
STICHTING 

2e BOERHAA VESTRAA T 49 
AMSTERDAM 

1-ffi 59 

Singular Rules For 

Certain Non-Linear Algorithms 

' 

1963 



BIT 3 (1963), 17G-19G 

SINGULAR RULES FOR 

C1ERTAIN NON-LINEAR ALGORITHMS* 

Abstract. 
Certain simple non-linear algoritluns which have useful application in nun-ierical 

analysis have recently been introdt1ced. Wl1e11 using tl1.e fo1'"mulae of these algo­
rithms it may sornetimes occ1-1r that a qua11tity is numerically ill-determined. As 
a rest1lt of this and because of the way in whicl1 tl1e algorithmic form1-1lae are used, 
all quantities lying in a certain secto1~ become ill-determined. By,. considering tl1e 
e-, (!-, and q d-algorithms in detail it is sl-io"vn l1ow this misfort1.1ne may be over­
co1ne. ALGOL programmes are developed to show how the deri,red formulae may 
bo mecl1anized. 

Introduction. 

Recently a number of algoritl1ms, which l1ave important application 
in Numerical Analysis, have been developed. 

These algorithms relate members of an array of fu11ctions or numbers, 
tl'le general member of which may be denoted for the purpose 0£ exposi­
tion by <p8<m). The array may be displayed as follows: 

cp~{ 
cp?)O) 

cp9{ f/JlO) 
Cf1bl) • 

• 
• 

(2) 
P-1 <pil) f/'~O) 

cpb2) • <p(O) 
• s+l • 

<p(3) • <fJ12> <p~l) • 
-1 • • 

• • 
• • • ,:P(l) 
• • • s+l • • • 

9'~2) 
• 

• 
• 

• (2) 
• </Js+l • 

Diagram I 

so that the superscript m denotes a diagonal and the suffix s a colum11. 

* Comm1.1nication .Al!!B2a: of the Computation Department of the Mathematical Centre, 
Amsterdam. 



176 

All the algorithms considered are lozenge diagram algorithms, that 
is, each quantity q;8<m> is derived from a relationship of the form 

f)<m){m(m) m(m) m(m+ I) m(m+ I)} = 0 
8 Ts ' T s-1' T s-1 ' T 8-2 (I) 

which affects quantities lying at the corners 0£ a lozenge in the described 
array. In certain of the algorithms considered here, the form of the 
:functional relationship 0 8<m>{ . •• } is independent of s, whilst in others 
08<11i){ .• • } differs according to whether sis even or odd. 

The algorithmic relationship (1) may be used in two ways. In the for­
ward application of the algorithm, (I) is solved for rp 8<m) and the rp-array 
is built up from left to right .. In the progressive application of the algo­
rithm, (1) is solved for q;~~t1) and the cp-array is constructed dow11wards. 

Now it may occur that in certain singular cases, (I) results in an ill­
determined or even an indeterminate value of rp 8<m> or <p~~t1). In view 
of the manner in which the r.p-array is built up, this misfortune is prop­
agated throughout a whole sector. It is the purpose of this note to show 
how this difficulty may be overcome. 

The e-Algorith111 [1] 

In order to facilitate the discussion an example, which is perhaps tl1e 
simplest of its kind, will immediately be given. 

The e-algorithm relationships are 

(s~{- s~~il))(e~m+l) _ s~m)) 

which i11 the forward form are 

s<m) 
s+I s-1 + (m+l) 

8
cm) • 

8 s - 8 

I (2) 

(3) 

Now suppose that, quite fortuitously, e~~t2) and e~~t1) are both equal 
to c:x. It can immediately be seen that .e~~t1) becomes formally infinite, 
e8<m) and e3<m+l) are equal to a, and e~~l is indeterminate. Further quanti­
ties in a sector whose vertex is at .e~~l remain undetermined. The state 
of affairs is as follows. 

(c,;)e~~;l) (c:x)e~m) 

E~t2) ( oo )e~t1) (*)s~~i 
( c,; )e~~;2) ( cX )e~m+ 1) 



a= 

SINGUL..,\R RULES FOR CERT~;\.IN NON-LINEAR ALG()RITHl\-IS 177 

The situation may however be retrieved by multiple appeal to rela­
tio11ships ( 3). There follows 

I 
c.-(·rti+I) + 
vs-1 -----------------

1 I 1 
c.-Cm+l) _ (m+2) + (m+2) (m+l) (rn+l) (m) 
c; es-3 es-1 - e., 1 13 - 8 s-1 ~- s-1 s-1 

8cm+l> 
(n1-+l) s-1 

8 s-l ------
8
-(m-,-,-2-)-----

13
-(-m--+-2_) _____ 

8
_(rn_) __ 

s-3 s-1 s-1 

s-l s-3 s-1 8s-1 s-1 s-1 

(m+2) c.-Cm) £'(m+2) 8 s-l 0 s-1 vs-3 
-1--(-rri-+2) (rri+1)-l + 1 r1n) (m+l)-1 1 (m+-2) (m+l)::..l 

-Bs-1 8 s-l - 8 s-18 s-l -Ss-3 8 s-1 

or writing 

----- ~~ , _________ _ 

e(m+2) s<m+:2) e<rri) 
s-3 s-1 _ _ ,_ ___ s-_1 __ _ 

s-1 s-8 s-1 e-1 ~l 
(m) 

8 s-l 

(4) 

8cm+2)(1 _ 8(m+2)8 (m+1)-I)-1 + 8 (m) ( 1- 8 (rn) 8 cm+1)-1}_1 _ 8 (m+2){ I - 8cm+2)8(m+1)-1)-1 ( 5) 
s-1 s-1 s-1 e-1 s-1 s-1 s-3 s-3 s-1 

a( 1 + ae;~f1)-1)-1 . (6) 

It will be observed that if e~~tl) and s~~;2) are nearly equal, then 
e(m1+

1) is large and ill-determined but e <m) and e <m+t) derived from (3) 
8- ' 8 S ' 

and e~~l derived from (6), are quite well determined. When s~t1) and 
e~~t2) are exactly equal, the singular rule for the e-algorithm becomes 
quite simply 

.:-(m+2) + .:-Cm) _ c(m+2) 
0 s-l ce-1 °s-3 · (7) 

Any number of pathological examples may be constructed to illustrate 
this phenomenon; it arises quite naturally however when the s-algorithm 
is used to transform the slowly convergent series I~0 u 8 , in which, for 
some r, 

The initial conditions for the e-algorithm in this case are 

0 8 (m) 
0 

m-1 

,Lu8 m 
8=0 

I 2 . ~ (0) = ' ' ... ' c-o 

Consider the e-scheme so derived from the series 

0, I, ... 

0 . (8) 

(9) 



178 

Its initial members are as follows: 

0 
0 1 1 

1 
I X 9 4x+x2 

x-1 -0 
2+x x2 2(3+x) 

l+x _,_ 
2 X 2 6 4x+x2 

6x+x2 } 0 ~)x-2 
...I ., 

6+4x+ x 2 x ... 
I+x+ 

6 2x ') 
.;..; 

0 6x-3 

x2 xs 
l+x+ + 

2 6 

When x=2 thee-scheme wl1ich may be constructed by use of (3) and (6), 
and verified fro1n the above array, is: 

0 
I 

l 1 
1. 
2 ½ 

3 5 

½ J_ 
2 

5 9 
3 
4 

19 
3 

The metl'lod of treatment to be adopted when the <p-array 
structed in the downward direction may be illustrated by the 

e-Algorithm: Progressive Form. 

The progressive form of the e-algoritl1m relationships is 

1 
e~m+ 1) = e(m) + ------

s ei~l - e~~i I) • 

• 1s con-

(10) 

When s~t1) and e~~i are approximately equal the state of affairs is as 
follows 

e(tn) 
s 

({X)e(m+I) 
~-1 

(~ )e(m) s+l 
8(m+2) ( oo )sini-r-1) (m) 

8 s+2 s-2 ' 

( rx )sCm+2) 
s-1 

(ex )eCm+1) 
s+l 

(*)e~m+2) 



SINGULAR RULES FOR CERTAIN NON-LINEAR ALGORITHMS 179 

,\
1 riting 

.,..(rrt)( l _ c-(·J-nJ 8 cm+IJ-1)-1. + E(rrl+:2)( 1 _ £(
8
~t2)£

8
(ni+1)-1)-1- £~12,)( 1 _ 88(n1)e

8
(:ri+1)- 1 )-I , 

cs+:! 0 s+~ s 8-:!. £ " 

tl1ere f ollo,vs 
(12) 

"l-xrhe11. .,..(rri+ I) and c(rri) are exactly equa.l vv c 8 _1 s+l 

c(m+2) + c(m) _ .... ~.111,) • 
c, s-2 · c. s+2 c.., ( 13) 

A further algoritl1m wl-iich is similar in form to the s-algoritl1.m is 

The e-Algorithm [2]. 

Quantities es<m) are related by 

( n(m) _ 0 (m+l))(n(m+1) _ 0 (1n)) 
~ s+ 1 ..., s-1 c::- s .._ s s+ l. 

For,vard Form : 
e£1:·i is determined from 

(·m) 
f2s+I 

s+I 
----~·--~ 
f1s - s 

l\tiisfortu11e occurs when e~~;i) and e~~;2> are nearly equal: 

Compute first 

r= 

Note: 

(m) 
f:!1:1-l 

(1n-+2) 
es-1 

sn(1n) ( 1 _ n<:n) n<m+1)-l)-1 + sn<m+2)( I_ n<m+2)0 (m+1)-l)-1 
~ s-1 c:: .s-1~ s-1 I.:::" s-I ~ s-l -; s-1 

n(m) 
~s+l 

- (s- l)et~t2>)(I -e~~;2)e~~t1)-l)-1, 

(m) r 

8-l 

(14) 

(15) 

( 16) 

(17) 

( I 8) 

In tl1e theory of the e-algorithm it is shown tl1at if quantities e.scm> 
are constructed by use o:f (15) from the initial conditions 

( 11) 



180 

the11 

/)(r,i) = 
t:-1 

P. \VYNN 

S=n 

Iasms 
0, n(Om) = _s_=_O __ 

t: s=n 

I as'ms 
8=0 

/') <.~;nn) = a /a , c:.::. 'n n m = 

m = 0,1, ... ( 19) 

0, I, ... (20) 

Consideration of the case in which one of the initial values e0<m) is in­
finite l1as hitherto been impossible, but this is now made possible by 
application of the singular rule 

Progressive Form: 
es (m+1> is determined from 

n (m+l) 
t: 8 

l\Iisfortune occurs when e~~il) and e~~i are approximately equal. 

e~m) 

(cx){!~~iI) <~)e~~i 
(!~~;2) (oo){!~m+l) e<m) 

s+2 
(cx)e~~i2) (~){!~~{!) 

(*)e~m+2) 
Compute first 

R (s + 2)e~:~( 1- e~~~~m+l)-1)-1 + 8(!~~;2)( 1 --" e~~t2)e~m+I)-1)-l 

when 
- (s + I )e~m)( I - e~m)eim+l)-1)-1 

when 0 (m+l) n<m) 
, S-1 t: s+ 1' 

eim+2) 

(21) 

(22) 

(23) 

(24) 

(25) 

The two algorithms considered contain only one algorithmic relation­
ship. Lozenge diagram algorithms exist however in which two relation­
ships are used to construct two sets of quantities which stand in the even 
and odd columns respectively of the <p-array. Typical of such an algo­
rithm is 

The q-d Algorithm [3]. 

The q- d algorithm relationships are 

e
8
(m) + q(

8
m) = e(m+l) + q(m+l) e<m)q(m) = e<m+l)q(m+l) 

s-1 s , a a+ 1 s a • (26) 



~IKGlTL.;\R l{ULES .b_,01{ CERTAIN NON~LINEAR . ..i-\LGORI'l~Hl\-IS 181 

Forvvarcl Form: 
The q and e f u11ctions are detern1ined from 

e(rri) 
8 

e(m+l) + q(1n+l) -q(m) 
s-l 8 s , e(m+ I)q(rn+ l)e(m)-1 

's s s • (27) 

Misfo1 .. tune occurs when fortuitously e8 (1n) is small or zero; the distribution 
of singular values is then 

(O)q~:~1) 
(O)e~m) 

(oo)q~~{ 

(r,t-2) 
es+l 

( *) (-rn-2) qs.,.-2 
( oo)eCm-1) (*)e(m-2) 

s+l s+2 
( oo )qi~2l) (*)q~~32) 

(O)q<m) 
s+2 

( O)e(tn-1) 
s+2 

(*)q(m-l) 
s+3 

Write successively 

b 
then 

f 

= e<m) _ q(m-1) C 
s s+l , q(m+ l)e(·m+ 1) d 

8 8 ' 
q (m+ 1) + e(m+ l) . 

s+l s , 

q(m-2) 
s+2 

(m-2) = 
es+2 

e q(1n+l)e(m+I) 
s+l s+l ' 

e + ( dq~~l-1 
- 1) ( de~m) - c) ( 1 - q~m)e~m-i)-1

) ( bq<;:_l-i + 1) , 

q(m-2) 
s+3 (bq<m)-1 + l) /!e(m-:-2)-1 

s+l J•s+2 , 

q(m+l) = 
s+3 e(m)e).f!-1 

s+2 '.I • 

Progressive Form: 
The q and e functions are determined from 

e(m) + q(m) -e(m+l) e(m+l) = q(m)e(n-1,)q(m+l)-l 
s B 8-1 ' 8 s+ l s s • 

Misfortu11e occurs when q8 <m> is very small. 

(O)q~m> 

Write 
B= 

then 

BIT 3 - 1:2 

q (Bm) - e(m+I) Q = 
B-1 ' 

e<m-I)q(m-1) D 
s s+l ' 

(O)e<m) 
s+l 

( *)eCm+l) 
a+l 

q(m-I) + e<m-1). 
s+l s+I , 

e<m+2) 
s-1 

e<m)q(m+1)- 1q<m+2)(q<m) B + 0) 
s-1 s-1 s-1 s , 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 



182 

ft1rther 

whe11 

Further Algorithms. 

e(m+l) 
s+I 

= qCm,) e(m- l)q(m-1) E-1 
s+2 s+l s+l • (39) 

There are a number of furhter lozenge diagram algorithms extant in 
the literature ([4] p. 6, [4] p. 13, [4] p. 14). Singular cases arise, and 
may be dealt with, in a manner a11alogous to those which have been 
considered here. 

ALGOL Programmes. 

It is perfectly clear that the various special formulae which have 
either been given or may be derived are of no use unless it is shown how 
they may be t1sed. In order to accomplish this the progressive form of 
the s-algorithm is considered in detail. Extension of the stratagems 
employed to other lozenge algorithms will then be a mere exercise in 
transliteration. 

Normal e-Algorith1n Procedures. 

Firstly we consider how the quantities of the s-array may be com­
puted. The fact that we are concerned with a lozenge algorithm means 
that we are required to store, not a two dimensional array as in Diagram 
I, but a vector Z of quantities which, in the notation of the s-array, 
stretches along the backward diagonal from e0(m) to em<0): 

auxI 

l 8 _ 2 aux2 

auxO 

e co) 
m 



SINGULAR Rl,'LES FOR CERTAIN NON-LINEAR .. .\.LGORITHl\IS 183 

We a1,rive with a new quantity s0<m+1> and in stages push the vector l 
down 0110 place so as to exte11d from s~n1-+I) to c;~~ 1. Tl1e process reql1ires 
three auxiliary storage spaces auxO, auxl a11d aux2. 111 the diagram the 
process of displacing the vector is not complete; l co11tains quantities 
lying along the thick line. The contents of l 8 _ 1 , l 8 , auxO and auxl form 
a lozenge; the conte11ts of auxO are computed from those of l 8 _ 1 , l 8 and 
aux I; the contents of l.~-I are replaced by those of aux2, those of aux2 
by those of auxI, those of auxl by those of auxO; the value of s is in­
creased by unity, and the process is repeated. 

Two ALGOL s-algorithm procedures will now be give11. The first 
displays the even order s-array which may be derived fron1 the terms 
uni (m=O, l, .. . ,mmax) of the series L~our. The initial values e0(m) are 
pl1t equal to the partial sums ~;i::tur of the series. During the computa­
tion of the quantities of the s-array by means of the vector l as just 
described, the even suffix s-quantities are mapped onto a display vector 
rlisplayms, and (subsequent to the computation of the complete t:-array) 
printed out in the form of a triangular array (just as in Diagram I witl1 
the odd order columns removed) in strips of col columns. The procedure 
uses a non-locally declared integer m indicating the suffix of the terms um. 

The inputs to the procedure are an integer mmax indicating the suffix 
of the last term, a real procedure term which computes the terms of the 
series to be transformed as a function of m, and an integer col indicating 
the number of columns which can be accommodated per page upon the 
output typewriter. The procedure is as follows: 

procedure display epsilon algorithm (mmax, term, col); 
value mmax, col; integer mmax, col; real term; 
begin integers, sanfang, twommax; 

real auxO, auxI, aux2; 
array Z[O: mmax + I], display[ 1: (mmax + 1) x (mmax + 5) : 4]; 
Z[OJ : = 0.0; twommax : 2 x mmax; 
for m : = 0 step 1 until mmax do 
begin auxO := term; auxl := auxO+l[O]; 

for s : = 0 step I until m do 
begin auxO := 1.0/(if s = 0 then auxO else auxl-l[s]); 

if s =t= 0 then 
begin auxO:= auxO+l[s-1]; 

l[s-1]: = aux2 
end; 
if even(s) then 
display sx(twommax-s+2) : 4+m+l := auxI; 



l. 84 

end; 

end· 
' 

P. WYNN 

aux2 : = aux I; aitxI : = auxO 
end; 
l[m]: = aux2; l[m+ I]:= auxl; 
if 1even(m) then 
display[((m+I)x(twommax-m+5) : 4] := auxI 

for sanf ang : = 0 step 2 x col until mmax + I do 
begin N LOR; for m : = I step 1 until mmax + I - sanfang : 2 do 

begin NLOR; 

end 
end 

for s : sanf ang step 2 until sanf ang + 2 x ( col - I) do 
begin if (s: 2 < m) A m < mmax+I-(s: 2) 

then 
print display[ s x ( twommax + 4 - s) : 4 + m] 

end 

The second ALGOL procedure does not display the even order e-array. 
It persists in the computation of the s-array, using the backward diagonal 
l discussed abo,re, until either if mis odd -sm<0> and e~~2, or if m is even 
- e~_1 and e~_3 , agree to within a prescribed relative accuracy. It agai11 
uses a non-locally declared integer m indicating the suffix of the term 
of the series to be transformed. The inputs to this procedure are the 
real procedure term as before, and an integer available storage indicating 
11.ow long the vector l may become without exceeding the storage capacity 
available. The outputs from. the procedure are the real result and a 
boolean variable which indicates whether the available storage has 
been exceeded. The procedure is as follows : 

procedure epsilon algorithm (result, term, relative accuracy, 
available storage, storage not exceeded) ; 

value relative accuracy, available storage ; 
integer available storage ; 
real result, relative accuracy, term; 
boolean storage not exceeded; 
begin integer s ; real auxO, aux I, aux2 ; 

array l[O: available storage]; 
l[O] : = 0.0; m : = 0; 
EPSALG: auxO: = term; auxI: auxO+l[O]; s: = O; 
EPSLOOP: auxO: 1.0/(if s O then auxO else auxl-l[s]); 



SINGUL ... .\R RULES FOR CERTAIN N()N-I .. [NEAR ALGORI'l.,Hl\18 185 

if s =t= 0 then 
begin auxO: = aiixO + l[s- l]; l[s- I] : aux2 
end~ -
a:itx2 : = ctux 1 ; aux I : = auxO ; s : = s + I ; 
if ni ~ s then goto EPSLOOP; 
l[m] : = aiix2; l[m +I]:= aux I; 
if m > 0 then 
begin if lei,1en(m) then aux2 := l[rn- I] else 

begin aux I : = aux2; aux2 : = l[m- 2] 
end; 
aitx2 : = aux2/auxI; 
if abs( I. 0 - aux2) < relative accu·racy then 
begin storage not exceeded : = true ; 

end 
end 

result : = aux I ; goto END 

m: = m +I; if m < available storage then goto EPSALG 
else storage not exceeded : false ; 
END: 

end; 
Both procedures make use of the 

boolean procedure even(integer); 
value integer; integer integer; 
even : integer = ( integer : 2) x 2 ; 
which has the value true if the input integer is even, and false if it is not. 

An Example. 

In order to test these procedures on a11other occasion and to clarify 
matters on this, two complete programmes a1 .. e given illustrating the 
application of the s-algorithm to the series 

00 

= ln(2) : 0.69314 . 
m=O 

The terms of this series are computed by means of the 

real procedure ln2term; 

ln2term: = (if even (m) then 1.0 else - I.0)/(m + 1); 

The application of the e-algorithm to the above series is displayed 
by means of the following complete programme 

begin integer m ; 

co1n1nent This comment must be replaced by the procedures 



186 

end 

P. \VYNN 

display epsilon algorithm, even and ln2te·r·m ; 
display epsilon algorithm (5, ln2term, 6) 

It produces the follo,ving array: 

+ 0.66667 
.70000 
.69047 

+ 0.69231 
.69333 

+ 1.00000 
0.50000 

.83333 

.58333 .69444 + 0.69309 

. 78333 + 0.69242 
+ 0.61667 

+ 0.69312 

The computation of ln(2) to a relative accuracy of I0-9 by means of 
application of the e-algorithm to the above series, assuming that there 
is room in the computer store for a further 2000 real numbers, is as 
follows: 

begin integer m; real check; boolean successful; 

end 

comment This comment must be replaced by the procedures 
epsilon algorithm, even and ln2term; 
epsilon algorithm (check, ln2term, + 1.010 - 9, 2000, successful); 
if successful then print (check) 

A Single Point of Instability. 

We now discuss how the singular rules which have been derived for 
the forward form of the s-algorithm may be placed within the frame­
work of the programmes which l1ave been described above. We recall 
that if cancellation occurs in the subtraction e~~;l) _ e~~t2) then the sin­
gular rules affect quantities occurring in the following large lozenge : 

e(m) 
s-1 

/ 

8 (m+I) e~m) 
8-2 

/' 
e<m+2) 8

(m+l) 
s-3 

/ s-l 

8(m+2) 
8

(m+l) 

/ 
s-2 s 

/ 
8 (m+2) / s-1 

Diagram II 
If 

A= 

B = e(m)(l - e(m)e(m+1)-1)-1 
s-1 s s-1 

/ 
/ 

e<m) 
s+l 

(40) 

(41) 



SING1:L ... .\R RULES FOR CEltTAIN NON-LINE ... -1.R ... .\.LGORITHl\1S 187 

D e(m+2)(1 8
(ni+2)8(m+ 1)-1)-1 (42) s-1 s-1 s-1 

a11d 
a D+B 

the11 
A (43) 

('m) 0 a( 1 + ae(,rn+ 1)-l )-1 (44) 0 s+l s-1 

We 1nay assert that cancellation takes place if, in the subtraction 
s~~!2)-s~~!1), a loss off decimal figures takes place. Thus for the singular 
e-algorithm procedure we must provide as inpt1t a real parameter (called 
permissible degree of cancellation in the following procedures) eq11al i11 

magnitude to 10-1. 
Suppose that we are in the process of computing quantities lying on 

the backward diagonal through s£~t2J, e~~t1), s~m) and discover that can­
cellation occurs in the formation of e~~t2)-e~~;1), (i.e. within the defini­
tion J0 ust made that I (c(m:-2)- c:C1n-:-1))/s<,n+l)i < permissible degree o+" cancel-' s-2 s-2 s-2 I ~ 

lation). Immediately we note the current value of s (sl say) and thus 
(it will later be apparent that we do not need to record the current value 
of m) have a record of the position in the s-array of the point of cancella­
tion. We know that we are about to compute A from (40), and indeed 
we compute and store it. We l{now that we are about to compute B, and 
after the normal administration of the s-algorithm programme we do 
indeed compute and store B. We now proceed to the end of the vector l 
and start again at the other end. When the current value of s is equal 
to sl + I then we know that we are about to compute D. This we do. 
We now k11ow that we shall compute the next value of the e-array, 
not by means of the normal e-algorithm relationships, as has liitherto 
always been the case, but by means of the singular relationship ( 44). 
This is done, and the ill-effects of cancellation have been overcome. 

Multiple Points of Instability. 

So much for the case in whicl1. cancellation takes place at one point 
only. We should like, however, to apply the above procedure in the 
case in which there are a number of points in the s-array at which can­
cellation takes place. We could, a posteriori at least, by scanning the 
e-array backward diagonal by backward diagonal, construct a list of 
such points of cancellation. 

As we sca11. the s-array, backward diagonal by backward diagonal, 
vve have as it were a current list of singular poi11ts which have not yet 
completely been dealt with. When the backward diagonal l meets a 
la1~ge lozenge of Diagram II for the second time, i.e. a new point of can­
cellation is encountered, the new singular point takes its place at the end 
of the Cl1rrent list; whe11 the bacl{ward diagonal l leaves a large lozenge 



188 P. \VYNN 

for the third time, i.e. a new si11g11lar value of e has bee11 con1pt1ted, the 
old sir1g11lar poi11t is re1noved from tl1e begir111ing of the curre11t list. 

The integer sl a11d tl1e real quantities A a11d B of the preceding para­
grapl1s become 111embers of arrays. In the termi11ology of tl1e ALGOL 
r·eport, these arra}rs are dynamic own arrays. Indeed they are dy11amic 
even unto the point of vanisl1ing: tl1is mea11s that they are declared in 
a block, access to "\vhich is depender1 t upo11 the values of a logical ex-
1)1 .. ession (local instability present v new point of instability). 

As soon as we have discovered that cancellatio11 talres place in the 
formation of e~~!2)- e~~t1) we examine whether, fi1"st local i11stability is 
present, and secondly if the current value of s is the same as that stored 
in the s I-array at the position correspo11.ding to the begi11ni11g of the list. 
If this is so we know i1nmediately that e~~~ and e~~t 1> are approximately 
equal; but the singular rules given in tl1is paper relate only to isolated 
points of cancellation so tl1at we know immediately that our programme 
is inadequate for the case in hand. In this case therefore we immediately 
leave the procedure with the value of a boolean variable called non 
isolated singularity put equal to true. 

If we are not in the presence of a non-isolated singularity ]1owever we 
i11crease the numerical value of the end of list by unity. 

We now proceed as outlined earlier, store the current value of sin the 
array sl, the relevant values of the real quantities given by expressions 
(40) and (41) in the arrays A and B. 

We continue the normal s-algorithm process until the current value 
of sis equal to that ocurring in the sl array at the position corresponding 
to the begin of list. We now know that we are about to compute D. This 
we do, and shortly after compute a new value of s by means the singular 
rule. 

Having done this we increase the numerical value of begin of list by 
u11ity. If now the begin of list exceeds the end of list we know that there 
is 110 local instability present (i.e. this boolean variable takes the value 
false). This means tll.at we no longer l1ave to compare the current value 
of s with some member of the sl array and thus, apart from having to 
test for cancellation at each stage, the singular procedure may be made 
to run along the same lines as the normal e-algorithm procedure. 

There are two further details to be mentioned. The first is that formulae 
(40) to (44) are only usable on the assumption that the magnitude of 
e<m+l) is greater tha11 that of e(m) eCm+2) and cc~_+?.). However s<m) could 
s-1 s-1' s-1 s-3 s-1 

only be large if e~~~ and e~~t1) are approximately equal; this implies the 
presence of a non-isolated singularity which is dealt with by the proce­
dure· similarly for e<m+2) Tl1e quantity e<m+2) can only be large if s<,,n+~> 

' s-1 · s-3 s-4 



SINGULAR Rl"'.°LES FOR CERTAIN NON-LINEAR ALGORITH11S 189 

a11d s~~t3> are approximately equal, which corresponds to the applica­
tio11 of a singular rule at a point displaced two columns to the left in tl1e 
s-array; this will already have been dealt with by the procedure. 

The second detail is this: In the notation of Diagram 1 if the value 
of m + I is equal to zero then the possible cancellatio11 in tl1e formation 
of e~~;2) -e~~;i) need not be considered, since e~~§ lies outside the array. 

A Segment of Progran1me. 

We now summarize the reasoning of the preceding paragraphs in the 
form of a segment of an ALGOL programme. As a prelimi11ary there are 
two details. In the s-algorithm procedures given above, certain special 
operations were carried out if the value of s was non-zero; in the modified 
procedures further special operations are carried out if s is non-zero, 
thus a new boolean variable (s non zero) is introduced. Secondly, the 
box auxO is used for two pl1rposes: as before for contai11ing the new 
value c:~;i, and for co11taining the difference s 8<m+I) _ c:, 8<m> (i.e. aux I -l[s] 
or term). 

In the above procedures the inner s-algorithm loop contained the 
following assignments 

auxO := 1.0/(if s = 0 then auxO else auxl-l[s]); 
ifs = 0 then 

• 

begin auxO:. auxO + l[s- I]; l[s- I] : = aux2 
end 

In the singular c:-algorithm procedures we introduce the 

procedure normal aux O; 
auxO : = l.0/auxO +(ifs nonzero then Z[s-1] else 0.0); 
and replace the above assignments by the following segme11t: 
s non zero: (s =t O); ifs non zero then auxO := auxl-l[s]; 
if s < m A 10 about to be computed 
A abs (auxO/l[s]) < permissible degree of cancellation then 
begin new point of instability : = true ; 

end of list : = end of list+ I 
end· 

' 
if local instability present v new point of instability then 
begin real a; own real D; 

own boolean A about to be computed, B aboiit to be computed; 
own integer array s l [begin of list: end of list] ; 
own real array A, B[begin of list: end of list] ; 
if new point of instability then 



190 

end 
else 

P. WYNN 

begin if local instability present then 
begin if s = s I [begin of list] then 

end· 
' 

end· 
' 

begin non isolated singiilarity : = true ; 
goto END 

end 

local instability present : = A about to be computed : true ; 
new point of instability : = false; 
sl[end of list] : = s 

if O about to be computed then 
begin a : = D + B[ begin of list] -A [begin of list] ; 

auxO : = a/( 1.0 + a/l[s -1 ]) ; 
C about to be computed : = false ; 
begin of list : = begin of list+ I ; 
if begin of list > end of list then 

end local instability present:= false 

else 
normal auxO ; 
if local instability present then 
begin if A about to be computed then 

end 

begin A[end of list] : 
if s non zero then l[s-1]/( l.0- l[s- I]/auxO) 

else 0.0; 
A about to be computed : = false ; 
B about to be computed : = true 

end 
else 
if B about to be computed then 
begin B[end of list] : = l[s]/(I.0-l[s]/auxl); 

B about to be compitted : false 
end 
else 
ifs non zero As sl[begin of list]+ I then 
begin D : = aux I/( I.0-auxI/l[s]); 

end 0 about to be computed : true 

normal auxO; 
if s non zero then l[s- I] : aux2; 



SINGUL ... :\.R RULES FOR CERTAIN NON-LINEAR ALGOI{ITHl\iS 191 

N.B. It is assumed that the computer operates perfectly 11aturally with 
numbers which are formally infinite; e.g. that the division of a finite 
real 11umber by a formally infi11ite number produces zero, a11d tl1at the 
machine does not stop beca11se the capacity'" of the floating point represen­
tation has been exceeded. 

Singular .e-Algorithm Procedures. 

Finally we give two singular versio11s of the s-algorithm procedures 
give11 earlier. The first, which displays the resultant even column s-array, 
• 
IS: 

procedure display singular epsilon algorithm (mmax, term, col, permissible 
degree of cancellation, non isolated singularity); 
value mmax, col, permissible degree of cancellation; 
integer mmax, col; real term, permissible degree of cancellat·ion; 
boolean non isolated singularity; 
begin integer s, sanfang, twommax, begin of list, end of list; 

real auxO, auxl, aux2; 

boolean local instability present, s non zero, new point of instability, 
0 about to be computed ; 
array l[O: mmax + I], display[l: (mmax + I) x (mmax + 5) : 4]; 
procedure normal auxO; 

auxO: = 1.0/auxO +(ifs non zero then l[s- I] else 0.0); 
non isolated singularity : = local instability present : = 
new point of instability : = 0 about to be computed : = false; 
begin of list : 1 ; end of list : = m : = 0; 
Z[O] := 0.0; twommax: 2xmmax; 
for m : = 0 step I until mmax do 
begin auxO : = term; aux I : = auxO + l[O]; 

for s : = 0 step I until m do 
begin comment This comment must be replaced by the 

above segment of programme; 

end· 
' 

if even(s) then 
display s x (twommax-s+ 2) : 4 + m + I : = auxl; 
aux2:= auxl; auxI := auxO 

l[m] := aux2; l[m+l] := auxl; 
if leven(m) then 
display (m+l)x(twommax-m+5) : 4 := auxl 

end; 
for sanf a·ng : = 0 step 2 x col until mmax + I do 



192 

end· 
' 

P. \iVYNN 

begin NLCR ; for m : = 1 step I until mmax + I - sanf ang : 2 do 

end· 
' 

END: 

begin NLCR ; for s : sanf ang step 2 until 
sa.nfang + 2 x (col- I) do 

end 

be~in if (s : 2 < m) A (m < mina,x+ I-(s : 2)) then 
print display[ s x (two1nmax + 4 s) : 4 + m] 

end 

The seco11d, wl1ich is to be used for computing the transformed sun1 
of a slowly co11vergent series is as follows: 

procedure singular epsilon algorithm (result, term, relative accuracy, 
livailable storage, storage not exceeded, permissible degree of cancellation, 
non isolated singularity); 
value relative accuracy, available storctge, 
permissible degree of cancellation; 
integer available storage; 
real result, permissible degree of cancellation, relative acc1.iracy, term; 
boolean storage not exceeded, non isolated singularity; 

real auxO, aux I, aux2 ; 
boolean local instability present, s non zero, · 
new point of instability, 0 about to be computed ; 
array l[ 0 : available storage] ; 
procedure normal auxO; 
ctuxO: = I.0/auxO + (if s 1ion zero then Z[s-1] else 0.0); 
non isolated singularity : = local instability present : = 
new point of instability : = 0 about to be computed : = false ; 
begin of list : = 1; end of list : = m : 0; l[O] : .. 0.0; 
EPSALG: auxO: term; auxl := auxO+l[O]; s: O; 
SUBTRACTION: comment This comment must be replaced by 
the above segment of programme ; 
aux2: = auxl; auxI : auxO; 
s := s+l; ifs< m then goto SUBTRACTION; 
l[m]: = aux2; l[m+ l] : = aux I; 
if m > 0 then 
begin if leven(m) then aux2: l[m-1] else 

begin aux I : = aux2; aux2 : Z[m - 2] 
end; 
aux2 : = aux2/auxl; 



end· , 

SINGUL .. 4..R RULES FOR C~~RTAIN NON-LINEAR ALGORITHlvIS 19:3 

end· 
' 

if abs(l.0-aux2) < relative accuracy then 
begin storage not exceeded : = true ; 

result:= auxl; goto END 
end 

m : = m + 1; if m < available sto,rage then goto EPSA.LG 
else storage not exceeded : = false; 
END: 

An Example. 

Use of these procedures may be illustrated by the application of the 
s-algorithm to the exponential series. The terms in the latter series are 
computed by means of the 

real procedure expterm(x); value x; real x; 
begin own real u; 

expterm : = u : (if m = 0 then 1.0 else xx u/m) 
end· , 

A complete programme, which displays the application of the singular 
s-algorithm to the exponential series is as follows: 

begin integer m, nl; real x, tI; boolean something wrong; 

end 

comn1ent This comment must be replaced by the procedures 
display singular epsilon algorithm, even and expterm; 
nl : = read; tl : = read; x: = read; 
print (nl); print (tl); print (x); 
display singular algorithm 
( n I, expterm( x), 6, t I, something wrong) ; 
if something wrong then print ( 1) 

With nl 3, x= 2 and values of the other parameters taken to suit 
the reader's machine hardware, the entries in the even order columns 
of Table I may be reproduced. 

A similar programme for the computation of exp (x) by application 
of the s-algorithm may be constructed. 

The reader may care to construct programmes for the application of 
the e-algorithm to the exponential series in which no provision has 
been made for effecting singular rules, and to examine the results pro­
duced. 



194 

Extension to Further Al~orithms. 

It will be appreciated that the above strategic co11cepts may be brougl1t 
to bear when programming singular versions of all the algorithms of 
this paper; the assignment statements may well be a little more com­
plicated but the general design of the programmes will be the same. 

Modification for Translators not Dealing with Own Variables. 

Since many ALGOL translators do not i11clude the facility of d.).,.11amic 
own arrays (or indeed own variables of any kind) it is in order to i11dicate 
how the above singular e-algoritl1m procedures must be modified £01· use 
with these limited translators. 

The real variables a and D must be declared together with auxO) 

auxl and aux2. The arrays sl, A and B must be declared at the same 
place in the programme as the array l. With regard to the dime11sions 
of the arrays sl, A and B, a restriction n1ust be introduced. We provide 
as an input parameter to the singular e-algorithm procedures an integer 
(n1.tmber of cases) indicating the length of the current list of points of 
local instability as described earlier. The arrays sl, A and Bare declared 
as for example : 

integer array s I [ I : number of cases] ; 
Nevertheless these arrays are used as if they are cyclic i11 form with the 
addressing proceeding in the order 1, 2, ... , number of cases -1, numbe,.,.~ 
of cases, I, 2, .... This method of addressing is achieved by modulus 
(number of cases) integer arithmetic, carried out by the following 
integer procedure dynamic (address) ; value address; 
integer address ; 
dynamic : = address - ( ( address - 1) : number of cases) x number of cases; 

A reference to sl[begin of list], for example, is now replaced by a refer­
ence to sl[begin marker], where 

begin marker : = dynamic (begin of list); 

After the e1nergence of a new point of local instability the value of end 
of list is increased by unity, as before. If end of list -begin of list= number 
of cases, then we know that the number of singular points with which 
we are currently dealing exceeds the number allowed for. In this case 
we immediately leave the procedure with the value of a boolean vari­
able called too many points of instability (which must also be included 
in the parameter list of the singular a-algorithm procedure) put equal 
to true. 



SINGULAR RULES FOR CERTAIN NON-LINEAR ALGORITHl\fS 195 

Conclusion. 

The existence of singular cases considered in this note would be inter­
preted, when effecting the algorithm, as chronic instability. The results 
of this note show how this may be overcome. It is possible to extend the 
method to deal with singular cases of a more involved type, for example 
as would occur in the s-algorithm when e 

8 
(rri) =es <m+l) = e 

8 
<m+2>. 

It may occur however that near singular cases are distributed uni­
formly tl1roughout the application of the algorithm, and this sort of 
instability, which indicates some organic property of the example to 
which the algorithm is being applied, cannot be overcome by the methods 
described. 

Acknowledgement. 

The ALGOL procedures of this paper have been tested on an ALGOL 
translator for the XI constructed by J. Nederkoorn and J. J. van de 
Laarschot. 

REFERENCES 
I. Wynn~ P., 01i a Device for Computing the em(Sn) Tran.sfortnation 7 MTAC 10, 91-96 (1956). 
2. Wynn, P., Oti, a Procrustean Technique for the Numerical Transfor>tnatio1i of Slowly 

Convergent Sequences and Series, Proc. Oambr. Phil. Soc. 52, 665-671. 
3. Rutishauser, H. 7 Der Quotienten-Differenze·n-Algorithmus, Birkhauser Verlag, Basel/ 

Stuttgart I 957. 

4. Bauer, F. L., The g-Algorithm, J. Soc. Indust. Appl. Math., Vol. 8, No 1, 1960, 1-17. 

:!tfATHEMATISCH CENTRUM 
AMSTERDAM 


