STICHTING

2e BOERHAAVESTRAAT 49
AMSTERDAM

Singuler Rules Tor

Certain Mon-Linear Algorithms

P. Wynn

1963



BIT 3 (1963), 175—195

SINGULAR RULKES FOR
CERTAIN NON-LINEAR ALGORITHMS*

P. WYNN

Abstract.

Certain simple non-linear algorithms which have useful application in numerical
analysis have recently been mtroduced. When using the formulae of these algo-
rithms it may sometimes occur that a quantity is numerically ill-determined. As
a result of this and because of the way in which the algorithmic formulae are used,
all quantities lying in a certain sector become 1ll-determined. By considering the
e-, 0-, and g —d-algorithms 1in detail 1t 1s shown how this misfortune may be over-
come. ALGOL programmes are developed to show how the derived formulae may
be mechanized.

Introduction.

Recently a number of algorithms, which have 1mportant application
in Numerical Analysis, have been developed.

These algorithms relate members of an array of functions or numbers,
the general member of which may be denoted for the purpose of exposi-
tion by ¢ ™. The array may be displayed as follows:
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Diagram 1

so that the superscript m denotes a diagonal and the suffix s a column.
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176 P. WYNN

All the algorithms considered are lozenge diagram algorithms, that
18, each quantity @ ™ is derived from a relationship of the form

A ™™ @™, @D, @I} = (1)

which affects quantities lying at the corners of a lozenge in the described
array. In certain of the algorithms considered here, the form of the
functional relationship 6.{...} is independent of s, whilst in others
6 . ™{. ..} differs according to whether s is even or odd.

The algorithmic relationship (1) may be used in two ways. In the for-
ward application of the algorithm, (1) is solved for ¢ /™ and the ¢-array
is built up from left to right. In the progressive application of the algo-
rithm, (1) is solved for ¢{™ ™ and the ¢-array is constructed downwards.

Now it may occur that in certain singular cases, (1) results in an 1ll-
determined or even an indeterminate value of @ ™ or ¢{"V. In view
of the manner in which the g-array is built up, this misfortune 1s prop-

agated throughout a whole sector. It is the purpose of this note to show
how this difficulty may be overcome.

The e-Algorithm [1]

In order to facilitate the discussion an example, which is perhaps the
simplest of its kind, will immediately be given.
The e-algorithm relationships are

(= ) = 1 ©

which in the forward form are

(m) . (m+1)+ 1 (n)

s—i—l T S(m-i-l) o 8(m)

Now suppose that, quite fortuitously, £€™J% and ™V are both equal
to «. It can immediately be seen that e<m+1) becomes formally infinite,

g™ and g,m+D) are equal to «, and &™) is mdetermmate Further quanti-

ties in a sector whose vertex is at &) remain undetermined. The state
of affairs 1s as follows.

E(m)
8—1
- (o)eg5 ™ (o)ed™
o3 (00)e{Z ™ (*)e)
(2)e75? ()™ —
S(m-i—fz)
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The situation may however be retrieved by multiple appeal to rela-
tionships (3). There follows

1
(m) R ¢ /7% 8
B P
(??Z'f")) + o 8(m+1) _ ) |
c(m+ 2) . (m+1) $—2 (m+1) __ (m)
a 1 83——-1 83-—-—1 Sbul
— (m-i—l)+ ) o 1 o _
! 1 1 1
(-m—l—l) (m—l—‘)) + (m+ (m+1) S(éﬁ-l- 1 (m)
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§—1 §—3 8—1 3--1 3 1
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(m+2) (m+1)“‘1 T (m) (m+D)—1 7 _(m+2) (m+1)—1
ml—:_sl 31 1_88 1881 B l"""‘""‘S 3)8‘--1 4:
= = i (4
] — 53 N Cs-1 3 - “s-1
(m+1) (m-%-‘?‘) (m—i—l) (m+2) (m+1) _ _(m)
s 1 3-—-3 3-—-1 8a--1 83-—-1 83—-—1

or writing

+2 +2 +1)—1 +1)7 =1 __ +2 +2 1)1y~
(m )(1 (m 2) §m1 ) ) +8§Ti(1“8$2’)18§?_21 ) ) (m )(1 (ﬂfs )g (m-l- ) )
£ = a(1+aslmvy (6)
It will be observed that if ;P and & are nearly equal, then

g™+ ig large and ill-determined, but g, ™ and g /m+V derived from (3),

and £ derived from (6), are quite well determined. When e+ and
gmi%) are exactly equal, the singular rule for the e-algorithm becomes
quite simply

ey = &1 el — el (7)

Any number of pathological examples may be constructed to illustrate
this phenomenon; it arises quite naturally however when the g-algorithm
1s used to transform the slowly convergent series X2 ,u,, in which, for
some 7,

Up = Upyq -

The initial conditions for the g-algorithm in this case are

g™ = 0 g,m = zu m
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Consider the e-scheme so derived from the series

u, = 28/s! s = 0,1,... (9)

(5)
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Tts initial members are as follows:

0
0 1 1
1 — . 9
0 21 — - :— ol
9 — X 2(3 +x
1 4+ 2 j—x _,,_(+ ) |
2 —x 9 6 — 4x + 2
. - 6+4x+x2 X
TETS C6—2x
0 63
22 3
1+23+—§+“6“

When z =2 the s-scheme which may be constructed by use of (3) and (6),
and verified from the above array, 1s:

19
3

The method of treatment to be adopted when the ¢-array is con-
structed in the downward direction may be illustrated by the

e-Algorithm: Progressive Form.

The progressive form of the e-algorithm relationships is

1
egmﬂ) _ ng) N

o 10
e -

When 7" and &) are approximately equal the state of affairs is as
tollows
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Writing
4 = eI(1—elDelm VT T 4 e A1 — TSP T T (1 — f MmO (1)
there follows .
Ss(m-}—f&} — A(l +A88(m+1) )-—-»1 . (12)
When ™V and &7 are exactly equal
e = &P+ el - (13)

A further algorithm which is similar in form to the e-algorithm is

The o-Algorithm [2].
Quantities o ™ are related by

(65 — 0T )™ P —ol™) = s+1. (14)

Forward Form:

o™ is determined from

(m) on 1) s+ 1

Qerl = Qo1 ominy Z om (15)

Misfortune occurs when o} and Q(m+“) are nearly equal:

(m)
Os—1
e N (2)es™
@g?i?»:"}"a) ( oo) Q(m-i-l) (*) S’ﬁ%
()5 ()™
P
ogn _

Compute first

r = s0,71(1 — oMol ) T + 8ol P (1 — ol Py V) 16
~ (5= o) (1 — e, -

when '

r
(m) _

Q8+Z“3 8"!" 1 _I_?Q(m-{-])- (17)

When oIV ="+ then
071 = (s+ 1) {so{™) + s0{"1? ~ (s — 1)oly®) (18)

Note:

In the theory of the o-algorithm 1t is shown that if quantities o
are constructed by use of (15) from the initial conditions
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& =T
> ams
o™ =0, oM =20 m = 0,1,... (19)
2 a/ms
then =0
Q(S’:) — an/a, m = 0,1,... (20)

Consideration of the case in which one of the initial values g, is in-
finite has hitherto been impossible, but this is now made possible by
application of the singular rule

if g™ = oo, then g, = (g~ + 0" *+Y). (21)

Progressive Form:
o 1 is determined from

S+ 1
oMY = g T (22)
Q&-i—l Qa—-—-l
Misfortune occurs when o™ and p?) are approximately equal. a
o™
(o)o Y (x)es)
o3® (00)oy™+P ovs
(o)™ ? ()0 ™
(*)od™+®
Compute first
R = (S+2)Qg}:%(l Qgiz%ggm+l)“1)wl+sgg?ibgz)(l Q('m—i-,?) (m+1)—1 )“'-
— (84 1)oI™(1 — M+ D=1)-1 (23)
when ’
R
(m+2) —— ___
Qs S+ 1 — RQ (m+1)“’1 ’ (24)
when o1V =),
07" = (s+1)Y{(s+2)l + 5073 ? — (s + 1)of™} . (25)

T'he two algorithms considered contain only one algorithmic relation-

ship. Lozenge diagram algorithms exist however in which two relation-
ships are used to construct two sets of quantities which stand in the even

and odd columns respectively of the g-array. Typical of such an algo-
rithm 1is

The q-d Algorithm [3].

The g—d algorithm relationships are

e+ = eIV + iy, el = emiDginiD (26)
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Forward Form:
The g and e functions are determined from

o™

— €(m+1) +q(m+1) q(m) (m) __ e(m-f-l)q(m+1)e(m)-—1 ‘ (27)

T SN

Misfortune occurs when fortuitously e ™ is small or zero; the distribution
of singular values 1s then

ey
(0)q5r ™ (*)gf%3"
$+2
(0™ (el (F)esz™ }
()51 (00)qiis P (*)qg};“}
COLR (O
(0)g57> (*)grs ™
Write successively
b = =g, ¢ = gV, d = gD (28)
& y
then (m—~2) __ (8(m)b+0) (m) ,(m—2)—1 _(m—-1)—1 29
Q’S-}—Z q es+1 63 3 ( )
emD = b— gD 4 (d+b) (1 + g™ b)71; (30)
e = qory e,
f=e+@dgly —1)(def” —e)(L—gPel" D7) (bgl + 1), (31)
9eis Y = (bgity + Ve3P (32)
qresd = elef 1 . (33)
Progressive Form:
The ¢ and e functions are determined from
2 S 8 .
Misfortune occurs when g¢ S"m) 1s very small.
(0)gs™
(0)eg” ™ (c0)ey™
1 (c0)gg™ ™™ (0)g5H
— S
(*)egmi™ (00)e? ()67
(*)g" (0)g ™
&
o (¥)egn+ (%)t
rite
h B = ¢ — &P, O = ¢ VY, D = qi7P+ el (35)
then
e = MgV T g P (TP B + 0) (36)
o0 = B—e"T?+C(B+D)(C+qB)™; (37)

BIT 3 — 12
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further
E = C+ (D™ = 1)(Bel™ ™ + 1) {DB— g7 (e — ™)}, (38)
when

+2) __  mt2)] (m)—1 (m+1) __ ), (m—1), . (m—1) -1
egm ) = qs ) (1—{—.86:?‘) )E > €s+1 = s+285+1 )q8+1 B - (39)

Further Algorithms.

There are a number of furhter lozenge diagram algorithms extant in
the literature ([4] p. 6, [4] p- 13, [4] p. 14). Singular cases arise, and
may be dealt with, in a manner analogous to those which have been
considered here.

ALGOL Programmes.

It is perfectly clear that the various special formulae which have
either been given or may be derived are of no use unless 1t i1s shown how
they may be used. In order to accomplish this the progressive form of
the e-algorithm is considered in detail. Extension of the stratagems
employed to other lozenge algorithms will then be a mere exercise 1n
transliteration.

Normal e-Algorithm Procedures.

Firstly we consider how the quantities of the e-array may be com-
puted. The fact that we are concerned with a lozenge algorithm means
that we are required to store, not a two dimensional array as in Diagram
I, but a vector 1 of quantities which, in the notation of the s-array,
stretches along the backward diagonal from g™ to ¢ (©@:

2,
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We arrive with a new quantity g,*+! and in stages push the vector 1
down one place so as to extend from &**V to &) ,. The process requires
three auxiliary storage spaces aux0, auxl and aux2. In the diagram the
process of displacing the vector is not complete; I contains quantities
lying along the thick line. The contents of [,_,, [,, aux0 and auxl form
a lozenge; the contents of aux0 are computed from those of I,_;, I, and
auxl; the contents of [,_, are replaced by those of aux2, those of awux2
by those of auxl, those of auxl by those of aux0; the value of s is in-
creased by unity, and the process is repeated.

Two ALGOL eg-algorithm procedures will now be given. The first
displays the even order e-array which may be derived from the terms
U, (m=0,1,...,mmax) of the series 377 . The initial values &, are
put equal to the partial sums 37" Ju, of the series. During the computa-
tion of the quantities of the e-array by means of the vector I as just
described, the even suifix e-quantities are mapped onto a display vector
display,,., and (subsequent to the computation of the complete ¢-array)
printed out in the form of a triangular array (just as in Diagram I with
the odd order columns removed) in strips of col columns. The procedure
uses a non-locally declared integer m indicating the suffix of the terms u,,.

The inputs to the procedure are an integer mmax indicating the suffix
of the last term, a real procedure term which computes the terms of the
series to be transformed as a function of m, and an integer col indicating
the number of columns which can be accommodated per page upon the

output typewriter. The procedure is as follows:

procedure display epsilon algorithm (mmazx, term, col);
value mmaz, col; integer mmax, col; real term;
begin integer s, sanfang, twommax;
real aux0, auxl, aux2;
array [0: mmazx+ 1], display[1: ((mmaz+ 1) x (mmazx +5)) + 4];

l[0] := 0.0; twommax : = 2 X mmax;
for m := 0 step 1 until mmax do
begin aux0 := term; auxl := aux04[[0];

for s := 0 step 1 until m do
begin aux0 := 1.0/(if s = 0 then aux0 else auxl —I[[s]);
if s &= 0 then
begin aux0 : = aux0+ l[s—1};
[[s—1]:= aux2
end ;
if even(s) then
display[ (s x (fwommazx —s+2))+4+m +1] : = auxl;
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aux? = auxl; auxl := aux(
end ;
i[m] := aux2; Ilm+1]:= auxl;
if leven(m) then
display[((m+ 1) x (fwommax —m + 5)) + 4] : = auxl
end ;
for sanfang : = 0 step 2 x col until mmax + 1 do
begin NLCR; for m := 1 step 1 until mmax + 1 —sanfang -2 do
begin NLCR;
for s : = sanfang step 2 until sanfang +2 x (col—1) do
begin if (s+2 = m) A (m £ mmax+1—(s+2))
then
print (display[(s x (twommazx +4 —8)) + 4+ m])
end
end
end
end;

The second ALGOL procedure does not display the even order ¢-array.
I't persists in the computation of the s-array, using the backward diagonal
I discussed above, until either if m is odd —¢,,® and &2 ,, or if m is even
— &V and & ., agree to within a prescribed relative accuracy. It again
uses a non-locally declared integer m indicating the suffix of the term
of the series to be transiormed. The inputs to this procedure are the
real procedure term as before, and an integer available storage indicating
how long the vector I may become without exceeding the storage capacity
avallable. The outputs from the procedure are the real result and a
boolean wvariable which indicates whether the available storage has

been exceeded. The procedure is as follows:

procedure epsilon algorithm (result, term, relative accuracy,

avanlable storage, storage not exceeded);
value relative accuracy, avarlable storage;

integer available storage ;
real result, relative accuracy, term;
boolean storage not exceeded;
begin integer s; real aux0, auxl, aux2;
array [[0: avarlable storage];
[[0] := 0.0; m:= O;
EPSALG: auzx0 := term; auxl := aux0+1[0]; s := O;
EPSLOOP: aux0 := 1.0/(if s = 0 then aux0 else auxl —I[s]);
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if s &+ 0 then

begin aux0 := aux0+1s—1]; [[s—1] := aux2

end ;

aux?2 .= auxl; auxl := aux0; s 1= s+ 1;

if m =z s then goto KA PSLOOP;

I[(m] := aux2; I[m+1] := auxl;

if m > 0 then

begin if leven(m) then aux2 := Il[m — 1] else
begin auxl := aux2; aux? := l[m— 2]
end ;
aux2 : = aux2/auxl;
if abs(1.0 —aux2) < relative accuracy then
begin storage not exceeded := true;

resull := auxl; goto END

end

end

m:= m+1; if m < avarlable storage then goto FPSALG
else storage not exceeded : = false;
END:
end;
Both procedures make use of the
boolean procedure even(integer);
value infeger; integer integer;
even : = (integer = (infeger = 2) x 2);
which has the value true if the input integer is even, and false if it is not.

An Example.

In order to test these procedures on another occasion and to clarify
matters on this, two complete programmes are given illustrating the
application of the g-algorithm to the series

oo

2. (=1)m/(m+1) = In(2) = 0.69314 .

==

The terms of this series are computed by means of the

real procedure In2term:
In2term : = (if even (m) then 1.0 else —1.0)/(m +1);

The application of the e-algorithm to the above series is displayed
by means of the following complete programme

begin integer m;
comment This comment must be replaced by the procedures
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drsplay epsilon algorithm, even and In2term;
display epsilon algorithm (5, In2term, 6)
end

It produces the following array:

+ 1.00000 4 0.66667

0.50000 70000 +0.69231
83333 69047 69333 +0.69312
58333 69444 +0.69309
78333 4+ 0.69242
4+ 0.61667

The computation of In(2) to a relative accuracy of 10-° by means of
application of the e-algorithm to the above series, assuming that there
is room In the computer store for a further 2000 real numbers, is as
follows:

begin integer m ; real check; boolean successful;
comment This comment must be replaced by the procedures
epstlon algorithm, even and In2term;
epsilon algorithm (check, In2term, +1.0,,— 9, 2000, successful);
if successful then print (check)

end

A Single Point of Instability.

We now discuss how the singular rules which have been derived for
the forward form of the e-algorithm may be placed within the frame-
work of the programmes which have been described above. We recall
that if cancellation occurs in the subtraction £ — 2 then the sin-
gular rules affect quantities occurring in the following large lozenge:

&lm) ~
€s-1
S
(m+2) 8(m—l—l) (m)
€53 |
8(???1-}*9) 8gm+1)

3.....‘)
-
-~ (m+2)

-~ €1

Diagram 11

11

A — (m+2)(1 - Egﬂzg‘?) g?’fi-l)'“l)--l (40)

o3
Il

(m) ( ] — 8(m) (m—l—l)""'l)--l (41)
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; D = (m+2)(1 ('m+‘>) (mH)“ )-- (42)
an
. = D+B—A (43)
then

£™ = 0 = a(l +asmV™) 1 (44)

We may assert that cancellation takes place if, in the subtraction
gmra _ gmrD g loss of f decimal figures takes place. Thus for the singular
g-algorithm procedure we must provide as input a real parameter (called
permassible degree of camncellation in the following procedures) equal in
magnitude to 107,

Suppose that we are in the process of computing quantities lying on
the backward diagonal through &f2 "D ¢ gnd discover that can-
cellation occurs in the formation of ("% — "7V, (i.e. within the defini-
tion just made, that |(e{"F% — /1) /e(m‘*“l){ < permassible degree of cancel-
lation). Immediately we note the current value of s (sl say) and thus
(1t will later be apparent that we do not need to record the current value
of m) have a record of the position in the ¢-array of the point of cancella-
tion. We know that we are about to compute A from (40), and indeed
we compute and store 1t. We know that we are about to compute B, and
after the normal administration of the g-algorithm programme we do
indeed compute and store B. We now proceed to the end of the vector /
and start again at the other end. When the current value of s 1s equal
to s1+1 then we know that we are about to compute D. This we do.
We now know that we shall compute the next value of the g-array,
not by means of the normal ¢-algorithm relationships, as has hitherto
always been the case, but by means of the singular relationship (44).

This 1s done, and the 1ll-effects of cancellation have been overcome.

Multiple Points of Instability.

>0 much for the case in which cancellation takes place at one point
only. We should like, however, to apply the above procedure in the
case In which there are a number of points in the g-array at which can-
cellation takes place. We could, a posteriori at least, by scanning the
g-array backward diagonal by backward diagonal, construct a list of
such points of cancellation.

As we scan the g-array, backward diagonal by backward diagonal,
we have as it were a current list of singular points which have not yet
completely been dealt with. When the backward diagonal / meets a
large lozenge of Diagram II for the second time, 1.e. a new point of can-
cellation is encountered, the new singular point takes its place at the end
of the current list; when the backward diagonal [ leaves a large lozenge
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for the third time, i.e. a new singular value of ¢ has been computed, the
old singular point is removed from the beginning of the current lst.

The integer sl and the real quantities A and B of the preceding para-
ographs become members of arrays. In the terminology of the ALGOL
report, these arrays are dynamic own arrays. Indeed they are dynamic
even unto the point of vanishing: this means that they are declared in
a block, access to which is dependent upon the values of a logical ex-
pression (local instability present v new point of wnstability).

As soon as we have discovered that cancellation takes place in the
formation of ™2 — ™) we examine whether, first local instability is
present, and secondly if the current value of s 1s the same as that stored
in the sl-array at the position corresponding to the beginning of the list.
If this is so we know immediately that ™) and £V are approximately
equal; but the singular rules given in this paper relate only to isolated
points of cancellation so that we know immediately that our programme
is inadequate for the case in hand. In this case therefore we immediately
leave the procedure with the value of a boolean variable called non
wsolated singularity put equal to true.

If we are not in the presence of a non-isolated singularity however we
increase the numerical value of the end of lvst by unity.

We now proceed as outlined earlier, store the current value of s in the
array sl, the relevant values of the real quantities given by expressions
(40) and (41) in the arrays A4 and B.

We continue the normal e-algorithm process until the current value
of s is equal to that ocurring in the sl array at the position corresponding
to the begin of list. We now know that we are about to compute D. This
we do, and shortly after compute a new value of ¢ by means the singular
rule.

Having done this we increase the numerical value of begin of list by
unity. If now the begin of list exceeds the end of list we know that there
1s no local wnstability present (i.e. this boolean variable takes the value
false). This means that we no longer have to compare the current value
of s with some member of the sl array and thus, apart from having to
test for cancellation at each stage, the singular procedure may be made
to run along the same lines as the normal g-algorithm procedure.

There are two further details to be mentioned. The first is that formulae
(40) to (44) are only usable on the assumption that the magnitude of

g™ is greater than that of &), &"1? and /. However &™) could

s—1> €s-1 §—3
only be large if &) and ¢™fV are approximately equal; this implies the
presence of a non-—lsolated smgula,rity which 1s dealt with by the proce-

dure; similarly for £™/?. The quantity &/ can only be large if &}~
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and &> are approximately equal, which corresponds to the applica-

tion of a singular rule at a point displaced two columns to the left in the
g-array; this will already have been dealt with by the procedure.

The second detail is this: In the notation of Diagram 1 if the value
of m+ 1 1s equal to zero then the possible cancellation in the formation

of ™52 — ¢ need not be considered, since &) lies outside the array.

A Segment of Programme.

We now summarize the reasoning of the preceding paragraphs in the
form of a segment of an ALGOL programme. As a preliminary there are
two details. In the e-algorithm procedures given above, certain special
operations were carried out if the value of s was non-zero; in the modified
procedures further special operations are carried out if s is non-zero,
thus a new boolean wvariable (s mon zero) is introduced. Secondly, the
box aux0 is used for two purposes: as before for containing the new

value ¢, and for containing the difference & (™m+1)—¢ ™ (ie. auxl —I[s)]
or term).

In the above procedures the inner e-algorithm loop contained the
following assignments

auz0 := 1.0/(if s = O then aux0 else auxl —I[s]);
if s = 0 then

begin aux0 := aux0+1[s—1]; l[s—1] : = aux2
end

In the singular ¢-algorithm procedures we introduce the

procedure normal aux 0;
auz0 := 1.0/aux0 + (if s nonzero then [[s—1] else 0.0);
and replace the above assignments by the following segment:
8 mon zero:= (s & 0); if s non zero then aux0 := auxl —I[[s];
if s < m A 1C about to be computed
A abs (aux0/l[s]) < permaussible degree of cancellation then
begin new point of instability .= true;
end of list := end of list+1
end;

J

if local instability present v new pownt of instability then
begin real a; own real D;
own boolean A about to be computed, B about to be computed;
own integer array sl [begin of list: end of list];
own real array A, Blbegin of list: end of list];
if new pownt of instability then
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begin if local instability present then
begin if s = sl[beqin of lst] then

begin non isolated singularity : = true;
goto KND
end
end ;
local instability present := A about to be computed : = true;
new powrnt of wnstability : = false;

sllend of list] := s
end ;
if C' about to be computed then
begin a := D + Blbegin of list] — A[begin of list];
aux0 := a/(1.0+a/l[s—1]);
C about to be computed : = false;
begin of list : = begin of list+1;
if begin of lwst > end of list then

end local wnstability present . = false

else
normal aux0;
if local instability present then
begin 1f A about to be computed then
begin A[end of list] : =
if s non zero then [[s—1]/(1.0 —I[s — 1]/aux0)

else 0.0;
A about to be computed : = false;
B about to be computed : = true
end
else

if B about to be compuled then

begin Blend of list] := I[s]/(1.0 —[s]/auxl);
B about to be computed : = false

end

else

if s non zero A s = slibegin of list]+ 1 then

begin D : = aux1/(1.0 —auxl/l[s]);

C' about to be computed : = true
end

d
end en

else
normal auxQ;
if s non zero then I[s—1]:= aux?2;
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N.B. It is assumed that the computer operates perfectly naturally with
numbers which are formally infinite; e.g. that the division of a finite
real number by a formally infinite number produces zero, and that the

machine does not stop because the capacity of the floating point represen-
tation has been exceeded.

Singular e-Algorithm Procedures.

Finally we give two singular versions of the e-algorithm procedures

given earlier. The first, which displays the resultant even column s-array,
18 :

procedure display singular epsilon algorithm (mmazx, term, col, permissible
degree of cancellation, non isolated singularity);
value mmax, col, permissible degree of cancellation;
integer mmax, col; real term, permissible degree of cancellation;
boolean non isolated singularity;
begin integer s, sanfang, twommazx, begin of list, end of list;
real aux0, auxl, aux?2;
boolean local instability present, s non zero, new point of instability,
C about to be computed;
array [[0: mmazx + 1], display[1: ((mmax + 1) x (mmazx + 5)) + 4];
procedure normal auwxO:
auz0 : = 1.0/aux0 + (if s non zero then [[s—1] else 0.0);

non 1solated singularity : = local instability present . =
new point of instability : = C about to be computed : = false;
begin of st := 1; end of list := m := 0;
[[0] := 0.0; twommax : = 2 x mmax;
for m := 0 step 1 until mmax do
begin aux0 : = term; auxl := aux0+I[0];
for s := 0 step 1 until m do

begin comment This comment must be replaced by the
above segment of programme;
if even(s) then
display| (s x (twommax —s +2)) +4+m+ 1| : = auxl;
aux?2 := auxl; cuxl := aux0
end ;
[m] := aux2; l[m+ 1] := auxl;
if leven(m) then
display| ((m + 1) x (twommax —m +5)) + 4| : = auxl
end;
for sanfang := 0 step 2 x col until mmax+1 do
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end;
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begin NLCR; for m := 1 step 1 until mmaz + 1 —sanfang - 2 do
begin NLCR ; for s := sanfang step 2 until
sanfang + 2 x (col— 1) do
begin if (s+2 < m)A (m £ mmax+1—(s=2)) then
print( display[(s x (twommax + 4 — )+ 4+ m])
end
end
end ;

END:

The second, which is to be used for computing the transformed sum
of a slowly convergent series is as follows:

procedure singular epsilon algorithm (result, term, relative accuracy,

available storage, storage mot exceeded, permissible degree of cancellation,
non solated singularity);

value relative accuracy, available storage,

vermissible degree of cancellation ;

integer available storage;

real result, permissible degree of cancellation, relative accuracy, term;
boolean storage not exceeded, non isolated singularity;

real aux0, auxl, aux;

boolean local instability present, s non zero,

new pownt of tnstability, C about to be computed;

array ([0: avatlable storage];

procedure normal aux0;

aux := 1.0/aux0+ (if s non zero then [[s— 1] else 0.0);
non wsolated singularity : = local instability present :
new point of instability := C about to be computed :
beqin of list := 1; end of list := m := 0; [[0] := 0.0;

EPSALG: aux0 := term; auxl := aux0+1[0]; s:= 0;
SUBTRACTION : comment This comment must be replaced by
the above segment of programme;

aux?2 = auxl ; auxrl := aux0;

s:=8+1;if s £ m then goto SUBTRACTION ;

I

|

false;

lm] := aux2; I[m+ 1] : = auxl;
if m > 0 then

begin if leven(m) then aqux2 := [[m — 1] else
begin auxl : = aux2; aux2 := l[m — 2]
end

aux2 1= aux2/auxl;
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if abs (1.0 —aux2) < relative accuracy then
begin storage not exceeded : = true;
result : = auxl; goto END

end
end;
m .= m+1; if m < available storage then goto FPSALG
else storage nol exceeded : = false:
END:

end ;

An Example.

Use of these procedures may be illustrated by the application of the

g-algorithm to the exponential series. The terms in the latter series are
computed by means of the

real procedure expterm(z); value x; real x;
begin own real w;

expterm 1= u := (if m = 0 then 1.0 else x x u/m)
end ;

A complete programme, which displays the application of the singular
e-algorithm to the exponential series is as follows:

begin integer m, nl; real x, t1; boolean something wrong;
comment This comment must be replaced by the procedures
display singular epsilon algorithm, even and expterm;
nl := read; {1 := read; x : = read;
print(nl); print(f1); print(x);
display singular algorithm
(nl, expterm(x), 6, t1, something wrong);
if something wrong then print (1)
end

With nl1=3, x=2 and values of the other parameters taken to suit
the reader’s machine hardware, the entries in the even order columns
of Table I may be reproduced.

A similar programme for the computation of exp(x) by application
of the s-algorithm may be constructed.

The reader may care to construct programmes for the application of
the g-algorithm to the exponential series in which no provision has

been made for effecting singular rules, and to examine the results pro-
duced.
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Extension to Further Algorithms.

It will be appreciated that the above strategic concepts may be brought
to bear when programming singular versions of all the algorithms of
this paper; the assignment statements may well be a little more com-
plicated but the general design of the programmes will be the same.

Modification for Translators not Dealing with Own Variables.

Since many ALGOL translators do not include the facility of dynamic
own arrays (or indeed own variables of any kind) 1t 1s in order to indicate
how the above singular ¢-algorithm procedures must be modified for use
with these limited translators.

The real variables ¢ and D must be declared together with auzO,
auxl and aux2. The arrays sl, A and B must be declared at the same
place in the programme as the array [. With regard to the dimensions
of the arrays sl, A and B, a restriction must be introduced. We provide
as an input parameter to the singular g-algorithm procedures an integer
(number of cases) indicating the length of the current list of points of
local instability as described earlier. The arrays sl, 4 and B are declared
as for example:

integer array sl[1: number of cases];

Nevertheless these arrays are used as if they are cyclic in form with the
addressing proceeding in the order 1,2,..., number of cases — 1, number
of cases, 1,2,.... This method of addressing 1s achieved by modulus
(number of cases) integer arithmetic, carried out by the following
integer procedure dynamic (address); value address;

integer address;

dynamic : = address — ((address — 1) = number of cases) x number of cases;

A reference to sl{begin of list], for example, 1s now replaced by a refer-
ence to slibegin marker], where

begin marker := dynamic (begin of list);

After the emergence of a new point of local instability the value of end
of list is increased by unity, as before. If end of list — begin of list = number
of cases, then we know that the number of singular points with which
we are currently dealing exceeds the number allowed for. In this case
we 1mmediately leave the procedure with the value of a boolean vari-
able called too many points of instability (which must also be included
in the parameter list of the singular e-algorithm procedure) put equal
to true.
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Conclusion.

The existence of singular cases considered in this note would be inter-
preted, when effecting the algorithm, as chronic instability. The results
ot this note show how this may be overcome. It is possible to extend the
method to deal with singular cases of a more involved type, for example
as would occur in the s-algorithm when g, =g m+1) =g (m+2),

It may occur however that near singular cases are distributed uni-
formly throughout the application of the algorithm, and this sort of
instability, which indicates some organic property of the example to

which the algorithm is being applied, cannot be overcome by the methods
described.
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