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1. Introduction 

At the present time considerable interest is being taken in the computation 
of functions of a complex variable. For this purpose continued fractions have 
shown themselves to be very useful. This paper concerns itself with a device 
for accelerating the numerical convergence of a certain class of continued frac
tions. The method used is of considerable theoretical interest in itself. 

In order to indicate how the forrr1ulae developed may be used, a complete 
ALGOL programme is given. This programme may be used to derive the numerical 
results which are given and (should the reader be sufficiently interested) to 
carry out further numerical experiments. 

2. 

In [ 1] the concept of a converging factor for a continued fraction was intro
duced. This computational device consisted in essence of the replacement of 
the tail 

( 1) 

of the continued fraction (the form of whose coefficients, apart from the first 
three, is periodic; tl1e functions an, bn, en, dn, ... , Yn, z1,. being 2p in number) 

al C1 ---C.--
b1+ d1+ 

C= (2) 

by a series approximation of the form 

+oo 
" -s Un = L..J (XS n . 

S=-k 
(3) 

In the cases considered an, bn, ... , Yn, Zn were rational functions of their suffix, 
and the coefficients a.s (s=-k, -k+1 1 ••• ) were determined recursively from 
the difference equation 

·u n 
Yn ···---- (4) 
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3. 
Tl1e process may be illustrated by the followi11g exam1Jle: 

1 1.2 n(1i-f-1) = 1 + --·-•--·-·- - ······· ...... ------·--··-··-- .. . 1+ 1+ 1+ . 2 
(5) 

Here the converging factor 

(n+1) (1i+2) 
Os-•--•~•-•-••-•••-•• ,s.__, • •• -••-••--•••-••• - •• 

1+ 
(6) 

satisfies the difference eq uatio11 

(7) 

Inspection of this equation reveals that in the notation of ec1uation (3), k =1, 
and that there are two possible values for oc __ 1 , namely 

(8) 

St1bsequent coefficients oci") (s = 0, 1, ... ; r = 1, 2) are determined recursively from 
equation (7). First, we derive the expansion of un+i in inverse powers of n 

and ,vrite 

where 

/3-1 =OC-1, 

S=-1 
+oo oo 

-s -k-s n = oc_1 n + (<X_1 + cc0 ) + OC8 

s=l k=O k 

00 

-1-00 

itn+l + 1 = /3s n-s 
S=-1 

fJ O = oc_ 1 + oc0 + 1 , fJ = 11s-l 
s LJ lX1 (s=1,2, ... ). 

Equation (7) then asserts that 

and thereafter 
fJo oc_1 + P-1 Clo= 1 

s 

6-..J <:Xh f3s-h == 0 
k=-1 

(s = 1, 2, ... ) . 

(9) 

(10) 

( 11) 

(12) 

(13) 

Assuming that the quantities oc_1 , cc0 , cc1 , ... , as-I are known, equation ( 13) con
tains two unknown quantities, Cl5 and Lis-I cc1 . However Lis-I oc1 may easily be 
expressed as the sum of ocs and further known quantities; equation (13) may 
thus easily be rearranged to give ~s, and used recursively. The mechanics of 
this process are not completely trivial, but the important thing at this stage 
is to observe that there is no difficulty in principle in constructing the sets of 
coefficients ar). 
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4. 
The various convergents Cr (r= --1, O, 1, ... ) of the continued fraction (2) 

may be evaluated by writing (2) as 
I I , 

C b~ + a1 a2 an ( 14) . . -·-··" ···---- . . --- . . . . .. • •• 

b~+ b~+ b~+ 
• 
Ill whicl1 

b~ ~o, 
I 

~1, b~ ;2, I b; bl ' ... , al a2 a1, 

and evaluating the sequences A,,B,, (r=-1,0,1, ... ) given by 

when 

and in particular 

Cp<n-1>+2 = 

A,= b; Ar-t + a: A,._ 2 , 

B, = b; B,_ 1 + a; B,,_ 2 

C,=A,/B,., (r=-1,0,1, ... ) 

(r= 1, 2, ... ) 

(n=1,2, ... ). 

The converging factor is made use of to construct the quantity 

( 1 5) 

( 16) 

( 17) 

( 18) 

( 19) 

(20) 

In favorable cases and the continued fraction (5) provided one such the 
numerical convergence of the series (3) was rapid for botl1 sets of coefficients oc~,) 
(s = -1, 0, 1, ... ; r =O, 1), and C~1~-t)+ 2 was a considerably better approxima
tion to C than was Cp(n-i)+ 2 • 

5. 
Use of the converging factor u~2

) brought to life a ghost function with which 
the continued fraction ( 1) may be associated. A number of conjectures regard
ing this function were made in the original treatment. Here we do not pursue 
this matter further, other than allowing for its investigation in the ALGOL 

programme. 

6. 
In the original treatment the converging factor was applied to a number 

of continued fraction expansions with varying degrees of success until the follow-
• • 1ng expansion: 

z-1
2F0 (a+ 1, b+ 1; -z-1 ) 

--··- ~ ·-~--,· ·~·-----~-~ ·-·- --~---~---- '-•··~-"~ 

2F0 (a, b; -z-1) 
(21) 

was encountered. 

Proceeding as in the above example we write 

(a+n+1) (b+n+1) 
--'"~···· -·•· 

z+a+b+2n+3-
(22) 

and derive immediately the difference equation 

un {2n + z +a+ b + 1-u,,i+i} =ab+ (a+ b) 1i + n 2• (23) 
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00 

Un+·l = oc_l n + (X._1 + OCo + I L1s-l tX1 n--.<; 
s=l 

into equation (23) we derive from the coefficients of n 2 

<X_1 (2 - OC_1) = 1 . 

{24) 

(25) 

Thus a_1 = 1, and there appears to be only converging factor. From the coef
ficients of n in (23) we have 

{26) 

and tl~is reduces to z=O, which may very well not be so, and in any case does 
not serve to dete1·1nine a 0 • 

This formal difficulty was overcome by writing 

z=c(n+h) 
,vhere 

(27) 

(28) 

It is a substitution whicl1 is frequently encountered in work on converging factors 
associated with certain asymptotic series and making it was a natural step to 
take. 

Equation (23) now envolves to the form 

un{n(2+c) +ch+a+b+1-un+i}=ab+(a+b)n-~n2 (29) 

and we obtain 

where 
(30) 

(31) 

Thereafter there is no difficulty in determining further coefficients as (s=O, 1, ... ) 
from equation (29). Numerical experiments on a somewhat modest scale served 
to show that some improvement in the numerical convergence of expansion (22) 
could be effected. 

7. 
In fact a subtle blunder has been made. Subsequent to the substitution (27) 

the converging factor is not a function of n alone but of n and h. Equation (29) 
is incorrect. After (27) we must write 

(32) 

and obtain 

un (h) {ch+ a+ b + 1 + (2 +· c) n -un+t (h-1)} =ab+ (a+ b) n + n 2• (33) 

Now it transpires that a converging factor may be derived on the basis of 
(3 3) if we assume that 

+oo 
,zt,n L <Xs (h) n-s (34) 

S=-1 
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where tl1e as (h) (s = - 1, O, 1, ... ) are not constants, but polynomials of degree 
s +- 1 in Ji, or 

(3 5) 

8. 
By equating corresponding powers of n in equation (33) we obtain an ex

pression for a., (h); by equating corresponding powers of h in this expression 
,ve obtain the coefficients a, s (s = 0, 1, ... , r + 1). 

' Let us enquire a little more closely into how this is done. We first dismiss 
tl1e functions rx. 1 (h) and t1..0 (h). Equating coefficients of 11, 2 in (33) we have 

cx._1 (h) {2 + c-cx._1 (h-1)} = 1 (36) 
or, writing 

= Vc-(4-+-~5 
and confining our attention to the converging factor u~1), 

<X_ 1 ( h) = ( 2 + c - rJ) / 2 . 

Equating coefficients of n in (33) we have 

a_ 1 {ch + a + b + 1 - a.0 ( h - 1)} + a0 ( h) { 2 + c - ex_ 1} = a + b . 

Since Cl_ 1 (h) is a constant, nothing is lost by referring to it as cx._ 1 • If 

(37) 

(38) 

(39) 

then 
cx0 ( h) = a0, 1 h + a0• 0 ( 40) 

(Xo ( h - 1) = ao 1 h + ao o - ao 1 • 
' , ' 

Accordingly, from the coefficients of h in (39), we have 

or, with (38), 
t1.._1 (c - ao, 1) + ao, 1 (2 + c - a._1) = 0 

ao, 1 = - oc_1 c/17. 
From the constant terr11, we derive 

a0 , 0 = {a+ b -1-ex_1 (a+ b -1- c - a 0 , 1)}/17. 

(41) 

{42) 

(43) 

(44-) 
To set up a scheme for deriving the further coefficients ar, s (r = 1, 2, ... ; s = 
0, 1, ... , r + 1) we return to equation (39) and observe that 

where 

+oo 
ch+a+b+1+(2+c)n-un+i(h-1)= '--' fJs(h)n-s 

S=-1 

/J-1 ( h) = 2 + C - C(_ 1 , 

and 
/30 (h) (c - a0, 1 ) h +a+ b + 1 + a0 , 1 , 

fls (h) L'.ls-l(Xl (h- 1) 

(45) 

(46) 

(47) 

(48) 
(the d~fferences, of course, are taken with respect to the suffix of the polynomial, 
not with respect to h). 

The coefficient of n-r in equation (39) then gives 
r-1 

L C'/..5 (h) /3,-s (h) = 0. 
S=-1 (49) 
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Equation (49) will be used to determine the polynomials cx.,.-t-l (Ii) recursively; 
we make two remarks concerning it. The first is that each of the products on 
the left hand side is a polynomial in h of degree r + 1. The second is that if 
we have already determined cx.5 (h) (s= -1, 0, 1, ... , r-1) then equation (49) 
contains two unknc)wn functions rL,- (h) and /J,, (h) =-:: -L1r-1 a1 (h - 1) but, as 
vve sl1all see, there is a relationship between these functions involving quantities 
wl1ich have already been determined. In principle, then, a process exists by 
means of which rxr(h) may be determined from equation (49). 

Bearing in mind that we wish to mechanise this process, let us inquire a 
little more deeply into the requirements of equation (49). 

We must firstly be able to form the polynomials fJs(h), defined by equation 
(48), by means of differencing. Suppose that we have a two dimensional array 
dn,s • do,s contains the coefficients of the successive powers of h (s=O, 1, ... , r-1) 
in -a,._ 2 (h - 1), d1 , s those in -L1 a,._ 3 (h -1), d2• s those in - .d 2 oc,._ 4 (h - 1), and 
finally d,._ 3,s those in -L.1'-3 oc1 (h-1). We now arrive with the coefficients b 'Y5 

(s=O, 1, ... , r) in -rx,._1 (h-1) and replace in succsion do,s (s=O, 1> ... , r) by 
the coefficients of the successive powers_ of h in -a,,_ 1 (h-1), di,s by those in 
-L1oc1 _ 2 (h 1), d2 ,.,. by those in -L.1 2 cx7 _ 3 (h-1), and finally dr- 2,s by those 
in -L1,._ 2 oc1 (h-1). 

Novv let us write equation (49) in the for1r1 
:r-1 

rY._ 1 /Jr(h) +a,.(h) fJ_1 = - -'/Js(h) a,-s-i(h) (50) 
s=O 

on the left hand of which stand two unknown functions ar(h) and p,.(h) = 
- L1"-1 rx1 (Ji -1 ). But there is of course a very simple relationship bet\veen 
these functions. It is 

ex,. (h -1) =a,_1 (h -1) + L1 a,,_ 2 (h - 1) + 
+ .<l 2 ar_ 3 (h-1) + · · · + Ll'- 2 oc1 (h -1) + L1r-l rx1 (h -1). 

(51) 

The function Llr-i (h-1) may thus be eliminated from equation (SO), which in 
its modified forn1 contains apparently two unknown functions a,(h) and a,,(h-1), 
but in essence of course, only one. We note in passing that equation {51) in
volves a process of summation through a line of backward differences. Re
ference to the previous paragraph shows that we have just formed this line of 
differences. We may tl1en, with some economy, perform the processes of forma
tion and summation at the same time. 

We wish to evaluate the polynomial on tl1e right hand side of (SO). If 
r-s-1 >s then 

s+l u 

/Js (h) ar-~-s-1 (h) = h'" --' bs, v a,-s-1, u-v + 
u=O v=O 

1'-S s+l 

+ .... hu --' bs, v a,._s-1,u-v + 
u=s+2 v=O 

r+l r+l 

+ hu bs va,--s-1 u-v· 
J • 

u=r-s+l v=u 

(52) 

If r-s-1<s, then {J8 (h) ~-s-i(h) may also be expressed as three sums as in 
(52). Finally the case r- s -1 = s may be considered, and the right hand side 
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of (50) evaluated by summing these expressions from s==O to s=r -1. But 
we are caused to split up the product Ps (h) ar-s-i (h) into three components 
as i11 (52) solely to take into account the fact that bs, v is undefined for v> s + 1 
and that ar-·-s--l, u-v is undefined for v > u. Instead of writing down a number 
of differing formulae we can far more simply say that the coefficient of hu in 

r-1 

the expression L f3s (h) rx,-.-s-l (h) is the sum from s = 0 to r -1 of all scalar 
s=O 

products of the form ...... bs,var-s-i,u-v pro,rided that u>v and u-v<r-s. 
v=O 

We have now reached the stage where equation (49) has evolved to the form 
r+l 

(2 + C -c,:_1 ) ocr(h) -et:_1 Clr (h-1) = - ..... (Js hs. (53) 
S=O 

The right hand side of this equation is composed partly of terms obtained by 
summing through a line of backward differences as in equation (51) and partly 
from the addition of cross products as in equation (50). But as is easily verified 

r+l t-+1 

a,.(h- 1) = ( 54) 
S=O U=S 

that is, the coefficient of hs involves the quantities a,., s, ar, s+i, ... , oc,,, ,-+1 . Thus, 
if we examine the coefficients of hs in (54) in the order s= r + 1, r, r-1, ... , 0, 
we find that ar,s may always be expressed in terms of quantities which have 
previously been determined. More concisely 

1+1 

(2 -t- C a.-1) a, s ( 1 )u-s u 
r + 1 ( 1) 0 (5 5) r.,.. __ 1 a, u (J s s 

• .'i ' u :,-.;_; ,', 

leads to 
r+1 

( 1)it-S u r+ 1( 1) 0 (56) a r.,.._ I a,.,u as s • r,s s 
U=s+l 

At the same time that we determine a,. s we may easily evaluate the coef-
• 

ficients in - rf..,. (h - 1) and thus we return to the formation of the differences 
to obtain (:3,. (h), the summation of these differences to eliminate LI' a.1 (h), and so on. 

9. 
\Ve l1ave novv shown how the converging factor un(h) may be expressed 

formally as the sum of a series. But it is a matter of numerical experience that 
in many cases a continued fraction which may in a certain sense be associated 
with a given power series converges far more rapidly than the series. We would 
be well advised therefore, to transform the series for un (h) into such a continued 
fraction. This may conveniently be done by application of the e-algorithm [2]. 
The theory of this algorithm has adequately been described elsewhere [3]; it 
will suffice here to state that if from the initial values 

m-2 

ttm) = r..... (XS (h) n-s, 
S=-1 

(m==1,2, ... ), 

(m=0,1, ... ) 

(57) 

(58) 
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further quantities eim> (m==O, 1, ... ; s=2, 3, ... ) are constructed by means of 
the relationship 

(59) 

t11en the quantities c~~) are convergents of certain continued fractions, and as 
such provide better estimates of the formal sum of the series whose partial 
sums are given by (57). The quantities sim) may be displayed in the array 

c&O) 

e(O) 
1 

s&1
> c~O) 

c~l) c~O) 

e~2) .S~l) 
• 
• 
• 

ci2) 
• 
• 
• 

e&s> • 
• 
• 

• 
• 
• 

and it can be seen that the quantities in (59) occu1~ at the vertices of a lozenge 
in this array. The various members of this array are most economically (with 
regard to storage space) computed by retaining a vector l which at a given 
"t t . th f 11 . t·t· · l (m) l (m-l) l ,(m-2> l --- (O) s age con a1ns e o owing quan 1 1es. 0 == t 0 , 1 - t-1 , 2 == c: 2 , ... , rn _,_ Em • 

We arrive with a new partial sum c~m+I) and replace in succession l0 by cbm+i), 
11 by Bim), ... , and add lm+i == c~~1 . The forn1ation of these quantities is carried 
out by means of (59) and uses one working space and two auxiliary storage 
locations. 

10. 
The Converging Factor u~2>. All the preceding working which relates to the 

construction of a converging factor refers to that converging factor which may, 
by judicious numerical experimentation, be identified with u~1 ). The converging 
factor u~2

) may be constructed in precisely the same way by changing the defini
tion of 17 from that given by equation (31) to 

(60) 

11. 

An ALGOL Programme. A programme for constructing the converging factor 
t'maX 

either as a series L rx,, (h) n-r or as a continued fraction derived from this 
1'=-1 

series and applying it will now be given. 
Before doing so it is necessary to make a few remarks. The algorithmic 

language ALGOL [J] in which this programme is written, does not immediately 
cater for arithmetic operations with complex numbers. It is therefore necessary 
to construct an arsenal of procedures for doing this and to devise a convention 
which governs their use. We therefore stipulate that all complex numbers are 
to be represented by arrays containing at least two members. There is an in
teger i which is defined globally throughout the block in which the complex 

Nt1mer. Math. Bd. S 23 
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arithmetic takes place, and all complex numbers (e.g. z, brs) may be recognized 
throughout the programme by virtue of the fact that they contain the index i 
e.g. z [i], br [i, s] . i takes two values, zero corresponding to the real part 
e.g. Re(z) ==Z[O], Re(brs)--=b,-[O, s] and unity corresponding to the imaginary 

part. The integer i may not therefore (except in circumstances which are dif-
ficult to envisage) be used for any other purpose. 

Referring to the ALGOL programme there is a procedure eq (one, other) which 
carries out an instruction analogous to the operation one : = other for real numbers. 
Similarly seqeq (third, second, first) carries out an assignment similar to third : = 
second:= first. The procedure eq (one, other) may also be used if other is an 
expression of the form, for example, ax x [i] + b X y [i] + · • · in which a, b, ... 
are real numbers* . The procedure cm (res, one, other) carries out an assign
ment similar to res : = one x other, and cd (res, one, other) one similar to res : = 
one/other. It is however necessary to ensure that numbers which occur in the 
arithmetic as real numbers are treated as such (i.e. with their imaginary parts 

• 

put equal to zero), and for this purpose the procedure real (variable) is used**. 
The function of further procedures such as mod (it), arg (it), comp sqrt (res, it) 
is obvious. Further deta.ils are to be found in [ 5]. 

We are thus in a position to carry out the required aritl1metic. Now how
ever, there is the difficulty that the coefficients (r= 0, 1, ... , r max; s = 0, 1, 
... , r + 1), which must be retained throughout the computation, are members 
of a triangular array, and such arrays are not defined in ALGOL. This may be 
overcome by constructing a mapping function ( the integer procedure mf (m1, m2) 
which maps the r:1..,.,s, b,,s onto a linear array (of complex numbers) . 

A mapping function of a somewhat similar form is encountered in the evalua
tion of the initial numerators and denominators of the continued fraction 

1 (a+1)(b+1) (a+2)(b+2) ~----- _ _:___.:.,_;_ _ ___:___ ... 
z+a+b+1- z+a+b+3- z+a+b+S- · 

(61) 

In the notation of equations (16) and (17) the numerators (let us call them A 0,s) 
and denominators {A1 • 11 ) satisfy the recursions 

Af,s+l = (z +a+ b + 2s + 1) A,,s - (a+ s) (b + s) A 1•,.c;-l 

(1· = 0, 1 ; s = 1 , 2, ... ) . 
(62) 

But in each case we require storage space for two complex numbers (since when 
A;,s+i has been computed, A,,s-l is no longer required and Aj,s+i may be written 
where Af,s-I previously stood). But we should like the programme to be as 
ubersichtlich as possible, and we therefore introduce the two integers S and 
.5dash; and when s is even these take on the values O, 1, and 1, 0, otherwise ... 

A remark should also be made concerning the summation of the series. The 
programme as it stands continues to add in te11·ns of the series rf.., (h) n-, until 
such time as 

lccr+i (h) n _,._1 I > I oc,. (h) n-, I and I oc,+ 2 (h) n-"-2 1 > I (Xr+l (h) n-r-l I (63) . 

* This remark applies with equal force to the inputs to all the complex arithmetiy . 
procedures. ·•· · 

** The distinction between the real of the ALGOL report and the real of this 
paper is precisely the same as that between the titles wirklicher Geheimrat and 
Geheimrat. ,. . : 
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(if this occurs before r==rmax is reached) when it stops. But the decision as 
to the point at which the terms of a series are of no further use, is largely a 
matter concerning the users nerves, and the reader may not be in sympathy 
with this convention. 

Finally it will be remembered that only the even columns of the E-array 
• 

are of interest in the transformation of the converging factor series. As these 
are produced they are mapped onto a display vector di [i, ms] , and afterwards 
fished out and printed in an array which corresponds to table 1 with the columns 
of odd order missing. 

With these remarks in mind and the comments to guide him the following 
ALGOL programme may be read without difficulty. 

It reads as data a, b, (2, {}, n, and si ( + 1 for the converging factor u~1
} and 

- 1 for the converging factor u;;>), and immediately prints out a, b, e, {}/ n, si, h 
and n. It then computes the coefficients rx,, s (r = - 1, 0, 1, ... , r max; s = , 
o, 1, ... , r + 1 ). To indicate the numerical behaviour of the polynomials rx,. (h) 
and that of the terms of the series "--' rx,, (h) n-r, it continues to print out* the 
rows r=-1 

for r = - 1, O, 1, . . . until either condition ( 63) is satisfied or rmax is reached. 
It then prints the numerical sum of the converging factor series (truncated if 
necessary), the n th convergent Cn of (21), and the modified convergent C~ ob
tained by application of the converging factor. It then prints out the even 
order s-array for the converging factor (two triangular arrays, in the event, 
the real and imaginary parts being separated) and the two triangular arraj,lS 
(again the real and imaginary parts have been separated) which correspond to 
the application of the tra~sformed converging factor to the continued fraction (21). 

Converging factor for continued fractions: 

begin 
comment This programme uses the following computer oriented procedures 
(procedures the bodies of which must be written in code): 
procedure NLCR, which executes a carriage return. 
procedure TAB, which the moves the carriage to the next tabulator stop. 
real procedure read, which reads a number from the tape and advances t}ie 

tape to the next number. 
procedure print ( x): prints the value of the variable x; 

integer rmax; 

rmax : = read; 

begin . 
real a, b, multiple of pi, rho, h, theta, power of n, factor, sign of sqrt; 
integer i, r, s, n, 1·, twormax, rs, col, S, Sdash, u, v, ncr, r1, sanfang; 
boolean still converging, display converging factor alone; 

* The author is the guest of a non-profit making organisation. 
23* 
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array auxo, aux1, aux2, z, c, eta, am1, sum, converging factor [O : 1], 
aux3[0:1, 0:1], alpha[0:1, 1: (rmax+4) x(rmax+1) : 2], 
beta[O: 1, 1: (rniax+J) xrmax : 2], d[O:rniax-2, O:rmax, O: 1], 
sigma [O: 1, O: rmax + 1], A [O: 1, 0: 1, 0: 1 ], l [O: rmax + 2, O: 1 J, 
alphar, termr [-2: 0, O: 1], modtermr [- 2: OJ, 
di [ O : 1 , 1 : ( rtna x -t--· 2) x ( rmax + 6) : 4, 0 : 1 J ; 
procedure eq (one, other); real one, other; 
comment serves to execute ''one:=== other'' with complex numbers and 

uses, as do the fallowing procedures, the implicit parameter i; 
for i : = 0, 1 do one : = other; 

procedure seqeq (third, second, first); 
real third, second, first; 
comment serves to execute ''third:= second:= first'' for complex 

numbers; 
for i : == 0, 1 do third : = second : =first; 
procedure cm (res, one, other); real res, one, other; 
comment serves to execute ''res:== one X other'' with complex 

numbers; 
begin 

real Reone, I mone, Reother, I mother; 
• 
i:=0; 
Reone : = one; Reother : = other; 

i: = 1; 
I mone : = one; I mother : = other; 
res : = Reone XI mother + I mone X Reother; 

• i: = O; 
res : = Reone x Reother - I mone x I mother 

end cm· 
' 

procedure cd (res, one, other); 
real res, one, other; 
comment serves to execute ''res:== one/otl1er'' for complex numbers; 

begin 
real Reone, Imone, Reother, I mother, denom; 
• i: =O· 

' 
Reone : = one; Reother : = other; 
i: = 1; 
I mane : = one; I mother : = other; 
denom : = Reother x Reother + I mother XI mother; 
res:= (Imone X Reother-Reone xlmother)/denom; 
• i: = O; 
res:= (Reone xReother + lmone xlmother)/denom 

end cd; 

real procedure real ( variable) ; 
real variable; 
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real : = (if i = O then variable else O) ; 
real procedure mod (it); 
real it; 
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comment serves to compute the moditlus of a complex number it; 
begin 

real Reit, I mit; 
i: = O; Reit: ==it; 
i : = 1 ; I mit : = it ; 
mod : = sqrt (Reit X Reit + I mit x I mit) 

end mod; 

procedure polar form (res, r, theta); 
real r, theta, res; 
comment serves to compute real and imaginary part of a complex 

number res, given the modulus r and argument theta; 
begin 

real r1, theta1 ; 
r1 : = r; theta1 : == tlieta; 

• i:=O; 
res : = r1 x cos (theta1); 

• i:=1· , 
res:= r1 x sin (theta1) 

end polar form; 

procedure comprecip (res, it) ; 
real res, it; 
comment serves to compute the reciprocal res of a complex number it; 
begin 

real Reit, I mit, denom; 
i := O; 
Re1:t: =it; 

• 
i: = 1; 
lmit: = it· 

' 
denom : = Reit X Reit + I mit X I mit ; 
res : = - I mit/denom; 
i: = O; res:== Reit/denom 

end comprecip; 

real procedure arg (it); 
real it; 

comment serves to compute the argument of a complex number it; 
begin 

real Reit, Imit; 
• i: = o; 
Reit: = it; 

• 
i: = 1; 
lmit: = it; 



arg : = if Reit > O then arctan ( I mit/ Reit) else 
if lniit =0 then 3.1415926535 89793 else 
sign (Imit) x 1.5707963267949 -arctan (Reit/lmit) 

end arg; 

procedure co1npsqrt (res, it); 
real res, it; 
comment serves to compute the square root res of a complex number it; 
polar for1n res, sqrt (mod (it)), 0.5 X arg (it) ; 

procedure conipprint (it); 
real it; 
comment prints a complex number it; 
for i: = 0, 1 do print(it); 

procedure druck (it); 
real it; 
comment prints the complex number it and its modulus; 
begin 

compprint (it); 
print mod (1:t) 

end druck; 

boolean procedure even (integer); 
integer integer; 
comment the value of eve11 is true if integer is even, 

false if integer is odd; 
even:= integer =2 xentier(integer/2) ; 

procedure cma (res, one, other, it); 
real res, one, other, it; 
comment serves to execute ''res:= one x other+ it'' for complex 

numbers; 
begin 

array aux4 [O : 1 J; 
cm(aux4 [i], one, other); 
eq (res, aux4 [i] + it) 

end cma; 

procedure convfac (res, un); 
real res, un; 
comment serves to execute 
res:= (-unxA[O, SJ +A[o, Sdash])/(-unxA[1, SJ +A[1, Sdash]) 
A [i, SJ being the complex number given by the array A [1·, S, i]; 
begin 

for j : = 0, 1 do 
cma(aux3 [1·, i], -un, A[j, S, i], A[i, Sdash, i]); 
cd (res, aux3 [O, i], aux3 [1, i]) 

end convf ac; 
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procedure add in backward difference; 
cma (sigma [i, s], - am1 [i], aux1 [i], sigma [i, s ]) ; 

procedure sum and display converging factor; 
begin 

NLCR; 
druck (alphar [- 2, i]); 
druck (termr [- 2, i]); 
eq (converging factor [i], converging factor [i] + termr [- 2, i]); 
for s : == - 2, - 1 do 
begin 

ends 

eq (alphar [ s, i], alphar [ s + 1, i]); 
eq (termr [ s, i], termr [ s + 1, i]); 
modtermr [ s J : = modtermr [ s + 1 J 

end sum and display converging factor; 

procedure NT; 
begin 

NLCR; NLCR; 
TAB; TAB; TAB 

end NT; 

integer procedure mf (m1, m2); 
value m1; integer m1, m2; 
mf:= (m1+1)x(m1+2) : 2+m2; 

Introduction: 

a : = read; b : = read ; rho : read; 
multiple of pi : =read; factor:= read; 
sign of sqrt : = read; col : = read; 
n : = entier (rho// actor) ; 
h: = rho// actor - n; 
NLCR; 
print (a); print (b); 
print(rho); print(multiple of pi); 
NLCR; 
print (factor) ; print ( n) ; 
print (h); print (sign of sqrt); 
theta : = multiple of pi X 3 .14159 265 3 5 89793; 
polar form (z [i], rho, theta); 
polar form (c [i], factor, theta); 

Prepare application of converging factor: 

seqeq A[O,O,i],A[1, 1,i],real(1); 
eq A [ 1, O, i], z [ i] + real ( a + b + 1) ; 
eq ( A [ o, 1 , i], o) ; 
S : = 1 ; Sdash : = O; 
for s: = 1 step 1 until n -1 do 
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J ►ri ,it ,,tJ, ('t)'1fit}i:rge,,I: 
,, d ( ,, ,, x 1 [ i J , a M #1: 3 [ <) , i .1 , a•• -~ "} [ 1 , i] ) ; 
JV J..,('R; iV Id('~R; 
dr1i,:k (auxt [:iJ); 
comm.ent (:~ompuJaJior, <J/ eia, am1 (i.e. atpha [- ·1 ]), 

alfia [' t au 2], beta [ 1 anti 2] ; 
,·,n ( ,z,.,_i;t [i], c [ i], c [i J -f·· real (4)) : 
,:·om,Psqrt(auxt {~i'], aux1 fi]); 
e,q(et,i [i_), si,sn of sqrt xaux1 l:i]); 
eq(amt[i], (c[iJ ·+-real(:2)--- eia[i])/2); 
c·m (auxt 11 i l --- amt [il c [i]) · 

' .i' J,t . ' 

cd (alpha [i, 2]. auxt [ ,·], eta ["i]) ; 
c,n,1 (auxi [i_J, -- amt [iJ, real (a -t· b - ... 1) -- c [i] + alpha [ i, 2 ], real (a+ b - 1) ; 

,J ( - 'I L f' • 1 r· '] [' . ·1 ) • c" tiU;Pn41._i, 1 J, auxt _e , eta i_ .. , 

eq(btiii[i, t],alpha[i, 2]-alpha[i, 1]-at1,1[i]+real(a+b+1) ; 
eq (beJa [it 2 ~!., c [iJ _ ... alpha [i, 2 ]) ; 
seqeq(sigma [i, ()] 1 sigma [i, 1 ], 0); 
for r: ~~c:::: 1 step 1 until rmax do 
begin 

eq(sigma ['i, r ·+ 1], 0); 

Fon,, c·ross prodt1cts and accumulate : 

for s : ·.::::::' O st·ep 1 unti I, r - 1 do 
fo1r u : ;;;!.). O st·ep 1 until ,. + 1 do 
for v : O step 1 un,ti I s + 1 do 
i·f (u ~ t,) A(" - v ~ r - s) the\n 
cma(stgma[i, u], b6i.a[i, tn/(s, v)], alpha[i, mf(, -s-1, u-v)], 

sigma [ i, 1,1,]) ; 
comment D ·• •·.-. .·. insii01' of a [r, s] and b [r, s] ; 
for s : · ... ...: r + 1 step - 1 u•nti'I O do 

" · an 
eq (sutn [i] 1 0); 
ncr:=1; 
for u: -- s -+- i ste.p 1 until r + 1 d,o 

" In 

ncr:= -(ncrxu): (u-s); 
eq sum [i], sum [i] + ncr xoJpha [i, mf (r, u)] 

en•d; 
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cma (sigma [i, s], am1 [i], sum [i], - sigma [i, s]); 
if s = O A r = 1 then 

eq sigma [i, s], sigma [i, s] + real (ax b) ; 
cd (alpha [i, mf (r, s) ], sigma [i, s], eta [i]); 
if r =t= rmax then 

Differencing and adding through line of backward differences: 

begin 
for u := 0 step 1 until r-1 do 
begin 

else 

end u 

if u =O then 
begin 

end 

begin 

end; 

eq(aux1[i], -alpha[i, mf (r, s)] -sum[i]); 
eq (sigma [i, s], O) 

eq auxo [i], aux1 [i] - (ifs =pr+ 1 then 
d[u-1,s,i] elseO); 

eq (d [u-1, s, i], aitx1 [i]); 
add in backward difference; 
eq (aitx1 [ i], aitxO [i]) 

if u = r - 1 then 
begin 

end 

seqeq (d [ u, s, i], beta [i, mf (r, s)], aux1 [i]); 
add in backward difference 

end Di/ f erencing and adding 
ends 

end r; 

Computation of converging factor: 
still converging : =true ; 
seqeq (l [O, i], converging factor [i], 0); 
power of n : = 1 /n; 
twormax : · 2 x rmax; 

• 

for r: = - 1 step 1 until rmax do 
begin 

r1 : = ( if r > O then O else r - 1) ; 
if r -1 then eq (alphar [r1, i], am1 [i]) else 
begin 

eq ( alphar [r1, i], 0) ; 
for s: == r + 1 step -1 until O do 
eq (alphar [r1, i], alpha [i, mf (r, s)] + h xalphar [r1, i]) 

end; 
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eq (termr [r1, i], alphar [r1, i]Jpower of n); 
modtermr [r1 J : === mod (termr [r1, i]); 

.4dd in converging factor term if series still converging: 

if r ~ 1 A still converging then 
begin 

end; 

if modtermr [-2] > modtermr [-1 J A 
niodtermr[-1] > modtermr [OJ then 

sitni and display converging factor else 
still converging : = false 

Application of epsilon algorithm to converging factor series: 

eq (aux1 [i], termr [r1, i] + l [O, i]) ; 
for s : = O step 1 unti I r + 1 do 
begin 

comprecip auxo [i], (ifs= O then termr [r1, i] else 
aitx1 [ i] - l [ s, i]) ; 

ifs =t== o then 
begin 

end; 

eq (auxo [i], auxo [i] + l [ s -1, i]); 
eq (t [ s - 1, i], aux2 [ i]) 

eq (aux2 [i], aux1 [i]); 
eq(aux1 [i], auxo [i]); 
if even (s) then 
begin 

end; 

rs:= s x(twormax+4-s) : 4 +r+ 2; 
eq(di [O, rs, i], aux2 [i]); 
convf ac (di [ 1, rs, i], aux2 [ i]) 

ifs =r + 1 A even(r) then 
begin 

rs:= (r + 2) x (twormax-r + 6) : 4; 
eq (di [O, rs, i], aux1 [i]); 
convfac (di [ 1, rs, i], aux1 [i]) 

end 
ends; 
eq (l [r + 1, i], aux2 [i]); 
eq (l [r + 2, i], aux1 [i]); 
power of n: = n xpower of n 

end r; 
if still converging/\ modtermr [-1 J < modtermr [O] then 
begin. 

sum and display converging factor; 
sum and display converging factor 

end· 
' 
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Print converging factor and modified convergent: 

NT· , 
druck (converging factor [i]); 
convfac (auxO [i], converging factor [i]); 
NT· , 
dritck (auxo [i]); 
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Display application of epsilon algorithni to converging factor and t}ie corresponding 
modified convergents: 

display converging factor alone : = true; 
Triangitlar display: 

for i : = O, 1 do 
begin 

for sanfang: = 0 step 2 x col until rmax + 2 do 
begin 

NLCR; 
for r: = 1 step 1 until rmax + 2 - sanfang : 2 do 
begin 

end r 

NLCR; 
for s: = sa1ifang step 2 until 

sanfang+2x(col-1) do 
begin 

ends 

if s : 2 < r A r < rmax + 2 - s : 2 then 
begin 

rs:= sx(twormax+6-s) : 4+r; 
print (di [if display converging factor 

alone then O else 1, rs, i]); 
end 

end sanfang 
end i; 
if display converging factor alone then 
begin 

display converging factor alone : = / alse; 
goto Triangular display 

end 
end 

end Con verging factor for continued fractions 

Numerical results 

Some numerical results which have been pro,duced by means of the preceding 
ALGOL programme are summarized in the following tables which relate to the 
application of the converging factor u~1) to the continued fraction (21) when 
a b = 0, I c I = 1.0, and z= 3.5 ei 3 :rr.f4 (i.e. n= 3, h · 0.5). · 
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Tl1e C<>rrect value c:>f the cc►ntinuecl fractic)Il i11 c1uestio11 is 

··-0.150410705 -i0.279885923. 

-().15{)410704 

(}.279885 921 

In order to illustrate the effect of arg {.t) upon the numerical behaviour of 
the converging factor certain figures are given in Table 3. These relate to the 
case a-:.:;-;b=O, Jcf ~-::1.0, fzl • . .:3.5, i.e. n=3, /1, · 0.5. The value of arg(z) is given 
in tl1e first column. Tl1e second and third columns contain the mo,duli of a_

1 
(k) 
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and et.4 (h) respectively; the fourth and fifth columns contain I C3 I and I Ch1
) I 

respectively C~1
} has been computed on the assumption that u~1) may be ap-

4 

proximated by the partial sum rf..,. (h) n-r ; the sixth column contains the 
1'=-1 

value of C~1
> which has been computed by applying the e-algorithm to the initial 

m-2 

v?alues Ebm) = _ rx,, (h) n-r (m = 0, 1, ... , 6) and using e~0 ) as an approximation 
r=-1 

to u~l; the seventh column contains the modulus of the correct result 

0 
n/4 
:n/2 

3n/4 
Tl, 

0.381 966 0.017307 
0.403 861 0.012924 
0.480 533 0.046 7 51 
0.653 308 10.039 731 
1.0 jo.125210 

Table 3 

jC~1'1 (series) 

0.230803934 0.230819326 0.230819332 
0.238 593 791 0.238 569606 0.238 569603 
0.264186360 0.264289222 0.264289208 
0.319444080 I 0.317 741 541 0.317 741260 
0.355963303 I 0.431104196 1 0.431077928 

correct 

0.230819332 
0.238 569603 
0.264289208 
0.317 741263 
0.431077657 

Note: When z= -x, and x is real and positive, then CJi1} is an approximation 
00 ,i 

to e-x y+ln (x) + __ J ___ i .. +in , as one would expect. 
n=l n (n .) 

It will be seen that both the rate of convergence of the converging factor 
series and the degree of improvement which may be effected by application of 
the e-algorithm, are substantially independent of arg (z). The variation in the 
relative accuracy of the transformed convergent c&1) is mainly influenced by the 
relative accuracy of the convergent C3 , i.e. by the convergence behaviour of 
the continued fraction itself. 

It will be recalled that in the relationship z= c (n + h), the choice of I c I was 
arbitrary, but that tl1ereafter all other parameters were fixed. In the preceding 
numerical examples I c I was taken to be 1.0 for simplicity. The effect of I cl 
upon the numerical behaviour of the converging factor is illustrated in Table 4, 
which refers to the case a=b=O, z=3.o. 

C 

0. 5 
1.0 
?.O 

Table 4 
. 

n Jcx-1 (h) I Jcx4(h) I lix-1(h) n-j la4(h) n-4j ICnl lCh1 >1 

5 0.5 0.131923 2.5 0.000211 0.262081 881 0.262083 740038 
2 0.381 966 0.076374 o. 763 932 0.004773 0.261 904 762 0.262079998123 
1 0.267 949 0.007 856 0.267 949 0.0,07 856 0.260 869 565 0.261 877638010 

correct 0.262 083 740 038 

The value of c~> has been computed by using as an approximation 
4 

r=-1 

It can be seen that the magnitude of I ix,.(h)I decreases more rapidly, the 
larger I c I becomes. However, the fact that a s~all value of. I c I implies a rela
tively large value of n, means that the converging factor senes converges more 
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rapidly for such values of 
Cn itself is more accurate. 
small is to be preferred. 

c. Furtl1ermore, the large value of n implies that 
Thus, in conclusion, a value of c for which I c is 

For the sake of completeness we give some numerical details relating to a 
case in which both a and b are not zero, namely that in which a= 0.0, b -- - 0. 5, 
z=S.Oe , c =1.0, 1.e. n=4, --1.0. in/2 I (" h ) 

Here 
C4 = 0.01793 7083 3 - i O .1 9 5 2 3 24 3 2 5 O . 

Table 5 gives even order e-arrays corresponding to those in Table 2. 

1 
2 

3 
4 
5 

1 
2 
3 
4 
5 

0 

+0.01 793 50965 3 
.01793 711801 
.0179369043 5 
.0179369166 8 

+0.0179369172 3 

0 

-0.19523108880 
.19523089841 
.1952310865 6 
.19523105005 

-0.1952310545 5 

Table 5 

2 

+0.01793 67363 O 
.01793 691660 
.01793 691734 

+0.01793 691699 

2 

-0.1952310575 7 
.19523105266 
.19523105464 

-0.19523105413 

4 

+0.01793 69173 O 
+ 0.01793691709 

4 

-0.19523105466 
-0.19523105423 

The correct value of the continued fraction in question is 

0.01793691710-i0.19523105422. 
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