
nIT 2 (1962), 232-255

AN ARSENAL OF ALGOL PROCEDURES
FOR COMPLEX ARITHMETIC*

P. WYNN

Abstract.
This paper contains a complete system of ALGOL procedures which enable

arithmetic operations to be carried out upon complex numbers. Further procedures
for carrying out the evaluation of certain elementary functions (e.g. ln, exp, sin, ...)
of a complex variable are given. Application of these procedures is then illustrated
by their use in the computation of the confluent hypergeometric function and the
Weber parabolic cylinder function. Procedures relating to the application of the
s-algorithm to series of complex terms are described. Two integrated series of
procedures, relating to Stieltjes type S-fractions and to corresponding continued
fractions respectively, are given. Complete programmes, which illustrate the use
of these procedures, may be used for the computation of the incomplete ,8-function,
the incomplete I'-function (of arguments of large and small modulus) and the
Weber function.

Introduction.

The purposes of this note are to present a complete system of Algol
[l] procedures for carrying out arithmetic operations upon complex num
bers, to describe the convention which governs their use, and to give
some examples of their application.

A Convention.

We stipulate that all complex numbers are to be represented by real
arrays containing at least two members. There is an integer i which is
declared globally throughout the block in which the complex arithmetic
takes place, and all complex numbers (e.g. z,l8) may be recognized by
virtue of the fact that they contain the index i (e.g. z[i], l[s,i]). i takes
two values, zero corresponding to the real part (e.g. Re(z)=z[O],
Re(l8)=l[s,O]) and unity corresponding to the imaginary part. The in
teger i may not, therefore, (except in circumstances which are difficult
to envisage) be used for any other purpose.

The most general form of the input to any of these procedures (with

* Communication MR 51 of the Computation Department of the Mathematical Centre,
Amsterdam.

~!.IOT!-1£\:.l<.~:'.-"-.,.\1'"':,,·•'.:cc;,, _. ... ,,,:.>.

Al,'S, ~. ,~;i-.!,\

AN ARSENAL OF ALGOL PROCEDURES FOR COMPLEX ARITHMETIC 233

the exception of those relating to reading) is a xx+ b x y + c x z + ...
where a,b,c, ... are real numbers, and x,y,z, ... are complex. The output
of these procedures (except for those relating to the reading and printing
of numbers) is, in the terminology of [I], of type real.

Procedures.

The system of procedures is now described.
I) An assignment procedure, corresponding to the normal one : = other
procedure eq(one, other); real one, other; for i: = 0, I do one:= other;

This procedure may, of course, be used for the addition and subtrac
tion of complex numbers.
2) A double assignment procedure corresponding to third : = second : =
first
procedure seqeq(third, second,first); real third, second, first;
for i : = 0, I do third : = second:= first;
3) Complex multiplication, corresponding to res:= one x other
procedure cm(res, one, other); real res, one, other;
begin real Reone, Imone, Reother, !mother;
i : = 0; Reone : = one; Reother : = other;
i := I; Imone == one; !mother:= other;
res : = Reone x I mother+ I mone x Reother; i : = 0;

res : = Reone x Reother - I mone x I mother end;
4) Complex division, corresponding to res : = one/other
procedure cd(res, one, other); real res, one, other;
begin real Reone, Imone, Reother,]mother, denom;
i : = 0; Reone : = one; Reother : = other;
i := I; Imone := one; !mother:= other;
denom : = Reother x Reother + I mother x I mother;
res : = (J mone x Reother - Reone x I mother) /denom;
i : = 0; res : = (Reone x Reother + I mone x I mother)/denom end;
5) It is necessary to ensure that numbers which occur in the arithmetic
as real numbers are treated as such (i.e. with their imaginary parts put
equal to zero); for this purpose we have the following
real procedure real(variable); real variable;
real:= (if i=0 then variable else,0.0);
6) Similarly, for pure imaginary quantities we have the
real procedure imaginary(variable); real variable;
imaginary:= (if i=0 then 0.0 else variable);
7) The complex conjugate of a complex quantity is taken by the
real procedure compconj(it); real it; compconj : = (if i = 0 then it else -it);
8) The modulus of a complex number is given by the

234 P.WYNN

real procedure mod (it) ; real it; begin real Reit, I mit;
i := 0; Reit := it; i := I; lmit := it;
mod : = sqrt (Reit x Reit + I mit x I mit) end;
9) The argument of a complex number z is assumed to satisfy the in
equalities - n < arg (z) ~ n. It is computed by the
real procedure arg(it); real it; begin real Reit, Imit;
i : = 0; Reit : = it; i : = I ; I mit : = it;
arg := (if Reit>0.0 then arctan(Imit/Reit) else
sign(Jmit) x 1.57079 63267 949-arctan(Reit/Jmit)) end;
10) The complex number res is translated from the polar form rei8 by
means of the following
procedure polar form (res, r, theta); real r, theta; begin real r I, theta I;
rl : = r; thetaI : = theta; i : = 0; res : = rl x cos (thetaI);
i := I; res:= rl xsin(thetaI) end;
11) In formulae containing complex quantities, the variable z often oc
curs in the combination iz. To compute this we have the
procedure imult(res, it); real res, it; begin real aux;
i : = 0; aux : = it; i : = I ; res : = aux; aux : = it; i : = 0; res : = - aux

12) Similarly z2 is computed by means of the
procedure compsq(res, it); real res, it;
begin real Reit, Imit; i: = 0; Reit: = it; i: = I; Imit: = it;
res:= 2.0xReitxlmit; i := O; res:= ReitxReit-Imitxlmit end;
13) Further, I/it is computed by means of the

end;

procedure comprecip(res, it); real res, it; begin real Reit, Imit, denom;
i : = 0; Reit : = it; i : = I ; I mit : = it; denom : = Reit x Reit + I mit x I mit;
res:= -lmit/denom; i := O; res:= Reit/denom end;
14) As the first of the functional procedures, corresponding to res:=
sqrt(it) we have the
procedure compsqrt(res, it); real res, it;
polar form(res, sqrt(mod(it)), 0.5 x arg(it));
15) Corresponding to res : = ln(it), we have the
procedure compln(res, it); real res, it; begin real aux;
aux:= In(mod(it)); i := 0; res:= aux; aux:= arg(it); i := I;

16) Corresponding to res : = exp (it), we have the
res:= aux end;

procedure compexp(res, it); real res, it; begin real auxI, aux2;
i := 0; auxI := exp(it); i := I; aux2 := it;
res:= auxI x sin(aux2); i: = 0; res:= auxI x cos(aux2) end;
17) We now introduce procedures for the computation of trigonometric
functions. We could of course use a formula such as

sin(z) = (exp(iz)-exp(-iz))/2i

AN ARSENAL OF ALGOL PROCEDURES FOR COMPLEX ARITHMETIC 235

in conjunction with the preceding procedure. However this would result
in a loss of relative accuracy in the neighbourhood of the origin. To
avoid this we use a formula such as

sin(x+iy) = sin(x) cosh(y)+i cos(x) sinh(y)

and use a special Chebyshev expansion for evaluating the hyperbolic
functions in which relative accuracy near the origin is preserved. The
procedure for evaluating the hyperbolic functions is:
procedure kyp(sinh, cosh, y); value y; real sink, cosk, y;
begin real yl; yl := exp(y); cosh := 0.5x (yl+l.0/yl);
if abs(y);?; 1.0 then sink:= 0.5 x (yl- 1.0/yl) else
begin integer r; real br, brplusl, brplus2; array OW0[0:5];
OWO[O] := 1.13031 82079 8497; OWO[l] := 4.43368 49848 6610 -2;
OW0[2] := 5.42926 3119110 -4; OWG[3] := 3.19843 64610 -6;
GW0[4] := 1.10367 710 -8; OW0[5] := 2.49810 -11;
brplusl : = brplus2 : = 0.0; yl : = 2.0 x (2.0 x y x y- 1.0);
for r: = 5 step -1 until Odo begin br: = yl x brplusl-brplus2 +OWG[r];
if r =!= 0 then begin brplus2 : = brplus 1 ; brplus 1 : = br end end;
sink:= y x (br-brplusl) end end;
The Chebyshev coefficients have been extracted from [27]. The coeffi
cients are the odd-order coefficients in the Chebyshev polynomial ex
pansion for exp(x). Thus if this procedure is to be written at the machine
code level and a Chebyshev polynomial expansion for exp(x) is already
present the coefficients in the latter may be made use of.

Thus corresponding to res:= sin(it), we have the
procedure compsin(res, it); real res, it;
begin real Reit, Imit, sinhlmit, cosklmit;
i := O; Reit := it; i := l; Imit := it; kyp(sinklmit, cosklmit, Imit);
res:= cos(Reit)xsinklmit; i:= O; res:= sin(Reit)xcoshlmit end;
18) Corresponding to res : = cos(it), we have the
procedure comp cos (res, it) ; real res, it;
begin real Reif, Imit, sinklmit, coshlmit;
i := O; Reit := it; i := l; Imit := it; kyp(sinhlmit, coshlmit, lmit);
res:= -sin(Reit)xsinklmit; i := O; res:= cos(Reit)xcosklmit end;
19) Corresponding to res:= tan(it) (not given in [l]), we have the
procedure comptan(res, it); real res, it;
begin real Reit, Imit, sinklmit, coshlmit, sinReit, cosReit;
array auxl, aux2[0:l]; i := 0; Reit := it; i := l; Imit := it;
kyp(sinhlmit, cosklmit, lmit);
sinReit := sin(Reit); cosReit := cos(Reit);
auxl[l] := cosReitxsinhlmit; aux2[1] := -sinReitxsinhlmit;

236 P. WYNN

auxl[0]: = sinReit x coshlmit; aux2[0]: = cosReit x coshlmit;
cd(res, auxl[i], aux2[i]) end;

Clearly this could be written a little more concisely with the aid of
the previous two procedures, but the result would be somewhat repe
titive and wasteful with regard to time.
20) The inverse function arcsine, corresponding to res:= arcsin(it), (also
not given in [l]) may be computed by means of the
procedure comparcsin(res, it); real res, it; begin real x, y, dl, d2, d3, d4;
i : = 0; X : = it; i : = 1 ; y : - it;
d3 := xxx; d4 := yxy; dl := d3+d4; d2 := d3-d4;
d3 := dl x dl-2.0 x d2; d4: = sqrt(d3+ 1.0);
res:= sign(y) x 0.5 x In(dl +d4+sqrt(d3+dl x (dl + 2.0 x d4))); i: = 0;
res:= arctan(xxsqrt(2.0/(1.0-d2+d4))) end;
21) Corresponding to res:= arccos (it) (also not given in [l]), we have the
procedure comparccos(res,it); real res, it; begin array aux[0:l];
comparcsin(aux[i], it); eq(res, real(l.57079 63267 949)-aux[i]) end;
22) Corresponding to res:= arctan(it) we have the
procedure comparctan(res, it); real res, it; begin array auxl, aux2[0: l];
eq(auxl[i], it); compsq(aux2[i], auxl[i]);
compsqrt(aux2[i], real(l.0) +aux2[i]);
cd(aux2[i], auxl[i], aux2[i]); comparcsin(res, aux2[i]) end;
23) Corresponding to res : = one t other, we have the
procedure onehochother(res, one, other); real res, one, other;
begin array auxl[0: l]; compln(auxl[i], one); cm(aux l[i], other, auxl[i]);
compexp(res, auxl[i]) end;

A number of procedures relating to the input and output of complex
numbers are now given. No provisions are made in [l] for dealing with
the input and output of numbers; nevertheless the following procedures
may be of use with many installations.
24)
procedure compread(it) ; real it; for i : = 0, 1 do it : = read;
25)
procedure readpolarf orm(it); real it; begin real r, theta;
r: = read; theta:= read; i: = O; it:= r x cos(theta);
i := l; it:= rxsin(theta) end;
26)
procedure compprint(it); real it; for i := 0,1 do print(it);
27)
procedure druck(it); real it; begin compprint(it); print(mod(it)) end;
28)
procedure printpolarf orm(it) ; real it;

AN ARSENAL OF ALGOL PROCEDURES FOR COMPLEX ARITHMETIC 237

begin print(mod(it)); print(arg(it)) end;
29) To print the vector of complex numbers iti (j =h,h+ 1, ... ,k) in
rows of col numbers, the real parts being immediately above the imagi
nary parts, we have the*
procedure printcompvect(it,j,h,k,col); value h, k, col;
integer j, h, k, col; real it; begin integer janfang;
for janfang : = h step col until k do for i : = 0, 1 do begin N LG R;
for j : = janfang step 1 until janfang + col - 1 do if j ~ k then print(it)

30) Finally the following general purpose
boolean procedure even(integer); integer integer;
even:= (integer= (integer72) x 2);
is given.

Examples.

end end;

Some examples of the application of the preceding procedures will
now be given. It must be emphasized however that these examples are
to be regarded as no more than a preliminary essay in the computation
of functions of a complex variable; they certainly do not represent an
assemblage of foolproof procedures.

A further matter deserving special comment is that the definition of
the argument of a complex variable has been made quite arbitrarily.
Consequences of the definition chosen are that the procedure compsqrt
(res, it) maps the whole of the it-plane onto the right hand half of the
res-plane, the. procedure compln(res, it) maps the it-plane onto the strip
-:n:<Im(res)~:n:, and so on. If the reader wishes to adopt another con
vention, he must first modify the procedure arg(it).

Despite the foregoing warnings, if the given procedures and the ex
amples which are to be given are used with discretion, they may be
made to yield useful results.

The Confluent Hypergeometric Function.

The following procedure computes (to a given relative accuracy in the
modulus) the numerical sum of the confluent hypergeometric series

a z a(a+ 1) z2

1li\(a;c;z) = l+--+----+ ... :
cl! c(c+l) 2!

procedure oneFone(result, a, c, argument, relacc);
value a, c, relacc; real result, a, c, argument, relacc;
begin integers; array term, sum, relerror, z[O: l];

* Here and subsequently NLCR=New Line Carriage Return.

238 P. WYNN

eq(z[i], argument); seqeq(term[i], sum[i], real(l.0)); s : = I;
TERM: cm(term[i], term[i], z[i] x (a+s-1)/((c+s- I) x s));
eq(sum[i], sum[i]+term[i]); s := s+ I; cd(relerror[i], term[i], sum[i]);
if mod(relerror[i]) >relacc then go to TERM;
eq (result, sum[i]) end ;

If the reader has punched the above procedures he may care to test
some of them with the following complete programme:

begin integer i; array check[0: I];
comment This comment must be replaced by the procedures eq, seqeq,
cm, cd, real, imaginary, compprint, oneFone and mod;
oneFone(check[i], 1.0, 1.0, imaginary (1.57079 63267 949), 1.010 -6);
compprint(check[i]) end

If the reader is still inclined to use the given procedures without due
forethought, then let him construct a programme which contains the
following segment:

oneFone(check[i], 1.0, 1.0, real(- 50.0), 1.010 - 10);
druck(check[i]);
oneFone(check[i], 1.0, 1.0, real(50.0), 1.010 -10);
comprecip(check[i], check[i]); druck(check[i]);

A more useful application of the procedure oneFone is provided by the
computation of the Weber parabolic cylinder function

For the evaluation of the I'-function of real argument (to a relative
accuracy of 1.210 - 12) we give the following procedure based upon data
given by C.-E. Froberg [2]:

real procedure realgammafunction(argument); value argument;
real argument;

begin if argument> 2.0 then
realgammafunction : =
(argument- 1.0) x realgammafunction (argument- 1.0)
else if argument< 1.0 then
realgammafunction: = realgammafunction(argument+ 1.0)/argument else
begin integer r, s; real xl; array OEF[0:I, 0:5]; xl := argument-LO;

AN ARSENAL OF ALGOL PROCEDURES FOR COMPLEX ARITHMETIC 239

OEF[O,O] := 0.99999 99999 9888; OEF[O, l] := 0.28789 44308 9491;
OEF[0,2]: = 0.16274 01560 5949; OEF[O, 3]: = 1.42275 09863 3910 -2;
OEF[0,4] := 6.72642 58470 110 ~3; OEF[0,5] := -6.20265 0347310 -4;
OEF[l,O] := 1.0; OEF[l,I] := 0.8651100954 8768;
OEF[l,2] := -0.32696 07263 5275; OEF[l,3] := -0.12266 28393 2781;
OEF[l, 4] : = 6.26494 50210 110 - 2; OEF[l, 5] : = - 7 .16772 23899 310 - 3;
for r : = 0, 1 do for 8 : = 4 step - 1 until O do
OEF[r,5] := OEF[r,5]xxl+OEF[r,s];
realgammafunction : = OEF[O, 5]/0EF[l, 5] end end;

The complete programme for evaluating the Weber parabolic cylinder
function by means of an ascending power series is then:

begin integer i; real a, eps, rgl, rg2, ratio, epsl, eps2;
array z, zsquared, auxl, aux2[0: 1];
comment This comment must be replaced by the procedures eq, seqeq, cm,
cd, real, mod, compsq, compexp, compread, compprint, druck, oneFone and
realgammafunction;
a : = read; compread(z[i]); eps : = read;
NLOR; print(a); compprint(z[i]); print(eps);
compsq(zsquared[i], z[i]); rgl := realgammafunction(0.75+a/2);
rg2 := 0.70710 678118655xrealgammafunction(0.25+a/2);
ratio:= abs(rgl xmod(z[i])/rg2);
if ratio< 1.0 then begin epsl : = eps; eps2 : = eps/ratio end else
begin eps 1 : = eps x ratio; eps2 : = eps end;
oneFone(auxl[i], 0.25+a/2, 0.5, zsquared[i]/2, epsl);
oneFone(aux2[i], 0.75+a/2, 1.5, zsquared[i]/2, eps2);
cm(aux2[i], z[i], aux2[i]); eq(auxl[i]/rgl -aux2[i]/rg2);
comp exp (aux2[i], - zsquared[i]/4.0);
cm(auxl[i],
1.77245 38509 05516 x (2.0 t (-0.25-a/2.0)) x aux2[i], auxl[i]);
druck(auxl[i]) end

It is assumed for simplicity that in the addition of the two constituent
terms in braces, no loss of accuracy due to cancellation takes place.
There is a preliminary skirmish to determine the relative accuracies to
which both series must be evaluated, subsequent to which the confluent
hypergeometric functions are evaluated and the function S1(a; z) com
puted. In a more extensive programme, the extent of the loss of figures,
both in the evaluation of the separate sums and in their combination,
would be estimated a posteriori and the relative accuracy requirements
correspondingly increased.

240 P.WYNN

The e-algorithm [3].

The e-algorithm is a computational device for accelerating the con -
vergence of a slowly convergent series. The relationships

s<m) = s<m+l) + (im+l) -im))-1
s+l s-1 s s

are applied to the initial values

m-1
eo(m) = Z us, e1(m) = um-1

8=0
(m = 0, I, ...).

In certain cases the even order sequences et> (s = 0, I, ...) converge to
the formal sum :E~0u8 far more rapidly than do the partial sums of the
latter. The quantities e8<m> may be placed in a triangular array in which
the superscript m denotes a forward diagonal and the suffix s a column.

The e-algorithm is a lozenge algorithm. The constituents of the e-algo
rithm relationship occur in the following lozenge

For the evaluation of the e-array use may therefore be made of a one
dimensional array l8 of complex numbers. At any given moment this
array contains the following quantities: e0<m>(=. l0), e1(m-1>(=. l1), e2(m-2>

(= l2), ••• ,em<0>(= lm). We arrive with a new term of the original series
and replace in succession this sequence by e0(m+l), e1<m>, e2<m-1>, ••• ,em(l>,
and add e~+l. This proces requires three auxiliary complex number
storage locations (aux0, auxI, aux2).

The following procedure will print out the moduli of the numbers in
the even order columns of the c:-array (in vertical strips of col columns,
to be glued together subsequently). As well as the non-local integer i,
the procedure uses a non-local (two member) array term, and a non-local
integer m indicating the suffix of the term.

procedure display complex epsilon algorithm(mmax, compute term, col);
value mmax, col; integer mmax, col; procedure compute term;
begin integer s, sanfang, twommax;
array l[0:mmax+ I,0: I], display[I :((mmax+ I) x (mmax+5)) ...,...4],

aux0, aux I, aux2[0: I];
eq(l[O,i],0.0); twommax:= 2xmmax; form:= 0 step I until mmax do
begin compute term; eq(auxI[i], term[i]+l[0,i]);
for s : = 0 step I until m do
begin comprecip(aux0[i], (ifs= 0 then term[i] else aux[i]-l[s,i]));

AN ARSENAL OF ALGOL PROCEDURES FOR COMPLEX ARITHMETIC 241

if s =l= 0 then
begin eq(aux0[i], aux0[i] + l[s -1, i]); eq(l[s-1,i],aux2[i]) end;
if even(s) then
display[(s x (twommax-s+ 2))-+ 4+m+ I]:= mod(auxl[i]);
eq(aux2[i], auxl[i]); eq(auxl[i], aux0[i]) end;
eq(l[m,i], aux2[i]); eq(l[m+ 1,i], aiixl[i]);
if leven(m) then
display[((m+ I) x (twommax-m+ 5))-+4]: = mod(auxl[i]) end;
for sanfang : = 0 step 2 x col until mmax + I do begin N LC R;
for m : = I step I until mmax + I - sanfang7 2 do begin N LOR;
for s : = sanfang step 2 until sanfang + 2 x (col - I) do
begin if s-+2 ~ m Am ~ mmax+ 1-(s-+2)
then print(display[(sx(twommax+4-s))-+4+m]) end end end end;

The power of the e-algorithm may be illustrated by applying it to the
series

00

The terms in this series may be computed by means of the following

procedure ln2; eq(term[i], real((if even(m) then 1.0 else - 1.0)/(m+ I}));
The application of the e-algorithm to the above series may be dis

played by the following programme:

begin integer i, m; array term[0: I J ;
comment This comment must be replaced by the procedures eq, real,
mod, comprecip, even, display complex epsilon algorithm and ln2;
display complex epsilon algorithm(5, ln2, 6) end

It produces the following array:

1.0 0.66667
0.5 0.7 0.69231
0.83333 0.69048 0.69333 0.69312
0.58333 0.69444 0.69309
0.78333 0.69242
0.61667

(The quantity /e0<0>i is missing from this array, but since this is always
zero, no information has been lost in this manner.)

The above procedure should only be used in a provisional inquiry as
to whether or not application of the e-algorithm is likely to be successful.
In the case of the example considered, this seems likely.

242 P.WYNN

The following procedure computes (to a prescribed relative accuracy
in the modulus) the transformed formal sum of the series whose suc
cessive terms are computed by means of the procedure compute term.

It has as input an integer (M say) which indicates that there is storage
space available for M + I complex numbers.

Included in the output is a boolean variable which has the value true
if this storage space is not exceeded.

procedure complex epsilon algoritkm(result, compute term, relative accuracy,
available storage, storage not exceeded) ;
value relative accuracy, available storage ;
integer available storage; real result, relative accuracy;
boolean storage not exceeded; procedure compute term;
begin integers; array aux0, aux 1, aux2[0: l], l[0:available storage, 0: l];
eq(l[0, i], 0.0); m : = 0;
EPSALG: compute term; eq(auxl[i], term[i]+l[0,i]); s := O;
EPSLOOP: comprecip(aux0[i], (ifs = Othen term[i] else auxl[i]-l[s,i]));
if s =I= 0 then
begin eq(aux0[i], aux0[i] + l[s-1,i]); eq(l[s-1,i], aux2[i]) end;
eq(aux2[i], auxl[i]); eq(auxl[i], aux0[i]); s : = s + 1;
if m ~ s then go to EPSLOOP;
eq(l[m,i], aux2[i]); eq(l[m+ 1, i], auxl[i]);
if m > 0 then begin if 1even(m) then eq(aux2[i], l[m-1,i]) else
begin eq(auxl[i], aux2[i]); eq(aux2[i], l[m-2,i]) end;
cd(aux2[i], aux2[i], auxl[i]); if abs(I -mod (aux2[i])) < relative accuracy

then
begin storage not exceeded:= true; eq(result, auxl[i]); go to END end end;
m : = m + I; if m < available storage then go to EPSALG
else storage not exceeded : = false;
END: end;

Its use may be illustrated by the following complete programme:

begin integer i, m; boolean successful; array term, ckeck[0: l];
comment This comment must be replaced by the procedures eq, cd, real,
mod, comprecip, compprint, even, ln 2 and complex epsilon algorithm;
complex epsilon algoritkm(ckeck[i], ln2, +1.010 -9, +2000, successful);
if successful then compprint(ckeck[i]) end

A more useful example of the application of the e-algorithm is provided
by the problem of mapping the interior of the ellipse x=a cos(t),
y=bsin(t) in the z-(=x+iy) plane by means of the transformation
w=f(z) onto the interior of the circle jwl = 1 in the w-plane, such that

AN ARSENAL OF ALGOL PROCEDURES FOR COMPLEX ARITIDIETIC 243

the origin is preserved and the point z=a+i0 becomes w=I+i0. The
following series solution of this problem has been given by Szego [4]

where

Here R=a+b, and it is assumed that a-b= I (this is not an essential
restriction and corresponds to a real multiplicative factor of f(z)).

The terms in this series may be computed by means of the

procedure Gabor Szego(argument, a, b); value a, b; real argument, a, b;
begin own real R4, R4m, twoniinuslm;
own real array fourzsquaredminus2, T2mminus4, T2mminus2, T2m[0: l];
if m = 0 then begin real R, R2; array z, zsquared[0: l];
R := a+b; R2 := RxR; R4 := R2xR2; R4m := 1.0;
twominuslm := 2.0; eq(z[i], argument);
compsq(zsquared[i], z[i]); eq(T2mminus4[i], 2 x zsquared[i]-real(l.0));
eq(T2mminus2[i], real(l.0));
eq(fourzsquaredminus2[i], 4.0 x zsqua~ed[i]- real(2.0));
compln(term[i], 2.0 x z[i]/R) end else
begin twominus Im : = - twominusim; R4m : = R4 x R4m;
cm(T2m[i], fourzsquaredminus2[i], T2mminus2[i]);
eq(T2m[i], T2mminus4[i]);
eq(T2mminus4[i], T2mminus2[i]); eq(T2mminus2[i], T2m[i]);
eq(term[i], twominuslm x T2m[i]/((R4m+ 1.0) x m)) end end;

This procedure may be tested by means of the following programme:

begin integer i, m, j, N, col, very end; real k, t, a, b, eps;
array z, check, term[0: I J; boolean successful;
comment This comment must be replaced by the procedures eq, cm, cd,
real, mod, compsq, comprecip, compprint, even, complex epsilon algorithm,
compln, arg and Gabor Szego;
k := read; N := read; eps := read; very end:= read;
NLOR; print(k); print(eps); b:= 1.0/sqrt(kxk-1.0); a:= kxb;
for j : = I step 1 until N do
begin t: = j x 3.14159 26535 898/N; z[0] : = ax cos(t); z[l]: = bx sin(t);
complex epsilon algorithm(check[i], Gabor Szego(z[i],a,b), eps, very end,

successful);
NLOR; if successful then compprint(check[i]) end end

244 P.WYNN

Since, for the test values chosen, z is always on the ellipse x=a cos(t),
y=b sin(t), the real part of the result (i.e. ln(lwl) on the unit circle)
should be zero. The imaginary part of the result, which satisfies a cer
tain Lichtenstein-Gershgorin equation, is tabulated for le= 1.2 and 2.0
by Todd and Warschawski [5].

S-fractions.

The e-algorithm has close connections [6] with the theory of certain
types of continued fractions. The coefficients q/m>, er<m> in the continued
fraction

"' -s-1 + -m m 1 1 r r
m-1 { C q (m) e (m) q (m) e (m) }
£., CsZ Z - - -- ••• -- -- •••
s=O Z - 1 - Z - 1 - z -

may (except in certain singular cases) be determined by imposing the
condition that the series expansion of its r th (r= 0, 1, ...) convergent
should agree with the power series I:,0c6z-8

- 1 as far as the term
Cm+r-1z-m-r. If the e-algorithm is applied to the initial conditions
e0<m>=I::'::JcsZ-s-l, e1<m>=cm-lzm+l then the successive convergents of the
above continued fraction lies on the staircase e0<m>, e0<m+1>, e2<m>, el1i+1>,
e4<m>, eim+1>, ... of the even column e-array.

Continued fractions of the above form in which the q/m>, e/m> are real
and negative are known as real S-fractions. Such continued fractions
have been extensively studied by Chebyshev [7], Stieltjes [8], Markoff
[9] [10] [11] [12] [13] [14] [15] and others. They converge [16] for values
of z not on the negative real axis if the series I.:, 0 l8 diverges, where

1 q<mJ e<m>
lo = 1, l1 = ql(m)' l2s = /<m> l2s-2, l2s+1 = q7m, l2s-l (s = 1, 2, ...) .

s s+I

These conditions relating to the coefficients of the continued fraction
are not always immediately available. The first may be replaced by the
following [17]: There exists a function F m(z) which has the asymptotic
expansion I.:,ocm+sZ-s-1 in the domain e ~ arg (z) ~ :n:-e, where 0 < e <
:n:/2, Fm(z) is analytic and Im{Fm(z)}<0 for I(z)>0, and furthermore
F m(z) has the asymptotic representation

F Cm 0(1)
m(z) = -+ I () z z m z

the second by [18]

li .nf Cm+s V
-

fill --
s➔oo (2s) !

AN ARSENAL OF ALGOL PROCEDURES FOR COMPLEX ARITHMETIC 245

The successive convergents A 2,8 (s=O,l, ...) of the continued fraction

may be determined by evaluating the double sequence A1,s (j = 0, 1;
s = 0, 1, ...) by means of the recursion

Aj,8 = bsAj,s-1 +asAj,s-2

from the initial conditions

when

It may occur that the quantities A 1,s (j=O,l) grow to exceed the
capacity of the floating point arithmetic being used. This may be ob
viated by use of a suitable equivalence transformation. However, it has
so far been the author's experience that if the quantities A1,s go out of
range before the continued fraction has converged numerically, then
there are better ways of evaluating the function concerned.

Firstly, let us assume that the coefficients of a convergent real S-frac
tion are available in the form of real procedures c0, qr, er or as real
expressions involving the non-local integer r. The following procedure
computes the value of this continued fraction to a given relative accuracy
in the modulus of the result (assuming that the relative difference be
tween one convergent and the next is greater than the relative difference
between one convergent and the value of the continued fraction):

procedure qerealSfraction(result, c0, qr, er, argument, relerror);
value relerror; real result, c0, qr, er, argument, relerror;
begin integer j, S, Sdash; real partnum; boolean q;
array z, aux[O:l], A[0:2, 0:1, 0:1];
eq(z[i], argument); eq(A[0,0,i], real(c0)); eq(A[l,0,i],z[i]);
eq(A[l,l,i], real(I.0)); seqeq(A[0,I,i], A[2,l,i], 0.0);
r : = Sdash : = 1 ; S : = 0; q : = false;
go to CONVERGENT;
RECURSION: Sdash:= S; S:= 1-Sdash; q:= lq;
partnum : = - (if q then qr else er);
for j := 0,1 do if q then eq(A[j,S,i], A[j,Sdash,i]+partnumxA[j,S,i])
else

BIT 2 - 16

246 P.WYNN

begin cm(aux[i],z[i],A[j, Sdash, i]);
eq(A[j, S, i], aux[i] + partnum x A[j, S, i]) end;
if lq then r : = r + I ;
CONVERGENT: cd(A[2,S,i], A[0,S,i], A[I,S,i]);
cd(aux[i], A[2,Sdash,i], A[2,S,i]);
if abs(I.0-mod(aux[i])) > relerror then go to RECURSION
else eq(result,A[2,S,i]) end;

It uses a non-local integer r indicating the suffices of the partial numer
ators.

This procedure may be used to evaluate the incomplete gamma func
tion of large (non-negative) argument

Joo { 1 1-IX 1 r-lX r }
I'(tx,z) = t"'-1e-tdt~e-zz"' - -- -- ... -- --

z+ I+ z+ I+ z+
z

Firstly the continued fraction in braces is evaluated, and the result is
then multiplied by the factor e-zz"' outside the braces.

begin integer i, r; real alpha, eps; array z, aux I, aux2[0: I];
comment This comment must be replaced by the procedures eq, seqeq,
cm, cd, real, mod, compexp, onehochother, compln, arg, compread, compprint,
druck and qerealSfraction;
alpha : = read; eps : = read; compread(z[i]);
N LOR; print(alpha); print(eps);
compprint(z[i]); compexp(auxI[i], -z[i]);
onehochother(aux2[i], z[i], real(alpha)) ;
cm(auxI[i],auxI[i],aux2[i]);
qerealSfraction(aux2[i], I.0, -r+alpha, -r, z[i], eps);
cm(auxI[i], aux2[i], auxI[i]); druck(auxI[i]) end

In general, of course, the coefficients q/m>, e,/m> relating to the sequence
of coefficients cs (s = 0, I, ...) are not available in closed form. They may
be evaluated by applying the (q - d) algorithm relationships of H. Rutis
hauser [19]

to the initial values

eo<m> = 0, ql<m) = cm+ifcm (m = 0, I, ...).

The q-d algorithm is also a lozenge algorithm. Use may thus be made
of a one-dimensional real array ls in the evaluation of the sequence q/0>,
e/0> (r=0, I, ...).

AN ARSENAL OF ALGOL PROCEDURES FOR COMPLEX ARITHMETIC 24 7

Now in the case of certain series (Whittaker functions, the generalized
hypergeometric series, etc.) it so occurs that the ratio qim> is easier to
express than the general term cm. For such series we have the following

procedure qlrealSfraction(result, cO, qlm, argument, relerror, available
storage, storage not exceeded) ;
value available storage; integer available storage;
real result, cO, qlm, argument, relerror; boolean storage not exceeded;
begin array l[O: available storage];
real procedure qdalgorithm(ml); value ml; integer ml;
begin integer sl; real auxO, auxl, aux2;
if ml > available storage then
begin storage not exceeded:= false; go to END end;
m := ml; auxl := qlm; for sl := 0 step I until ml-I do begin
if even(s I) then
auxO := auxl-l[sl]+(if sl > 0 then l[sl-1] else 0.0) else
auxO := auxl xl[sl-1]/l[sl]; if sl > 0 then l[sl-1] := aux2;
aux2 : = auxl; aux I : = auxO end;

,,

if ml> 0 then l[ml-1] := aux2; qdalgorithm := l[ml] := auxl end;
qerealSfraction(result, cO, qdalgorithm(2 x r- 2), qdalgorithm(2 x r-1),
argument, relerror); storage not exceeded:= true; END: end;

As can be seen this procedure makes use of the preceding qerealSfraction
procedure.

This procedure may be used to evaluate the Weber parabolic cylinder
function S1(a; z). This has the asymptotic expansion

S, (.)~ -z214 -a+312 {~- (a+½)(a+a)+(a+½)(a+!)(a+i)(a+U _ }
i a, z e z 2 4 6 ••••

z 2z 2.4.z

Firstly we apply the q-d-algorithm to the series in braces in order to
convert it into and evaluate it as an S-fraction, and then we multiply
the result by e-z214z-a+312 to obtain S1(a; z).

begin integer i, m, r, very end; real a, eps;
array z, zsquared, auxl, aux2[0: I]; boolean successful;
comment This comment must be replaced by the procedures eq, seqeq,
cm, cd, real, mod, arg, compsq, compln, compexp, onehochother, compread,
compprint, druclc, even, qerealSfraction and qlrealSfraction;
a:= read; compread(z[i]); eps := read; very end:= read;
NLCR; print(a); compprint(z[i]); print(eps); compsq(zsquared[i], z[i]);

248 P. WYNN

compexp(auxl[i], -zsquared[i]/4.0);
onehochother(aux2[i], z[i], real (-a+ 1.5));
cm(aux2[i], auxl[i], aux2[i]);
qlrealSfraction(auxl[i], 1.0, -(a+ 2 x m + 0.5) x (a+ 2 x m + 1.5)/

(2 x (m+ 1)), zsquared[i],eps, very end, successful);
if successful then
begin cm(aux[i], auxl[i], aux2[i]); NLOR; druck(auxl[i]) end end

Finally we give a procedure which accepts the coefficients cm them
selves:

procedure crealSfraction(result, c, argument, relerror, available storage,
storage not exceeded) ;
integer available storage; real result, c, argument, relerror;
boolean storage not exceeded; begin real cm, cmplusl;
real procedure qlm; begin m: = m+ 1; '
cmplus 1 := c; qlm := cmplusl/cm; cm:= cmplusl end;
m := O; cm:= c; qlrealSfraction(result, cm, qlm, argument, relerror, avail
able storage, storage not exceeded) end;

This procedure in turn makes use of the preceding procedures
qerealSfraction and qlrealSfraction.

This procedure may be used to evaluate the integral of Goodwin and
Staton [20]

for which

Cs= ½I'c:l) (-l)s (s=0,l, ...).

For this we need the

real procedure Goodwin Staton coefficient;
begin own real cmminus2, cmminusl, cm;
ifm=0then
Goodwin Staton coefficient:= cmminus2: = 0.88622 69254 52758
else if m = 1 then
Goodwin Staton coefficient:= cmminusl := -0.5 else
begin cm:= cmminus2x(m-I.0)/2.0; cmminus2:= cmminusl;
cmminus 1 : = Goodwin Staton coefficient : = cm end end;

The final programme is as follows:

AN ARSENAL OF ALGOL PROCEDURES FOR COMPLEX ARITHMETIC 249

begin integer i, r, m, very end; real eps; boolean 8'Uccessful;
array z, final answer[O: I];
comment This comment must be replaced by the procedures eq, seqeq,
cm, cd, real, mod, compread, compprint, druck, even, qerealSfraction,
qlrealSfraction, crealSfraction and Goodwin Staton coefficient;
compread(z[i]); eps : = read; very end : = read;
NLOR; compprint(z[i]); print(eps);
crealSfraction(final answer[i], Goodwin Staton coefficient, z[i], eps, very
end, successful); if successful then druck(final answer[i]) end

J-fractions.

The even part

of an S-fraction is called a J-fraction. It might be thought that the
number of arithmetic operations may be reduced by using J-fraction as
opposed to S-faction expansions. This is true. But for positive real z
the convergents of a convergent S-fraction form an oscillating sequence,
and the method of estimating the relative errors of the successive con
vergents used in the foregoing procedures may therefore be justified for
positive real z, and numerical experiments indicate that this method of
testing is vindicated for general values of z. In the case of J-fraction ex
pansions, however, numerical experience indicates that this method of
estimation sometimes produces misleading results, and moreover is mis
leading in an unpredictable fashion. Such continued fractions are not
therefore considered in this note.

Corresponding Continued Fractions [21].

If the power series {J(x) ~ k=oc?! is given, it is perhaps most efficient
to write z=x-1 and /J(x) =z{_I~0 c.,z-s-1}. The latter series may be trans
formed into an S-fraction as before and evaluated as such. Slightly more
efficient would be the direct use of the relationship

q/Ol e/0)
--
z- I-

If we write x=z-1 in this relationship, we have, after an equivalence
transformation, the continued fraction corresponding [21] to the power
series _I~0c8X

8
:

250 P. WYNN

Co ql(O)x el(O)x

1- 1- 1- 1- 1-

Again it transpires that the corresponding continued fraction may
well converge in domains of the x-plane in which the power series diverges.
We quote the following theorem [22]: If the sequence qr<o>, e/0>,
(r=0, 1, ...) converges to a non-zero constant c, then the corresponding
continued fraction converges for any finite value of x which does not
lie on that segment of the line arg (x) = -arg (c) which joins the point
(-¼c) to the point at infinity and does not pass through the origin.

The reason for preferring the continued fraction expansions in z to
those in x is that in the evaluation of the twin recursions for A1,s

(j = 0, l) the S-faction involves complex multiplication only in the eval
uation of A1,2s+1 (s = 0, 1, ...) whereas the corresponding expansion
involves complex multiplication in the evaluation of each A1,8(s =
0, 1, ...).

However, in certain cases, if we write the corresponding expansion in
the form

c0 q1<0>'x ei0>'x q/0>'x e/0>'x

bi - b2- b3- ... b2r- b2r+1 -

it transpires that the coefficients c0 , b8 (s= 1,2, ...), qr<0>', e/0>' (r=
1,2, ...) may be given exactly, and this is a favorable point when con
sidering the propagation of error in the evaluation of the successive con
vergents. For the evaluation of such continued fractions, we give the
following

procedure corresponding continued fraction(result, c0, qr, er, bs, argument,
relerror);

value relerror; real result, cO, qr, er, bs, argument, relerror;
begin integer j, S, Sdash; real coefft, partdenom; boolean q;
array x, aux[O:l], A[0:2, 0:1, 0:1];
eq(x[i], argument); eq(A[0, 0, i], real(c0));
s := r := Sdash := l; eq(A[l, 0, i], real(bs));
eq(A[l, 1, i], real(I.0)); seqeq(A[0, 1, i], A[2, 1, i], 0.0);
S := 0; q := false;
go to CONVERGENT;
RECURSION: Sdash := S; S := 1-Sdash; q := lq; partdenom := bs;
coefft: = -(if q then qr else er); for j: = 0, l do begin
cm(aux[i], x[i], coefft x A[j, S, i]);
eq(A[j, S, i], aux[i] + partdenom x A[j, Sdash, i] end;
if lq then r : = r + l ;

AN ARSENAL OF ALGOL PROCEDURES FOR COMPLEX ARITHMETIC 251

CONVERGENT: cd(A[2, S, i], A[0, S, i], A[l, S, i]);
cd(aux[i], A[2, Sdash, i], A[2, S, i]);
s := s+ l; if abs(I.0-mod(aux[i])) > relerror then go to RECURSION
else eq(result, A[2, S, i]) end;

It uses nonlocal integers r and s indicating the suffices of the partial
numerators and denominators respectively.

This procedure may be used to evaluate the incomplete beta function
B1n(p,q) given by

X

Bx(p,q) = JtP-1(1-t)q-1 dt = p-1xP(l-x)q2F1(1,p+q;p+l;x)
0

{
1 p(p+q)x 1(1-q)x (p+l)(p+q+l)x

=xP(l-x)q -------------
p- p+ 1- p+2- p+3-

... (p+r- l)(p+q+r- l)x r(r-q)x ... }
p+2r-l- p+2r-

A complete programme for doing this is as follows:

begin integer i, r, s; real eps, p, q; array x, auxl, aux2[0: l];
comment This comment must be replaced by the procedure eq, seqeq, cm,
cd, real, mod, arg, compln, compexp, onehochother, compread, compprint,
druck and corresponding continued fraction;
p : = read; q : = read; compread(x[i]) ; eps : = read;
NLCR; print(p); print(q); compprint(x[i]); print(eps);
onehochother(aux 1 [i], x[i], real(p));
onehochother(aux2[i], real(I.0)-x[i], real(q));
cm(aux2[i], auxl[i], aux2[i]); corresponding continued fraction
(auxl[i], 1.0, (p+r-1) x (p+q+r-1), r x (r-q), p+s- l, x[i], eps);
cm(auxl[i], auxl[i], aux2[i]); NLCR; druck(auxl[i]) end

This programme may be checked by use of the procedures 15), 20),
and 22), and use of the relationships

arcsin(x) = ½Bxz(½,½).

The same procedure may be used-to evaluate the incomplete y-function
of small argument

252

X

y(c; x) = f e-ttc-1 dt
0

P.WYNN

{
1 ex Ix (c+ I)x (c+r- I)x rx

= xce-x c- c+l+ c+2- c+3+ · · · c+2r-I + c+2r- }
when c =l= 0, - 1, - 2, . . . A programme which does this is as follows:

comment This comment must be replaced by the procedures eq, seqeq,
cm, cd, real, mod, arg, compln, compexp, onehochother, compread, comp
print, druck and corresponding continued fraction;
c := read; compread(x[i]); eps := read;
N LC R; print(c); compprint(x[i]); print(eps);
corresponding continued fraction(auxl[i], LO, c+r-1, -r, c+s-1, x[i],

eps);
onehochother(aux2[i], x[i], real(c)); cm(auxl[i], aux2[i], auxl[i]);
compexp(aux2[i], -x[i]); cm(auxl[i], auxl[i], aux2[i]);
NLCR; druck(auxl[i]) end

Finally, for completeness, we remark that the continued fraction

J m+1(z) z/2 (z/2)2 (z/2)3

=
Jm(z) m+l- m+2- m+3-

is also subsumed within those of this section.

A General Continued Fraction Procedure.

For the evaluation of continued fractions having the more general form

a1 a2 as
C = bo+ b1 + b2 + ... bs + ...

we give the following

procedure continued fraction(result, b0, as, bs, relerror); value relerror;
real result, relerror; procedure b0, as, bs;
begin integer S, Sdash; array auxl, aux2[0: l], A[O: 2, 0: 1, 0: l];
b0; seqeq(A[0, 1, i], A[2, 1, i], Bs[i]); seqeq(A[0, 0, i], A[l, 1, i], real(l.0));
eq(A[l, 0, i], 0.0); s := S := l;
RECURSION as; bs; Sdash := S; S := 1-Sdash;
for j : = 0, 1 do begin cm(auxl[i], Bs[i], A[j, Sdash, i]);
cm(aux2[i], As[i], A[j, S, i]); eq(A[j, S, i], auxl[i]+aux2[i]) end;
cd(A[2, S, i], A[0, S, i], A[l, S, i]); cd(auxl[i], A[2, Sdash, i], A[2, S, i]);
s := s+l;ifabs(l.0-mod(auxl[i])) > relerror then go to RECURSION
else eq(result, A[2, S, i]) end;

AN ARSENAL OF ALGOL PROCEDURES FOR COMPLEX ARITHMETIC 253

It uses a non-local integer s indicating the suffix of the successive co
efficients and two non-local arrays (As, Bs[0: I]) for the coefficients.

By means of this procedure we may evaluate the continued fraction

l x x2 x3

l+ I+ l+ l+

due to Ramanujan [23]. This is not perhaps the most frequently en
countered function of Mathematical Physics, but it will serve as an
example.

First we have the three coefficient procedures:

procedure b0Ramanujan; eq(Bs[i], 0.0);
procedure asRamanujan(argument); real argument;
begin own real array x[O: l];
ifs= l then begin eq(x[i], argument); eq(As[i], real(l.0)) end else
cm(As[i], x[i], As[i]) end;
procedure bsRamanujan; eq(Bs[i], real(l.0));

Finally, the complete programme:

begin integer i, s; real eps; array x, result, As, Bs[0: I];
comment This comment must be replaced by the procedures eq, seqeq,
cm, cd, real, mod, compread, compprint, druck, b0Ramanujan, asRamanii
jan, bsRamanujan and continued fraction;
compread(x[i]); eps := read; NLGR; compprint(x[i]); print(eps);
continued fraction(result[i], b0Ramanujan, asRamanujan(x[i]),

bsRamanujan, eps); NLGR; druck(result[i]) end

Conclusion.

Most of the procedures described in this note relate to continued
fractions. Numerical data relating to the convergence benaviour of real
continued fractions may be found in [24].

A great deal of the time spent in running the given programmes is
devoted to estimating the relative error of successive convergents. In
the final version of a programme to compute a given function of z to a
prescribed relative accuracy s in the modulus, a simple numerical effi
ciency function n(Re(z), Im(z), s) which gives the order of the conver
gent which provides the required degree of approximation to the given
function, should be constructed. An optimal solution to this problem is
described in [25].

The computation of functions of a complex variable is a somewhat
circumstantial matter, requiring the deployment of a number of special

254 P.WYNN

methods. The above ALGOL programmes may not therefore be regarded
as anything more than a first step in the construction of a library of
ALGOL procedures for the evaluation of functions in the complex plane.

A number of special functions have been selected to illustrate the use
of the procedures given; many more may be taken from [26].

Acknowledgement.

All the programmes of this note have been tested (and the numerical
results produced thereby compared where possible with published tables)
on an ALGOL compiler constructed for the Xl computer by E.W.
Dijkstra and J. R. Zonneveld.

REFERENCES

I. Backus, J. W. et al., Report on the Algorithmic Language ALGOL 60, Num.Math.,
vol. 2, 1960, p. 106.

2. Froberg, C. E., Rational Chebyahev Approximation of Elementary· Functions, BIT,
vol. I, 1961, p. 256.

3. Wynn, P., On a Device for Computing the em(Sn) Transformation, M.T.A.C., vo. 52,
1956, p. 663.

4. Szego, G., Ober orthogonale Polynome, die zu einer gegebener Kurve der komplexen
Ebene gehoren, Math. Z., vol. 9, 1921, 0. 218.

5. Todd, J. and Warschawski, S. E., On the Solution of the Lichtensteinr-Gerahgorin Inte
gral Equation in Conformal Mapping: 11 Computational Experiments, N.B.S., Appl.
Math. Ser. 42, p. 31.

6. Wynn, P., The Rational Approximation of Functions which are Formally Defined by a
Power Series Expansion, Maths. of Comp., vo. 14, 1960, p. 147.

7. Chebyshev, P., Sur lea Fractions Continues, Journ. de Math., vol. 8, 1858, p. 289.
8. Stieltjes, T. J., Recherches sur les Fractions Continues, Annales de la Faculte des

Sciences de Toulose, (I), 8, 1894, Tl-122, (I), 9, 1895, A5-57.
9. Markoff, A., On Certain Applications of Algebraic Continued Fractions, Thesis, St.

Petersburg, 1884.
IO. Markoff, A., Proof of the Convergence of Many Continued Fractions, Trans. Roy. Acad.

Sci., St. Petersburg, 1893 (supp.).
11. Markoff, A., On Functions Generated by Developing Power Series in Continued Frac

tions, Trans. Roy. Acad. Sci., St. Petersburg, 1894 (supp.).
12. Markoff, A., Note aur les Fractions Continues, Bulletin de la Classe Physico-Mathe

matique de l'Academie Imperiale des Sciences de Saint-Petersburg, vol. 5, 1895, p. 9.
13. Markoff, A., Deux Demonstrations de la Convergence de Certaines Fractions Continues,

Acta Mathematica, vol. 19, 1895, p. 93.
14. Markoff, A., Nouvelles Applications des Fractions Continues, Memoires de l'Academie

des Sciences de St. Petersburg, Classe Physico-Mathematique, vol. 3, 1896.
15. Markoff, A., Nouvelles Applications des Fractions Continues, Math. Annalen, vol. 47,

1896, p. 579.
16. Shohat, J. A. and Tamarkin, J. D., The Problem of Momenta, Mathematical Surveys 1,

Amer. Math. Soc. 1943.

AN ARSENAL OF ALGOL PROCEDURES FOR COMPLES ARITHMETIC 255

17. Nevanlinna, R., Asymptotwche Emww!clungen beschriinkter Funktionen und das Stieltjes
Momenten Problem, Annales Academiae Fenniae, (A), vol. 18, 1922.

18. Carleman, T., Les Fractions Quasi-analytiques, Gauthier-Villars, Paris 1926.
19. Rutishauser, H., Der Quotienten-Differenzen Algorithmus, Birkhauser Verlag, Basel,

1957.
20. Goodwin, E.T. and Staton, J., Table of ~5"'e-u2du/(u+x); Quart. Journ. Mech. and

Appl. Math., vol. I, 1948, p. 319.
21. Perron, 0., Die Lehre von den Kettenbruchen, vol. II, Teubner, Stuttgart, 1957.
22. van Vleck, E. V., On the Convergence of Algebraic Continued Fractions whose Coeffi

cients have Limiting Values, Trans. Amer. Math. Soc., vol. 5, 1904, p. 253.
23. Ramanujan, S., Collected Papers, Cambridge 1927.
24. Wynn, P., The numerical Efficiency of Certain Continued Fraction Expansions, Proc.

Kon. Ned. Akad. Wetensch. Amsterdam, vol. 65, ser. A, 1962, p. 127.
25. Wynn, P., Numerical Efficiency Profile Functions, Proc. Kon. Ned. Akad. Wetensch.

Amsterdam, vol. 65, ser. A, 1962, p. ll8.
26. Erdelyi, A. et al., Higher Transcendental Functions, McGraw-Hill.
27. Clenshaw, C. W., Chebyshev Series for Mathematical Functions, Mathematical Tables,

vol. 5, H.M.S.O., London 1962.

MATHEMATISCH CENTRUM
AMSTERDAM

