being

its flexibility and its unambiguity, its weakness being

the fact that using it intelligently proved to be far

beyond at least my powers.

If nevertheless I claim attention for this project

Ido not do so only because it charms me and may charm

-17-

others as well. This report is the condensation of my

meditations after we had completed our implementation
of ALGOL 60. This implementation was conceived at high

speed and the main justification for the numerous

decisions taken in those hectic months was the

recognition that our conceived constructions would lead
to our goal and would do the job, in some way or

another. The Machine described in this report, however,
represents an extreme of the continuous spectrum of

possible implementations of an algorithmic language

which (as is the case with ALGOL 60) caters for

recursiveness. In this quality it has been very clarify:ing

for me personally~ it has helped me a great deal in the

appreciation of the various (initially disconnected)

tricks we have incorporated intuitively and it has

clearly shown us a number of alternative solutions.

Therefore the hope is justified that translator con­

struction and machine design in the future will benefit

from these considerations.

Furthermore, the Machine presented here is so

ridiculously inefficient that every practical implementation

of a practical algorithmic language in all probability

can be regarded as an optimization of it, an optimization

which is permissible thanks to certain restrictions in

the language. It may be useful to compare a proposed

language with my language; during the process of

language construction it may be helpful in the timely

detection of 11 expensive featuresrr. Whether such an

expensive feature will be included or not is more or

less a political question but quite apart from how such

a question is answered it is nice to know what one is
doing.

Finally the language described in this report (or
a language devised along similar lines) may prove to be

-18-

a suitable means for the formulization of the semantic

definition of an algebraic language. The lack of such
a rigorous semantic definition is one of the recognized

shortcomings of the official 11Report on the Algorithmic

Language ALGOL 6on and having seen the tremendous amount

of trouble caused by this defect, I most sincerely hope

that this report will contribute to the effort to avoid

this mistake the next time an algorithmic language is to
be devised.

Acknowledgements.

A great number of people have contributed to this,

consciously or not. Besides all my colleagues at the
Computation Department of the Mathematical Centre,

Amsterdam, I should like to mention Dr.M.V. Wilkes and

Prof. J. McCarthy, who proved to be inspring listeners,

and in particular Mr. M.Woodger: his judgement and his
comments (I remember his lack of enthusiasm for my first

trials in this direction now with gratitude) have been
a great help for me.

