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1. Introduction

At the present time considerable interest 1s being taken in the computation
of functions of a complex variable. For this purpose continued fractions have
shown themselves to be very useful. This paper concerns itself with a device
for accelerating the numerical convergence of a certain class of continued frac-
tions. The method used is of considerable theoretical interest in itself.

In order to indicate how the formulae developed may be used, a complete
ALGOL programme 1s given. This programme may be used to derive the numerical
results which are given and (should the reader be sufficiently interested) to
carry out further numerical experiments.

2.

In [I] the concept of a converging factor for a continued fraction was intro-

duced. This computational device consisted in essence of the replacement of
the tail

% ,,J.,,Qn i Cﬂ I L IR SR ,y ﬂ . I %ﬁ.:t;gmw Cﬂ T
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" bp+ dp+ Zp 1 bn+1+ dn-l—l"l“ (1)

of the continued fraction (the form of whose coefficients, apart from the first
three, is periodic; the functions a,,b,,c,,4,,...,v,, 2, being 2p in number)

C = SR T N - T .. T 2 T ,
50 ™ Eo+ b+ d1+ 21+ by+ da‘!“ (2)

by a series approximation of the form

-+ 00
Wy, = 2, otg . (3)

§=—R
In the cases considered a,, b,, ..., v,, 2, were rational functions of their suffix,
and the coefficients o, (s=—£%, —k-1,...) were determined recursively from

the difference equation
| . Qg Cn Vn
U — e —

" by + dn+ zﬂ+un+1 ‘ (4)
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3.
The process may be 1llustrated by the following example:
T gy 12 ometl)
e Fian 5)

Here the converging factor

U

_. nn+1) (+1)(n+2) (6)
» 1 + 1 -

satisfies the difference equation
%H(’l +%H}‘1) -—-“"-“'-'»%2~J(- " . (7)

Inspection of this equation reveals that in the notation of equation (3), £ =1,
and that there are two possible values for «_,, namely

ot =1, ) = —1. (8)

Subsequent coefficients «!”) (s=0, 1, ...; » =1, 2) are determined recursively from
equation (7). First, we derive the expansion of #%, ., in inverse powers of #

+.00 |
Uy 11 == Z} &Ky (H’ aE 1)““6

§== ~1

= o_3 7 + (o + &) +

Z 2 (“"“) nhs (9)

and write
,.+ o0

U, +1=> B, n™° . (10)

§=—1
where

ﬁ_lma_l, 50“":““@,_1"}'6(0“{"1, ﬁsmﬂs_lctl (321,2,...). (11)
Equation (7) then asserts that

Booy+ B qog=1 (12)
and thereafter
Za‘kﬁS“kmO (S=1:2: ) (13)
h=—1
Assuming that the quantities «_, &y, %, ..., %,_; are known, equation (13) con-

tains two unknown quantities, o, and A4°~" a;. However A°~' «; may easily be
expressed as the sum of o, and further known quantities; equation (13) may
thus easily be rearranged to give o, and used recursively. The mechanics of
this process are not completely trivial, but the important thing at this stage

1S to observe that there is no difficulty in principle in constructing the sets of
coefficients o!”.
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4.
The various convergents C, (=--1, 0,1, ...) of the continued {raction (2)
may be evaluated by writing (2) as
O bt bt Bt S
1in which
b{;:““&), aimfl, bim§2, a;map b;mbl,..., (15)
and evaluating the sequences A4,, B,, (r=—1,0,1, ...) given by
A__lm 5 Aﬂﬂ:gg, Armb;Arml—f—a:A,Wz, (16)
Bwl"’:’:O: Bom1: Brﬁb;Br~1+a;Br*2 (?'m'lr*?‘!“‘) (17)
when
C,=A,B,, (r=—1,0,1, ...) (18)

and 1n particular

by Ap s — By Apn—
Coin-1ysg = 2zt DELTInpln1) n=1,2,...). (19)
p(n—1)+2 bﬂ. Bp(n——n L+ @y Bp(nwﬂ (

The converging factor is made use of to construct the quantity

— Aﬁ(ﬁ_fl)jklf*‘%g{)‘qﬁ(ﬂjl) (20)

o, |
pln=d)t Bpn—1)+1T %’ Bp(n—1)

In favorable cases (and the continued fraction (5) provided one such) the
numerical convergence of the series (3) was rapid for both sets of coefficients ol
(§=—1,0,1,...; r=0,1), and Cg‘@,ml)m was a considerably better approxima-
tion to C than was C,(,_1y40-

5.

Use of the converging factor #!2) brought to life a ghost function with which
the continued fraction (1) may be associated. A number of conjectures regard-
ing this function were made in the original treatment. Here we do not pursue

this matter further, other than allowing for its investigation in the ALGOL
programine.

6.

In the original treatment the converging factor was applied to a number

of continued fraction expansions with varying degrees of success until the follow-
Ing expansion:

2hhhlet b+t =) 1 le+1) 1) (e£2)(6F2) 5y
I (@, b; —271) - z4+a+b+1— z+a+b+3— ztat+b+45—
was encountered.
Proceeding as in the above example we write
__ (a+n)(b+n)  (a+n+t1)(b+n+1)
u, = — A S Bl A M e - (22)
z+a+b+2n+1— z4+a+b+2n43—

and derive immediately the difference equation

u,2n+z2+a+b+1—u, y=ab-+ (a+b)n-+n2 (23)
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Substituting the series

-+ 00 o0
u, = ) an"" Up 1 =0 N + &y +og+ Yy A oan™s (24)
s=—1 s=1

into equation (23) we derive from the coefficients of #n2
o4 (2—0ao_q) =1. (25)

Thus «_;=1, and there appears to be only converging factor. From the coef-
ficients of » 1n (23) we have

oty (Z+a+0+1—ag—a_y)+tog(2—a,)=a-+b (26)
and this reduces to z=0, which may very well not be so, and in any case does
not serve to determine o,.

This formal difficulty was overcome by writing

2==c(n -+ h) (27)
where

¢ = e*?m8 (%) (28)

It 1s a substitution which is frequently encountered in work on converging factors

associated with certain asymptotic series and making it was a natural step to
take.

Equation (23) now envolves to the form

u, m(2+c¢)+ch+a+b+1—u, y=ab-+ (a4 b)n -+ n? (29)
and we obtaln

o« =324c—n), =12+ c+7) (30)
where

n="Ve(4+c). (31)

Thereafter there 1s no difficulty in determining further coefficients «, (s=0, 1, ...)

from equation (29). Numerical experiments on a somewhat modest scale served

to show that some improvement in the numerical convergence of expansion (22)
could be effected.

7.

In fact a subtle blunder has been made. Subsequent to the substitution (27)

the converging factor 1s not a function of » alone but of » and 4. Equation (29)
1s 1ncorrect. After (27) we must write

w,, (h) = @atn)O+n) _ (a+n+1) (b+n+1)

- chta+

bf1+(24c)n— ch+atbt3+(24c)n— (32)
and obtain

u, () {ch+a+b+1+Q2+c)n—u, ,(h—1)}=ab+ (a-+b)n-+4n2 (33)

Now it transpires that a converging factor may be derived on the basis of
(33) 1 we assume that

1, = Yy og(h)n"* (34)
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where the a (k) (s=-—1,0, 1, ...) are not constants, but polynomials ot degree
S"‘F"l In }E, OoT s+1
- Z a, R h’k* (35)
E—0
8.

By equating corresponding powers of #z Iin equation (33) we obtain an ex-
pression for e,(4); by equating corresponding powers of %4 in this expression
we obtain the coefficients a, ; (s=0,1, ..., 7+ 1).

Let us enquire a little more closely into how this is done. We first dismiss
the functions a (%) and o4(k). Equating coefficients of #2 in (33) we have

M {2+ c—o(h—1)}=1 (36)
or, writing B
n=1Vc(4+c) (37)
and confining our attention to the converging factor #{Y,
a1 () =(2+c—n)/2. (38)
Equating coefficients of » in (33) we have
ocq{cht+a+b+1—oyb—1)}+oagh){2+c—a,}=a+b. (39)
(Since «_, (4) is a constant, nothing is lost by referring to it as «_;.) If
% (B)=ag 1 h+aq (40)
then
%o (h—1)=ag1h+ay,—ay;. (41)
Accordingly, from the coefficients of % in (39), we have
%y (¢ —ag 1) +ay1(24+c—o4)=0 (42)
or, with (38),
@p,1 = — %3 C[7]. (43)
From the constant term, we derive
ay o={a+b—1—o_, (@+b—1—c—ay,)}n. (44)
To set up a scheme for deriving the further coefficients a, s (¥=1,2,...; s=
0,1,...,7+1) we return to equation (39) and observe that
chta+b+1+2+)n—u,,,(h—1)= Y B.(h) n=s (45)
where s=—1
ﬁ-—-—l (h)=2+4c¢ — &, (46)
50(}‘)“(‘3“‘%,1)h+d+b+1+a0,1, (47)
and
Bs(h) = — A oy (h— 1) (48)

(the differences, of course, are taken with respect to the suffix of the polynomial,
not with respect to 4).

The coefficient of »™" in equation (39) then gives

Z Ks rm h)._.._ (49)

LR |
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Equation (49) will be used to determine the polynomuals o, (%) recursively;
we make two remarks concerning it. The first is that each of the products on
the left hand side i1s a polynomial in % of degree » 4+ 1. The second is that if
we have already determined o (#) (s=—1,0,1, ..., —1) then equation (49)
contains two unknown functions «, (k) and g,(h) (= —A""'a;(h—1)) but, as
we shall see, there 1s a relationship between these functions involving quantities
which have already been determined. In principle, then, a process exists by
means of which «,(#) may be determined from equation (49).

Bearing in mind that we wish to mechanise this process, let us inquire a
little more deeply into the requirements of equation (49).

We must firstly be able to form the polynomials §, (%), defined by equation
(48), by means of differencing. Suppose that we have a two dimensional array
d, s - dy s contains the coefficients of the successive powers of 2 (s=0,1, ..., 7 — 1)
in —a,_4(h—1),d, ( thosein —Ad«,_g(h—1), d, ; those in — A2%«,_, (2 —1), and
finally d,_, ; those in — A" %o, (A—1). We now arrive with the coefficients b 7,
(s=0,1,...,7) In —a,_,(h—1) and replace in succsion &, ; (s=0,1,...,7) by
the coefficients of the successive powers of 4 in —a,_;(2—1), d, ; by those in
—Ada, 5(h—1),d, ; by those in —A%«,_3(2—1), and finally 4, , ; by those
in —A" %, (h—1).

Now let us write equation (49) in the form

y—1

A_q ﬁr (h) —{—OC?, (k) ﬁmlm T Z ﬁs (h') arm—s-l(k) (SO)

s=0

on the left hand of which stand two unknown functions «,(~#) and g, (k)=

— A"t (h—1). But there is of course a very simple relationship between
these functions. It is

oty (h—1) =0ty _y (b — 1) -+ Aoty _g (h— 1) +
+ A%, _q(h—1)+ - AP (h—1)+ A oy (B —1).

The function A4”~' (A —1) may thus be eliminated from equation (50), which in
its modified form contains apparently two unknown functions o, (#) and o, (A —1),
but in essence of course, only one. We note in passing that equation (51) in-
volves a process of summation through a line of backward differences. Re-
ference to the previous paragraph shows that we have just formed this line ot
differences. We may then, with some economy, perform the processes of forma-
tion and summation at the same time.

We wish to evaluate the polynomial on the right hand side of (50). It
¥y —s—1>s then

(51)

sS+1 U

53 (h’) Ky - 5—1 (k) — Z kﬂz bs, v af“s"-"l, $u— v —l—

=0 =0
—$ s 1

+ Z huzbs,uar -s~-1,u--—-v+ (52)

#u=5s+2 v=0
-1 r-+1

+ Z h¥ st,varms-*l,umv'

U=r—S-+1 v=1u

If r—s—1<s, then B, (k) «,_,_; (k) may also be expressed as three sums as in
(52). Finally the case  — s —1=s may be considered, and the right hand side
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of (50) evaluated by summing these expressions from s=0 to s=7—1. But
we are caused to split up the product B, (%) «,_,_,(#) into three components
as In (52) solely to take into account the fact that b4, , i1s undefined for v>s -1
and that @,  ; , , 1s undefined for v>wu. Instead of writing down a number
of differing formulae we can far more simply say that the coefficient of A" 1n

r—1
the expression ) (k) a,_, (k) is the sum from s=0 to r—1 of all scalar
s=0

r -+ 1
products of the form ) b, ,a,_,_,,_, provided that u=v and » —v=7 —s.
v=0
We have now reached the stage where equation (49) has evolved to the form
r+1
R+c—aq)o, (h) —a 0 (h—1)=— ) o (53)
§=0

The right hand side of this equation 1s composed partly of terms obtained by
summing through a line of backward differences as in equation (51) and partly
from the addition of cross products as in equation (50). But as is easily verified

-1 ¥41 2
o, (h—1) =X 1 X (= 1)~ (¥ a,, (54

s==0 U==§ s
that 1s, the coefficient of 4° involves the quantities «, ¢, o, ¢4y, ..., %, ,+1. Lhus,
1f we examine the coefficients of 4° in (54) in the order s=7-4+1,7»,r—1, ..., 0,

we find that a, ( may always be expressed in terms of quantities which have
previously been determined. More concisely

2te—as)a, —ay X (=17 (Y)a,,=—0a(s=r+1(—1)0) (55

leads to
Y-+ 1

a ={aa 21 (=1 (Y)au—al/n (s=r+1(=10). (56

u=s-+1

At the same time that we determine a, ; we may easily evaluate the coef-
ficients in —a,(#—1) and thus we return to the formation of the differences
to obtain g, (#), the summation of these differences to eliminate A"« (%), and so on.

9.

We have now shown how the converging factor u,(k) may be expressed
formally as the sum of a series. But it is a matter of numerical experience that
In many cases a continued fraction which may in a certain sense be associated
with a given power series converges far more rapidly than the series. We would
be well advised therefore, to transform the series for », (%) into such a continued
fraction. This may conveniently be done by application of the g-algorithm [2].

The theory of this algorithm has adequately been described elsewhere 13]; 1t
will suffice here to state that if from the initial values

e =0, éém)m}:ocs(h)n"“s, (m=1,2,...), (57)

e =n""Ho, (W)} (m=0,1,...) (58)
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further quantities ¢! (m=0,1,...; s=2,3,...) are constructed by means of
the relationship

1
ggm') mg&’f’_'gl) + R (59)

then the quantities ¢§? are convergents of certain continued fractions, and as
such provide better estimates of the formal sum of the series whose partial

sums are given by (57). The quantities ¢ may be displayed in the array

ey

e\
el £
£V £
S(2) N
g®
(3) X
0

and it can be seen that the quantities in (59) occur at the vertices of a lozenge
in this array. The various members of this array are most economically (with

regard to storage space) computed by retaining a vector ! which at a given
stage contains the following quantities:ly=¢{™", [, ="V, [, =", .| ] =0

2

We arrive with a new partial sum &J**" and replace in succession I, by &%

l, by &, ..., and add /,,,, =& ,. The formation of these quantities is carried

out by means of (59) and uses one working space and two auxiliary storage
locations.

b

10.

The Converging Factor #!’. All the preceding working which relates to the
construction of a converging factor refers to that converging factor which may,
by judicious numerical experimentation, be identified with «{). The converging
factor )’ may be constructed in precisely the same way by changing the defini-
tion of # from that given by equation (31) to

n=—lclc+4). (60)

11. .

An ALGoL Programme. A programme for constructing the converging factor
rmax

(either as a series » «,(h) %~ or as a continued fraction derived from this
Y= —1

series) and applying it will now be given.

Before doing so it is necessary to make a few remarks. The algorithmic
language ALGOL [I] in which this programme is written, does not immediately
cater for arithmetic operations with complex numbers. It is therefore necessary
to construct an arsenal of procedures for doing this and to devise a convention
which governs their use. We therefore stipulate that all complex numbers are
to be represented by arrays containing at least two members. There is an in-

teger + which 1s defined globally throughout the block in which the complex
Numer. Math. Bd. 5 273



340 P. WynNN:

arithmetic takes place, and all complex numbers (e.g. 2, br.) may be recognized
throughout the programme by virtue of the fact that they contain the index 1
(e.g. z[¢], br[i, s]). ¢+ takes two values, zero corresponding to the real part
(e.g. Re(z) =2[0], Re(br,) =b7[0, s]) and unity corresponding to the 1maginary
part. The integer 1 may not therefore (except in circumstances which are dif-
ficult to envisage) be used for any other purpose.

Referring to the ALGOL programme there is a procedure eq (one, other) which
carries out an instruction analogous to the operation one : = other for real numbers.
Similarly segeg (third, second, first) carries out an assignment similar to thrd :=
second : = first. (The procedure eg (one, other) may also be used if other i1s an
expression of the form, for example, a X x[¢]+bXy[¢]+ --- In which a4, D, ...
are real numbers*). The procedure cm (res, ome, other) carries out an assign-
ment similar to res:= one Xother, and cd (rves, one, other) one similar to res:=
onefother. It is however necessary to ensure that numbers which occur in the
arithmetic as real numbers are treated as such (i.e. with their imaginary parts
put equal to zero), and for this purpose the procedure real (variable) is used **.
The function of further procedures such as mod (it), arg (it), comp sqrt (ves, it)
is obvious. Further details are to be found in [d].

We are thus in a position to carry out the required arithmetic. Now how-
ever, there is the difficulty that the coefficients (»=0,1, ..., r max; s=0, 1,
..., 7-+1), which must be retained throughout the computation, are members
of a triangular array, and such arrays are not defined in ALgorL. This may be
overcome by constructing a mapping function (the integer procedure mf (m1, m2)
which maps the «, ;, b, ; onto a linear array (of complex numbers)).

A mapping function of a somewhat similar form i1s encountered in the evalua-
tion of the initial numerators and denominators of the continued fraction

1 (at+1)(+1) (a+2)(0+2) (61)
g+a+b+1— z+a+b+3— z24+a+b+5— |

In the notation of equations (16) and (17) the numerators (let us call them A4, )
and denominators (4, ;) satisfy the recursions

Ajspu=@E+a+b+2s+1)4, ,—(@+s)0+s) 4, 1
(1 =0,1; s=1,2,...).

(62)

But in each case we require storage space for two complex numbers (since when
A; 41 has been computed, 4, ;_; 1s no longer required and 4, ;, may be written “
where A4 _; previously stood). But we should like the programme to be as
tbersichtlich as possible, and we therefore introduce the two integers $ and
Sdash: and when s is even these take on the values 0, 1, and 1, 0, otherwise. .

A remark should also be made concerning the summation of the series. The

programme as 1t stands continues to add in terms of the series o, (%) »™" until
such time as

oty (B)n 77 > o, (B) 27| and o, o (B) T3 > e, (B) T (63)
* This remark applies with equal force to the inputs to all the complex arithmetig

procedures.

** The distinction between the real of the ALGor report and the real of this ‘

paper 1s precisely the same as that between the titles wirklicher Geheimrat and -
Gehewmrat. "
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(if this occurs betore r=rmax 1s reached) when it stops. But the decision as
to the point at which the terms of a series are of no further use, is largely a

matter concerning the users nerves, and the reader may not be 1n sympathy
with this convention.

Finally 1t will be remembered that only the even columns of the e-array
are of interest in the transformation of the converging factor series. As these
are produced they are mapped onto a display vector (dz[7, ms]), and afterwards

fished out and printed 1n an array which corresponds to table 1 with the columns
of odd order missing.

With these remarks in mind and the comments to guide him the following
ALGOL programme may be read without difficulty.

It reads as data a, b, o, ?, 7, and sz(-+1 for the converging factor #!’ and
—1 for the converging factor #!?)), and immediately prints out a, b, p, ¥/=, s, h
and #». It then computes the coefficients «, ; (r=—1,0,1,...,7max; s=
0,1, ...,7-+1). To indicate the numerical behaviour of the polynomials «,(4)

and that of the terms of the series ) «,(4) »~7, it continues to print out* the
% r=—1
TOWS

Re(x, (7)), Im(x(h)), |o(h)], Re(e (B)n~"), Im(e, (B)n™"), |a(h)n”"|

for r=—1, 0,1, ... until either condition (63) i1s satisfied or rmax 1s reached.
It then prints the numerical sum of the converging factor series (truncated if
necessary), the #'*® convergent C, of (21), and the modified convergent C, ob-
tained by application of the converging factor. It then prints out the even
order g-array for the converging factor (two triangular arrays, in the event,
the real and imaginary parts being separated) and the two triangular arrays
(again the real and imaginary parts have been separated) which correspond to
the application of the transformed converging factor to the continued fraction (21).

Converging factor for continued fractions:

begin
comment T/us programme uses the following computer oriented procedures
(procedures the bodies of which must be written wn code):
procedure NLCR, which execules a carriage return.
procedure 1T AB, which the moves the carriage to the next tabulator stop.
real procedure read, which reads a number from the tape and advances the

tape to the next number.

procedure print (x): prints the value of the variable x;

integer rmax;
rmax .= reaa;

begin
real a, b, multiple of 1, rho, h, theta, power of n, factor, sign of sqrt;
integer ¢, 7, s, n, 7, twormax, rs, col, S, Sdash, u, v, ncr, r1, sanfang ;
boolean still converging, display converging factor alone;

P L b B . ATV HR el o 3 T W THLL R, PR -SRI R Bl H e e il

* The author is the guest of a non-profit making organisation.
23*
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array aux0, auxl, aux2, z, ¢, eta, aml, sum, converging factor [0: 1],

aux3 [0:1, 0:1], alpha[0:1, 1:((rmax+4) X (rmax +1)) = 2],

beta[0:1, 1:((rmax +3) Xrmax) 2], d[0:rmax —2, 0:rmax, O: 1],

sigma[0:1,0:rmax +1], A[0:1,0:1,0:1], [[O:rmax+2,0:1],

alphar, termr[— 2:0,0:1], modtermr [ —2:0],

di[0:1,1:((rmax + 2) X (rmax +6)) =+~ 4,0:1];

procedure ¢q (one, other); real one, other

comment serves to execute ‘‘one : = other’’ with complex numbers and
uses, as do the following procedures, the implicit parameter 1;

for::=0,1 do one:=other;

procedure segeq (third, second, first);

real third, second, first;

comment serves to execute ‘‘third : = second : = first’”’ for complex
numbers ;

for 7:=0,1 do third : = second : = f1rst;

procedure cwm (res, one, other); real res, one, other :

comment serves to execute ‘‘res := one X other with complex

numbers:
begin
real Reone, Imone, Reother, Imother;
1:=0;
Reone : = one; Reother := other;
1:=1;

Imone : = one; Imother : = other:

ves 1 = Reone X Imother -+ Imone X Reother ;

1:=20;

ves : = Reone X Reother — Imone X Imother
end cm;

procedure cd (res, one, other) ;
real res, one, other;
comment serves fo execute ‘‘res : = one/other’” for complex numbers;

begin
real Reone, Imone, Reother, Imoither, denom
1:=0;
Reone : = one; Reother : = other;
1:=1;

Imomne : = one; Imother : = other;

denom : — Reother X Reother + Imother X Imother

ves : = (Imone X Reother — Reone X Imother)|/denom ;

1:=0;

ves : = (Reone X Reother ++ Imone X Imother)[denom
end cd;

real procedure real (variable) ;
real variable;
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real .= (if : = 0 then variable else 0) ;
real procedure mod (1t);
real ¢;
comment serves to compute the modulus of a complex number 1t;
begin
real Reit, Imii;
1:=0; Rett:=1t;
1:=1; Imal:=1t:
mod : = sqrt (Reil X Reit -+ Imit X Imat)
end mod;

procedure polar form (ves, 7, theta) ;
real 7, theta, res;
comment serves to compute real and imaginary part of a complex
number res, given the modulus r and argument theta;
begin
real 71, theta1 ;
¥ :=v: thetal : =theta:

1:=0;
res :=v1 X cos (thetal) ;
1:=1;

res i =v1 X sin (thetal)
end polar form;

procedure comprecip (ves, 1t) ;
real res, 2¢;
comment serves to compute the reciprocal res of a complex number 1t ;

begin
real Reit, Imit, denom ;
1:=0;
Rert : = 1i;
1:=1;
Imat : = 1t;
denom : = Reil X Revt + Imat X Imat;
ves . = — Imat|/denowm;

1:=0; 7es := Ret/denowm
end comprecip;

real procedure arg (zf);

real 27;
comment serves to compute the argument of a complex number 1t;
begin

real Reit, Imat;

1:=20;

Reit : = 1t;

1:=1;

Imat : = 1¢;
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arg : = (if Reit >0 then arctan (Imit/Reit) else
if Imit =0 then 3.141592653589793 else
sign (Imit) X1.5707963267 949 — arctan (Ret/l mzt))
end arg;

procedure compsgrit(res, it) ;
real res, it;
comment serves to compute the square root res of a complex number 1t ;

polar form (res, sqrt (mod (it)), 0.5 X arg (it)) ;

procedure compprint (it),
real i/;
comment prints a complex number 1t;

for::=0,1 do print(il);

procedure druck (it) ;
real 2¢;
comment prints the complex number 1t and 1ts modulus;
begin
compprint (i) ;
print (mod (it))
end druck;

boolean procedure cven (1nieger) ;

integer 1nicger,

comment the value of even is true 1f integer ¢s even,
false ¢/ integer ¢s odd;

even : = (integer = 2 X entier (integer| 2)) ;

procedure cma (res, one, other, it);
real res, one, other, it;
comment serves Lo execute “‘res : = one X other +it’" for complex
numbers
begin
array aux4[0:1];
cm (auxd [t], one, other);
eq (ves, aux4 [1] -+ 2t)
end cma;

procedure convfac(res, un);
real »es, un ;
comment serves to execule
res:=(—unXA[0, S|+ A[0, Sdash])[(—un X A[1, S]+ A[1, Sdash])
Al7, S] being the complex number given by the array A[f, S, i];
begin
for):=0,1 do
cma (aux3 [1,1], —un, A7, S, 1], A[7, Sdash, 1]);
cd (rves, aux3 [0,¢], aux3 [1,1])
end convfac;
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procedure add in backward difference;
cma (sigma (2, s], —amA 1], aux1[z], sigma[i, s]);

procedure sum and display converging factor;
begin
NLCR:
druck (alphar [ — 2,1]) ;
druck (termr [ — 2,1]) ;
eq (converging factor [1], converging factor [1] -+ termr[— 2,1]);
fors:=—2, —1 do
begin
eq(alphar [s,1], alphar [s +1,1]);
eq (termr (s, 1], termr [s +1,1]);
modtermy [S] : = modtermr [s + 1]
end s
end sum and display converging factor;

procedure N7 ;
begin
NLCR; NLCR:
1AB; TAB; TAB
end NT;

integer procedure mf (m1, m2);
value m1; integer m1,m2;

mf i = ((m1+1) X (m1+42)) = 2 + m2;
Introduction:

a:=vead; b:=read; rho:=read:
mulliple of p1:=read; factor:=read;
sign of sqrt . =vead; col:=read:

n ;= entier (rho/factor) ;

h:=rho/factor —n;

NLCR;

print (a); print(b);

prant (vho) ; print (multiple of p1);
NLCR;

prant (factor) ; print(n);

print (h); print(sign of sqgrt);

theta . = multvple of H1 X3.14159 26535 89793 ;
polar form (z[1], rho, theta) ;

polay form (c|[z], factor, theta) ;

Prepare application of converging factor:
seqeq(A[0,0,1], A[1,1, 7], real(1));
eq(A[1,0,2],2[1] +real (a + b+ 1))
eq(A[0,1,7],0);

S:=1; Sdash:=0:
for s: =1 step 1 until »n —1 do

345
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for;: 0,1do o .
. P 2 ;f oL {éz “g' E; % 3 xR m% 1 )? "A' [? ? SdﬁSh, i:] ’

(@t n) x (b4 ) XA[j, 7))’

j,ﬁﬁm’; ? O,8],aux3|[1,1]);
.V L( R : N I ( i,

% b-—1) —c[i]+alpha[i, 2], real(a+b—1));

( |

E A ggi {a]

g (be {3 ﬂ c m — ¢> ha [ t j

Seqeq (‘» zg ma [1,0], sigma
for »:=1 step | unhl rmax do

begin

1+ b+1));

Form cross proaucts and accumaule

for s:=0 step 1 until » — 1 do
for «:=0 step f until »+1 do
for v:=0 step 1 until s+1 do
f (s =v)A (8 —v S 7 —s) then
1a (Sigmia |t beta (s, mf (s, v)], alpha[t, mf(r —s —1,u —v)],
sigma i, u1]);

nment Determinalion o f a [,, s} and b [,- S]
for Si=17-+1 step — 1 until 0 do
begin
ner =1,
for u:.=s -4 1 step 1 until » -1 do
begin
ney (== — (ncr Xu) = (4 —S);

end;
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cma (sigma (1, s, amA (1], sum 1], — sigmali, s]);
if s=0Ar =1 then
eq (sigma [, s], sigma[i, s] + real (a X b));
cd (alpha [z, mf(r,s)], sigmalz,s], eta[1]);
if » ==vmax then

Differencing and adding through line of backward differences:

begin
for v := 0 step 1 until» — 1 do
begin
if =0 then
begin
eq(aux1|1]|, —alpha(t, mf(r,s)| —sum[z]);
eq (stgma [z, s], 0)
end
else
begin
eq(aux0 (1], aux1[i] — (if s==7 +1 then
d[u—1,s,7] else 0));
eq(d{u—1,s,1], aux1[1]);
add n backward difference;
eq (aux1[1], aux0[z])
end;
if u=7—1 then
begin
seqeq (d[u, s, 1], beta [z, mf(r,s) |, aux1|t]);
add 1n backward difference
end
end
end Differencing and adding
end s

end 7;

Computation of converging factor:
still converging : =true ;
seqeq (1[0, 1], converging factor[1], 0);
power of n:=1/n;
tworﬁgax =2 Xrmax,

for .= —1 step 1 until »max do

begin
71 := (if r >0 then 0 elser —1);
if r= —1 then eq (alphar|r1,1],am1|1]) else
begin

eq (alphar|(71,1], 0);

for s:=7-11 step —1 until 0 do

eq (alphar [v1, 1], alpha i, mf(r,s)] + h Xalphar [71,1])
end;
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eq (termr [v1, 1], alphar [¥1, 1][power of n);
modtermr [r1] : = mod (termr [71,1]);

Add in converging factor tevm tif series still converging:

if » =1 A still converging then
begin
if modtermy [ — 2] > modtermr [ — 1]\
modtermr [ — 1] > modtermr [0] then
sum and display converging factor else
still converging . = false
end;

Application of epsilon algovithm to converging factor series:

eq (aux1[1], termr|r1,¢] +1]0,1]);
for s:=0 step 1 until » 41 do
begin
comprecip (aux0[z], (if s =0 then fermr [r1, 1] else
aux1[i] —1I[s,2]));
if s==0 then
begin
eq(aux0 (1], aux0[t] +L[s—1,2]);
eq(l[s—1,1], aux2|1])
end;
eq (aux2 (1], aux1(1]);
eq (aux1[z], aux0[1]);
if even (s) then
begin
s .= (sx(twormax—i-élms)) —4 47+ 2;
eq(di [0, 7s,1], aux2[1]);
convfac (di[1,7s,1], aux2 [1])
end;
if s=7-+1Aeceven(r) then
begin
rs = ((r +2) X (twormax —y -+ 6)) = 4;
eq (A1 [0, 7s,t], auxi[z]);
convfac (dr[1,7s,1], aux1[z])
end
end s;
eq(Llr +1,1], aux2[z]);
eq(Llr +2,], aux1[z]);
power of n:=n Xpower of n
end 7;
if still converging A modtermy [ — 1] < modtermr [0] then
begin
sum and display converging factor;
sum and display converging factor
end:
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Print converging factor and modified convergent:
NT;
druck (converging factor[1]);
convfac (aux0 (1], converging factor [z]);
NT;
druck (aux0[1]);

Display application of epsilon algorithm to converging factor and the corresponding
modified convergents:

display converging factor alone : = true;
I'riangular display:
for::=0,1 do

begin
for sanfang := 0 step 2 X col until rmax 42 do
begin
NLCR;
for » :=1 step 1 until rmax 4 2 — sanfang =2 do
begin
NLCR:
for s: = sanfang step 2 until
sanfang + 2 X (col—1) do
begin
ifs—2<rvAr<rmax +2—s—=2 then
begin
rs 1= (s X (fwormax + 6 — $)) 4 —+7;
print (di [if display converging factor
alone then O else 1, 7s,1]);
end
end s
end 7
end sanfang
end z;
if display converging factor alone then
begin

display converging factor alone : = false,
goto Iriangular display
end
end
end Converging factor for continued fractions

Numerical resulls

Some numerical results which have been produced by means of the preceding
ArLGoL programme are summarized in the following tables which relate to the
application of the converging factor #{ to the continued fraction (21) when
a=b=0, |c| =1.0, and 2=3.5¢*"* (i.e. n=3, h=0.5).
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Cy - 0.152020526 — 10.280047592.

Table 1
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+ 1. 160253 . —1.579592 1.959925
~—().255 823 | +0.152993 0.298081
+0.0394 30 —(0.001 901 - .039476
7616 | 043660 | —0.002463 — (0.004 180 - .004 851
3. 40033586 045189 @ —0.001120  4-0.001243 001674
% + (1039731 i + 0000033 039731 | --0.000401 -+ 0.000001 - 0.000491
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Table 2 gives the real and imaginary parts respectively of these modified
convergents which are to be derived by applying the e-algorithm to the con-
verging factor series, and using the members of the resulting even column ¢-array

as approximations to the converging factor

Table 2

TR T Ve, ! : % ; 6

TES L DT TR

t | —0.150792787 | —0.150415488

2 150339170 150408649 | —0.150410661
3 150417729 | 150411452 150410739
4 150411824 150410882 ~0.150410067
S |

6

o Wb W o o,

omiTh

—0.150410704

P B Bl kg b

150400872 | —0.150410650 |
—(.150410854 |

P e R

- —0.279527404
279903 761
g 2708091 318
270883523
2709886271 279 856 6 |
—(0.279886158

—(0.279886 100
279885802
- —0.279336032

T b Tl M g b A el oSN =, P it it PPy b

—0.279885921

Lo e Lo by wa

Ht.
R 1 Db b -

The correct value of the continued fraction in question i1s
— 0.150410705 —10.279885 023 .

In order to illustrate the effect of arg(z) upon the numerical behaviour of
the converging factor certain figures are given in Table 3. These relate to the
case a="b=0, |c| =1.0, |2| =3.5, i.e. n=3, h=0.5. The value of arg (z) is given

in the first column. The second and third columns contain the moduli of o_y (A)




Note on a Converging Factor 351

and «,(h) respectively; the fourth and fifth columns contain |C,;| and |C§]

respectively (C§’ has been computed on the assumption that !’ may be ap-

4
proximated by the partial sum ) o, (k) n~"); the sixth column contains the

r=—1

value of C’ which has been computed by applying the g-algorithm to the initial

m— 2
values ey = ) o,(h) ™" (m=0,1,...,06) and using £ as an approximation
¥=—1

to u!); the seventh column contains the modulus of the correct result

Table 3

arg(s) | la_y(h) g ()] Cy ICD] (series) C{ (s-alg.) "~ correct

0 [0.381966 [0.017307 | 0.230803934 | 0.230819326 | 0.230819332 | 0.230819332
7/4 |0.403861 {0.012924 | 0.238593 791 | 0.238569606 | 0.238 569603 | 0.238 569603
7/2 [0.480533 [0.046751 | 0.264 186360 | 0.264289222 | 0.264 289208 | 0.264289208
3 77/4 10.653308 |0.039731 | 0.319444080 | 0.317741 541 | 0.317 741260 | 0.317 741263

7z 1.0 0.125210 | 0.355963303 | 0.431104196 | 0.431077928 | 0.431077657
Note: When z= —x, and x is real and positive, then C!!! is an approximation
o0 "
to e~ *{y+In(x)+ Z A +1 7, as one would expect.
= 7 (nl)

It will be seen that both the rate of convergence of the converging factor
series and the degree of improvement which may be effected by application ot
the g-algorithm, are substantially independent of arg(z). The variation in the
relative accuracy of the transformed convergent C§" is mainly influenced by the
relative accuracy of the convergent C,, i.e. by the convergence behaviour of
the continued fraction itself.

It will be recalled that in the relationship z=c(n + &), the choice of |¢| was
arbitrary, but that thereafter all other parameters were fixed. In the preceding
numerical examples |¢| was taken to be 1.0 for simplicity. The effect of |¢
upon the numerical behaviour of the converging factor is illustrated in Table 4,
which refers to the case a=b6=0, 2=3.0.

Table 4

c | n loc_y (R)] - lo:4(k)l l jx_y (#) n] _ [4(5)’*"“41 .. . [Cal é (&%

51 50.5 0.131923 | 2.5 | 0.000211 | 0.262081 881 | 0.262083 740038
.0 | 2/0.381966 | 0.076374 | 0.763932 | 0.004773 | 0.261904 762 | 0.262079998123
0| 110.267949|0.007856 | 0.267949 | 0.007856 | 0.260869565 | 0.261 877638010
5 correct f 0.262083 740038

e

The value of C!) has been computed by using as an approximation

4
ug) — Z C(r(h) %-—f.

y=—1

It can be seen that the magnitude of |«, (k)| decreases more rapidly, the
larger |c| becomes. However, the fact that a small value of |c| implies a rela-
tively large value of #, means that the converging factor series converges more
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rapidly for such values of ¢. Furthermore, the large value of # implies that
itself is more accurate. Thus, in conclusion, a value of ¢ for which |

C

g2
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small 1s to be preferred.

For the sake of completeness we give some numerical details relating to a
case in which both 4 and & are not zero, namely that in which a=0.0,

z2=75.0¢""? |c| =1.0, (i.e. n=4, h=1.0).

Here

C,=0.01793 70833

—170.19523 24325 0.

Table § gives even order e-arrays corresponding to those 1n Table 2.

c| is

A —
“mplplirrrelis- TR

MOS)

Table §

1 +0.01793 50965 3 +0.01793673630

2 01793711801 .01793691660 +0.01793691730
3 01793690435 .01793691734 +0.01793691709
4 .01793691668 -+0.01793691699

5 +0.01793691723

S 0 2 4

1 —0.19523 108880 —0.19523105757

2 1952308984 1 .19523105266 —0.19523105466
3 19523108656 .19523105464 —0.1952310542 3
4 19523105005 —0.1952310541 3

5 —0.19523 105455

The correct value of the continued fraction in question is

0.01793691710—1%0.19523 10542 2.
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