
STICHTING 

MATHEMATISCH CENTRUM 
2e BOERHAAVESTRAAT 49 

AMSTERDAM 

REKENAFDELING 

Report MR 50 

SWITCHING AND PROGRAMMING 

by 

A. van Wijngaarden 

Lecture to be held at the Symposium on the 
Application of Switching Theory in Space Technology 

Sunnyvale, California 

March 1, 1962 



SW[TCHING .AND PROGRAlVIMING 

1. Introduction 

Considerable attention has been paid in switching theory to 

the analysis and simplification of circuits and systems and to properties 

of' nets. Common in these subj'ects is the structure of a net of often 

rather simple components, e.J., relays or diodes in series or parallel. 

Similar structures are found on another scale in the programs for auto

matic computers. These programs consist of sequences of statements per

forming certain operations, which are connected by transfers of control 

into a complicated network. Executing the statements means moving along 

the paths of the net, setting on the way conditions, i.e., assigning 

values to Eoolean expressions which determine which controls of transfer 

shall take place, i.e., which route to take at each node of the net. 

Just like in the case of switching circuits, seemingly completely diffe

rent structures may be more or less the same functionally, i.e., with 

regard of the result, and the problem of simplification rises immediately •. 

Of course, there is the question which of two equivalent 

programs is the simplest. There will be little doubt that replacing 

xv-, x by~ means a simplification, but in more complicated cases it 

depends on the type of logical building bricks assumed to be available 

which of two logically equivalent forms is the simplest. 

One may measure the complexity of a switching circuit in 

diodes or relays in some prescribed way and has then a norm to compare 

different forms, although other criteria like equal loading of elements 

may prevail under certain circumstances. In programs one would normally 

use criteria of length or duration although other criteria like genera

lity or provision for easier ways of checking might be of importance. 

Again, some building bricks of more complex structure may be available 

at the same cost as more elementary bricks, just simply because they 

have been made. So, if and-circuits with five inputs are available at 

the same cost of two single diodes, this may change the optimum form of 

a circuit considerably. ./. 



- 2 -

Also, if a procedure is available to compute a function of.two arguments, 

then it may be advantageous to use that procedure even if the second 

argument is always zero rather than to write a new and simpler procedure 

for that special case. In the following we shall mainly use the length 

of the text as criterion for simplicity. 

Of course, the structure of a program is much more compli

cated than that of a binary switching circuit and we cannot do more here 

than point out some of the obstacles that one encounters rather than to 

give useful rules to simplify programs. That we nevertheless try to do 

anything at all is because the subject is getting more and more interes

ting in view of automatic programming. 

As language in which we express the program elements, we 

choose ALGOL 60 [1]. Due to the generality of its expressions, we can 

then deal concisely with quite general situations and absolute machine 

independence is guaranteed. Moreover, we can give a precise meaning to 

some concepts which are difficult to describe in another way. 

2. Simplification of Identities 

If we take the length of the text literally as the criterion 

of simplicity of a program, then we can simplify many programs directly 

by replacing long identifiers by short ones. This is, though true, so 

obvious that we shall assume it has been done already, and we can focus 

on those parts of the text which convey information. 

It is natural to start by investigating the simplification 

of Boolean expressions that may occur in the program. Those expressions 

may occur as constituents of more complicated Boolean expressions, as 

right-hand side of an assignment statement, the left part list of which 

contains only Boolean variables, in an if clause of as actual parameters 

in a procedure statement or function designator. For instance the rela

tion x = y might occur in x = y Vy> z, b := x = y, if x = y ~ 
.. ./. 



- 3 -

~ else -::, P(u, -::, : = :>'.") o 

As long as these Boolean expressions only contain logical 

values, logical operators and identifiers of variables of type Boolean, 

then we can apply without more all the techniques which have been deve

loped in logic or switching theory for their simplification. As soon as 

they contain relations, however, then the situation demands a more 

careful investigation. 

Let us start with the simplest possible expression of that 

type, viz., the relation x = x and ask whether·this might be simplified 

by replacing it by true. This now only holds true under certain restric

tions on the meaning and interpretation of x. First of all, the truth 

of x = x does not without more imply the truth of y = y, since pro

perties associated with the letter x are not necessarily associated 

with the letter y also • .. 
Hence, let us describe more carefully what we want to know 

by asking whether an identity, as defined by 

<identity> : := <expression -1 > = <expression -1 > ,.. 

can be replaced by true. Here, as in the ALGOL 60 Report [1] 

sequences of character in the bracket< > represent metalinguistic 

variables whose values are sequences of symbols. The extension is that 

of the numbered metalinguistic variable, viz., 

<<letterstring> - <unsigned integer>> 

representing a metalinguistic variable, which occurs in metalinguistic 

formulae and which is denoted by the same letterstring in the bracket 

< > but without the sign and the unsigned in.teger, under the condi-

tion, however, that whenever in a metalinguistic formula the numbered 

metalinguistic variable occurs more than once, then it stands for the 

same, although arbitrary value of the corresponding metalinguistic 
./. 



- 4 -

variable. Hence, examples 0£ an identity are: 

x = x, y = y, x + y = x + y, read= read. 

Such an identity cannot be replaced by ~ without more.• Indeed, con

sider the £allowing piece 0£ program: 

begin procedure P(t); string t; (code expressing that 

the basic symbols of the string without 
•· tO It It ti• ■ II II 'II II 11t II •I II II IIJ ti II ti UI It•· ill II t• le. II~· II II 11 II It 

~and' are printed>; 

integer procedure Q(t);.. ~t;i~g"t';"<code expressing that ........................ -, ............. . 
the number of basic symbols of the string ...................... ······••.•· .................................... ., 
without ~and~ is the value of Q>; ........ ···•· .. .. .. .. .. .. . ......... . 

if. Q ( 1 x = x') ) 2 ~ P (' x = x'i) end • 
"ti-•-) 

This ought to print: x = x, but if x = x were replaced by true under 

P then it would print true instead, and if x = x were replaced by~ 

under Q also it would print nothing at all. 

Of course, when an expression occurs inside a string, usually 

not its value but the sequence of its const·i tu ting basic symbols is of 

importance. 

Hence, let us describe more carefully what we want to know 

by asking whether an identity not occurring inside a string can be 

replaced by~-

This is certainly not the case in general. Indeed'if the 

expressions occurring withing the identity are Boolean expressions or 

designational expressions, then the identity itself is not an expression, 

since the only meaningful occurrence of the relational operator = is 

that in a relation, defined by 

<relation>::= (arithmetic expression> (relational operator> .. .. ..... .. .. .. .. .. .. . ................... . .. .. .. .. .. .. .. .. .. .. . .............. . 
(arithmetic expression>, 

./. 



- 5 -

which is a special case of a Boolean expression. In the cases mentioned 

above, the value of the identity is therefore undefined and hence it 

cannot be replaced by true without more. Let us introduce the concept of 

a proper 'identity by 

<proper identity> : := <arithmetic expression -1> = 
••••••••••e• ••••••••u•••••a• 1,0••·•••11••••0••··••1• ••• , •••• , •• ,.,11,,, •• 

<arithmetic expression -1> • ............ ,.,11.,, ••• 11.tttltl,tttA110-tt1'fffl 

Then we can describe more carefully what we want to know by asking 

whether a proper id~mti ty not occurring inside a string can be replaced 

by true. 

This is certainly not the case in general. One has to realize 

that the expression may contain a function designator, and that in the 

evaluation of that function designator a goto statement may be executed 

which defines its successor as a statement outside the procedure body 

so that the evaluation of the expression remains unfinished forever. 

For instance, the following piece of program 

begin 

end: 

integer~; 

integer procedure x; if k < ~-~- goto end else x := 2; 
procedure print (t); integer t; <code expressing that the 

'"'''''''' •• tt·ottttt tootttetottoo1oto1t1 •••••••• 

value oft is printed> ; 
•••••••••• •••o 11. ••.t• ••••••01111101 

k := -1; if x = x then k := 1; .. 
print (k) end 

ought to print: -1, but if x = x were replaced by true it would print 1. 

Let us call an expression evaluable if it does not contain 

any function designator in the body of whose procedure declaration there 

occurs a goto statement leading out of it. Then we can describe more care

fully what we want to know by asking whether a proper identity not occur

ring inside a string and comparing two identical evaluable expressions, 

can be replaced by true. ./. 



- 6 -

Again, however, this is not the case in general. The arith

metic expression may contain a function designator whose corresponding 

procedure depends for its operation on values which are altered by its 

own evaluation. For instance, the following useful procedure is of that 

type: 

integer procedure altsign 1(b); Boolean b; 
11111•111•••••' 11. 11. ltl 

begin ~~~~~.~ 2 := if b ~ 2 ~ -2; 
b := 7 b end • 

Its value is in turn equal to 1 and to -1 if at least the 

value of the actual variable corresponding to b, B say, is not changed 

between two occurrences of its identifier. In this example the variable 

bis the case of this abnormal behavior, and one might think that by 

investigating the effect of the procedure upon its formal parameters, 

one could see whether the function designator is of this class. However, 

the variable b does not need to appear in the parameter list at all. 

It may be a non-local variable, as in the following procedure 

integer procedure ~:~~~~ 2; 

begin al tsign 2 := if b then 1 ~ -1; b := 7 b end ... , ... , .... ,... .. •··· 

or it may be an own local va~iable, as in 

integer procedure altsign 3; 
11 01 Of If fll 01 Ill II 

begin~ Boolean b; .. ' 

~~~~~~ 3 :=if~ then 1 else -2; 
b :=7b end • 

In the case, by the way, that one wants a sequence of 

results to start with 1, one may have the sequence of occurrences of the 

function designator preceded by respectively 
./. 



- 7 -

:S := true or 

b := true or -
ll altsign 3 = 1 ~ altsign 3 

110 1H1-1eo1 •••• •• •·• 011 011 0,01•• ooo, •• 

In all these oases one might still investigate what the 

procedure does by inspecting its body. This would, however, already 

present difficulty in a case like 

integer :procedure altsign 4; <code) 
•• , ••• .09 ,. ,11 •• '" 

in which the body is expressed in some non-ALGOL language, although for 

its action altsign 4 might be equivalent to altsign 3. 
fl II OI •• ot It It It II ti 110 ID ti DO 1!1 Of 

Even in the case that one might be able to interpret the 

code, there might be a last source of values upon which the value of the 

function designator depends, viz., some outside source of information. 

For instance, read might be a function designator, whose value is that 

of the next number read from a tape, which after reading is advanced to 

what is then the next number. 

An extreme case is provided at last by the function desig

nator random whose value is by definition unpredictable. 
, •• ,u, •••••• 

It is obvious that if these so-called function designators 

with side effects occur, our identity cannot be replaced by~ in 

general. It must be emphasized that checking for the absence o~ side 

effects is often very difficult and can even often only be done during 

run time so that perhaps the easiest way to find out whether or not the 

identity can be replaced by~ is to evaluate it. Obviously, this does 

not help very much. 

There is, however, an important class of expression, to be 

called stable expressions, viz., all those expressions whose value does 

not depend on the order of evaluation, provided they occur within one 

basic statement. Examples are numbers, logical values, simple variables, 

./. 



subscripted variables if the subscript expressions are stable expressions, 

relations whose·arithmetic expressions are stable expressions, and all 

expressions which can be generated with those as primaries, i.e., there

fore, all expressions which can be generated without using a function 

designator. This subset of stable expressions is easily recognizable in 

the text. It is, however, unduly limited. We can distinguish in a proce

dure four categories of parameters, vizo, input parameters, output para

meters, dummy parameters, and mixed parameters. 

Input parameters are those non-local identifiers and the 

actual parameters corresponding to those formal parameters which appear 

only in the value list or within the procedure body as variables in the 

right-hand side expression of assignment statements or in subscript ex

pressions not within a function designator or again as input parameters 

of function designators and procedure statements. 

Output parameters are those non-local identifiers and the 

actual parameters corresponding to those formal parameters which occur 

only within the procedure body in the left part list of assignment state

ments or as output parameters of function designators and procedure 

statements. 

Dummy parameters are those non~local identifiers and the 

actual parameters corresponding to those formal parameters which either 

do not appear in the value list and procedure body at all or appear only 

as designational expressions, procedure identifiers or dummy parameters 

of function designators and procedure statements. 

Mixed parameters are those non-local identifiers and the 

actual parameters corresponding to those formal parameters which do not 

belong to one of the three categories mentioned above. 

If the function designators in an expression have no output 

and mixed parameters then the expression is stable. Also if within a 

basic statement the two sets of the input parameters and the output 

parameters of itself and all function designators contained within it, 

and the mixed parameters one by one are disjunct then all expressions 

./. 



- 9 -

contained within it are stable. Obviously, in this order it becomes more 

difficult but still possible to check whether the conditions are satis

fied. 

We can now define more carefully what we want to know by 

asking whether a proper identity, not occurring inside a string, compa

ring two identical, evaluable, stable expressions can be replaced by 

~o 

There is still some difficulty in answering yes to this 

question. If the arithmetic expressions in the identity are of type 

integer then the answer is yes. If they are of type real, however, it is 

a question of interpretation. Indeed, the ALGOL 60 Report [1] defines 

concerning the arithmetic of real quantities: 

"Numbers and variables of type real must be interpreted in 

the sense of numerical analysis, i.e., as entities defined 

inherently with only a finite accuracyo Similarly, the pos

sibility of the occurrence of a finite deviation from the 

mathematically defined result in any arithmetic expression 

is explicitly understood. No exact arithmetic will be speci

fied, however, and it is indeed understood that different 

hardware representations may evaluate arithmetic expressions 

differently." 

First of all, one might evaluate the left-hand side expression by means 

of another hardware representation than the right-hand side, since a 

large computing system might very well, taking advantage of the evalu

ability and stability of the expressions, evaluate them simultaneously 

on different component computers, which parts might work with different 

precision. But even if th~s is not the case, one might conceive that 

the freedom specified above is taken to include the possibility that 

performing the same computation twice or even calling the same variable 

twice might yield different results or again that the comparison of two 

values is an operation involving arithmetic and hence subject to in

accuracy, all possibilities which are not excluded by the wording. 
./. 



- 10 -

Actually, computation on an analogue computer has these features. One 

might even write a piece of program like: 

begin integer i, j; ~ x; .. .. .. 
j := 0; .. .. 

begin x := random; if x = x ~ j := j + 1 .............. . . . . 

for i := 

end• _, 

where a computation is repeated a number of times depending upon the 

quality of the computer which is used, which is determined by the program 

itselft This program would be spoiled completely if x = x were replaced 

by~. 

If digital computation is understood, then one has 

(i) if E1 and E2 are results of two identical computations 

then E1 = E2. 

(ii) a variable is a quantity which does not vary unless 

another value is assigned to it. 

After these preliminaries, we can state that a proper identity not occur

ring inside a string and comparing two identical evaluable stable expres

sions of type integer or also of type~ if digital computation is 

assumed can be simplified to trueo 

3. Simplification of Relations 

Before we go on we shall assume in order to avoid the same 

cumbersome wording over and over again that from now on we are dealing 

with expressions not occurring inside a string, that they are proper, 

evaluable and stable and that digital arithmetic is understood. 
./. 



- 11 -

Arithmetic expressions we shall denote by e1, e2, e3. 
aoao ooa'II 

So far, we have still only dealt with the relation operator 

= and we widen now our relations by introducing the operators< and>. 

If e1 = e2 can then e1 < e2 be simplified to false? This cannot be 

said without more. Actually in a wellknown computer system hold both 

relations -0.0 = o.o and -0.0 < o.o • Disregarding those slips we 

define as proper arithmetic.an arithmetic in which the set of real 

numbers i.e., numbers of type real or integer - is ordered, so that 

exactly one of the relations e1 < e2, e1 = e2, e1 > e2 holds. This 

does not imply that -0.0 = O.O but it excludes a case as mentioned 

above. We assume this arithmetic to be proper and postulate the following 

axioms and definitions: 

A 1: e1 = e1, 

A2: +e1 = e1, 

A3: (e1)= e 1, 

A4: e1 = e2 ;:!!le e2 = e 1, 
.-... oaoo 

A5: e1 I= e2=7e1 = e2, 
oQoo 

A6: e1 I= e2=1'1! e1 > e2 V e1 < e2, 
110•• 0000 at R ♦ 

A7: 7(e1 > e2 /\ e1 < e2), 
ooo• 

A8: e1 > e2 = e2 < e 1, 
oepa 

A9: e1 2. e2-le1 < e2, 

A10: e1 i e2s7e1 > e2, 

A 11: e1 > e2 A e2 > e3::::> e1 > e3 . 
000.0 

This is as far as one can go without specifying the type of the expressions. 

One might think, for instance, that 

e1 = e2 A e2 > e3 => e1 > eJ 

might hold. This is certainly not the case. Indeed, there is no ob-

jection against an arithmetic in which a relation like er1 = ei1 can 

./. 



- 12 -

hold true. Here the letters r usp i specify the type of the expression 

to be~ resp. integer. For instance, 1.00 3 = 1001 and 1.00 3 = 1002 
•• -~ o, •• 10.. • •••• , •• •• • ••• 10 ••. 

could very well hold and since integers are dealt with exactly, certainly 
:=, 1002 > 1001 • One would, however, find 1.00 3 = 1002 A 1002 > 1001 ........ . ....... .. • ... 10 •• 

1.00 3 > 1001 against the supposition. .. .. .. 10 ... 

Actually, the fo:rmulae with one or two = signs run as 

:follows: 

A12: e1 = er2 A er2 > e3 =:, e1 > e3, 

A13: e1 = er2 A er2 < e3 :::> e1 < e3, 

A 14: e1 = er2 A er2 = er3::::, e1 = er3, 

A 15: e1 > ei2 A ei2 = ei3:::i e 1 > ei3, .. ~ ... 
A 16: e1 < ei2 A ei2 = ei3:::, e 1 < ei3; 

A17: e1 = ei2 A ei2 = ei3::> e 1 = ei3. ...... ...... 

This system enables to simplify relations. For instance, if 

x,y,z are of type~ and i and j of type integer then .. , .. .. 

X < y A (y > X V y > z) = X < y ' 
X < y A y ,< z A z = X :f:!!i false-, 

but 

X = i A X = j A i > j 
cannot be simplified. 

4. Simplification of Relations Containing Arithmetical Operations 

The next step consists of introducing actual arithmetic opera

tions. Again, proper arithmetic is supposed to satisfy a set of axioms, 

some of which are 

./. 



- 13 -

e1 + e2 = e2 + e1 
' 

e1 > e2 => e3 + e1 > e3 + e2 
' 11••· ..... 

e3 + e1 > e3 + e2 ::> e1 > e2 0 
,.,a. te," 

These three satisfy already to simplify, for instance, 

it X + y > y + z~ (it X) z ~ 1 ~ ~) .. 
else if X > z then ?.~1 

into 

if X + y > y + z then 1 else if X > z then 3~4--- -... .. .. 

5. Simplification of Statements 

Next, we turn our attention to syntactical units of a higher 

level than expressions, viz., to statements. 

Special attention deserves the separator := which is 

actually partly an arithmetic operator. Indeed, there is no reason to. 

assume that the evaluation of expressions of type~ is performed with 

the same precision as in which the results- are remembered. Usually the 

expressions are evaluated in higher precision than that of the variables 

so that the assignment usually includes a round-off (or chopping in very 

poor machines). 

This means that the sequence 

x := y x z ; i := if x = y x z then 1 ~ ,2 .. 
cannot be simplified into 

X :::; y X Z i := 1, 

on the contrary, i := 2 is a much better guesst 

However, proper arithmetic is supposed to include that 

assignment is well defined and idempotent so that when v1 and v2 are 

./. 



- 14 -

variables of the same type, the two axioms hold true: 

A18: 

A19: 

v 1 : = v2 : = e 1 .:, v 1 = v2, 

v1 : = v2 ;::,, v1 = v2 • 

They enable, for instance, to simplify 

:x: ·- y . - z X z i ·- if :x: = y ·- .- ·-.. 
into 

:x: ·- y := z X z i ·- 1 . ·- ·-

6. Simplification of Procedures 

then 1 ~ 2 

At last, we turn our attention to the bigger lumps of program, 

like procedures. Obviously, the possible gain by simplification is here 

the greatest but it seems hard to point out any substantial recognizable 

points of attack. Something can be said about passing on parameters from 

one procedure to the next, which is again a somewhat simply ordered 

structure, but really important simplification is rather dealt with by 

mathematical than logical methods. Also, the requirement of absolute 

equality of results may become rather academic. Also, it is not obvious 

whether or not it is improper to treat the assignment to the procedure 

identifier of a function designator inside the procedure body like that 

to a variable, i.e., including a possible loss of precision. In many 

classical programming schemes, the function designator would be handled 

by means of a subroutine which includes round off. On the other side in 

the ALGOL 60 compiler made by EoW. Dijkstra and J.A. Zonneveld for the 

ELECTROLOGICA X1 oomputer[2] the function designator does not include 

the loss of precision. However, in none of both oases this is logically 

conditioned, and one may have subroutines which compute a double length 

result or modern procedures which round off. It makes, however, a 
./. 



- 15 -

difference. Consider, for instance, the following two procedures for 

computing the sum for k from a to b of the expression fk: 

real :procedure sum (k, a, b, fk) ; value b• 
' 

integer k, a, b• 
' 

real fk; .. .. .... 
begin reals; .. 

s ·- O• k ·- a; ·- ' ·-
L: if k ~ b ~ begin s ·- s + fk; k == k + .-.. .. ·~ .. 

goto L end• __ , .. 
sum ·- s end ·-
····•··· 

and 

real procedure sum (k, a, b, fk); value a, b• 
' .. .. 

integer k, a, b• 
' 

real fk; .. .. .. . ... 

1 ; 

if a ~ b then begin k ·- a· sum ·- fk·+ sum ·- ' ·-... .. ••·•• .. 
(k, a + 1 ' b, fk) end 

else sum ·- 0 end. ·-

Formally, we ought to say that the first p~ocedure cannot be simplified 

into the second one, since the arithmetical result is not necessarily 

equal. But since this difference would presumably also be to the advan

tage of the second procedure, it can hardly be said to be a reasonable 

objection. 



- 16 -

References: 

[1] Backus, J.W. a.o.: Report on the Algorithmic Language ALGOL 60. 

Dedicated to the memory of William Turanski. 

Edited by Peter Naur, Regnecentralen, Copenhagen, 1960. 

[2] Dijkstra, E.W.:. ALGOL-60 Translation. ALGOL Bulletin Supplement 

nr. 10. Report MR 35 Computation Department Mathematical Centre, 

Amsterdam, November 1961. 


