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1 . 
.:·\ t tl1t• 1 l)(>2 I l-;-I 1-> (~ ()11grt•s:; i11 1\,1 u11icl1 t}1e ;;1utJ101· g:.:1 \·e [tll in \'it<~c1 t·Xp(>sit<Jt·)~ 

t4.1 lk ()11 tl('<:elt':'rr1t it)11 t(•t~J1r1ic1t1E·~ in N t1111(•1·ic:::i.l 1\naly"sis. It l1c=tcl bet·n l·1is in ter1 tion 
t() in('!t1tle:· i11 tl1t.' J)r<-l('t.'t:.·t·li11gs <)i' tl1is Cc)11gress t\,'O ge11eral purpc.)se .. .\r~c;or~ prl1-
Ct'<tl11·t:"•~ t<,gt:-t l1t:·r \\'it.11 ~1 11un1l)E•1· of sl1(~)rt p1·ogran1n1es illustrating thl~ir use. I11 
t l1is \\'~•~· \\'t-irk i11 \\'llil t is ~1.t tl1is tirnt· ~1 critic<-il cl()n1ain of inc111ir}"' in N un1erit~al 
;\11rtl\'~is \\'t.>tlltl 11:.l\'t' l1(•t:-n tl1r·()\\'11 (>f)Ct1 t() as l(1rge as pl)Ssible ::t fc>run1 of ex-

• 

pt"'1·irnt:'11t;:tti(·•11. I:>11t~ t:{} 1·t•~t1·icti(:)r1s ,,:l1icl1 \\"t•re imp()Seti upt)n sp~1ce it \\·~1s n<)t 
l)<)ssit~lt: t() pl1l·)lisl1 tl1ese prc)cec:lurt·s i11 the C(~)11gress procE~edings; it is tl1e pt1r­
J){)~t· t)i. tt1is tlt>tt:· t(J t'::-1u:,:;t:' ·tl1en1 t(1 bt~ p11blisl1ecl l1t·re. I3ef<_)re gi\·ir1g these pro­
l'E•<lures rt sl1c>rt expI<t11;1ti<)n is embarked up()n. 

2. 
~1~11e t·-(1lg()ritl1111 is ~l <.~C)Input,1tit1n~tl dt.•\"ice for accelerating tl1e con\·ergenc'c~ 

<·)t7 r1 slt~l\\'l)· cc,11\·erge11t sequt,,nt'e ~S1n (1·12 = 0, ·t, ... ). From tl1e initial conditit111s 

,:.,(m) - - S (~o .._ m ( '}'}1, = 0, 1 , . . . ) 

l)V n1eans - relationsl·1ip 

(11z, s •--- O, 1 , ... ) . ( 1} 

It trc1nspirt·s tl1at in certai11 cases tl1e \"arious sequences ::-·~~) ( s. O, ,1, ... ) for 
t·ixt·cl 11z, C<)n\·erge f;;1r n1ore rapidly" than the origi11al sequence ... ',m (t1't=~·o, 1, ... ). 
(I:t->r tl1e tht.•,:)f}" t1f tl1is i:1lg(1ritl1n1 see [ JJ a11d its references . The quantities 
1-·~"'1> n1::1>· be arrr1nge(l in tl1e i·<~>llo\'.~ng arrayr: 

; (0) 
0 

J- {l) 
--1 

i:-(0) 
1 

f.(1) 
0 

f (0) 
•l ... 

!.,(2) {.' (1) J-.(0) 
' -1 .. 1 3 

'.( 2) <.'( l} • (' 0 ~ •l ... 
t,,{3) f (2) • • ( -1 1 

• l:.(3) • • 0 

• • • 

• 
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in which the quantities in (1) occur at the vertices of a lozenge: 

e(m) 
·s 

3. 

c-(m) 
c-s-l-1 

• 
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The whole of the .8-array may be built up by use of a vector l of quantities 
wl1ich, at some stage, stretches from s&m) to e~>. A ne\v Sm+l ( ~ E~m+ 1>) is com­
puted and the vector l is displaced one space downwards in the £-array, so as 
to stretch from e~m+I) to E~~ 1 . The process requires two auxiliary storage boxes 
aux2 and auxl, and a working space 
auxO; in Fig. 1 the process is in­
complete, the vector l contains 
quantities lying along the heavy line. 

The contents of ls-i, l5 , auxO and 
auxl form a lozenge in the £-array. 
The contents of auxO are computed 
from those of l5 _ 1, ls and auxl ; the 
contents of aux2 are transferred to 
l5 _ 1 , those of auxl to aux2, and fo(m+t~lo 

those of auxO to auxl. The value 
of s is increased by unity and the 

zr 

ls-t 
......_ 

,---__,; 
I llt/X t j 

auxz 

Fig. 1 

process is repeated. If the quantities involved are non-scalar (i.e. vectors or 
matrices) it is quicker to change the labels on the boxes than move their con­
tents around. In the procedures to be given there are three integer labels called 
nought, one and two and these take cyclically the values O, 1 and 2. 

4. 
The E-algorithm may be applied to slowly convergent vector sequences by 

using as a definition of the inverse of a vector a suggestion due to K. SAMELSON: 

n -1 

22 y,,y, (Y1, Y2, · · ·, Yn) -
r=l 

The bars in this expression denote complex conjugate quantities: if the com­
ponents of the vector are all real, the Samelson inverse is fo1·1ned merely by 
dividing the vector throughout by the sum of the squares of its components. 
(This is done in the procedures by the procedure real Saminv.) 

5. 
Iterated vector sequences occur most naturally in Numerical Analysis in 

the following way. We are concerned with the function cp(x) which is defined 
for a< x::;: b and satisfies a functional equation of some sort (an integral equation, 
for example). This equation is solved numerically by finite difference methods, 
sub-dividing the range into N parts, we are concerned with a vector of solution 
values. The equation is solved iteratively, we obtain a sequence of vectors. 
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\ \'}1 t:·11 (,· (·1111 J)ll t i11g s ll a· 11 \ ·,:•(··t < 1r st·(111~_1 J1 ct:·s ,l t t (•n t i()t1 n1 list l_lt·· f <1(·· t1sst~cl u J)<)ll 

t\\.,> t}llitt1titit•s. l;ir;,;tly· tl1t' ,.iisftl11i·t' l,,t't\·~·t•t:•r1 tl1t~ <~111·r<~11t \·t~(-t<.)f ancl tl1t· Ilt:·xt 

1·11 u '.'- t. l )<' r11 t.'· ,1~111·t•<l : i 11 t l1 <~ f) 1· ( 1 t' t.'(:l tl rt ·s t t) l)t • gi, ·(~Tl t 11 t" cl is t~t 11 L't.." l)t\t \\' t:'t·n t \ ,. ◄_) 
,·t·<·t, ,1·~ {i,11,'.1 , 1t11e':1, ...• 111tt',,.) [iil<l (uitlre·1 , tlttirt·2 , ••• , aztlre'.\.) is t~1k(~11 tc) l)t• 

n1a.x {i,lj_'\ (1f'l1,111t '-'f2sl1.111,·,·i:i]•, ,,·]·1t•t·l, pti1'11t t.iisftlll('t:e:1 '.'.;"'.:: z1,1zt•i -~ ,11,trt·i. If tl1e (_)rigir1c1l ., 
itt·r·(tti«iI1 ,tl·1t:'rI1t· i:i.;11\·t·rgt·s ti1is c1ist~tl1(.'t· n1~i~· be 111'-1tlt· ,ls :-;m~1ll as ,,·e plt:-[1sc~. 
St•("(1t1(ll\· -.,1 ,r11t· t'::-.ti111"tti<lt1 ()f. tl1t' t,·1t,1.t·(tfic:11i t~rrl.>r n111st l)e n1r1cle at each str1ge . 

• 

<:)11 l \' it· t llt.:· <tist .:tn("t~ l:,t_•t \\'t~t•r1 ,_111 t'. it t'f<l t(~ «:ln<l its success<)r, ::111d t}·1e es tin1a tt~ t1 f 
• 

tllt' tr,111(·{1tit,r1 t'ff<)I" ,:t1·c." t,(1tl1 ~t1f'fi<'it:ntl\~ sr11all, <.~,tr1 ::tr1 ite1·~1ted \'eCt(:_)f lJe ac-
• 

("t•ptc·(1 ~1~ ~1 nt1n1t~1·it·,::i.l st.)lt.1ti,,r1 t(l tl1<: l)ft)l)It~n1 i11 l1,:111ci. 

6. 

':f,,·c) g(~nt\rftl purp<Jse \"ectclr E-alg<J1·itl1m p1·ocedt1res are gi\·en. 

prh~ .. ~ p11rp<)se ()f tl1e first is t<) {lisJ)l,t}" tl1e application ()f the £-algorithm 
to iterittt·ci \·ect(>rs producecl h}" n1eans ()f a functional equation as described 
~\bt)\'t•. Tl·1t'.; t't)UfS.(' cif acti(~~n ,l(topted is as follo,vs: Iterated vectors {}Cm) 

(:»i ::"_:-_ (1 1 t, ... , 11i n1rtx) ~1rt· J)r()cluced bj:- 1neans of the finite difference treatment 
<)f a 1·unctil)rtal t"c1uati<~ln. ;,,1.nd as tl1t:~)r rirt~ prt)dt1ced the t·-algoritl1m is applied, 
ltsing tl1e \'t'l"t<~lr l as described earlier. To each of the \rectors in the e,,.en 
(1rdt~r C<_)lur1111s ()f tl1e i;-(1rraJ~ one (~J~cle of the ()riginal functionc1l equation is 
~lJ)plied, tl1t) cc)rrt·sp{)11ding distances and estin1ates of tl1e truncation error are 
printec1 ()Ut in t\\'t) septlrate triangula1· array.,.s. 

It must be e1n1)hasized that the application of the functional equation to 
each t1f tl1e t~ntries in tl1e e\l'en orcler s-array should only" be done for the purpose 
(>f displ,l)~, \vith a relati\·ely" small \ 1alue of N and for a fe,v steps onl)r, in order 
to see if application of tl1e t·-algorithm l1as the desired effect. 

7. 

Numerical experience indicates that of all the sequences \Vhicl1 may be derived 
by· apply~ing the e-algoritl1m to a fixed nun1ber of iterated v,.ectors, e~°} and e~~ 
(s--=O, ,1, ... ) Ct)Il\"erge the most 1~apidl),r. 

Accordingly in the case of the second vector e-algorithm procedure the course 
<.1f action is as follows: The functional equation is iterated and the e-algorithm 
applied; the distance between either e~) and e~~ 2 if ni is even or s!;~1 and e ~~s 
if m is odd is tl1en exan1ined. If this distance is less than some stipulated small 
quantit)r tl1en the iteration-acceleration process may be at an end. The v~ector 
e;2) (or e~~1 ) is then submitted to one iteration Cy'"cle of the original functional 
t'.\quation; if the distance betvveen t·~> (or e~~1) and its successor from the func­
tional equation is less than the given stipulated agreement then for better or 
for \Vorse tl1e iteration is at an end. The corresponding estimate of the truncation 
error is then examined and if this is less than the gi"ren small quantity, the 
iterate resulting fro1n s;2> (or e~~1) is accepted as the required numerical solution. 
(If the estimate of the tru11cation error is too large, then the calculations can 
al\\1a)'"S be repeated \\ritl1 a smaller interv"al.) 
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8. 
Now that the gene14 al mathematical and organisational considerations have 

been dealt with, we can proceed to the details of programming. We first give 
three auxilary procedures of which considerable use is made. 

It will be recalled that it is quite important to know whether the suffix of 
the quantity sim) is even or odd. For this reason use is made of the following 

boolean procedure even (integer); 
value integer; integer integer; 
even:= integer= (integer : 2) X 2); 
This has as input the integer integer; the value of the boolean procedure even 
is true if integer is even and false if integer is odd. 

Furthermore it is frequently necessary to assign values to vectors. To assist 
in this and further arithmetic operations upon vectors, we adopt the convention 
that the suffix of each vector component is called i: the integer i is not used 
for any other purpose. A vecto1· assignment of the sort indicated by 

for i : = O step 1 unfi I length do une;, : = autrei; 
is carried out by the f ollo,ving 
procedure vecteq (,ztne, autre, length); 
value length; integer length; 
real une, autre; 
begin i: =O; 

EQUATE: une:=autre; 
i :=i + 1; if i<length then goto EQUATE 

end vecteq; 

It can be seen from thus that the suffix of the first element of every vector 
is assumed to be zero; the programmes however do allow for vectors of variable 
length to be dealt with. 

The Samelson inverse res of the real vector it is constructed by means of the 
following 

procedure real Saminv (res, it, length); 
value length; integer length; 
real res, it; 
begin real denom, compt; 

i : = 0 ; denom : = 0 ; 
DENOMINATOR: compt:=it; 
denom : = denom + compt x compt; 
i :=i + 1; if i < length then goto DENOMINATOR; 
vecteq (res, it/denom, length) 

end real Saminv; 

9. 
We now give the vector e-algorithm procedure intended for display, as de­

scribed in § 6. The following variables are assumed to have been declared non­
locally: 
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i: the component suffix as described in § 8. 
aux [O: 2, o: order]: the boxes as described in § 3. 
noitght, one, tze,o, spare label: the labels as mentioned in § 3. 
dista1·ice: which indicates the distance between two successive iterates as de­

scribed in § 5. 
trtttication error: as mentioned in § 7 (tl1e value of this and the preceding variable 

we shall assume to be computed by means of the procedure 
f 11nctional equatio1i) . 

When being used in conjunction with the procedure display vectepsalg it is 
assumed that the procedure fitnctional eqi,tation takes its input vector from the 
box aux2 and places its output vector into the box aiixO. 

It is frequently an advantage to know when the procedure functional equation 
is being used for the first time (an example of this will be given later). For 
this reason use is made of the furtl1er non-locally declared (boolean) variable 
first time to ,vhich the value true is assigned immediately prior to the first 
call of the procedure functional equation. 

comment The following procedure makes use of the non-local functional proce­
dures NLCR, \\rhich operates the New Line Carriage Return me­
chanism of the output printing apparatus, and print( ... ) which causes 
the value of the bracketed variable to be printed; 

procedure display vectepsalg (order, mmax, functional equation, col); 
comment The values of the indices of the vectors being treated run from O 

to order. mniax is the number of times tl1e functional equation is 
iterated; 

value order, nimax, col; 
integer order, mmax, col; 
procedure functional eqitation; 
begin integer nz, s, spare label, sanfang, two mmax; 

boolean printing distances; 
array l [O: mmax, O: order], 

display [O: (mmax X (mmax + 4)) : 4, O: 1 ], 
theta M plus 1 [ O : order] ; 

procedure take sample (ms); 
value ms; integer ms; 
begin first time:=== (m = O); 

I unctional equation ; 
comment After the values of distance and truncations error have 

been computed by means of functional equation, they 
are mapped onto the display vector; 

display [ ms, OJ:=== distance; 
display [ms, 1 J : = truncation error; 
comment If the samples are taken from the first column of the 

epsilon array, then the next iterate produced by the 
functional equation is clearly the next member of the 
original sequence. It is stored for future use; 
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if ms < mmax then 
vecteq (thetaM plus 1 [i], aux [nought, i], order) 

end take sample; 

twommax :=2 xmmax; 
comment First iterate put equal to zero; 
vecteq (theta M pl,zts 1 [ i], 0, order) ; 
form:= O step 1 until 1nmax do 
begin comment Labels on boxes given initial values; 

nought : == 0; one : = 1 ; two : = 2 ; 

27 

comment First member of new backward diagonal put in auxl; 
vecteq (aux [one, i], thetaM plus 1 [i], order); 
for s:=0 step1 untilm-1 do 
begin comment epsilon algorithm process, see section 3; 

real Saminv ( aux [noiight, i], aux [ one, i] - l [ s, i], order); 
if s=t=O then 
begin vecteq(aux [nought, i], aux [nought, i] +l [s-1, i], 

order); 
vecteq(l[s-1, i], aux [two, i], order) 

end non zero s; 
comment The labels on the boxes are now changed; 
spare label:== nought; 
nought : ==two; two : = one; 
one:= spare label; 
if even (s) then 
take sa1nple((sx(twommax-s)) : 4+m) 

ends; 

comment End of backward diagonal reached; 
if m > 0 then vecteq (l [ m - 1, i], aux [two, i], order) ; 
vecteq(l [m, i], aux [one, i], order); 
if even (m) then 
begin two:== one; 

take sample((mx(twommax-m+4)) : 4) 
end taking sample at end of l 

end m; 

printing distances : == true; 
TRIANGULAR ARRAY: NLCR; NLCR; 
comment Procedure now prints out vertical strips, col columns in width, 

of the even order epsilon arrays. sanf ang is the suffix of the 
column at the beginning of each strip; 

for sanfang: = O step 2 x col until mmax do 
begin NLCR; 

for m: = O step 1 until mmax - sanfang : 2 do 
begin NLCR; 

for s: = sanfang step 2 until sanfang + 2 X (col-1) do 
begin comment Member of even order epsilon array is now 

fished out from the display vector; 
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ends 
end sanfang 

end ni; 

P. WYNN: 

if (s : 2<m) A (m<mmax-(s : 2)) 
then print (display [(s x (two m1nax + 2 - s)) : 4 + m, 

if printing distances then O else 1 ]) 

if printing distances f hen 
begin printing distances: -- false; 

goto TRIANGULAR ARRAY 
end returning to print out truncation errors 

end display vectepsalg; 
10. 

The vector z-algorithm procedure intended for serious application (as de­
scribed in § 7) is now given. The non-locally declared variables of which this 
procedure makes use are as before. This time, however, it is assumed that the 
procedure functional equation tal{es its input vector from the box aux2 and 
places its output vector into the box auxl. 

procedure vectepsalg (result, order, stipulated agreement, functional equation, 
available storage, storage not exceeded, 
small enoitgh truncation error); 

value order, stipulated agreement, available storage; 
real result, stipulated agreement; 
integer order, available storage; 
boolean storage not exceeded, small enough truncation error; 
procedure functional equation; 
begin integers, spare label, m; 

array l [o: available storage : (order+ 1) -1, O: order], 
theta M plus 1 [O: order J; 

real procedure test distance (une, autre); 
real une, autre; 
begin real abstand, point distance; 

abstand : =0; i : = 0 ; 
MEAS URE: point distance : = une - autre; 
if abs (point distance)> abs (absta11,d) then 
abstand : = point distance; 
i:=i+1; ifi<order then goto MEASURE; 
test distance : = abstand 

end obtaining test distance; 
comment Epsilon process prepared, first iterate put equal to zero; 
m: = 1; vecteq (thetaM plus 1 [i], O, order); 
vecteq (l [O, i], 0, order}; 
EPSALG: comment Labels on boxes given initial values; 
s : = nought : = O; one : = 1 ; two : = 2 ; 
first time:= (m ==1); 
comment Last iterate put into aux2 in preparation for fu1•ictional equation; 
vecteq(aux [two, i], thetaM plus 1 [i], order); 
functional equation; 
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comment Next iterate stored array; 
vecteq(thetaM plus 1 [i], aux[one, i], order); 
EPSLOOP: comment epsilon algorithm process, see section 3; 
real Saminv (aux [nought, i], aux [ one, i] - l [ s, i], order); 
ifs =FO then 
begin vecteq (aux [ nouglit, i], aux [noitght, i] -t-l [ s -1, i], order); 

vecteq (l [ s - 1, i], aux [two, i], order) 
end· 1 

comment The labels on the boxes are now changed; 
spare label : === nought; 
nought : = two; two : == one; 
one : = spare label; 
s:=s+1; ifs<mthengotoEPSLOOP; 
comment End of backward diagonal now reached; 
vecteq (l [ m - 1, i], aux [two, i], order) ; 
vecteq (l [ m, i], aux [ one, i], order); 
if m>2 then 
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begin comment Examine distance and truncation error, see section 7; 
nought:= (if even (m) then 1 else 0); 
if abs (test distance (l [m -3 + nought, i], l [m-1 + nought, i])) 

< stipulated agreement then 
begin vecteq (aux [two, i], l [ m - 1 + nought, i], order); 

functional equation; 
if abs (distance)< stipulated agreement then 
begin storage not exceeded:=true; 

if truncation error< stipulated agreement then 
begin small enoitgli truncation error : = true; 

vecteq (result, aux [ one, i], order) 
end complete success 
else small enough truncation error:= false; 
goto END 

end examining truncation error 
end examining distance 

end examining distance and truncation error; 
m:=m+1; 
if m x (order+ 1) < available storage 
then goto EPSALG 
else storage not exceeded:= false; 
END: 

end vectepsalg; 

Note: It is remarked in passing that the preceding two procedures may be 
made to produce tl1e results of the e-algorithm merely by causing the integer 
s to be declared non-locally and changing the assignment 

vecteq (res, it/denom, length); 

of the procedure real Saminv to 

vecteq (res, (s + 1) xit/denom, length); 
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11. 

The t\vo vector £-algorithm procedures referred to in the title of this paper 
have now been given. In order to illustrate their use we give an example which 
is of considerable interest in itself. It concerns the iterative solution of the 
Lichtenstein-Gershgorin equation: 

k k1 ,{} (t) k1 ,{} (n t) 
D (s) dt+ --

1 +k2 cos (t+s) k 2 cos (t+s) :n 1 ( 1) 
0 k-1 sin (s) 

+ 2arc tan 
(1 cos(s)) [k3 cos(s) k-2J 

where 
k1 (k2+1)-l, k2 k1(k2 1), ka 1 k-2_ 

The equation is solved iteratively so as to produce the iterated vectors 1}(m) 

(m=O, 1, ... ) by use of the scheme: 

1),(0)=0, ,o(m+l}=K,&(m)+{J (m=0,1, ... ), 

where the symbols Kand fJ have a meaning made obvious by inspection of (1). 
The integrals are approximated by means of the operational formulae 

a+nh 

f I (t) dt = h{~ Io : /1 + · · · + f,i-1 + i In+ C} (2) 
a 

where 

C = ~ (L1fo - Vf,i) - 2\ (Ll 2 fo + V2 f1i) + i2~ (L1 3/o - J73 /n) - 1!0 (L1 4 fo + V4 fn) • 

It is assumed tl1at the magnitude of the truncation error during each iteration 
cycle is indicated by max I 1!0 11 4 / 0 ], I 1!0 f14 f n taken over the range of s. 

A procedure for the iteration of the integral equation is now given. As 
before the index i of the component {}i is a non-locally declared integer. The 
estimates of the dista1ice between two successive iterates, and of the truncation 
error, are real variables declared non-locally. Use is also made of the non-local 
Boolean variable (first time) mentioned earlier; ,vhen this has the value true 
tl1e iteration cycle is prepared. The procedure has as input a parameter (k), 
tl1e number of intervals (N), and the current vector of real values. It produces 
tl1e 1iext iterate: 

procedure Lichtenstein Gershgorin 
(11,ext, current, parameter, number of intervals); 

value parameter; 
real next, c1,,t,rrent, parameter; 
integer nitmber of intervals; 
begin integer N, tzvo N, ... l\l durch 2; 

real pi; 
own real array kernel, beta [O: 1iitmber of intervals]; 
N : = 11,i1,11iber of intervals; 
two N : = 2 x N; N durch 2 : = N : 2; 
pi : = 3 .14159 265 3 5 89794.; 
if first time then 
begin comment Prepare the integral equation; 
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real pi over N, au, ks, kl, k21 k3, k4, 
aul, au2, au3, au4, k times kl over N; 

comment The following procedure ensures that the correct value 
of the arctangent is taken; 

real procedure correct side of cut; 
correct side of cut:== (if au2< O then au2 else au2 - 2 x pi); 
ks : == parameter X parameter; 
kl : == 1 / ( 1 + ks) ; k2 : === ( ks - 1) / ( ks + 1) ; 
k4: = 1/ks; k3: =1- k4; 
pi over N: =Pi/N; 
k times kl over N: =Para11ieter xkl/N; 
for i: = O step 1 until N durch 2 do 
begin comment The evaluation of the kernel and of beta is done 

for s increasing from O and decreasing from pi 
simultaneously; 

end i 

au : = cos ( i X pi over N) ; aul: = k2 x au ; 
kernel [ i] : == k times kl over N / ( 1 - aul) ; 
ker1iel [N - i] : = k times kl over N / ( 1 + aul) ; 
if i =4= o then 
begin aul : = sin (ix pi over ... N); 

au3 : = k3 X au; 
au4 : = aul/ parameter; 
au2: = 2 xarctan (au4/((1-au) X (au3-au4))); 
beta [ i] : = correct side of cut; 
au2: =2 X arctan (ait4/((1 + au) X (-a1.J,3 - au4))); 
beta [N-i] : = correct side of cut 

end non zero i 

else 
begin beta [OJ:= -pi; beta [NJ: =0 
end zero i 

end preparing integral equation; 

comment Cycling process: compute the integrand; 
begin integer il, j, ijl, ij2; 

real sitm, tlieta t, theta pi minus t, 
forth integrand, back integrand, 
11iinusl1i, forward diff, backward dijf, 
last term, point distance; 

boolean Neven; 
array e1id, beginning [0:4, 0:4], c[1 :4]; 
C [ 1 ] : === 1 / ·12 ; C [ 2] : = - 1 / 2 4 ; 
C [3] : = 19 / 720 ; C [ 4] : = - 3 / 160 ; 
Neven: =(N = 2 xNdurch2); 
dista1ice : = truncation error : = 0; 1· : = 0 ; • 

comment j indicates the value of s; 
ITER.4TION: sum:=O; i1:=0; 
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comment i1 indicates the value of t; 
INTEGRATION: if7first time then 
begin i: === i1; theta t: === current; 

i : = N - i1 ; theta pi mi1iits t : = citrrent; 
ij1:=i1+1·; 
comment i7·1 indicates the value of t + s; 
if ifl>N then ifl:=twoN-i1·1; 
ij2: =(if i1 >i then N +1· -i1 else N-j + i1); 
comment ij2 indicates the value of s+pi-t; 
forth integrand : = kernel [ ij 1 J X theta t 

- kernel [ N - if 1] x theta pi 1ninus t; 
back integrand:== kernel [ij2] xtheta pi minus t 

-kernel [N-ij2] xtheta t; 
comment The evaluation of the sum in (2) is being con­

ducted in two directions simultaneously. (The 
syrnmetry of the kernel is being exploited) ; 

sitm :=sum+ 
(if il = O then (/ ortli integrand+ back integrand) XO. 5 
else if7 Neven v (Neven A i1 =t=Ndurcli2) 

then forth integ·rand + back integrand 
else forth integrand) ; 

if i1 < 4 then 
begin comment Store function values in preparation for 

evaluation of C in (2); 
beginning [i1, OJ:= forth integrand; 
end [ 4- -i1, OJ:= back integrand 

end storing; 
il:=il + 1; 
if il~Nd1trcli2 then goto INTEGRATION; 
comment Evaluate C in (2); 
minusln := -1; 
for ij1: = 1, 2, 3, 4 do 
begin for i1: =if1 step 1 until 4 do 

begin beginning [i1, i7"1]: = 
beginning [i1, i1·1 -1] 

-beginning [ i1 -1, if 1 -1 J ; 
end [ i 1, if 1] : = 

end [ i1, i7·1 - 1] - end [ i1 - 1, ij 1 - 1] 
end differencing; 
forward diff: = c [ij1] X beginning [if1, ij1 J; 
backward diff : = miniesln X c [if 1 J X end [ 4, ij1] ; 
sum:= sum + forward diff + backward diff; 
minitsln :== -minusln 

end computing C; 
comment Record the maximum truncation error· , 
for last term:== abs (forward diff), 

abs (backward diff) do 



Vector Epsilon Algorithm ALGOL Procedures 

begin if last term> truncation error then 
truncation error : == last term 

end estimating truncation error 

end passing through t values; 

si1,m : = sutn + beta [i] ; 
i : == j ; next : = sum ; 
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comment Estimate the distance between the current vector and 
the next; 

point distance : = sum - current; 
if abs (point distance)> abs (distance) then 

distance : == point distance; 
1·:=j+1; ifj<NthengotoITERATION 

end cycling process 

end Lichtenstein Gershgorin; 

12. 
Three complete ALGOL programmes will now be given. The first serves to 

illustrate the use of the procedure just given, and carries out the straightforward 
iteration of the integral equation. 

comment Iteration of Integral Equation; 
begin integer m, i, M, M plusl, N, col; 

real distance, truncation error, k, delta; 
boolean first time; 
comment This comment must be 1~eplaced by the procedures vecteq and 

LicJitenstein Gershgorin ; 
k : =read; N : =read; delta : =read; col : ==read; 
comment read is a non-ALGOL procedure wl1ose function is obvious; 
N LCR; print (k); print (N); print (delta); 
begin array theta [O: 1, O: NJ; 

m:=M:=O; Mplusl:=1; 
vecteq (theta [ M, i], O) ; 
CYCLE: first time:== (ni = 0); 
Lichtenstein Gershgorin 

(theta [M plitsl, i], theta [M, i], k, N); 
NLCR; print (m); TAB; print (distance); 
comment TAB is a non-ALGOL procedure which moves the type-

writer carriage to the next tabulator stop; 
if 7 first time then 
begin TAB; print (truncation error) 
end· 

' 
if abs (distance)> delta then 
beginm:=m+1; ... ~:==Mplusl; Mplusl:=1-M; 

goto CYCLE 
end returning to iteration 

N11mer. Math. Bd. 6 3 
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end 

P. WYNN: 

else 
begin NLCR; if truncation error<delta then 

for i: = o step 1 until N do 
begin if (i : col) xcol =i then NLCR; 

print ( theta [ M plusl, i]) 
end printing component 

end printing whole solution 
end block in which theta is declared 

13. 
The second complete progranune serves to show how the procedure display 

vectepsalg should be used. 

comment Display Application of Epsilon .s.i\lgorithm to Iteration of Licl1tenstein 
Gershgorin Integral Equation; 

begin integer i, N, nought, one, two, mmax, col; 
real distance, truncation error, k; 
boolean first time; 
comment This comment must be replaced by the procedures Lichtenstein 

Gershgorin, even, vecteq, real Saniinv, a1id display vectepsalg; 
k : =read; N : =read; mmax : =read; col : =read; 
NLCR; print(k); print(N); 
begin array aux [O: 2, O: NJ; 

procedure disp vectepsalg LG; 
Liclitenstein Gershgorin (aux [nought, i], aux [two, i], k, N); 
display vectepsalg (N, mmax, disp vectepsalg LG, col); 

end block in which the size of the boxes is declared 
end 

14. 
The third complete programme illustrates the use of the procedure vectepsalg 

comment Application of the Epsilon Algorithm to the Iteration of the Lichten­
stein Gershgorin Integral Equation; 

begin integer i, N, nought, one, two, col, very end; 
real distance, truncation error, k, delta; 
boolean perhaps successful, indeed successful, first time; 
comment This comment must be replaced by the procedures Lichtenstein 

Gershgorin, even, vecteq, real Saminv, and vectepsalg; 
k: =read; delta: =read; N: =read; 
very end : = read; col : = read; 
NLCR; print (k); print (N); print (delta); print (very end); 
begin array aux [O: 2, O: NJ, final answer [O: NJ; 

procedure vecteps LG; 
Lichtenstein Gershgori1i (aux [one, i], aux [two, i], k, N); 
vectepsalg(final answer[i], N, delta, vecteps LG, very end, 

perhaps successful, indeed successful); 
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if perh,aps successful A indeed successful then 
for i :=O step 1 until N do 
begin if (i : col) xcol =i then NLCR; 

print (I inal answer [ i]) 

end printing component 

end block in which size of boxes and final result is declared 

end 

15. 

• 
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Two series of nu111erical results which may be produced by use of the second 
complete programme, but which may nevertheless be used to verify the working 
of the other two, are given in Tables 1 and 2. Here the range O - n has been 
divided into (N=) 72 steps and the parameter k has been taken to be 7·5. 
The two triangular arrays described in § 6 are as follows: 

Table 1. Distances 
s 

0 2 4 6 n,1, 

0 5·41101 
1 +3·85450 0· 50711 
2 2·69179 +0-04957 0·01263 
3 +1 ·89641 0·01810 +0-00203 0·00031 
4 1 ·36144 +0-00912 0·00042 
5 +0-99621 0·00508 
6 0·73976 

Table 2. Estimates of the truncation error 

"s 0 2 4 6 m "--._ 

0 O·O 
1 0·00007 0·00005 
2 0·00004 0·00005 0·00005 
3 0·00005 0·00004 0·00005 0·00005 
4 0·00004 0·00005 0·00005 
5 0·00005 0·00005 
6 0·00004 

Examination of Table 1 indicates that the convergence of the original iterative 
scheme (indicated by the successive distances - 5 ·4, + 3 ·8, - 2· 7, ... ) is rather 
slow but that that of the transformed sequence s~01 (s==O, 1, ... ) (indicated by 
the successive distances -5-4, -0·51, -0·013, ... ) is much more rapid. 

16. 
It will be realised that the given vector c:-algorithm procedures have quite 

general application in Numerical Analysis. In particular they may be applied 
to iterative techniques of linear algebra (the Jacobi relaxation scheme, the 
Gauss-Seidel relaxation scheme, and so on). (Of course, the estimation of the 
truncation error may be dispensed with here.) Furthermore, since any manifold 

3* 
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vvl1ich is likely to occur in Numerical Analysis may easily be mapped onto a 
vector, these procedures may easily be applied to the iterative solution of partial 
differential equations and further related problems. 

17. 
The results displayed in Tables 1 and 2 were produced on the X 1 computer 

in Amsterdam using an ALGOL translator constructed by J. A. ZoNNEVELD and 
E. w. DIJKSTRA. 

References 
[J] WYNN, P.: Acceleration Techniques in Numerical Analysis, witl1 Particular Re­

ference to Problems in One Independent Variable. Proceedings of the IFIP 
Congress 1962. North Holland Publishing Co. pp. 149,-156. 

Matl1.ematish Centrum 
2e Boerhaavestraat 49, Amsterdam-0 

( Received July 12, 1963) 


