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Introduction

In this paper* we shall establish a formal theory of continued fractions of
the form

e S S (1)
bl+ b:a"l“ b?z+

in which the coetficients a, (s =1, 2, ...), b, (s=0, 1, ...) obey a non-commutative
law of multiplication.

The theory has already found application in the acceleration of slowly con-
vergent iterative processes in numerical analysis and has therefore some relevance
to this subject, but in any case 1t 1s of considerable interest as a self-contained
intellectual discipline. Moreover, non-linear multi-dimensional iterative processes
are of frequent occurrence 1n all branches of applied mathematics, and the present
imnquiry may well herald a break-through to a systematic theory of such processes.

The indicated domain of inquiry 1s, it would appear, completely unstudied,
and therefore all the results to be given are original, but many of them are
quite transparent adaptations of existing results in the conventional theory of
continucd iractions, and references (either to an original source or to an appro-
prmte te\tbook) are consistently inserted for these existing results.
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Since this is a somewhat long paper, it 1s perhaps in order to outline the
scheme of its development. In the first section both the continued fractions
and the nature of their coefficients are preliminarily defined. In the second,
various fundamental formulae — the three-term recurrence relation between
the numerators and denominators of successive convergents, the Euler-Minding
sum formulae, and a number of others — are established. In the third section
the notions of pre and post orthogonal polynomials are introduced, and with
their help continued {ractions of types which may be said to correspond to
(Borrespondierende, PERRON [4], vol. II, ch. III) and to be associated with (asso-
ziterte, PERRON [§], vol. II, ch. III) power series, are established. In the fourth
section the non-commutative version of the ¢—da algorithm (which may be
regarded as a device for transforming the coetiicients ot a power series into those
of the continued fractions mentioned above) 1s derived. Various transformations
of such continued fractions are then described. Section five deals with the
non-commutative versions of certain non-linear sequence to sequence trans-
formations which have recently been discovered. It culminates in a fundamental
theorem relating to the g-algorithm. In Section six continued fractions, which
relate respectively to functions which satisfy systems of three term recurrence
relationships and to functions which satisty homogeneous linear differential
equations of the second order, are derived. The next section contains a short
account of the use of continued fractions to interpolate in sequences of functions
which obey a non-commutative multiplication law. In a final section a further
restriction relating to the scalar elements of the argument field is introduced,
and analogues of a number of non-linear difference-differential relationships are
discussed. The conclusion contamns a brief comment upon some outstanding
difficulties.

There are two appendices. The first deals with determinants whose elements
obey a non-commutative law of multiplication. One might have expected that
such determinants would have played a leading role in the theory of this paper,
but for reasons which are discussed in the appendix they have only limited

application. In the second, a few details are given of an application which a
certain part of the theory has found.

1. A First Definition

11 the coeificients in the expression (1) are scalars, then the concept of an

infinite continued fraction i1s immediately tangible. It is the limit, if such exists,
of the sequence of convergents

dy

C.=5b A S T 3 —
V{5 0+ bl i bz+ bn (% O,’l,q..)

as # tends to infinity. The convergent, C,, may immediately be computed by
means of the following rules: divide a, by b,, and add the quotient to b, ,;

divide a,,_, by the result, and add the quotient to 4,,_,, and so on. More concisely,

C,=D,

where
DO —_ bi‘i y
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and
Dyi=b, s 120 (=01, n—1). (2)
In this paper we shall assume that the coefficients in (1) belong to the set
N, whose elements we may denote by A, B, C,.... The following assumptions
are made:

1. To every pair 4, B there corresponds an element C such that

A+B=B 4 A=C.

2. A+ B)+C=44+ (B+C)=(A+ C) + B.
3. To every pair 4, B there corresponds an element D such that
In general
ABZ4BA (3)
but

(AB)C =A(BC).

4. There exists a subset S (whose elements are referred to as scalars) of N
such that for every member 7T of S

TA=AT,

and 1n particular there exist two members, 7 the unit element and O the zero
element, of S such that

IA=A]=A
and
OA=A4A0 =0,
A+0=A4.
5. To every element E ==0 ot /N there corresponds an inverse E7! such that
EEI=FE1TE =1. (4)

Bearing equations (2) and (3) in mind, we see that when a, (s=1, 2, ...),
b, (s=0,1,...)E€N, then the convergent C, derived from the expression (2) may
be given 2" meanings according as to whether at each stage pre or post-multi-
plication by the inverse of b, 1s effected. This paper will concern itself with
two cases, that in which premultiplication 1s consistently used and that in which
the contrary is true. Accordingly

b 4 G . G
pre - 0 T a,+ byt by | (5)

is defined by
D0mbn’ ‘Dr+1xbn'-f-—1+D;1an-—r ’ (7m0? 1:*“:%“1):

pre |b, + g ‘;:] ~D, (n=0,1,...), (6)

and correspondingly we have
Dombn: 'Df—l—].:::bnm?‘ml—%—anmrD;l (1’::::0, 1: ‘.”%_._41),

Post :bo—l_ ba}{— bj’:— .- e zﬂ}mDﬂ (’}7, =0, 1, ....). (7)
. 1 e

19*
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Nofation I. At this point we have provisionally introduced the notational
operators prel...] and post[...] rather than define separate sets of symbols
for the pre and post systems of continued fractions respectively. We shall shortly
see, by application of a simple rule, that it is possible to dispense with this device.

Now in the development of the convergence theory of conventional continued
fractions, conditions were {irst derived which were sufficient to ensure that none
of the convergents C, became indeterminate, that is, that the continued fraction
took on some meaning, and then further conditions were derived to ensure that
the sequence C, (n=0, 1, ...) possessed a limit.

In this paper no convergence theory is given. The first point of the previous
paragraph is taken care of by assuming that throughout the manipulations
point 5 above always holds. The second is ignored completely. The concepts
of a normalisable space and subsequently of distance are not introduced. There
is no suggestion of proceeding to a limit. The theorems derived are tormal
algebraic identities involving a finite number of rational operations. That a
convergence theory of the continued fractions treated in this paper exists may
be inferred from the results of numerical experiments (an example of which 1s
contained in Appendix II). But we shall first establish a formalism, and proceed
perhaps at some later date to establish a convergence theory; and in this respect
we are of course simulating the historical development of conventional continued
fractions, this time precisely diagnosing the limitations of our achievements.

We conclude this section by remarking that the definitions (6) and (7) have
placed 1in our hands the fundamental result

Theorem 1.1. If a, a,, ... €S, then

a, a, a, | a, @ a,

Rt ceee =T = post | b, - Nt A
bt byt by T PO 5 5

i the sense thal the successive comvergemts of both comtinued fractions are equal.

pre ,“bO -+

2. Fundamental Formulae
Let us write

pre[C,=B;"A4,] (m=0,1, ...) (8)

and determine pre[4,, B,] in such a way as to assist in the computation of
preC,. For this we first remark that if we write in succession

pre[A,=b,, By=1,
Ay=a,+ 0,5, By=0,,
Ay =(byby+ ay) by+ bya,, By=1Ubyb,+ a,],
then for =0, 1, 2 equation (8) is satisfied. It may easily be verified that
pre [ Ay,=0,A4;+a,A,,
By=10yB,+a,B,],
and this suggests that, in general
pre(d,=0b0,4, 1+ a,A4,_,, (9)
5,=b,B, 1+a,B, _,]. (10)
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But preC, ., 1s computed from the expression (5) for pre(C, by replacing b,
by (b,+ b, 14,.,). Inserting this substitution into the right-hand side of equa-
tion (9), we obtain

pre[ b b;{%lan Pl)An 1—[—@ A ~ 2
“'“"' n+1{bﬂ i—l(buAn 1“{'6&%14}; 2)—+ an%ﬂlAnm 1}
mb??-!—l bﬂ lAfz+a 1"4 1}]

The right-hand side of equation (10) leads to a similar expression. Similar con-
siderations apply to the post continued fraction. We are led to

Theorem 2.1. Successive convergents of the continued fractions

Qo ... % ; @ .. G .
Prel0ot u 4 byt b, and - post|byt B ey
may be evaluated by use of the fundamenial recursions
p)v'.e[‘”q---lE ’ "A 0> AnmbnAnml—{_dﬂAn-—2ﬁ ( 1 )
N = 1, s,
BmleJ* BOHI y Bnmb?anw1+aanz~-—-2]
when
pre |, + %1 %2 O plyg (m=—1,0,1,...)
b, + by b, v S
and
pOSt [A*lmlf AOEbO’ An_”:A?zmlbn—}"'Anmdan:
B~1EO$ BOHI: Bnt;zwlbn_{“anﬂan] (%m1>21)
when
A2 ... % _ ~1| ,
post b -+ b, + bt b A, B, (72 1,0,1,...).

The tundamental recursion formulae (9) and (10), besides providing a second
definition of a continued fraction, may be used to provide a number of further
important formulae.

For example, it may be proved by induction that the successive convergents
of the continued fraction

p1c | ﬁo’" ﬁl %o o 5 2 %y ﬁr { Xyp— o

o— o+ Py— oyt Bo— a?‘“l_l— 57’-—1“’:“

are given by B, A4, , where

Br+1 — &, Ky q ... Uy,

Ar+1m%ar~—~1*'-“150‘*‘%%—1~~%131/80+"'+5f18ru1*-'ﬁ0 (7’-—""'—-—"0,’1,...).
This result leads to

Theorem 2.2. The series

05" Bo+ o5t o5 By Bo+ x5 o oz BaB1Bo+ -

and the continued fraction

S P U S
to— oyt Pi— ot Br— Cy—yt Pr—1—
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are equivalent |6 in the sense that the successive partial sums of the former ave
equal to the successive convergents of the latter. Swvmilarly
-1

-1 - -1, -1 1
Booat + BoBroi  ag + BoPrBaxa a1 o0+ -

s equuavalent to

post | Bo  %ebr @B . %z By—1

L 0ty — ocri* B — oyt By— -1t Br—1—

Notation 2. The reader will doubtless have noticed that there i1s a simple
rule for converting a result relating to the pre-system of continued fractions
into the corresponding result relating to the post-system. It takes the following
form: It

pre[x(a, be,def,...)=vy(4, BC,DEF, ...)],
then
post[x(a, Cb,fgd, )my(A, CB:FED: )]

We may thus, without significant loss, dispense with the exhibition of results
relating to the post-system. But if the results derived relate only to the pre-
system, there is hardly any point in including the symbols pre[...] at each
stage, so that if it is perfectly clear that from now on the formulae devived relate
only to the pre-system of continued fractions, these symbols may be omitted.
Occasionally, by way of emphasis, they will be reintroduced.

To prove the next result, it is convenient to introduce the following

Lemma. 7The successive denominators B, of the continued fraction

oL — S . T
0o+ I— ay+1T— a;+ 1— a,+ I —

are equal to 1.
We are immediately in a position to verify

Theorem 2.3. The infinite product
e D i+ T) e (ot T
and the continued fraction
o1 4 BT POTED | bt

dpanairme

I—  yOi' D+~ oy G5k D +1-
are equivalent [6] in the semse that the successive parvital products of the former
are equal to the successive convergents of the latter.

A further exercise 1in the use of the fundamental recursions is the derivation

ot results analogous to the BAUER-MUIR relationships ([§], vol. II, p. 25). Start-
ing from the continued fraction

b % % 9
T Bk Bt B

having successive nu@erators A_y,4, ..., A,and denominators B_,, B,, ..., B,,,
we construct a continued fraction

d 9 L2 ... o Ontr
0+ d1+ dz‘}" du+ dn+1

having successive numerators 4,474, ; (s=0,1,...,7n); 04, and denomina-
tors By+7,B,_; (s=0,1,...,n); B, (r,, 6cEN, ¢==0). |
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To start with, we have trivially

and since
then

cy==a; — (by+7)7,.
Subsequently

Av+ rzfAv*—*l ::dv (Avm1+ ?.,,__. 1“41*%2) + C‘u (“41#—-»2—‘_ rwwﬁﬂvm{i)

which in view of
;’4 '"-::b Ap,____l"{‘ 62-3,.;4,,__‘;

P

reduces to
(bv+ Vy — dv) Av-w- 1 (d*v?’w-—-—l T av_}— C;v) A,,_,g‘“f" vazfm2Av--3m

If this 1s to be equivalent to

A‘v-—m 11— bz*wlAvw2+ ‘Zz*mlA-v-*-3 »
we must have

and these may be solved for 4, and c,.
Finally from the equations

O.Anﬂ dn%-*l (*An+ ¥ 4 " 1) + Cpt-1 (Aﬂ-—-1+ 7/m--------lA‘ﬂ--—- 2)

and
An$ bf-z,Anm 1+ an"ﬂnm2

we may derive d,,,; and ¢, ;. The results are summarised in

Theorem 2.4. If the continued fraction

a a a
by - G
0
by+ byt bn
has successive numervators A, (s=—1,0,1,...,%n) and denomanators B, (s=
—1,0,1, ..., n) and the continued fraction
¢ c, Cp €
| 1 2 n W1
d, -+ - Ca _ Cn-

A+ dyt+ dyt dayg
successive numerators A, +v. A._,(s=0,1,...,n), 0 A, and denominators B,+r,B,_,
(s=0,1,...,n), ¢B,, (*,, €N, 0=0), then

@y = by + 7, dy =b;+ 7y, ¢y =a; — (b1 + 71) %o,
dv — b” + Yy {(bl-’—{— 7’1—‘) Vy—1— & 71«'-—“2 (bzf—-—lyv-"-2 — a4, 1 'Jf" 4 ___17/,3,_,_2)“1,
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A simpler result ([4], vol. I, p. 14), which may easily be verified by recourse
to the fundamental recurrence relations, 1s

Theorem 2.5. [} the successive numerators and denominators of

b S RO AN
T bk bk bk

ave Ay, Ay, ... and B,, By, ... respectively, o€ N, then the successive numerators
and denowminators of

b - G Ay ) e Apiy 07 Qpt+o .

O T b+ byt br—o+ I— bppitapr; ot bppat
are

AO: AI: trr Ak-—-—l:’ ‘Ak mQAk-—-I: Ak:Ak———lb

and

By,By,....,By_1,Bi—0Bs_1, By, By, ..

The preceding formulae enable us to insert any quantity into the sequence
of convergents merely by reducing it tothe quotientotd,—p B, _;, and B,—p B, _;.
The process can quite clearly be repeated at will and without difficulty. The

converse problem ([9], Vol. II, p. 10), that of constructing a continued fraction
whose successive numerators and denominators are A, ,4,,4,,,...; B, , B, ,

B, , ... respectively, where u,, n,, 75, ... 1S an increasing integer sequence, is
not so easily dealt with. We shall consider the construction of the even and odd
parts of a continued fraction, z.e. the construction of continued fractions whose
sequences of numerators and denominators are 4,, Ay, A4, ...; By, Bs, By, ...
and A,, A5, 45, ...; By, By, By, ... respectively.

The construction of the even part presents no difficulty. Eliminating A,, 4
and A,,_, between the three equations

Aznm bznA2nw1+ a’2nA2n-—2r
A2nm1m: b2¢zm1A2n~2+ a27z-—-1A2n~—-3?

A2n-2n b2n-—~2“42n-~3+ a2ﬂ-—-—-2‘42ﬂm41
we have

A?n— — {a2n + b2n(b2n—-1 + X941 b;n1m2)} A2n—-——2 T b2na"2n 1 bznmzﬂzn 2A2n--4*
We may thus lormulate

Theorem 2.6. If the successive numerators and denomanators of

b N D2 Y
O b+ b+ by -+

are A, B, (s=0,1, ...), respectively, then those of

1
by -+ by @ byas b3 a, Doyi22p11 055 Aoy

i N ——

byby+a,— ay+by(by+asbst)— a4y, o4ba,ra(baysitBayrqbit)—

are
Ay, By, (s=0,1,...).

Proceeding to the odd part, we obtain

Azn-}—l {a2n+1+b2n+l(b2n+aznbﬁnw }Azn-—- 62n+la2n62n-1a2n-—1f42ﬂ~3*
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Now we observe that if the fundamental recursion formulae are to correspond
to the original definition of a continued fraction, then B,=1/. But in general
By, which in the odd part of the continued fraction plays the role of By, 1s
not equal to /.

We may overcome this difficulty by dividing the first numerator and de-

nominator ot the odd part throughout by &,. This is valid only if either b,,
or b, and a,, €5. We obtain

Theorem 2.7. If successive numerators and denominators of

i (L a
o+ %2 L Y

b+ byt b+
are A, B, (s=0,1, ...), respectively, and either b,C S or by, a,C S, then those of

-
b b—-l b3 Ay bl 2y
0 + 1 gl — & s
Az+03 (by+ay b7) —
1 — 1
bs @4 b3 as R R S T e S T T
-1 -3
555—{-2;;5 (b4—]—@4 b3 )"" @27-$1+b2fﬁ-1(b2r+a2rbﬁr 1)

are b7 Ay i1, b7 Boo o q (s=0,1, ...), respectively.

The restrictions which had to be imposed when obtaining the last result
repeat themselves in

Theorem 2.8. If A, B, (s=0,1, ...) are successive numerators and denomi-
nators of

a (4 a
bo+ - P2 B

b+ byt b+
and vy, Vs, -.. S, then those of

by —r%_ YeVile | Vr¥ro1Ge

T — —— T

Y1011+ Y2 b5 Vy Oy + )

are Ay, Y Vs—1---va V1A, By, VsV --- Yoy B, (s=1, 2, ...) respectively ([4],
p- 19).
Let us conclude this section by deriving analogues of the Euler-Minding

relations ([9], vol. I, p. 5) which provide a third definition of a continued fraction.
Eliminating 6, ., from the two equations

An+1mbn+1Au+ aﬂ—%ljiuwl?
Bn+1m n+an+dn+1Bnm1:

we have
—1 -1 —1 —1
A;"L—}-IA?! mBn+lB% mdn-{-l(An--lAﬂ WB:PL——IB?@ )

Or, writing C,.=B;'4_,
~1
Cn—}-l T Cﬂ — Bﬂ—{—lan—i—IBnml(cﬂm Cn"—l)
n pP—1 —1 —1 -1 — 1
=(—1)"B, 1a,..8, 1B, a,B, B, 1a, 1B, _5... By ayby " a,.

We thus derive

¥

Theorem 2.9. The successive convergents of the conlinued fraction

bl—{— “bg"}“ : P :

bO | @1 5@2 L a’r

i
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are equeal to the partial sums of the series
Y : , — . S | -1
bo+ 2 (—1)° (13}7“'?3111;».;&1 By 1) (5 1‘% By o) (Bp_18p 1 By _3)-. (Bz ay) (01" ay) -

Finally, we use Theorems 2.2 and 2.9 to derive

Theorem 2.10. The successive convergents of

(1‘ a’i a'f
b © 1 @2 Gy
O bt byt bt
and
— 1 ;la B la B B ' a,.,B
b ; bl ay 2 n an n— 2 n-}—l n+l ?zjl _
mi_-_ e I - e eeaens st ae oe ‘
" I — I+B I+B la BTL#2 I+Bn}~1 #1+1 B;,——lm

are equal.
3. Pre- and Post-Orthogonal Polynomials

The most important continued fractions which arise in practice are those
which are associated with power series. We shall proceed to derive continued

fractions which may be associated with the power series 2, c, z7*~1 where
s=0 |

c. <N and z€ S, but before doing so 1t is necessary to invoke the theory ol ortho-

gonal poly nomials. (The present treatment 1s adapted from [7].)
Suppose that we have a sequence ¢, (s=0,1,...)€N; then we mtroduce

a process pre P{...} such that
pre P{At} = A c, (s=0,1,...), ACN (11)

where #, which 1s a dummy variable, will be assumed scalar. The process
pre P{...} operates upon quantities inside the braces. These quantities consist
of elements 4 of N, and scalar quantities including {£. These scalar quantities
undergo normal arithmetic inside the braces (such as addition, division, formal
expansion in power series, efc.), but after pre P has been effected, the elements
of N premultiply the various members of the sequence ¢, (s=0,1,...). Con-
struct for some m the sequence of polynomials

W (2) Z R g (12)
$=0

(again the notational operator pre{...} has been omitted) from the condition

(s=0,1,...,n—1),

prep{5m+s m) } = O(m) (S _____%)

(13)

where w{™ is chosen so that in (12)
R =1, (14)

but otherw1se in general, AV CN. (It will be seen in Appendix I that there
1s at least in principle no dlf:flculty in doing this.)

Ha.vmg constructed this sequence, determine the further sequence o™ (z)
(2==0, 1, ...) from the relation

oM (2) = =pre P{(z — )~ 1" (pﬂ — pim (t))} : (15)
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(The o™ (z) are of course polynomials, since when z, £#€ S then 2° —¢° is divisible
bv z—1¢.)

Construct the third sequence of functions 7" (z) from the relation

9 (2) = pre P{(z— 1) 7 (B () — (= 0)" 24" ()} (16

The purpose of constructing these sequences is revealed by noting that a trivial
consequence of (11) 1s

pre P{(z — )}~ 2 ¢, 2751
§=0
The sign ~ of formal equivalence 1n this paper has nothing to do with the sum,
1f 1t exists 1n any sense, of the series on the right-hand side of this equation.
It merely means that 1f we expand the left-hand side of this equation formally
in descending powers of z, then we obtain the right-hand side. There then follows

2 (2) Loy (2) = pi () pre P{(z — )7 (p57 (2) — pY (8))} .
=pre P{(z — #)71"} — p¥ (z)1pre P {(z — £)" 1" p7 (¢)}

G
— Z Com + s g7 710 (zmznﬁ*l)
§==0
on account of (13). O(z7%"") is taken to mean some function of z which when
expanded as an inverse power series in z commences with a term in 272771

It we were to introduce the concept of a normalisable space, this latter condition
could be given a more conventional asymptotic formulation.

Similarly there follows

OO0
(o (2) Y 73”) (2) = D c, 75110 (2"“”2"“1) ‘

§=10

Thus we see that pu™ (2)72 o™ (z) and p%™ (2)=1#"™ (2) are rational functions

which when expanded in inverse powerse of z agree with the series >’ ¢, 27571

M+ 8
$==0

and 2 ¢, z7°""' to 2# and m -+ 2% terms respectively.
§=0

It 1s remarked at this stage that the reason for la,belling this section with
the title given 1s that the system of polynomla.ls P (z) is orthogonal in the
sense that

O (y=0,1,...,n— 1)

ze;,(,,”*}

re P ) (1)} =
pre P{p,” ()} v —n).
This is easily verified by appeal to equations (12) and (13). A consequence of
this reveals the connection between orthogonal polynomials and continued frac-
tions, for a three-term recursion prevails among the sequences p{" (z), o™ (z),

77 (z). For expanding piM 1 (z) — 2pU™ (2), a polynomial of degree #, in the form

o) (2) — 2" Zb"’”)p (z) (B EN)

we find from t(.'13) that
b =0 (s=0,1, ..., n—1).
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There thus exists a recursion which may be written
PR (z) = (5 — o) P () — B P (R) (m=1,2, )
where, by inspection of (13),

~ —1
py(z) =1, P (2) =2 —Cppi16m -

As a trivial consequence of the definitions (14) and (15) it follows that

A (2) = (z — a) ol (2) — BEaofh(z)  (m=1,2,.) (17
Oi()m) (2) =0, O(Im) (2) = ¢y
and that
it (2) = (2 — o) 7P (2) — B (z) (m=1,2,..)
~ i (18)
7o (2) = Zfﬁ 2L A (@) = (2) 5 (2) F o 2T
8 ==

Thus finally we are led to
Theorem 3.1. Ij, given a sequence ¢, (s=0,1,...) (€EN), a process pre P{.. .}
1S defined by
pre P{A '} =Ac,,
the polynonunal sequence

(m Z k(m (;agrz) 6 N)
§==0 }
1S determined from

pl‘ep{tm+s )(t)}mo (SmO,’l,...,%mi) }3,(.::22“—1,

! (s =n)

and coefficients in the recurston system

P (2) = (2 — o) P (2) — By P (2) (19)

computed, then the series expansion in inverse powers of z of the n'™® convergent of

(1) ()

Cm 0 r—1
ST i s (20
& Ly ~ & % T &0, '

agrees with the series 3 c,,. 2 °"" as far as the term c,,. 5, , 272", and a similar
5=0

expansion of the n'® convergent of
m—1 — 3 (#12) (1)
—s—1 S Om 0 r—1
C, 27 R 24
D el N (21)

agrees with the series ), c,z”°"" as far as the term ¢, . ,, 42 ™" 2"
s=0

For the sake of completeness it 1s mentioned at this point that equations

(13) and (14) do not provide the most economical means for computing the

coefficients in the polynomials p* (z) since they involve at each stage the solution
of a set of linear equations.
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Using (17), in conjunction with (14), there follows
pre p{t7;z+r i1(:'-7:,) (t)"- .._-—__—-_ﬁ(m) pre p;émmr—r--l 572)1 ({)}
__gim glm, gl o (22)
Again
pre P{E™*7 41 p( (1)} = ™ pre P+ (™ (1)} + By pre P+ 4, (1)
= o™ B, L. B cm-%«ﬁ,. Lo B, LB e,

+ B By My B L BT ¢, A - - B B B gl (23)

If p™ (z) is known, B, and «™ are computed recurswely from (22) and (23)
and p"; (z) from (19).

4. The ¢—d Algorithm

For any one value of m, the systems of equations (22), (23), (19), (17) and
(18) oifer the most economical processes for computing the continued fractions
(20) and (21).

However, for several consecutive values of m it 1s more efficient to proceed
as follows ([&], p- 13): In (20), write

Oﬁ(m) == 9r+1 T & i ﬁim) == 35-??}-)1 Q’i@l (r=0,1,...), (m) =0,
» @
and denote by F,(z) the power series > c,,. .z °"! Then
§=0
m) q(m) () gm)
Crm 93 €y )a
S — . e wow . s e e % B P z 24
1s plainly the even part of
I G NN (. A
z— I— 22— I— z— ’
the odd part of which 1s (2 1s of course scalar)
. q(m} C o1 q (m) 5("7;?-)1 eg_m)
Cn 2T (m) __ (m) _ (-mi” (my_ (m) __(m) _
z—ef™ —gi"™M — z—ef™ —qj E—C T dr+1
However
r, (z)mcmz“1+g“1Fm+l(z):
and thus 1t follows that
e e gmn o
M) __gm) __ o (m)_____ (m) __ . (™) _ m 1A
=6 T 2 " 45 z—e)}) — %4—1

Comparing (25) and (24) with superscripts advanced by unity, we have

Theorem 4.1. The coefficients in the continued fraction

re | Cwn L ﬁo_ L }'M)l vl ~F (Z)
P g—al™ — z—ol™ — z—af™ — "

are given by
pre [Bi™ = el gy, ol =g + &M (r=1,2,...)]
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where
pre [e(m—{ (ﬁH 1y gi'ﬂile?n): (25)
(m + g m"f‘l) = (412) + q(m J ' (26)

These relations (the q—d algovithm velationships) arve used to comstruct the se-

quences e, g™ by means of the formulae

pre[ef" =g "V + 21V — g, (27)
%711 . B(m +1) qim -+ 1) f,im)--l] (28)

from the imitial sequences

pre[ef® =0, g™ =c, - (m=0,1,...)]. (29)

An immediate consequence of the ¢ —d algorithm relations is that the poly-

nomials p{™ (z) satisfy further recursion systems themselves ([8], p. 11); indeed
in particular

w(2) =z P10 (2) — ¢ i (2), (30)
Pt (2) =P (2) — & P17 (2). (31)

Assume that equations (30) and (31) are true with # —1 in place of »#; then
use of (19), (25) and (20) leads to

2 pD (2) — 5:”)( ) = g (e
=z{pn=1" (2) — i (2) e pmh 7 (@)} — eny {2 £0E T (2) + g pie (2) + P07 (2)
and equation (30) is thus true for =. S1m11a.rly we obtain
pr 0 (2) — B (2) + e P (2)
= 2PtV (2 (%) “““"?f’n (2) ““"‘“‘% Py ( ""“""% {?’ffjil) — ey, Lﬂf—+1)( ) — L@ﬂz)}:

and thus equation (31) 1s true for ». But equations (30) and (31) are manifestly
true when » =1, they are thus generally true.

It 1s again a trivial consequence of the definitions (15) and (16) that

200" (2) — 0"t (2) — &M 0PN (2) = ¢, UM (2),

¥ 77/ 1
oy (z) + qi’;’”) oy (2) — ot (2) = ¢, P (2),
r T (z) =r7 (2) — el AN (2), (32)
ro) (z2) = 2705 (2) — g v (2) . (33)

Inspection of (30), (31), (32) and (33) reveals that

pre[7” (2), 2 (2) 4™ (2), 2"+ (&) 2 A" (2)
™) (@) 27 (2), 40 (2) 1A (), ]

, - » » ’

are successive convergents of

re milc g—s=1_ CmZ" " q(m) 2 7 ém) .1
PEE1 4 5 Al Sy sl

It is quite clear that the system of the equations (25), (26), (30), (31), (32)
and (33) may be manipulated to produce further recursion systems, and a little
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reflection reveals that continued fractions may be constructed which have as

successive convergents pre [p (z) 17" (z)] not necessarily following the order
m, n, m-+1,n; m-+1,n-+1; ..., but these will not be considered. Instead we

produce some fundamental transformations.

The Reciprocal of a Corresponding Continued Fraction. Suppose that
we are given the expansion
o B —_— C . Q1 _glw . qr M,u._w??_,_.,w. « . e 'L
and that we wish to produce a similar continued fraction for {f(z)} ! ([6], vol. II,

p. 130). We observe that 1if successive numerators and denominators of (34)
are A,, A,, ...; By, By, ..., then those of

Lo 4 a4 e (35)
s i T— 4= TS 2
are O, B,, By, ...; I, Ay, A{,.... The odd part of (35) 1s, however,
-1y €57 ad . qr
E—C—fq)— &F—6 4o € Gyt+17

But this 1s plainly the even part of a continued fraction having the same form
as (34), and we have

Theorem 4.2 Ijf

e N a0 9 e
ﬁ(z)ws—l-gm I— z— [— z—
and
F 4 4 I /
-1 ry 6 91 6y . 9 Cr
BT~ T T
then.
§'=s"1,
S¢'=cs™,
q{:::c +91r

and thereafter
5:q;mgrg-r: qr+1 +g¥mqff+1+6r (7$1’ 2, )*

Translation of the Origin. Once both the artifice of taking the even part
of a continued fraction and reexpanding in terms of another variable has been
comprehended, and due note has been taken of Theorem 3.1, then i1t 1s quite
easy ([6], vol. II, p. 141) to construct the proot of

Theorem 4.3 If

~ ¢ 91 31__... 9r 5,"
F (2 z2— I— z— I— z—
z=&+ A,
then
. ° q1 e . 9 &
| FE) ~ 7272 7= &=
where
QImQI_{_Z:

7 ! 4 ! L
5rgrﬂquw Qf—i—l_l_g?'mq'f—%—l_l_gr%—i (7‘“"’”1: 2’:***)‘
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Addition of Continued Fractions. Suppose that we have an expansion
such as
) A B e, i‘ . ql’ é)l . we e Q? . f)? . a
F(z) s— I — z— I— z—
and we wish to obtain a similar expansion for sz F(z) ([6], vol. II, p. 139).
This is easily accomplished; we take the odd part of the expansion for I(z),
add sz! to the first term, and reexpand to obtain

Theorem 4.4. [f

F ( o ) ~ ¢ 41 wgl qi“ ___M_ef'
e [ o I — z—
and
¢’ g, eq q, e,
F Z ﬂS Z 1 I 1 e ‘r_____, - 4 a 2
( ) T g— I — z— [— z—
then
F 4 ,‘ y 4 7 L
¢ —=C-+8S, g1 —=¢g;C
and

'] f F 4 4
¢, +9=2¢,+9,,  Gri16=¢ 16  (r=1,2,...).

As a comprehensive exercise in these manipulations we adapt an addition
theorem of RUTISHAUSER ([8], p. 23). We are concerned to express

e s G e u—s Gn—y 6
Py N EP I S (36)

where A€ S, as a single continued fraction.

First we transiorm (36) into a continued fraction in =2z — A as in Theorem 4.3.
(36) becomes

7z ¥ 4
_ S g1 e1 €n—2 Gn—1
C E 1 - e i o e e e . PN T I . e i
where

4 '

n=qa—2% &g =eq, Guate=qg,+te—1 (r=1,2,...,n—2).
As in Theorem 4.4, the odd part of (37) is

4 _ru 7 ’
-1 S qj. 92 €1 -1 € —1
‘:, {C + S _'{— _"\_é_" P - 7 o f an 7 Y ,gﬁwm‘mmmﬂu SR ,
—q1—e1— §—qgy—er— E—Gn-—

and expanding this again as a single continued fraction, we obtain

ST 91 €1 | én (38)
§— [— &— &
where
s¥ =¢ -+ s, 9, S* =q s,
* »* . I 4 F 4 - 4 sk 4 7
q-r—}—ler “"“gr—}-lgr: Q?‘ +67’ mgr“[‘gr (7**_“__":.1’2’_”’7@“-2)’

K *k —
dn—1 + Cp—1 = Tn—1 -

We now expand (38) as a continued fraction in z, taking the even part,
writing £=2z — A, and reexpanding; we obtain

Ay

it sk B gl Al AT T

z2— I— z— zg— I

* F Y 4 17 Zr F s
ST 9y & | én—1 Gn
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where
‘?1““**91 + A,
FANY
. 0 |
g et gt gl =gra bt d (r=1,2..,n—2),

— Ak
‘]n ":L é’;‘zn---—-l — tn—1°-

The above result, apart from being of interest in itself, has a most important
consequence. Before stating it we interpolate a

( Lemma. 7f F(z)=c(z— )", y€ S, then, in the notation of the g —d scheme,
e —=Q).

~= ~ 1
For this series cm::(

) ¥, and 1t 1s easily verified that

(m) (%—}-;*«'-I-mm-—d) (v +m—1)
Q?’ p— i N N X )

(m) __ (’V""‘“?‘?)}.’ . oy — A A
e, (9?+m_1)(w+m) (m=0,1,...;7r=1,2,...,n).

Theorem 4.5. If Z ¢, 27571 18 the formal power sevies expansion of the rational
s={

junction -1

(ZJ b, z) C:::ai z’i) (39)

1=0
where b;CS (1=0,1, ..., n), then in the notation of the q —d scheme

e =0 (m=0,1, ...).
Suppose that the above statement is true for » —1. We then add the func-

tion z_f 5 to F(z) and obtain a similar rational fraction with numerator and

denominator of one degree higher. Performing, for some m, the continued frac-
tion addition

m—1 m—1 o (m) (#12) m)
Z c oz ST + Z cAS 2 E mﬂmwc __}__,":' mﬁﬁ_}_ “_91 6’ —a g"‘*""l
§ 2 52— I — Lz — I
s$=0
we obtain a continued fraction of the form
""""“"1 L ; r ) 27 m:# axy?”
e pmet g A LG S I
Z— I— z— z— 1
s=0

i.e. in which e =0. This process we repeat for all values of m, thus if the above
statement 1s true for » — 1, 1t 1s true for . But 1t is manifestly true for » =1,
and thus the theorem 1s generally true. The only difficulty occurs when the

denominator ot (39) has multiple roots, but this 1s taken care of by the preceding
lemma.

A consequence of this result and equations (31) and (32) 1

Theorem 4.6. [f Z c, 275" is the formal power sevies expansion of (39),

then the pOZynommls 7!:» '(2) and fumctions v\ (z) (the latter awve in the event

bolynomaals ) are constant for all m. They are in fact the demominator and numerator
of (39) normalised so that b,=1.

Theorem 4.5 will again be brought into play in the next section. We terminate
this section by giving an invariant property of the g — 4 algorithm.
Arch. Rational Mech. Anal., Vol. 12 20
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Theorem 4.7. If > ¢ 275" is the formal power series expansion of (36) and
g == ()

quantities e™, g™ are constructed by means of relationships (27) and (28) from
the 1mitial c“rondztzom (29), then the sum

n—1
() (#12)
:’L QS 1 S‘ Cs
§==1 §=1

1S wnvariant with respect to m.

5. The g, m, v} and €-Algorithms

With Theorem 4.5 in hand we are in a position to prove a fundamental
result in the theory of the ¢-algorithm, but rather than do this immediately
we shall proceed by a more indirect but nevertheless more instructive and 1in
the final analysis more elegant route.

Using Theorem 2.2, we note that the continued fraction

and the series

(Cpz D) + U (2) 1 g™ <cmz >+( Y (2) e pg Y (2)) (P17 (2) 2 g0) (e 27E) +-
- (P (2) gl plm 1 (7)) L (
X (P (2) ‘*”’z‘)”‘“) (2)) (p7 (2) 2 g™) (6, 27Y) + (41)
(P (2) 1 el pn AN (2)) (pI (2) L g pI, (2)) .
- (P (2) ’”*”( )) (BY (2) 1 g0 (¢, 27y 4 -

are equivalent in the sense that successive convergents of the former are equal
to successive partial sums of the latter.

We shall derive an algorithm relating the ratios between the successive
denominators of (40), then we shall derive an algorithm relating the ratios of
successive terms 1n (41), then an algorithm relating successive terms in (41),
and finally an algorithm relating successive partial sums of (41).

 —

HM

The second ¢-Algorithm. The successive denominators ot (40) are of course

zpe" ) (2), PV (2), 2 YTV (2), -, 2 0T (2), AR (2),

Accordingly we write
(m) ()

gor =P ()P TV(2),  garr1 =270 (2) A (2) (42)
and note, by use of relations (30) and (31), that

(m)

I -5, = — P (2) 1™ pmitD 2y 2 =Ty, =p Y (2) 1M p (2) . (43)

From the definitions (42) and the ¢ —d algorithm we have immediately ([9],
p. 13)

(m+1) (m+1) {(1%) (1)
Bor Efori+1 — H2r4-1 2712,

(z “(?gz?.r—]-l) (L — ?;r) = ([ —--(mét;l) (2 m(m.é;:'-l) ;
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with
Q=1 ‘GH=z—c,  cnt (44)
From Theorem 4.5 and (43) we have
Theorem 5.1. If 1n (44)
S ppiti=0  (BES) (m=0,1,...), (45)
then = o
g2n =
We note, using (43), that the series (41) may be written as
—1 (M) (m) — 1

my . (my— 1 m
2 g1 (27— Q1) 627+ £ (I —"g) e (z— %) ezt + -

(my—1 (1) (1) — (my, (my—1

+ 8or—1(%— goy—1) --- &2 (I“‘“‘“ g2) g1 (2-- (Ei) Cpp 271
my— 1 ™ my— 1 m my— 1 m). (my—L m
+ 8, (I—G) G i1z — Barer) .. B (I — BBl (z— T,z ld .

The m-Algorithm. We wish to relate successive ratios of the terms in this
series. Accordingly write

(m) o (mr* ( () () (my— 1 (171)

I T g2?’) n2r+1 — g2r+1 (Z T g?r {—1) (46)
and from the g-algorithm we have ([9], p- 13)

(£ + n:é’i”) (I + 77y = (I + 783 2Y) (L + a8rEd),
(I +777) (I +7p0) = (L + a2 D7) (1 + afe V™),

s'cg”) =0, :rz(lm = (zc,, c,';,"_}_l — 1)1, (47)

EFrom Theorem 5.1 and (46) we have
Theorem 5.2. If in (47) equation (45) obtains, then
g =0 (m=0,1, ...).

The n-Algorithm. We now investigate the terms in (41) and accordingly
write

e =aln (s=1,2,...). (48)
The n-algorithm relationships then evolve to the form
(7 ”’)-1—77“"”) ) 037 +n27h) = 05 + 98t R) I 4 g8,

(57 +n5viq) e 1 -+ nEee) = (St + it (sr =2 +nrtd ™)
a simple inductive proof suffices to show that ([9], p. 14)

2{nsy + 01} =nerty gty (49)
nsy i =2t 4y m"}']‘)"l} (50)
77___%__1::::0, 77((;"‘)25 z7t (5’1)

From (48) and Theorem 5.2 we have
- Theorem 5.3. If in (51) equation (45) obtains, then

ng =0  (m=0,1,...).
20%
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The e-Algorithm. Now, in terms of the quantities n /
m—1 2?’-——-1( )
() 11 X8 (8 — m) .
Py ()1 (2) = 22T e 4+ 27 X
s=0 §==0
accordingly let us define
m-~—1 2?--1( |
m N .— 5, (S — 3 N\
8‘531') L~ )78) 3 Z7}S (52‘)
§==0 s=0
and
( S
m) M)l |
E2pp1 =4 s - (5})
§ =)

Then by multiple use of relationships (52) and (53) we have

(m-+1) Am) _ _—m _{m) () Am+1) _ _—m __(m)
EOy

— €2, =& N3, , Eo,1.9 — Loy — & N2yl
(m-+1) (m) ___ om_ (m)? (72) (m+4-1) ___ m_ (m)?
827-—[~1 T 82?—}-1 =& 7?2?—1—1: 82?-}-1 — &3y --1) = & 7727‘) .

That is ([2], [9], p. 14),

, 1 1 _
£l — el = (e — )

mw—1 54
F@% HO, é‘(;n) — Z C. 2 §—1 ( )

If the quantities c,, satisfy a linear recursion of the form
.Zobi Cmets = 0 (bz S S) (7’}’& =0, 1, .. ) ’

then ¢ (m=0, 1, ...) are the same rational function of z and may be given
the partial fraction decomposition

SE‘J:?Z)T—“ZAs(Z“Zs)“l (A € N)

§=1

where 4,, 45, ..., 4, (€S) are the roots of the polynomial equation

ébi A'=0. (55)
Writing
S, mmilcsz =1
we have =
S, msmnAs (2 — A,) ™ — i A A8 (2 — A) 8
and | o o
:2:55 (Sm—f-z' — iEﬂAs (2 — 4;) "1) =0

or, In conclusion, we have

Theorem 5.4. If the relationships (54) of the g-algorithm ave applied to the
wtial conditions

™ —0 gM=S (m=0,1, ...) (56)
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and
y g 71
Sb Sp=(20]4  (m=0,1,..), bES (=0,1,...,n), (57)
1==0 1=={)
then
e — 4

Note. For simplicity in presentation it was assumed in the above proof
that the roots of equation (55) are distinct, but this restriction is not essential.

This 1s perhaps an appropriate point at which to introduce

Theorem 5.5. If the e-algovithm relationships (54) are applied to the initial values

™ -0, M =S (m=0,1,...)

(12

to produce quantities £, to the initial values

' =0, eV =A+BS,, (4, BEN) (m=0,1, ...),

()

to produce quantities &g, and to the initial values

™' =0, "W'=4+S B (4, BEN) (m=0,1, ...)

to produce quantities ™, then

628 = A + BSQS ’ é’gj:)-i!l "_""5‘23-{-1‘8 - (?%: §s=0,1,. *') ’
8(2”: == A _{‘ Sgg) B 8(23)—!—1 = B} 823-)%1 (mx S mo’ 1: ' ) -

It will have been noted that the #- and e-algorithm relations are free from
multiplication, and further that the same relations and same initial conditions

are obtained for both the pre- and post-continued fraction systems. We have
the 1important

Theorem 5.6. In the notatron of Section 4
pre[p{™ (2)1 o™ (2)] = post [o!™ (z) ™ (2) 1] (m,r=20,1,...),
pre [py™ (2)1#™ (2)] = post [#{™ (2) ™ (2)71] (m,7=0,1,...).

We note in passing the following two invariants associated with the »- and e&-
algorithms.

Theorem 5.7. If condition (45) is assumed and the n-algorithm relations (49)
and (50) are applied to the initial conditrons (51), then the sum

Z ?7""”

§=0
1S wnvariant with respect to m.

For the g-algorithm there are two BAUER [10] invariants.

Theorem 5.8. I[f the g-algorithm relations (54) are applied to the initial con-
ditrons (506), and in equation (57) A=0, then the two sums

£ el () ) L glm) gm) _ lm) (m) )l
and (m) ()
ey g — e ed + efM ey — e ed™ + -+ exn_1 680

are wnvariant with 7’83}’)505 to m.
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The algorithms of this section have been derived by considering the series
(41) and further series equivalent to it. We remark that there 1s a further
equivalent system of continued fraction decompositions. Indeed we have ([9], p- 14)

Theorem 5.9. 7The continued fractions

@ e g
s— J— [ — 55—
I ‘P(fn) (2)! qgm) _ p(m%—l) (3)*-*1 f{’" (m_f_f (f) B
T— T4pim () g™ — T HpimtD (z)=10m pm+1) () —
) (2)71 g™ PP (2) R (2) el P (2)
T Hpim (2) g™ pim) (2)— T4 pP D (z)=1 el pm ) (z) —
S G I e )
I— 1487 =) — I+8 U-F)-
[ IV (T o OB

T+ =B, ) — T+8 7 (1—F,) —
Cop 21 2 7"
[—  T4a™ — I+ =" —
S G AU e <
I—  I4np™agim™— T4y 9" —
enet (et M (e Y (e — e
T— T (el —elmt1)y glm — I+ ({7 y— et 1y (e, — efnt b)) —

(573 — &7 o) (elph D — &l )

. AR T8 by e P, Y T T T T m AT e W N s T Lt emilid

I‘{" (Sff.}_’? — EgZ- 2) (%Ti} — 3(m+ 1) —

are equivalent wn the semse that they have the same convergents.

In the preceding development, the relations of the ¢ —d algorithm were
assumed valid, and from these the g-, #-, #- and g-algorithms were developed.
In fact, however, it would have been possible, using the continued fraction
decompositions of Theorem 5.9, to have proved any one of these algorithms
irom the beginning in a manner similar to that in which the ¢ —d algorithm
was established. We illustrate this by outlining ([9], p. 4) the proof of

The First g-Algorithm. Suppose that given ¢™ (£S) and a function f,,(2)
(€N) we have derived a continued fraction expansion of the form

P o) on Mgl g (T—gl) g (e —gf) gl :
" i—  I— T s (58)

(where gg”’=1I) and we wish to obtain a similar expansion for the function

| fm+1(z)m(zmc(m)) fm(z)mcm
The even part of (58) is

s (I— g )g‘*‘” (e —g{™) g
z— (et —g{™ )g(""” z— (I —g! )g — (¢t — g{my glm)
(I —g™) g™ (™) —gim™)) gl

m—

T gt S bl gy e £y bt P g - A —

FITILT Fl T i rp——TRE R

— (I — g‘m)) g5 — (e —gt )g4 M
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which can be rearranged as

b (I —gs™) (€™ —gy™) 85™ g™
o o(m) _l_g(lm) ggm) —_ mc(ﬂa) + (Z_____ () ) (C(m ____g(1}12)) _l‘g:(;n}gém} -

( J — g4m ) ( (1) (m ) (m ‘)
Z—-—-C( ) (I g(m ) (C m Wg(m ) g(m) g;r,z) .

This 1s the even part of

C ( gom} (I g(m) ( (1) g(m;) g ggm (]___gim)) (C(:r;z.) o :(;n )

Ly P

VIS S T T T
the odd part ot which 1s

S e [ () (1
C,, (Z — C(m))—l + o e (H ) gl | L('m

z—clm - glm) glm) L ([ —gm)) (c0m) — glm))
o é’sflé_iz.._-_m(f —&") (‘1 o= (”?_? . g5 & (T —gd™) (™ —g™)
") gl gm) (I —g{™) (c) —gim) —  z—clm) 4 glm) glm) (] — gl (c0m) — glm))
This we may rearrange as
() () 7 () m) (m)
¢, (z — ™)1 4 (=™ g e M —a™) e (M —a™)

gmgz (l;(m) __.g(m ) — g(m) (c (m) __ (7)) ..__g(fn) (_[mg(m)) —
g;n) (Img ) g;n) (C{m) b:gm))

el Ay AN b e T T i s - - FUPINRRRY T T S A1 AW

2— g™ () —glm) —g{m (I —g™) —
which 1s the even part of

oy (e—et)mrge, gl (M — (M) gl (I —gfM) g™ (" —gg™)
C,, ( o C ) — e e S .
& e Z —

We are thus led to

Theorem 5.10. If
o) o n P Tl g7 (gl g7

p e . - B S con
f (z) me—};l w(c;(m-%—l) wg£m+1)) g(fm-{-l}“ (Iigém+1)) g:(Lmilr—i) (G(m—l—l) ggm——l)) ggm—}-l)
m 1 Z— I — 2 I — ’
g = gtV = I, o, NS
and
fm+1(z)m(z"C(M)) fm(z) — O s (59)
then
1
6 (6 — i) — (¢ — glrd) b
1 1
e g(ﬁﬂ:)—}-l(l — gt = (I — gyt gty
LEY
Cpar1™ — gi(l.m) Con

The first g-algorithm may be repeated for increasing values of m. When
" =0 (m=0, 1, ...) the transformation (59) corresponds to the relations between

the series F, (z) of the ¢ —d algorithm, and it is easily verified that in this case
g 185re = — G,

(I —g8y) g8ya =e.
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6. Gauss- and Euler-Type Continued Fraction E xpansions

We shall now depart from the consideration of continued fractions specifi-
cally associated with power series and turn to further classes of expansions.

Gauss Type Continued Fractions ([4], ch. XVIII). Suppose that we have
1 sequence of functions pre [4,, b,, c, D,, -..,0,, b (n=0,1, ...) which
satisfy the set of equations

pre [A}z e Anm},l bn + Bn Cops
A”._% 1 — B;;, dﬂ, "{' Cn €
Bﬂ_ — C;*z. fn + Dﬂgn-r

On mRz W, + Anwkl Xy s
‘Z)‘f‘b - A’H +1 yn + A?Z*%Qzﬁ] (% — 0? 1 y ') ‘ (60)

These may be written as
pic [A ;}i—l A no bn (B;;l A*;r%l) i Cy s
B;;lAn~~1~1 — d‘ﬂ - (C;@_l Bﬂ) - € s
Cgl Bn — fn -t (D;;I C;tz)“l En s

-1 __ —~1 -
Pn On"_w}%+( n+1 ﬂ) lx%’

A;-{-lBez = Yu —}_ (A;}}-2Aﬂ+1)“1 Z’FL] (% — O: 1, .. ) y

Bearing in mind our first definition of a continued fraction we have

Theorem 6.1. If the sequence of fumctions pre[A,, B,,C,,D,,...,0
(=0, 1, ...) satisfy relations (00), then

P,

713

pre A Il A 0 — bo T *“gigw ‘o ... Yo %0 G ... Fn n .
;_ ot fot Yo+t b+ di+  Ynt+ A7,A,.4

Euler Type Continued Fractions ([5], vol.II, p.274). These continued
fractions, which constitute a subset of those considered above, are associated
with linear homogeneous differential equations of the second order. As a pre-
liminary we shall assume that there exists a point ¢, of the complex plane and

a real positive non zero number 6 such that to every point ¢’ for which |{, — | = 0
there corresponds a member ¢ of S given by

t=1t"1.
Suppose that a function pre[y] (€N) of ¢ satisfies the equation

pre [y=3"Qo+y"H]  (Qo, ALEN) (61)

where dashes denote differentiation with respect to ¢£. Then as is easily verified

pre[y” =90tV Q Ly P T w=1,2,...),
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where

Q=(0 1 +B) I — Q1)
Ba=hU—-0-)" (=12

pre

(6:2)

We are led to

Theorem 6.2. [f the function pre[y] of t satisfies equation (01) and the se-
qguences Q,, P, (v=1, 2, ...) are constructed by means of equations (02), then

pre [y 1y = (, + U TR £ S £ ‘
N O+ Qs+ On-1-+ yrti=1 49"

7. Interpolatory Continued Fractions

Inverse Differences. Suppose that we have a sequence of pairs x,, f, (both
cN) (r=0,1, ...), then construct the table of inverse differences v,(x) by means
of the relations ([/1], p. 390)

pIc [UO (,’)C,,) :—_..:f” (()})
z)r&—l(x) = ('% - .’;’C,,) {U?(A’?) o vr(xr)}m:[] (.‘5\5 — xr“%13 Xyp2y - ) (7 — O’ 1’ e ) . (64)

Then from (64) we have

pre [v?(x) "——“"—"-—-'""‘Z},},(X},) +vym§u1(x)mpl (x'"”” x?.)] (.‘:’E: — x,,..i__l, x?‘_img, ..,.; i O, 1, . o .)t
Thus, bearing in mind the first definition (5) of a continued fraction, we have

Theorem 7.1. I} the table of wimverse differemnces v,(x) (X=X, 1, Xy 0, --;
y=0,1,...) ts constructed in accordance with relations (63) and (64), then

" X — X X —X X — Xy X— X, |
f x s re f __I,_ e et Ate vt mgg— G e e e v mm_mwﬂw_}muw“ & » - . . & = . e e o s e .
(%) =P A AR N A Uy (Fpp) U1 (%)
Clearly
’ Xp— X Xp— Xy Xp— Xpq
Te f _._%.._ A e T e f xh _
P _ 0 (2 (:361) "l" Vo (-”59) + Up (x}z) ( )

Reciprocal Differences. Define new quantities p,(x) by the relation

pre|p_,(x) =0

01 (%) = Vg (%) + Vp_o(Xn—o) F Vo—g(Xp_g) +---].
We have

Theorem 7.2. If a table of reciprocal differences pre|p,(x)] (x=2,, X%p11, - --;
R=0,1,...) 1s constructed according to the relations

prelo_; (%) =0, 0o(x) =/, R=0,1,...
Or4+1(%) = 0p—1(Xg—1) + (X — x3) {Qk (%) — o (xk)}ul (65)
(XT-X*l,ka ...;kmo,i,...),
then [ 12]
" ¥ — X, X — %y X — Xy
X)) = pre ..
f( ) P “f{)"f‘ Ql(x1)+ Qz (;trg,) fo Qn-i-l(xlz—l—l)““gsz.(xnml)'*‘
X — %, X

S T T

Ort1(¥) = @r—1(Fr—1) |
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We now proceed to the restriction x, x,, 2, ...¢ S and from Theorem 1.1
we have mimmediately

Theorem 7.3. If x, x4, x4, ... S 1nverse differences arve computed accovding
to (04) and reciprocal diffevences according to (05), then

el t e h ot anret (66
= post |t 4 T e+
=Prelht 0wttt o e
=Postlfot TTY bt an ey ] ©7

in the sense that the v™ (r==0,1, ...) convergents of all these continued fractions
are equal.

Quite clearly A4,(x), B,(x), the successive numerators and denominators of
the continued fractions (66) to (67), are polynomials in x, and a simple inductive
proot based on the recursions of Theorem 2.1 suffices for

Theorem 7.4. If A,(x), B,(x) ave the successive numerators and denominators
of the expansions (66) to (67), then

7/ n-+1
42n(x) mZazn,sxsx AQ?H-I('%) “Zazn—&“l,sxi
§=0 s=0
M #
Bﬂn(x)ngjbzn,sxss BZ%—}-l(x)msznv}-l,sxs ('}’L::-::O’ 1: )
§ == s==0

We remark that the convergent {Bs,(x)}1A4,, (x) is the quotient of two »i®
degree polynomials and that

w

X — X X— X% X—X 1
X)) = PDre - 0 . 1 ...~ “an—1
f( ) P fO K U1 ('?"1) -~ U (";2) -+ Uon (3"’7) |

1s an identity. We wish to inquire into that property ot v,,(x) which must
obtain if f(x) is to be the quotient of two #t® degree polynomials. We write

{Ban(%)}14,,(x) as

{Uzn(x) Boy—1(%) + (¥ — %5,,_1) B2n—-2(x)}"1 {Z’zn(x) Aoy (x) +
+" (x T xzn-—-]) -AZn-—-2(x)} .

Examining the term in %" in the numerator, we arrive at

7

n —1 ‘
Theorem 7.5. If f(x)= ( 2. b, x’g) ( D a, xs) ana wnverse diffevences arve com-
§=0 |

puted by means of the velations

|

Yo (%,,.) mf(xr) ’ ’Z),,+1(X) (x o .’Xf,,) {'v,,(x) — Y, (xr)}hl (x = Xyt 1 Xypgy oo, V= 0,1, .. )
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and 1f reciprocal differences arve computed by means of the relations

le(xf)mox Qa(x?)mf(x;),
Ok 11 (.96) mgkwl(kal) "'l— (.‘«’C T xk) {Qk (J(f) — Ok (xfc)}MI

(%mxk+1, xk_*z, . km()’ ’1, ...),
then

Vs, (X) =Pk, tndependent of x,

00, (X)=F', 1ndependent of x.

Rational Function Extrapolation: The p-Algorithm[13]. Let us now change
slightly the sequences used in the construction of the reciprocal differences,
still with x, xy, %;, ... €S, compute quantities g, (%,,, Xpi1s --+» Zmi,) (7, #=
0,1, ...) according to

Q-ml(xm)mor QO(xm)mfmrv
f 4 f
Or+1 (xm) — Or+1 (xm: xm=+~1 y ey Ayl r—%~1)

4
:Qrml(xm-+ 1> X0« - - s xm-’rr) - (xm-f-u- y xm){é’: (X1 Xpp -0 v e vy Xyt f-i-l) —

Then we have

xX—X X— Xyt X — Xyt
f ( x) — - om G L o T At 2 . A ‘ 68
m Qi (xm) Q; (xm)“_fm'}" Q;'—}-l (:V_, Xms Xond-15 -+ s xm-{»r) ““Qr-l(xm) ( )

Now let x,,=mI (m=0,1,...), x=hl where % is a positive integer, and let 4
tend to infinity in (68), which becomes

I I I I I

A R

07 Gom) Tt 0+ Ok dan(Em)— G () T

The even-order convergents of this continued fraction are of course gs,(%,,)
(=0, 1, ...). We are thus led to

f(ool) ~f,, +

Theorem 7.6. Suppose that we are given a sequence of values of the function

4/ —1 #
) =(2 b %) (200 #)  (@ne by €N; s=0,1,...,9)
s=0 $==0
for x=m—+m)l, (m=0,1, ...), where m 1s an integer, then we may delermine
the value of f(x) when x tends to ool by constructing the table of reciprocal differences
o™ according to

0—-1—U, Qém)mfﬁ—}-m (mmosia*”):

o = oIV 4+ (s + 1) I {1 — "} (m,s=0,1,...),
for

o =b,Ya,, (m=01,..).

8. Confluent Forms

We now introduce the assumption that to every complex number ¢’ there
corresponds one member £ of S given by

t=t'1.
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Suppose that we are given an infinitely differentiable function ¢@(¢) (€4V)
of the scalar variable ¢ and that we wish to obtain a continued iraction,

I"‘(S‘) == /"QD ({Z - Zf) e " “ldt ~ pre | (a) .\ E}M(al . E’" -1 (‘Z)

6
2—Q(a)— s—Qy(a)—  z—Q,(a)— ] (09)

.
for 1ts Laplace transform. We may, of course, do this with the apparatus al-

—5—1

ready available. We obtain the formal expansion Z ¢ (a)z7°"", apply the

g —d algorithm to this series, and obtain the reqmred continued fraction ex-
pansion by means of the formulae

Q,(@=a¢"+a i, E(a)=¢"¢" (r=1,2,...).

We can, following RUTISHAUSER [14], proceed in another way. We apply

the ¢ —d algorithm to the series & > @(a-+mh)e *""* (L€ S) to obtain the con-
tinued fraction =0

7“0 el ’ql’ el0)" 40

pre ) g e g(O __8(0) e e k _g? '51___8(0) e e t (70)
and then let 2 tend to zero. In order to see what happens to the quantities
g™, ™, let us introduce the continuous variable ¢ defined by

l=a-+mhn,

and the auxilary functions E,(¢), Q,(¢{) defined by

pre[E,(t)=¢" b2, Q,(t)=(¢)" —I)A].

As /h tends to zero, the continued fraction (70) becomes that of (69), and
the ¢ —d algorithm relations for the ¢/, ™’ lead to

pre| -2 Q,() =E, (1) — E,_, (9
CE,(t) =0,41() E, () — E, (2 Q)]

We may thus transform Theorem 4.5 and obtain finally

Theorem 8.1 I} @(f) (€N) satisfies the differential equation

Séobsqf(t)zo (6,€S, (s=0,1,...,n)), (71)

and if the functions E, (¢), Q,(t) are constructed by means of the velations
pre | E, () =E, 1 (t) + -3; 0, (8), (72
Oria ) ={ 5 E, 0 — E,() 0,0} (E, () (73)

from the initral conditions
pre[Ey(6) =0, Q.(t)=¢'(t) {p )},

then )
pre[E, (t)=0].
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Furthey, the sum

;"1’2«"‘"1

pre| 2, E(?)

1S 1independent of t.
We can follow the development outlined in [/5] and obtain confluent forms
of further algorithms.

Making the substitutions
pre [g8y — I = »g,(t) 72, g+ 1 =g, (0) A, ™ = (t) h],

we obtain

Theorem 8.2. If @(¢) satisfies (71) and tf functions (g, (f), o8, (¢) are obtained
by means of the relations

pre | lgr%"l (t) ng(z‘f) T Egr(t) lgr(t) — "’;Z”}“ Egr(t) ’

from the initral conditrons

pre [s8, (£) =0, 18 {t)=—@'(() 19 (&)} +c ()],
then

pre [58, (£)=0].
Furthermore, in tevms of the functions E,(t), Q,(¢) derived from (72) and (73)

pre g, () =E, (#), ¢(t) —1&,(¢) =0, ()] (74)
Substituting

pre[I — ‘@a =0, () 4%, z — gas 1+ 1 =1g,(t) 2],
we obtain

Theorem 8.3. If ¢ (t) satisfies (71), and if the functions 1a,(8), og,(t) are con-
structed by means of the relations

pre | 5; 28, () = o8, () 19, () — 18,1 (8) 58, 0)

g .,
(Z -+ I) {?..gr-}-l (’5) — o, (t)} - at 13,41 (5)

from the initial conditrion

pre [0, (£) =0, 18, (&) =@ (&) {p (€)} ],

pre [,.‘?..gn (t) :.—._—_..O] '
The velation corresponding to (74) s
pre [1g, ()= Q,(8), (I +2):8,() =E£,{)].

From the substitution

then

ﬁgﬂngmﬁ?f (t) ’ ﬁczﬂg)mzﬁf(t)h:
we obtain
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Theorem 8.4. If ¢(t) satisfies (71), and if the functions n,(t), ,(f) are con-
structed by wmeans of the relations

a
2], (f) oty -1 (f) - "87 1]y (ZL) ) (75)

N, &) — 1, () T =am, (€) {g‘g UL (t)} oMy (£) 7 (76)

from the imitial conditions

o1 1 (t) T=0, Mo (£) =@ (¢),
then

and the sum

W]
Z 1773 (t)
s==1
18 wndependent of t.
From the substitution
gé’g}_}_lmggs.i_l(z)h—*l, gg’;)“ggs(t) ,

we obtain

Theorem 8.5. I} functions &,(t) ave obtained by means of the rvelations

e, (8) =¢&,_1(t) + {”‘5‘2"’ &r (t)}ﬁl

from the initral conditions

where

then
Eay (t) maa"lb .

Further, 1f wn (78) b=0, then the funciion

£o(t) &1(8) — &5(2) &1 (¢) + &, (2) e3(t) — &4 () &3(2) + - + Eap—2(l) E24—1(7)

and
£1(f) eo(t) —&1(2) &2(f) + &3 (f) €2 (f) — &3 (¢) £4(f) + -+ + €01 (2) €92 (2)
are independent of L.

Theorem 8.6. If 5,(¢) are derived from
e-1(6)=0,  &()=¢g(f)  (€N),
gy (8) from &*,(¢) =0, et (i) =A -+ Bgl(t),
0

8;(15) from 3:1(t)m0, gl)=A+¢g(t)B (A, BEN),
then

ef,(t)=A+Bey,(t),  sdi1 () =eg,41(f) B,
o2, () =A+¢2,() B, shyr1(t)=Bleg, 1 (t).
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The relations between the confluent forms of the #- and e-algorithms is given by

Theorem 8.7. If functions n,(t) are derived by wmeans of relations (75) and
(706) from the initial conditions

- @
waBF=0, @) =Fel) (EN)

and the functions ¢,(t) by means of relations (77) from the imitial conditions

| ¢ _1(f)=0, £ol2) =g () (EN),
then

TRk () =21, (2), Exyya(l) — &3,(t) = 11,11 (2),

d _
g7 €2re E) =1 1(&)7Y a1 (E) —E5, 1 (E) = a1, (2).

Finally, introducing the substitutions

9(2??) == 03, (), Qg;il = 0s,_1 (1) A7,
we have

Theorem 8.8. I} functions o,(f) are constructed by means of the velations

0ri1l®) =0 1) =0+ 1) {7 0,0}

from the initial conditions

0_1()=0, 00 () =1(¢) (EN), (77)
then ([16], p. 453)

A a X —Qa X~
X} == A —— N e e 8 B W o —
f( ) f( ) i Ql(a')'i" 03 (a‘) mf(a)‘*" Qr+1(x)_£’rm1(‘z)

Further, 1f in (77)

§s=0 § ==

then
Qz?z(t)mb;:la‘ﬂ:

and 1f

n 7 -1

f(t)m(zaats)(zb?ts) (as)bSEN: Sm031:"*:n):

§=0 s=10

then

Q2ﬂ. (t) ==, b;l

There 1s a further theorem relating to the confluent form of the p-algorithm
analogous to Theorem 8.0.

9. Conclusion

The adaptive formulation announced in the introductory paragraphs has now
been completed. There are nevertheless two points which deserve further com-
ment.

The first of these concerns the fact that the variable z in the expansions
derived from power serles 1s restricted to be scalar. 'This is brought about mainly
by two considerations. First, the proot of the g —d algorithm which we have
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given stands only if z is scalar (otherwise the odd part of the continued fraction

(m)
oy 1 6 4T &

does not exist). Further difficulties arise with regard to the functions o{™ (2)
and »™ (z). Now both of these, in satisfying three-term recursions oi a certain
form, are polynomials in z. Admittedly the term which, if z were scalar would
correspond to faﬁﬁ)z‘*’, is compounded of a number of products in which the
position of z varies, but nevertheless within this wider definition 0\™ (z) and
") (z) are polynomials. But from the definition (15) 0\™ (z) cannot possibly be
a polynomial, and the formalism therefore breaks down completely.
The second point concerns the difficulties to be expected in constructing
a convergence theory for the continued fractions of this paper. Let us examine

one example in particular: The continued iraction

By A A A4

pre B+ p By B4

(78)

has as fundamental recursions
preA,=BA, +A4AA4,_,,
B,=BB, +AB, .
Since, when A, BE€ S, the roots of the equation
x2—Bx—A=0 (79)

may be determined and the initial values A_,, 4,, 5_4, B, are known, closed
expressions may be derived for 4, and B, (and hence for C ), and thus a complete
description of the convergence behavior of (78) may be given.

When 4 and B are general elements of N, however, equation (79) may not
have a finite number of solutions (consider, for example, the case in which 4
and B are 2 X2 matrices), and thus the conventional treatment can not im-
mediately be adapted.

Such a theory, as has been said, undoubtedly exists, and its derivation must
be regarded as the next and most important project in this field of research.

Appendix I. The Theory of Determinants

Since the theory of determinants was well established before the theory of
continued Iractions, 1t was quite natural that the former should be used as a
tactical weapon 1n the development of the latter, and it is indeed by inspection
of various determinantal formulae that certain results become very obvious.
This has not been the case with continued fractions of the type considered in
this paper, and it i1s important to discuss the reasons for this.

The determinantal expression

al,l a1?2 *» o o aljn
Ap,1 A3, 9 -+ Qg 5|
dn,l a'n,E ‘zn,n
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in which the a; ; (1,7=1,2,...,%2) €N may be considered from two points
of view.

First Definition. First, simply as a determinant for which we must ad-
ditionally specity the order in which the elements are multiplied together. This
presents no difficulty. We can impose arbitrarily the condition that the elements
are to be multiplied according to the direct order (pre-system) or inverse order
(post-system) of their row suffix, and this leads to

7

? al’l 521’2 a’l,n'
1031 Az 5 --. Gy .
pre’ - Z :!: g’la’. ai‘lﬁ - aﬂv (80)
. . . . . a i
%an,l ‘zn,E a%,ﬂ?
where «, 8, ..., » are all possible permutations of the integers 1,2, ...,# and

the signs attached to the products depend upon the class of the permutations.
(The dash 1s used to distinguish these determinants from others which will be
defined later.) A number of the properties of such determinants follow immediate-
ly. Determinants having two identical rows are not necessarily equal to 0, but
those having two identical columns are; we may thus add scalar multiples of
various columns to each other without changing the value of the determinant.
We must remember, when discussing the expansion of a determinant, that each
term has a pre-cofactor and a post-cofactor. With this qualification in mind,
analogues of the Cauchy and Laplace expansions may be established.

Such determinants do find some application in the theory of the continued

fractions of this paper. For example, by use of the fundamental recursion
formulae, we have

by —I O 0 :
|
0 Ao b, — 1

post 4, = pre’

and \

further,

pre A, = pre’

by a, O
—L by a4

Arch. Rational Mech. Anal., Vol. 12 21
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g ;
post 1, = pred,,

47 a
pre.d, = postd,,.
Also we have
Theorem 1.2. In the notation of Lheorem 1.1

‘3‘ i, Ry 7 R S
pre b o Rl = post I P y

§
|
| ¥ fﬁﬁ,# s .. d ' Rl —— | r
pre ;b% e 5‘” B S S, _2 } == pre [ anl ]3;13 ’

f & f;z _ aﬁ h‘ ™Y e—
b+ O e 0% —prel[B, Byl

The difficulty in the further application of such determinants lies simply
in the fact that there is no such thing as pivotal condensation. One of the more
pernicious consequences of this is that there 1s no analogue of the theorem on
compound determinants (see e.g. [ 3], p. 49) which has such fruitful application
in this domain of inquiry.

Consider for example the expression

pre’ | 10y by byl Y pre’ | 10y by bg) |
o ;
f‘-& {"2 {’.’3 ' ) ‘ d 1 dﬁ d 4

A

/

d, Ay Qg
b, b, b,

0y Cy G4l d, d, da

|4y ay a,

bl bg b& prf}#

—pre’

1
1

%

T'his 1s the Laplace expansion (by the first three rows) of

la; ay ag O O ay]

by by by O 0 b,

4

N RS f‘g C; 0 0O ¢ 4
pre “

(81)

O 0 a3 a; a, ay
3 .
0 0 by b, b, b,]
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Now 1f ag, b, ...€S, then (81) may be transformed into

@ a, 0 0 0 0
(b, 5,0 0 0 O

€1 Co Cq Cq Co C4
pre’ (82)

O O ay a, a, a,

0 0 d, d, d, d,
O

@y Qg dg dy

) by b, by by
pre’ ;

C; Cg Cg C4

[l a1 as
Ire
P\ 8y b,

that is, from the cross product of determinants of the third order, one of fourth
order has been built up, and this result is, of course, easily generalised. But
1f the ag, b, ... €N and are not scalar, then the step from (81) to (82) 1s not
possible, and the matter ends there.

Now in the conventional theory of continued fractions it is, for example,
possible to express the coefficients of a continued fraction as determinantal
quotients involving the coefficients in an associated power series. As the suffix
of the continued fraction coefficient increases by steps of unity the order of the
determinants in these quotients does likewise. Certain non-linear recursion
systems exist which relate the coefficients in a power series and those 1n asso-
ciated continued fractions; they may be proved by appeal to the theory of
compound determinants. But we see that in the present treatment this 1is not
possible with expressions of the form (80).

Second Definition. We might also consider the determinantal expressions
which arise 1in the solution of linear equations, for example

Ay 1 X1+ Gy 9 Xy T ‘*‘4‘@1,%””“;‘1:

Ay 1 X1+ G 9 Xo 1+ "'+a2,?zxnmh’23

(83)

an,1x1+ “n,2x2+ e ﬂn,nxnmkn*

If a; ;, h;, x; €N, 1n general there 1s no difficulty in principle in determining
a solution for x; of the form
77 - et
2; ={pre” (|a;,1, @5 00 > & j—1, B3 5 @i jr1s s Ga]) T=1,2,...,m}7 T X
77! - .
<{pre” ([(@;,1, @25 -5 @i jm1s iy @i jns - Bra) T=1,2,.00, m)

(By reason of the regularity of the determinants in question, 1t has been possible
to introduce a condensed notation which uses the elements of the i** row only.)
21%
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However, using the #® equation, we may eliminate the variable x; from
the set (83). This leads to the recursive definition

pre’’ (|a; 1, @i oy ooy @i g1, @i o) @i gi1s s @i p)) 2=1,2,...,7
Kpre”(l(ﬂi,l — ﬂzf,s@;sl Ay 1) (@5 2 — ai,sd;sl Ay 2)s - - -
o (@i s—1— di,sa;jsl Ay s—1)s (B, g1 — @fs,sﬂ;.;l ﬂr,s~«;—1);
oo (a; ,—a; gar s a, ,)]) 1 =1,2,...,v—1,v+1,...,n

with
pre”(i ay. 1') =y 1

for the determinants of the second definition; pivotal condensation does exist
(indeed 1t is the essence of the definition). We may proceed to build up a general
theory of such determinants in analogy with the conventional theory, but this
time there 1s no immediately tangible expansion of the form (80). They are,
therefore, unsuited to our purpose. We were forced at each step to develop the
theory of the continued fractions of this paper using recursion systems alone,
and 1t at any point this had been impossible, the theory would immediately

have collapsed.

Appendix II. Applications

That part of this paper which has so far found application concerns the
epsilon algorithm. It will be recalled that the fundamental result of this algorithm
may be stated as follows: If we have a sequence S, €N (m=0, 1, ...) which
obeys a recursion of the form

Zb,;-Smﬂm(Zbi)A (m=0,1,..) bES (i=0,1,....m), AEN,

1==() 3==0

and 1f we put
™ =0, e =S, (m=0,1,...)

and determine further quantities & by applying the relation
™ = T 4 (7D — M), (84)

then
Eg:_)mﬁ m=0,1,...).

Let us discuss a problem to which this result may be applied. Suppose
that we are to solve the set of #’ linear equations in #’ unknown quantities x_
(s=1, 2, ..., n') expressible in conventional matrix-vector notation as

Bx=h.
One method of treating this is as follows. Write
B=L-+U

where L 1s a lower triangular matrix of order #’ and U is an upper triangular
matrix of the same order in which the principal diagonal contains zero elements
only. From an initial estimate @ of the solution vector €, obtain further
iterated estimates ™Y (m=0,1,...) by means of the scheme

Lx"t—=h _ g™ (m=0,1, ...).
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(This 1s easily done, the determination of each component of #™ ™Y requiring
one division and »'-—1 additions or subtractions.) As is easily verified, a™ is
given by

2" ={L*U}"k -+ {L+ U}h

where the vector k depends upon A and a(®. This is the Gauss-Seidel iteration
scheme. It converges if the moduli of all the eigenvalues of L1U are less than
unity.

Now 1n general the matrix L1 U is of rank #»’ — 1 and satisfies its own char-
acteristic equation; z.e. there exists a relation of the form

n —~1
2, b {LU} =0,
§=0
where the b6, (s=0,1, ..., #n"—1) are scalar. Using this, we have

n —1 n —1
2 bg xt™t) ----:-( > 6;) (L +U)h.

==

Thus 1f we write

g@imo’ 8({)’3‘”}___”_.;13(773) (M/LmO;'i, ‘*’)

and determine further vectors &™ by applying the e¢-algorithm relations (54),
then we should expect that

sfq”;}»____gmm (m=0,1, ...),

and this (c¢f. [1]) turns out to be the case. (For the inverse of a vector a sug-
gestion* of K. SAMELsoN has been exploited. He defines the inverse of the

vector (y1: Yoy« yn)my by
¥ _ -1 ~ _ _
Yy~ =1, Ve, m,yn)“lﬁ(Z ym) (Y1 P25+ V) -

1==1

(y ! is thus the inverse point of y with respect to the unit sphere in n-space.)

()

We introduce the second example by recalling that if the quantities ¢

7
(m=0, 1, ...) are the partial sums of the series 2 ¢, z~°7', then the quantities
§=()

e (m=0,1,...) (s=1, 2, ...) are convergents of various continued fractions
which may be associated with this power series. We should expect then (al-

though no convergence theory has been given) that the sequence eyl (s=0,1, ...),
for example, should converge more rapidly in certain cases than the sequence

(n) —
€o (m-——O;/l,...).
Consider the following problem: We are concerned with solving the boundary-
value problem set by seeking the solution of

Pry =3 {Prx T Pyy} (85)

subject to given values of @(x, y) on the lines parallel to the axes joming the
points in the x — y plane

1,1), (1+[»+114d,1), A1+[n+1]d,1+n+1]d), 1,1+ [n+1]d)

* This is 'écﬁiuiva]ent to a suggestion of C. I.anczos [17].
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in the following way. We render the problem discrete by considéring 1Eh‘e fun‘c--
tion values @ (1 +jd, 1+ [n+1—2]d) (2,7=1,2, ..., %) anq obtain a finite dif-
ference approximation to (85) by use of the well known grid formulae

- 4d2 T ' 20 4| =6a2{2 1 z }
N P S PO T N
1 . —1 1 4 1|

The problem is solved iteratively as follows: we determine ¢'° by solving the
equation

with the given boundary conditions and thereafter obtain a sequence of iterated
solutions @™ (m =1, 2, ...) from the equation

oy =1 {pln " + ol Y} (86)

What we obtain in effect is of course a sequence of # xX# matrices. With ap-

propriate boundary conditions, equation (85) has the simple analytic solution

x/(x + v); we are thus in a position to furnish an indication of the accuracy ot
various estimates of the solution by considering the norm

”"i g™ (U +7d A+ [n+1—2]d) —(1+7d) )2+ [n+1+7—1]d)|, (87)
1,7

and similarly for the transformed estimates.

The functions ™ of the e¢-algorithm may be placed in the scheme (the
g-array)

0
) 0
o) 8{20)
8(3)1 8;&1) 3&0)
B |
8@1 8(12) " | 8Ego)
& I £
o
8?-’3-1
£
83&1

in which the quantities in (84) occur at the vertices of a lozenge. As has been
said, only the even order columns of the g-array provide useful estimates of the
required limit, and for this reason we give 1n the Table the means (87) applied

to the even columns of the g-array derived from the iterative scheme (86) when
n=4¢4, d=0,25.
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Table
S
S ) R S
' 0 l 2 i 4 ; 6 | 8 | 10
| |
0| .62 (—3)
1| .77 (—2) 41 (—3) 3
2 .15 (0) .24 (—2) .40 (—3) |
31 .29 (41) 12 (—1) | 13 (—2) | .53 (—4)
4 .56 (+2) .96 (—1) 25 (—1) A1 (~3) 90 (—5) |
S| .11 (+4) .52 (0) 56 (—1) 21 (—3) 21 (—4) | .34 (—5)
6 .21 (+5) 40 (+1) A3 (1) 70 (—3) | .12 (—3) |
7 40 (- 6) .23 (+2) .23 (+2) 19 (—2)
3| .77 (+7) A7 (4 3) .37 (+2)
94 .15 (49) .99 (+3) | ;;
10 28 (+10) | E |

(The numbers in this table are normalised; the bracketed figure is the power
of ten by which each entry must be multiplied.)

It will be observed that the original sequence (corresponding to the sequence

e (m=0,1, ...)) diverges strongly, but that the transformed sequence &5

(=0, 1, ...) appears to converge quite reasonably to the finite difference ap-
proximation to the required solution of (85).

This type of numerical behaviour is precisely the same as that which attends
the application of the g-algorithm to divergent and asymptotically convergent
series. The described example serves therefore to illustrate the use of the &-
algorithm as a device for accelerating the convergence of a slowly convergent
sequence of elements which satisfy a non-commutative law of multiplication,
and to furnmish an indication that the continued fractions which have been the
subject of this paper indeed possess a convergence theory.
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