STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

General Purpose Vector Epsilon Algorithm

AT.GOL Procedures

P ° E?Z}-m

196h‘

Numerische Mathematik 6, 22—36 (1964)

General Purpose Vector Epsilon Algorithm
ALGOL Procedures*

By
P. WYNN

* Communication MR 53 of the Computation Department of the Mathematical
Centre, Amsterdam.

1.

At the 1062 IFIP Congress in Munich the author gave an mvited expository
talk on acceleration techniques in Numerical Analysis. It had been his intention
to include in the proceedings of this Congress two general purpose ALGOL pro-
cedures together with a number of short programmes 1illustrating their use. In
this wav work in what is at this time a critical domain of inquiry in Numerical
Analvsis would have been thrown open to as large as possible a forum of ex-
perimentation. Due to restrictions which were imposed upon space it was not
possible to publish these procedures m the Congress proceedings; it 1s the pur-
pose of this note to cause them to be published here. Before giving these pro-
cedures a short explanation 1s embarked upon.

2.
The s-algorithm 1s a computational device for accelerating the convergence
of a slowly convergent sequence S,, (m=0, 1, ...). From the initial conditions
M = (m=1,2,...), e =S (m=0,1,...)
further quantities ¢ are constructed by means of the relationship

fm) __ (m4-1} o ((m-+1) (m) -1 _ ,
gl T e e e (m,s =0,1,...). (1)

It transpires that in certain cases the various sequences & (s=0, 1, ...) for
fixed m, converge far more rapidly than the original sequence S, (m=0, 1, ...).
(For the theory of this algorithm see [1] and its references). The quantities
#™ may be arranged in the following array:

H{0)
‘0o
{1 {0
LA 3)
A1} (0)
<0 2
L& (2) {,*(1} ‘1_*(0)
1 <y 3
{*,%’2} é.gzl}
(3) {2
) 583))

Vector Epsilon Algorithm Arcor Procedures 23

in which the quantities in (1) occur at the vertices of a lozenge:

glm)
1
3@-‘;) 5%)1
5§ m-+1)
3.

The whole of the g-array may be built up by use of a vector / of quantities
which, at some stage, stretches from & to &?. A new S,,., (= &"*") is com-
puted and the vector / 1s displaced one space downwards in the g-array, so as

to stretch from &f”*1 to &) ;. The process requires two auxiliary storage boxes
aux? and auxl, and a working space)

: . . (0
aux0; in Fig. 1 the process is in- /Zm =Em
complete, the wvector / contains
quantities lying along the heavy line.

The contentsof /,_, !, aux0 and
auxl form a lozenge in the g-array.
The contents of aux0 are computed
from those of /,_,, /, and auxl; the
contents of aux? are transferred to
l._,, those of auxl to aux2, and
those of aux0 to anxl. The value Fig. 1
of s 1s Increased by unity and the
process 1s repeated. If the quantities involved are non-scalar (i.e. vectors or
matrices) 1t 1s quicker to change the labels on the boxes than move their con-
tents around. In the procedures to be given there are three integer labels called
nought, one and fwo and these take cyclically the values 0, 1 and 2.

4,

The eg-algorithm may be applied to slowly convergent vector sequences by
using as a definition of the inverse of a vector a suggestion due to K. SAMELSON:

7 ~1
(yl’ y21‘“ﬁyn)_1:(zy77f) (71!?23*“:??;)'

r=1

The bars in this expression denote complex conjugate quantities: if the com-
ponents of the vector are all real, the Samelson inverse is formed merely by
dividing the vector throughout by the sum of the squares of its components.
(This 1s done in the procedures by the procedure real Samznv.)

5.

Iterated vector sequences occur most naturally in Numerical Analysis in
the tollowing way. We are concerned with the function ¢(x) which is defined
for a= x= b and satisfies a functional equation of some sort (an integral equation,
for example). This equation is solved numerically by finite difference methods,
sub-dividing the range into IV parts, we are concerned with a vector of solution
values. The equation is solved iteratively, we obtain a sequence of vectors.

24 P Wy NN

nuting such vector sequences attention must be focussed upon

Siretlv the distance between the current vector and the next
red ; in the procedures to be given the distance between two
vectors {uney, une,, ..., uney) and (aulrey, autre,, ..., ainirey) 15 taken to be

wind distance, = une; — autre;. It the original

e g
o
2
#ﬂﬂ
i
P
i
oo
b
&9
L,
ot
oy
iy
B

ﬂ&a}k Vabs tpoint distance)}
iteration ~cheme converges this distance mayv be made as small as we please.
Secondlv some estimation of the fruncation error must be made at each stage.
Onlv if the distance between one iterate and its successor, and the estimate of
the truncation error are both sufficiently small, can an iterated vector be ac-

cepted as a numerical solution to the problem in hand.

6.

Two general purpose vector e-algorithm procedures are given.

The purpose of the first i1s to display the application of the e-algorithm
to iterated vectors produced by means of a functional equation as described
above. The course of action adopted is as follows: Iterated wvectors #™
(m=0,1, ..., mmax) are produced by means of the finite difference treatment
of a functional equation, and as they are produced the ¢-algornithm i1s applied,
using the vector /! as described earlier. To each of the vectors in the even
order columns of the s-array one cycle of the original functional equation is
applied, the corresponding distances and estimates of the truncation error are
printed out In two separate triangular arrays.

It must be emphasized that the application of the functional equation to
each of the entries in the even order g-array should only be done for the purpose
of display, with a relatively small value of NV and for a few steps only, in order
to see 1if application of the e-algorithm has the desired effect.

7.

Numerical experience indicates that of all the sequences which may be derived
by applving the e-algorithm to a fixed number of iterated vectors, &2 and &l
(s=0,1, ...) converge the most rapidly.

Accordingly 1n the case of the second vector ¢-algorithm procedure the course
of action 1s as follows: The functional equation is iterated and the e-algorithm
applied; the distance between either &) and &® , if m is even or & , and & ,
if m 1s odd 1s then examined. If this distance is less than some stipulated small
quantity then the iteration-acceleration process may be at an end. The vector
&) (or &) ,) is then submitted to one iteration cycle of the original functional
equation; if the distance between &9 (or &) |) and its successor from the func-
tional equation 1is less than the given stipulated agreement then for better or
for worse the 1teration is at an end. The corresponding estimate of the truncation
error 15 then examined and if this is less than the given small quantity, the
iterate resulting from &) (or &)) is accepted as the required numerical solution.
(If the estimate of the truncation error is too large, then the calculations can

always be repeated with a smaller interval.)

Vector Epsilon Algorithm ArcoLr Procedures 25

8.

Now that the general mathematical and organisational considerations have
been dealt with, we can proceed to the details of programming. We first give
three auxilary procedures of which considerable use is made.

It will be recalled that it is quite important to know whether the suffix of
the quantity &™) is even or odd. For this reason use is made of the following

boolean procedure cven (1nfeger);

value integer; integer inieger;

even : = (integer = (integer = 2) X 2);

This has as input the integer imieger; the value of the boolean procedure even
is frue if inieger 1s even and false 1f infeger 1s odd.

Furthermore it i1s frequently necessary to assign values to vectors. To assist
in this and further arithmetic operations upon vectors, we adopt the convention
that the suffix of each vector component is called ¢: the integer 2 1s not used
for any other purpose. A vector assignment of the sort indicated by

for 1. =0 step 1 until lengith do une, .= auire,;
1s carried out by the following
procedure vecteq (une, autre, length) ;
value lengih; integer lengih;
real une, autre;
begin 2 : =0;
EFQUATE: une:= autre;
1.:=1+1; if1=/lengith then goto EQUATE
end vecteq;

It can be seen Irom thus that the suffix of the first element of every vector

1s assumed to be zero; the programmes however do allow for vectors of variable
length to be dealt with.

The Samelson inverse res of the real vector #¢ is constructed by means of the
following

procedure recal Saminv (res, 1t, lengih);
value length; integer length;
real res, 7¢;
begin real denom, compt;
1 :=0Q; denom :=0;
DENOMINATOR: compt:=1t;
aenom . = denom -+ compt X compt;
1:=1-+1; if 1 =< length then goto DENOMINATOR;
vecteq (res, 1t/denom, Length)
end real Saminv:

9.

We now give the vector g-algorithm procedure intended for display, as de-

scribed in § 6. The following variables are assumed to have been declared non-
locally:

26 P. WyNN:

7. the component suffix as described in § 3.
aux[0:2, 0:order]: the boxes as described m § 3.
nought, one, two, spare label: the labels as mentioned in § 3.

distance: which indicates the distance between two successive iterates as de-
scribed 1 § 5.

truncation ervor: as mentioned in § 7 (the value of this and the preceding variable
we shall assume to be computed by means of the procedure

functional equation).

When being used in conjunction with the procedure display vectepsalg it 1s
assumed that the procedure functional equation takes its input vector from the
box aux2 and places its output vector into the box aux0.

It is frequently an advantage to know when the procedure functional equation
is being used for the first time (an example of this will be given later). For
this reason use is made of the further non-locally declared (boolean) variable
first tzme to which the value true is assigned immediately prior to the first
call of the procedure functional equation.

comment The following procedure makes use oi the non-local functional proce-
dures NLCR, which operates the New Line Carriage Return me-
chanism of the output printing apparatus, and p7ix? (...) which causes
the value otf the bracketed variable to be printed;

procedure display vectepsalg (order, mmax, functional equation, col);

comment The values ol the indices of the vectors being treated run from O

to order. mmax 1s the number of times the functional equation is
iterated;

value order, mmax, col;
integer order, mmax, col;
procedure functional equation;
begin integer m, s, spare label, sanfang, two mmax;
boolean priniing distances;
array [[0:mmax, O:order],
display [0: (mmax X (mmax —+4)) —4, 0:1],
theta M plusl [O: order] ;
procedureiake sample (ms);
value ms; integer ms;
begin first time : = (m = 0);
functional equation;

comment Atfter the values of distance and truncations error have

been computed by means of functional equation, they
are mapped onto the display vector;

arsplay [ms, 0| : = distance ;

display [ms, 1] : = truncation ervor;

comment If the samples are taken from the first column of the
epsilon array, then the next iterate produced by the
functional equation is clearly the next member of the
original sequence. It is stored for future use:

Vector Epsilon Algorithm Arcoi Procedures 27

if ms < mmax then
vecteq (theta M plus (1], aux[nought, 1], ovder)
end take sample;

twommax . =2 Xmmax,
comment LFirst iterate put equal to zero;
vecteq (theta M plus1[z], O, ovder);
for m :=0 step 1 until mmax do
begin comment Labels on boxes given initial values;
nought :=0; one:=1; two :=2;
comment First member of new backward diagonal put 1n auxI;
vecteq (aux [one, 1|, theta M plus1[1], order);
for s:=0 step 1 untilm — 1 do
begin comment epsilon algorithm process, see section 3;
real Samanv (anwx [nought, 1], aux[one, 1] —1L[s, 1], order);
if s==0 then
begin vecteq (anux [nought, v], aux[nought,v|+I1[{s—1, 1],
order) ;
vecteq(l[s—1,1], aux[two, 2], order)
end non zero s;
comment The labels on the boxes are now changed;
spare label : = nought;
nought . =itwo; two := one;
one . = spare label;
if cven(s) then
take sample ((s X (fwo mmax — s)) —4 + m)
end s;

comment End of backward diagonal reached;
if m> 0 then vecteg(I[m —1,1], aux[two, 1], order);
vecteq (I [m, 1], aux[one, 1], order);
if even () then
begin fwo : = one;

take sample ((m X (two mmax — m + 4)) = 4)
end taking sample at end of /

end »;

printing aistances : = true;
ITRIANGULAR ARRAY: NLCR; NLCR:
comment Procedure now prints out vertical strips, col columns in width,
of the even order epsilon arrays. sanfang is the suffix of the
column at the beginning of each strip;
for sanfang : =0 step 2 Xcol until mmax do
begin NLCR;
for m . =0 step 1 until mmax — sanfang —2 do
begin NLCR;
for s :=sanfang step 2 until sanfang + 2 X (col —1) do
begin comment Member of even order epsilon array is now
fished out from the display vector;

28 P. WynNN:

if (s =2 m) A (m=Zmmax— (s = 2))
then print (display [(s X (fwo mmax + 2 —s)) — 4 +m,

if printing distances then O else 1])
end s

end sanfang
end m;
if printing distances then
begin printing distances : = false;

goto TRIANGULAR ARRAY
end returning to print out truncation errors

end display vectepsalg;
10.

The vector e-algorithm procedure intended for serious application (as de-
scribed in § 7) is now given. The non-locally declared variables of which this
procedure makes use are as before. This time, however, it is assumed that the
procedure functional equation takes its input vector from the box aux?2 and
places 1ts output vector into the box auxlI.

procedure veciepsalg (vesult, ovder, stipulated agreement, fumctional equation,
avarlable storage, storage nol exceeded,
small enough trumcation ervor);
value order, stipulated agreement, available stovage;
real resuli, stipulated agreement;
integer order, available storage;
boolean siorage not exceeded, small enough truncation ervor;
procedure functional equation;
begin integer s, spare label, m ;
array [[0:available storage = (order +1) — 1, 0:order],
theta M plus1[0: order | ;
real procedure fest distance (une, autre) ;
real une, autre:
begin real abstand, point distance;
abstand :=0; 1:=0;
MEASURE: point distance : = une — autre;
if abs (point distance) > abs (abstand) then
abstand . =powint distance;
1:=1-+1; if 1= order then goto MEASURE;
test distance : = abstand
end obtaining fest distance;
comment Epsilon process prepared, first iterate put equal to zero;
m :=1; vecteq (theta M plus1[z], 0, order) ;
vecteq (L0, 2], 0, order) ;
EPSALG: comment Labels on boxes given initial values;
S:=mnougnt:=0; one:=1; two:=2;
jarst tume 1= (m =1);
comment Last iterate put into aux2 in preparation for functzonal equation;
vecteq (aux [two, 1], theta M plus1[z], order) ;
junctional equation;

Vector Epsilon Algorithm Arcor Procedures 29

comment Next 1terate stored array;
vecteq (theta M plus (1], aux|one, 1], order) ;
EPSLOOP: comment epsilon algorithm process, see section 3;
real Saminy (aux [nought, 1], aux|[one, 1] —L[s, 1], order);
if s==0 then
begin vecieq (aux [nought, 1], aux [nought, 1] +-1[{s—1, 1], order);
vecteq (L[s—1, 2], aux [two, 1], order)
end;
comment The labels on the boxes are now changed;
spare label : = nought;
nought : =ltwo; two :=one;
one : == Spare label;
s:=s-4+1; if s<m then goto £EPSLOOP;
comment End of backward diagonal now reached;
vecteq (L [m —1,1], aux [two, 1], ovder) ;
vecteq (L[m, v], aux[one, 1], order) ;
if m =2 then
begin comment Examine distance and truncation error, see section 7;
nought . = (if even (m) then 1 else 0);
if abs (fest distance (I [m — 3 + nought, ¢], L[m — 1+ nought, 7))
< strpulated agreement then
begin vecteq (aux [two, 1], [[m — 1+ nought, 11, order) ;
functional equation;
if abs (distance) < stipulated agreement then
begin siorage not exceeded : = true;
if fruncation ervor < stipulated agreement then
begin small enough truncation error : = true;
vecteq (vesult, aux [one, 1], order)
end complete success
else small enough truncation evror : = false;
goto END
end examining truncation error
end examining distance
end examining distance and truncation error;
mi=m—+1;
if m X (order + 1) << available storage
then goto EPSALG
else storage not exceeded . = false;

END:
end vectepsalg;

Note: It is remarked in passing that the preceding two procedures may be
made to produce the results of the p-algorithm merely by causing the integer
s to be declared non-locally and changing the assignment

vecteq (ves, it|denom, length) ;
of the procedure real Saminv to
vecteq (ves, (S 4 1) Xit/denom, length) ;

30 P. WynNN:

11.

The two vector g-algorithm procedures referred to in the title of this paper
have now been given. In order to illustrate their use we give an example which
is of considerable interest in itself. It concerns the iterative solution of the

Lichtenstein-Gershgorin equation:

) 4

R k, & (2) k()
U (s) """"“"";;'“Gf {”1 —k, cos (t+) 14k, COS (£4-5) }dt+ (1)
k~1sin (s)
-+ 2arc tan { (1= cos (5)) By c0s (5) K~ }

where
Ry = (R*+1)71, ko =Fky(R2— 1), Re =1 — R72.

The equation is solved iteratively so as to produce the iterated vectors §™
(=0, 1, ...) by use of the scheme:

99 =0, V=K LB (m=0,1,...),

where the symbols K and f have a meaning made obvious by inspection of (1).
The integrals are approximated by means of the operational formulae

atnh

J f(t)thk{%fo—{»fl—}—-”—}—]‘n___l—{—%]‘”—{-C} (2)

47
where

C =3 (A= V) =2 (Ao + V1) + 720 (A°fo — V°1,) — 165 (4*fo + V21,).

It i1s assumed that the magnitude of the truncation error during each iteration
cycle is indicated by max (|15 4470l |58 V27,|) taken over the range of s.

A procedure for the iteration of the integral equation is now given. As
before the index 7 of the component 4, is a non-locally declared integer. The
estimates of the distance between two successive iterates, and of the fruncation
errov, are real variables declared non-locally. Use is also made of the non-local
Boolean variable (first fime) mentioned earlier; when this has the value true
the iteration cycle is prepared. The procedure has as input a parameter (&),

the number of iniervals (N), and the currvent vector of real values. It produces
the next iterate:

procedure Lichtenstein Gershgovin

(next, current, pavameter, number of intervals);
value parameter;

real next, current, pavameter;
integer number of intervals;
begin integer N, two N, N durch 2;
real p7;
own real array kernel, beta [0:number of intervals];
N .= numbey of iniervals:
twolN :=2XN; Ndurch2 :=N =2
p1 :=3.1415926535 89794 ;
if first time then
begin comment Prepare the integral equation;

Vector Epsilon Algorithm Arcor Procedures 31

real bz over N, au, ks, k1, k2, R3, k4,
aul, aul, au3d, aud, k times k1 over N ;
comment The following procedure ensures that the correct value
of the arctangent 1s taken;
real procedure correct side of cut;
correct side of cut:=(If au2 =0 then aul else aul — 2 X p1);
RS . = parameter X parameter ;
RI:=1/(1-4ks); R2:=(ks—1)/(ks+1);
REL:=1/ks; k3 :=1— k<4;
P1 over N :=pD1/N;
R times k1 over N :=parameter X RI/N ;
for ::=0 step 1 until N durck 2 do
begin comment The evaluation of the kernel and of beta 1s done
for s increasing from 0 and decreasing from $2
simultaneously;
au .= coS (1 Xpt over N); aul:= k2 Xau;
rRernel[1]: =k times k1 over N/(1— aul);
kReynel [N —1|: =k tuimes k1 over N/(1+ aul);
if :93=0 then
begin aul :=sin (1 Xpz over N);
auns . =k3 Xau;
aud : = aunllparameter;
aul . =2 Xarctan (aud[((1 — au) X (aud — aud)));
beta[1] : = correct side of cut;
aul : =2 X arctan (and[((1 + au) X (— aud — aud)));
beta| N — 1] := correct side of cut
end non zero 17

else
begin beta[0]:= —p1; beta[N]:=0
end zero 2

end ¢
end preparing integral equation;

comment Cycling process: compute the integrand;
begin integer 11, 7, 471, 172;
real sum, theta t, theta pr minus ¢,
forth integrand, back integrand,
minusln, forward diff, backward diff,
last term, Dont arstance;
boolean Neven:
array end, beginning [0:4, 0:4], c[1:4];
c(1]:=1/12; c[2]:=—1/24;
¢[3]1:=19/720; c[4]:=—13/160;
Neven : =(N = 2 X Ndurch?);
distance : = truncation ervor :=0; 7 :=0;
comment ; indicates the value o1 s;
ITERATION: sum:=0; 11:=0;

32

P. WynNN:

comment 71 indicates the value of ?;
INTEGRATION : if first time then
begin ¢ :=11; thelal .= current;
1:=N —11; theta D1 manus t = current,
111 :=121-+7;
comment 771 indicates the value of £+ s;
if ;1> N then yj1:=twoN —171;
112 :=(if 11>7 then N +7 —11 else N —7 +411);
comment 772 indicates the value of s+ pz —7;
forth integrand : = kernel[1)1]| Xtheta ¢
— kernel [N — 41| Xtheta i minus t;
back integrand . = kernel [172] Xtheta p1 minus ¢
— kernel [N — 172 Xtheta t;
comment The evaluation of the sum in (2) i1s being con-
ducted in two directions simultaneously. (lhe
symmetry of the kernel is being exploited);
SUM = SUM
(if 21 =0 then (forth integrand +- back iniegrand) X 0.5
else if1 Neven v (Neven A 11 == Ndurch 2)
then forth integrand +- back integrand
else forth integrand) ;
if 11 <4 then
begin comment Store function values in preparation for
evaluation of C in (2);
beginning [i1, 0] .= forth integrand ;
end [4 — 11, 0] := back integrand
end storing;
1l i=11-+1;
if 11< Ndurch?2 then goto INTEGRATION ;
comment Evaluate C in (2);
minusin .= —1 ;
for1:=1,2,3,4 do
begin for :1: =171 step 1 until 4 do
begin beginning (21, 11]:=
beginning (11, 171 — 1]
—beginmning [11—1, 471 —1];
end [11,171] 1=
end 11,11 —1] —end[i1—1, 271 —1]
end differencing;
forward duiff 1= c[171] X beginning [41, 171];
backward diff : = minusIn Xc[171] Xend [4, 171];
sum : = sum -+ forward diff + backward diff;
manusln : = — minusin
end computing C;
comment Record the maximum truncation error:
for last teym : = abs (forward diff),

abs (backward diff) do

Vector Epsilon Algorithm ArcoL Procedures 33

begin if last term> truncation error then
truncation error :=last term
end estimating truncation error

end passing through ¢ values;

sum .= sum -+ beta [7];
1.==1]; next:==Sum,
comment Estimate the distance between the current vector and
the next;
pownt distance : = sum — curvent;
if abs (point distance) > abs (distance) then
aistance . = pownt distance;

7:=17-+1; ifj<N then goto ITERATION
end cycling process

end Lichtenstein Gershgorin;

12.

Three complete ALGOL programmes will now be given. The first serves to
1llustrate the use of the procedure just given, and carries out the straightforward
1iteration of the integral equation.

comment Iteration of Integral Equation;
begin integer m, 1, M, M plusl, N, col;
real distance, truncation evvor, k, delta:
boolean first time;
comment This comment must be replaced by the procedures vecteq and
Lichtenstein Gershgovin;
kR:=vead; N :=vead; delta:=vread; col:=vread;
comment read is a non-ALGOL procedure whose function 1s obvious;
NLCR; print (R); print(N); prini(delia);
begin array theta [0:1, 0: N];
m:=M:=0; Mplusl:=1;
vecteq (theta[M, 2], 0);
CYCLE: first tome : = (m = 0);
Lichienstein Gershgorin
(theta | M plusl, 1], theta|[M, 2], k, N);
NLCR; print(m); TAB; print(distance);
comment TAB is a non-ALGOL procedure which moves the type-
writer carriage to the next tabulator stop;
if 1 first tvme then
begin TAB; print(truncation error)
end:

if abs (distance) > delta then
beginm:=m+1; M :=Mplusl; M plusl :=1—M,
goto CYCLE
end returning to iteration
Numer. Math. Bd. 6 3

34 P. WynNN:

else
begin NLCR; if truncation error < delia then

for 7 :=0 step 1 until N do
begin if (z+ —col) Xcol =1 then NLCR;
brint (theta [M plusl, 1)
end printing component
end printing whole solution
end block in which theta 1s declared

end

13.
The second complete programme serves to show how the procedure aisplay
vectepsalg should be used.

comment Display Application of Epsilon Algorithm to Iteration of Lichtenstein

Gershgorin Integral Equation;
begin integer ¢, N, nought, one, two, mmax, col;
real distance, truncation errvor, k;

boolean first time;
comment This comment must be replaced by the procedures Lichtenstein

Gershgorin, evem, vecteq, real Saminv, and display vectepsalg;

k:=vead; N :=vread;, mmax :=vread;, col:=read;
NLCR; print(R); print(N);
begin array aux[0:2,0: N];

procedure disp vectepsalg L G ;

Lichtenstein Gershgovin (aux [nought, 1], aux [two, 1], B, N);

display vectepsalg (N, mmax, disp vectepsalg L G, col);
end block in which the size of the boxes is declared

end

14.
The third complete programme 1illustrates the use of the procedure vectepsalg

comment Application of the Epsilon Algorithm to the Iteration of the Lichten-
stein Gershgorin Integral Equation;
begin integer 7, N, nought, one, two, col, very end;
real distance, truncation ervor, R, delta:

boolean perhaps successful, indeed successful, first time;
comment This comment must be replaced by the procedures Lickhienstein

Gershgorin, even, vecteq, veal Saminv, and vectepsalg ;

k:.=vread; delta :.=vread; N :=7read:
very end :=vread; col.=read;
NLCR; print(R); print(N); print(delta); print(very end);
begin array aux[0:2, 0: N), final answer [0 : N];

procedure vecteps LG;

Lichitenstein Gershgorin (aux [one, 1], aux [two, 1], k, N);

vectepsalg (final answer 1|, N, delta, vecteps LG, very end,

perhaps successful, indeed successful);

Vector Epsilon Algorithm Arcor Procedures 35

if perhaps successful A indeed successful then
for ::=0 step 1 until IV do
begin if (2 = col) Xcol =1 then NLCR;
print (final answer [1])
end printing component
end block in which si1ze of boxes and final result is declared

end

15.

Two series of numerical results which may be produced by use of the second
complete programme, but which may nevertheless be used to verify the working
of the other two, are given in Tables 1 and 2. Here the range 0 — = has been
divided into (V=) 72 steps and the parameter 2 has been taken to be 7.5.
The two triangular arrays described in § 6 are as follows:

Table 1. Distances

0| —5-41101
1 —+3-85450 —0-50711
2 — 260179 004957 —0-01263
3 —+1:89641 — 001810 -—0-00203 — {00031
4 —1-36144 —+ 000912 ~— (-00042
5 -+ 0-99621 — 000508
6| —0-73976
Table 2. Estimates of the truncation ervoy
O Q-0
1 0-00007 0-00005 |
2 0-00004 0-00005 0-00005
3 0-00005 0-00004 0-00005 0-00005
4 0-00004 0-00005 0-00005
5 0-00005 0-00005
6 0-00004 |

Examination of Table 1 indicates that the convergence of the original iterative
scheme (indicated by the successive distances —5-4, + 3-8, —2-7,...) 1s rather
slow but that that of the transformed sequence &) (s=0, 1, ...) (indicated by
the successive distances — 5-4, — 0-51, — 0-013, ...) 1s much more rapid.

16.

It will be realised that the given vector e-algorithm procedures have quite
general application in Numerical Analysis. In particular they may be applied
to iterative techniques of linear algebra (the Jacobi relaxation scheme, the
Gauss-Seidel relaxation scheme, and so on). (Of course, the estimation of the
truncation error may be dispensed with here.) Furthermore, since any manifold

3*

36 P. WynnN: Vector Epsilon Algorithm ArcorL Procedures

which 1s likely to occur in Numerical Analysis may easily be mapped onto a
vector, these procedures may easily be applied to the iterative solution of partial
differential equations and further related problems.

17.

The results displayed in Tables 1 and 2 were produced on the X1 computer
in Amsterdam using an ALGOL translator constructed by J. A. ZONNEVELD and

E. W. DiJKSTRA.

References

[1] WyNN, P.: Acceleration Techniques in Numerical Analysis, with Particular Re-
ference to Problems in One Independent Variable. Proceedings of the IFIP
Congress 1962. North Holland Publishing Co. pp. 149—156.

Mathematish Centrum
2e Boerhaavestraat 49, Amsterdam-O

(Recerved July 12, 1963)

