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Summary. — « This paper deals, paying special attention to details of program-
ming, with the asymptotic expansion of a certain class of integrals. The steps to be
taken in obtaining a Laplace type asymptotic expansion by the method of steepest
descents are described. The theory is illustrated by obtaining such an expansion for
the remainder term of the exponential integral of complex argument, a similar treat-
ment of which has been given by Stieltjes for real argument. »

I. — INTRODUCTION

Asymptotic Expansions by the Method of Steepest Descents

In this paper we shall consider, paying particular attention to the
computational details, the expansion by the method of steepest descents
of a certain class of integrals. The integrals which we consider are of the

form
a#*

(1) F(p) = f G(t) ecH(1) dt

a*

We suppose for the purposes of exposition that H(¢) has one maximum
point 1in the whole complex plane (the more general case may easily be
treated by an extension of the following work) at ¢ = oy and that the
integral (1) may be so transformed that the path of integration lies along
the contour (the steepest path)

(2) Im { H(t) } = constant = Im { H(ag) }.

(*) Communication MR 60 of the Computation Department of the Mathematical
Centre, Amsterdam.
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We suppose that (1) then evolves to the form

3) Flp) = fgm coh(t) d

(t being real) in which h(t) has a single maximum at the point ¢ = «,
where o' < o < " (1).

We write (3) as

(%) F(p) = [ wa ]i] g(t) eeh(t) dt

& oL

= I1 — 12

Consider the asymptotic expansion of the integral

(5) I mfg(t) ech(t) di

this may be carried out as follows (the presentation 1s freely adapted
from Erdélyi [1]). We change the variable of integration from t to u,
where

(6) u = h{a) — h(t) ~ Z ast'v+s
§=0
and derive the inverse expansion
(7) t— =t = > beuleth/
=0
We expand — g(¢) /A'(t) as an ascending power series in ul/v and
obtain
— g(t)J ~ N (A+8—v) /v
(8) ht(t) ZO YsU
§==

say. The integral (3) then has the formal asymptotic expansion

(9) I]_ ~ 69}3’(&) 2 Ys I ()\ + 8) p““(l"r'S)/‘s’

Vv

S=()

~ (1} The dummy variable ¢in (1) and (3) does not necessarily have the same mea-
ning in both cases.
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The integral Ig may be treated in the same way.

Thus 1t 1s required that we should be able to do three things. We must
be able to derive the coeflicients bg(s = 0, 1, ...) 1n (5) by means of some
recursive scheme. We must be able to do likewise for the coeflicients
cs(s = 0, 1, ...) 1n the expansion

— _fg(t) ~ F(A—v18)
(10) R (2) z Csl S
§=(

We must be able to obtain the coefficients b, ¢ 1n the successive
eXPansions

o0
(11) T~ D> brutrt (r=— 3, — %+ 1, ..)
§=0

and finally we must be able to mechanise the substitution of the expan-
sions (11) 1n (10) to obtain the coeflicients ys5(s = 0, 1, ...) in (6).

In many cases, function-theoretic properties of A(f) and g(t) greatly
facilitate the execution of the process mentioned above. We consider a
simple, but 1n principle a typical, example.

II. — THE EXPONENTIAL INTEGRAL

The 1ntegral

a0

2 7 4
12 Jie

0

may, with the help of the formula

| o o o (— )7
(13) - - = 1 t - t2 t3 + ... + (—t) 1+1+t

1 + ¢

be transformed into

.
14 =St R

that 1s to say the sum of n terms and a remainder, where

(— 1)7r!
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and
1)nR e g
(16) (— 1)"hy = 1+tt L.
0
We now make the substitution
(17) p=n -+ 7
where
(13) z = p eif, B = eib
in (16) and obtain
19 IV R, — me“gnf pln{te—#¥) 4
( ) (""'"" ) n — '{+ ; € L.
0
A. — The Nen-Singular case

We suppose initially that in (16) and (19) 0 54 =.

In the notation of the preceding section

(20) H(t) = In {te—8t}
We have
(21) H'(t) = (1 — Bt) [t

and H(t) has a maximum at the point ¢t = $—1,
The steepest path i1s given by

(22) Im{ln(t) — Bt} =Im{ln (p—1) — 1} = — 0.
Suppose that
(23) = r el®
then (22) becomes
(24) D 4+ 0 =rsin(® + 6),
the appropriate solution of which 1s

(25) 6 = — .
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Thus the steepest pathis the ray from the origin through the point —1,
The integral (19) may thus be transformed into

~ o—nt
(26) (.._.._... 1)72 ei”GBﬂ,(Z) mt[ﬁe-: t en{ln{t)-—mt} dt;
0

in the notation of the equation (9)

(27) nt) = In (t) —,

, 1

(28) Ri(t) =~ —1,
and

(29) oo = 1.

We consider the integral

00 U
In(t)—
30 fﬁ T emn—
1

write

(31) " =t — 1,
and note that

(32) u=1t —In{1+1¢)

tfz t!’a
(33) ~5 g

We obtain the coefficients in the expansion of ¢’ in powers of u3 [for
evidently from (33) v = 2] from the differential equation which ¢’ satis-
fies as a function of u. For, from (32),

(34) 1+t =+t dt’ /du

Writing

(35) f o= Z bu(s+1)/2
§=0

then, from (34)

=2 O

(36) ’ 1 + z bsu(s+1)/2 } — tz bou(s+1)/2 Hi (3“;}. byu(6—1)/2




In particular

|

3

mm3, gw""i‘“‘é’“g ; S 4 080

In the notation of equation (5)

8y e ¢
R'(t) B4+ t1—¢

Letting
e 8 _
- “RE T 2 Cst ¥,
3=0
we have
(42) { B + ¢ + t’Z}Z cgt'd = (1 + t') e—nt
§=0
1.
%43} {1 + 5}(33 + z{ (1 + B)CS + Cs1 } t’S
g=1
— (— m)® (— 7m)s—1) .
- { s! T (SH...._.._._ 1)! ts"f'i
§=1

In particular

(45 61M{m1?+1£5}/(1+{3),
(46 o= |0 __B8 B
@ a={To B, g )/ + B
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From (41) 1t 1s evident that in the notation of equation (10) A = 1,
and for this reason we require the coeflicients b_31 s in the expansion

(47) {z by su(s—1)/2 ;-—-1 — g z b Su(s+1)/2;

$=0
and obtain, by multiplying these two series together,

(48) b—1,0 = ('\/E)mla b—1,s = ("‘“"‘"‘ ZS brb——l,s~—r)/‘\/§ (8 == 1; 2, ...)
r=1

In particular

1 /2 4 V2

(49) b—1,1 = — 3> b—1,2 = T b—1,3 = — 19’ b—1.4 = i3
Finally we wish to obtain the coefficients of uZ in t'7 given by
(50) by, su(812)/2 — bou(s+1)/2 Ir

We have of course

(51) bl,g = bs (3 = O., 1, ...)

and thereafter

S
(52) brs= > bmbr—ism (r=2,3,..55=0,1,..)

In particular

4 ,
62:0 = 2 ) bZ;l — ""'3“" '\/—2. . 62,2 — “3' y ass
(53) bso = 2V2 .  bgi=—=4 ..

The integral I2 may be treated in the same way. We assemble the
results and obtain

(54) Rp(z) ~ (— 1)7 e—in6 g—p 2 \/ 2 er ( 3) (,- — -) n—r

where
oy

(55) Yor = > Cortbsor—s  (r=0,1,..)

§=-1
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Substituting the initial values of the various coeflicients which we
have derived as a check, we obtain, when 3 = 1,

n

_ 2 :
56)  Rp(z) = (— 1)ne—2 | /2T { % i (% — 7 L)n——l + o }

in agreement with Stieltjes [2] who considered the expansion of the
integral (19) when f = 1 and 8 = — 1.

B. — The Singular Case

When 6 = © we find that g(¢) (=e—™?/3 4 ¢) has a pole at the point
t = 1. Thus the analysis of the preceding section must be modified.
The function with which we are now dealing 1s

Te 2t
(57) — dt
0
for real positive z'(= — z). This may be given a meaning (the Cauchy
principal value) by regarding 1t as the limit as ¢ tends to zero of the sum
1--—-3
£q —2'l ds e—2't
(99) 1 — +f 1 — t

1+8
This decomposition of the 1integral (57) into the sum of two integrals
as 1n (58) corresponds precisely to the decomposition (4).

The cancellation of the odd powers of n~/2 to form the analogue of

expression (54) removes those components of the sum (58) which become
formally infinite as 3 tends to zero.

In the notation of equation (5) we have

_ g _ e
) @ 1P
and 1n the notation of equation (7)
(60) t' =t —1 ;

thus equation (10) becomes in this case

(61) S .-gm(t)... — p—t'—2 { 1 + i { ("""""; !TJ)S n ((:—““’?);-)—,1 } 5

8=1
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1.€.

2 3 2
, )
(62) co:Lclm-ﬂ—-n-{—1302='g*'"*'“n303m'*‘2 T 5

Examination of expansion (61) reveals that in the notation of
equation (10), A = 0. Thus we require the coeificients b—z s (s = 1, 2, ...)
in the expansion

(63) zﬁ b suls—2/2 = % i bow(s+1)/2 %-—-—-2’

S=(} =0

where the coefficients bgs(s = 0, 1, ...) are those of equations (35)-(39).
We obtain the coeflicients b—2 (s = 1, 2, ...) from the relationship

o0 <0
(64) Z bg su—2)/2 — i Z by su—1/2 |
§=0 §=0

where the b—3 s(s = 0, 1, ...) are given by (48). Thus, from (64)

S
(65) b—ss = > b—1mb—15-m (s =1,2,..)

m=0

In particular

2 5 23 /2
(66) bmz,]_ — }“‘/3““"? bmz,g - 1_8’ b__,z'a I em :._\(.,,,

270 7

Forming the sum (b5) as far as the first two terms, we have i1n the
singular case

AT b Al

It

in agreement with Stieltjes ([2] p. 213) who considered this case 1n detail.

(. — Application of the =z-algorithm

We have now shown how the remainder term R, may be expressed for-
mally as the sum of a series. But 1t 1s a matter of numerical experience
that 1in many cases a continued fraction which may in a certain sense be
associlated with a given power series, converges far more rapidly than the
series. We wish, therefore to transform the series for R, into such a
continued fraction. This may conveniently be done by application of the
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e- algorithm [3], the theory of which has been described elsewhere [4] ;
it will suffice here to say that if from the initial values

m—1

(63) EE)O) = 0, e(()m) = z Ly (m = 1, 2, ...)
s=1
(69) el = ¢ (m =0, 1, ...)
where
m e (0 (-)r
further quantities e(m)(m = 0, 1, = 2, 3, ...) are constructed by
means of the relationship
1
1
(71) i = 731 + cm+1) (1)
s-—1 s—1

then the quantities 8(2’?) are convergents of certain continued fractions,

and as such provide better estimates of the formal sum of the series whose
partial sums are given by (61) than these partial sums (see for example [5]

and [6]).
The quantities €™ may be displayed in the array

TasrLe |
{0
NCY (0
(2, (1) £(0)
(2) (1
R
(3)

and 1t can be seen that the quantities in (64) occur at the vertices of a
lozenge 1n this array. The various members of this array are most
economically (with regard to storage space) computed by retaiming a
vector [ which at a given stage contains the following quantities :
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(This corresponds to what, 1n a table of a function and 1its differences,

would be a line of backward diffierences). We arrive with a new partial

sum sf)m"*'i) and replace 1n succession lg by agm"'i), l1 by s(im), oy Lm by s](;)’

and add lp4+1 = sﬁg)_[_,_l. The formation of these quantities 1s carried out

by means of (71) and uses one working space and two auxihary storage
locations.

IT1I. — AN ALGOL PROGRAMME

We now summarise, in the form of an ALGOL Programme, the for-
malism which has been developed. The programme to be given computes
the terms 1n the series

(65) Ra(z) = e e—1n0 2 \/ = o (3) (3) ~ (r—35) =

it 1s assumed that r max 1s given.

Before giving the programme 1t 1s necessary to make a few remarks.
The algorithmic language [7], [8] in which this programme 1s written,
does not immediately cater for arithmetic operations upon complex
numbers. It i1s therefore necessary to construct an arsenal of procedures
for doing this and to derive a convention which governs their use. We
therefore stipulate that all complex numbers are to be represented by
arrays containing at least two members. There 1s an integer 1 which 1s
defined globally throughout the block 1n which the complex arithmetic
takes place, and all complex numbers (e.g. z, ¢s) may be recognized throu-
chout the programme by virtue of the fact that they contain the index
t (e.g. z[t], c[s, t]). © takes two values, zero-corresponding to the real
part (e.g. Re (z) = z[0], Re (¢5) = ¢[s, 0]) and unity-corresponding to the
‘1maginary part. The integer 1 may not, therefore (except in circumstances
which are difficult to envisage) be used for any other purpose.

Referring to the ALGOL programme, there is a procedure eq (one,
other) which carries out an 1instruction analogous to the operation
one : == other for real numbers. Similarly segeq (third, second, first) carries

out an assignment similar to third : = second : = first. The procedure cm
(res, one, other) carries out an assignment similar to res : = one X other,
and cd (res, one, other) one similar to res : = one [other. It is however

necessary to ensure that numbers which occur in the arithmetic as real
numbers are treated as such (1.e. with their imaginary parts put equal to
zero), and for this purpose the procedure real (variable) i1s used. The
function of further procedures, such as mod (it), is obvious. The input to
all these procedures can either take the form of a complex number or a
hnear combination of complex numbers in which the coefficients are real.
Further details are to be found in [9].



186 REVUE FRANCAISE DE TRAITEMENT DE L INFORMATION

The coefficients b, s (r=1,2, ..., rmax;s=0,1, ..., 2r max — r 4+ 1)
are members of a triangular array, and such arrays are not defined in
ALGOL. This may be overcome by constructing a mapping function

(the integer procedure mf(mi, mg)) which maps the by,s onto a linear
array.

Having evaluated the terms ?, defined by (63) the series Z ty 1S

r=0
summed either as far as the given upper bound r max, or until

’t"ﬂl > Itrl and 'tr+2l > [tr-:-l[

when 1t 1s assumed that the series for the remainder R,(z) has itself an
asymptotic character and has begun to diverge.

As the terms ¢, in (61) are produced the s-algorithm 1s applhied imme-
diately. It will be recalled that only the quantities eim‘) with even suffix

are of interest in the present application. As they are produced they

are mapped onto a display vector (dt [i, ms]), and afterwards picked out
and printed in a table which corresponds to the s-array (Table I) with the
columns of odd order missing.

With these remarks in mind and the comments to guide him the fol-
lowing ALGOL programme may be read without difficulty.

It reads, as data, ¢ and 0 /x, and immediately prints out p, 6 /=,
and n. It then computes and prints out the terms wo, ui, ..., up—1 of the

asymptotic series (15) and their sum. It then computes and prints out the
values of the coeflicients y2, and of the terms ¢, ; if the condition

ltr—i-l[ >!trl and ltr-!—Zl > ltr-i-li

1s not obeyed the term 1s added to the numerical sum for the remainder

Ry(z). Application of the e-algorithm to the series (61) takes place at
the same time. After r = r max the numerical sum for the remainder

(2. )

r==0
and the complete sum

n—1

(2, v+ 2 )

=0 r=_

are printed out in turn. Next the (triangular) even column & arrays
resulting from the application of the e-algorithm to the series (61) are

printed (real and imaginary parts separately), and two further triangular
arrays which correspond to the addition of the transformed remainder

term to the partial sum of the asymptotic series are printed.
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In this wav one 1s a Mf} to observe the numerical behaviour of the
asy mphzﬁw Series in ﬂﬁ& M mr? the series ;ﬁ“ &H‘* %%w ?wzm%mﬁf v term,

remarked that

Hy 1t

HE 1S it 1n order to make the programme as easily
me%gapmhwwmhﬁﬁ as possible there i1s at certain points a slight wastace of
storage {for example, i the singular case, ¢ 1s stored and used as a real

@ ti
variable, aithough its v alue is known to be unity).

Numerical study of a result of Stieltjes ;
ger max, twormadx, fourrmax, col ;

eal ﬁm moulty pé e of pt: boolean non singular ;
mar : = READ ; rho : RhA D 5 multiple i)f pt: = READ;
ol @ = READ ; twormax : = 2 X rmax ; fourrmaxr : = 4 % mmx :

ngular @ = (multiple of pt £ L@} ;

real pi, theta, eta, gammafnquot, au, ratio, poswer of n ;

. , n, s, m, r, r i, sanfang, rs, twor ;

boolean still conver ging, display La piacez Mnes alone |
array aux U, aux 1, aux 2, z, beta, sum, u,

: , remainderterm, gamma [0 : 1],
é{élf HGM stngular then — 1 — twormax
(rmax — 1) X (twormax + 1)],
dif0:1,1: ((rmax + 1) X (rmax + 3)) - 4, 0 : 1},

GIO 1, 0 : (if non singular then twormax ‘else twormaz + 1)1,
{0 :rmaxr + 1, 0: 1],

Laplace term, termr [— 2:1, 0:1], modtermr [— 2 : (]

procedure e¢q (one, other) ; real one, other :
for:: = 0, 1 do one : = other ;

procedure segeq (third, second, first) ;
al thurd, seco nd ﬁrs ;
for ¢ : = 031 do third :

else — 2 — fourrmaxz)

k)

ﬁ

second : = first ;

ed m (res, one, other) ; real res, one, other :
n real Reone, Imone, Reother, Imother ;

 : = 0 ; Reone : = one ; Reother : = other ;

1 : = 1; Imone : = one; Imother : = other ;

res : == Bé*@ne X Imothw -+ Imone X Reother :

t : = (0 ; res: = Reone X Reother — Imone >< Imother

end cm ;

procedure cd (res, one, other) ; real res, one, other ;
oegin real Reone, Imone, Reother, Imother, denom ;

t : = 03 Reone : = one ; Reother : = other ;
t: = 13 Imone : = one ; Imother : = other ;
denom : = Rmt}wr X Reatker -+ Imother X I mother ;

res : == (Imone X Reother — Reone X Imother) /denom
: = 0 ;
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res : = (Reone X Reother 4 Imone X Imother) [denom

end cd ;

real procedure real (variable) ; real vartable ;
real - = (if ¢ = O then vanable else 0.0) ;

real procedure imaginary (variable) ; real variable ;
imaginary : = (if i = 0 then 0.0 else vartable) ;

real procedure mod (it) ; real it ;

begin real Reut, Imit ;
{:=0;Reit:=1t;1:=1; Imit : = 1t
mod = sqrt (Rezt X Rett + Tmit X Imz,t)

end mod ;

procedure polar form (res, r, theta) ; real res, r, theta ;
begin real r 1, theta 1 ;

rl = r,thetai - = theta ;
; — 0:res: =r1 X cos (theta 1) ;
.Wi :mr1><sin(theta1)

end polar form ;

procedure comprecip (res, it) ; real (res, i) ;
begin real Reut, Imut, denom;

— 0:Rett: =1t;i:=1; Imit: = 1t;
denom . = Reit X Rezt -{—- Imz,t X Imat ;
res : = — Imit/denom ;i : = 0; res : = Reit [denom

end comprecip ;

procedure compexp (res, it) ; real res, it ;
begin real auz 1, auzx 2 ;

t: = 0;auxrl: —--ue.:z:p() t:=1;aux 2: = 1t;
res:mauxi X sin {aux 2);
1 :=0;res: = auz 1 X cos (aux 2)

end compexp ;

procedure compprint (it) ; real it ;
fori: = 0,1do PRINT (i) ;

procedure druck (it) ; real it ;
begin compprint (it) ; PRINT (mod (if))

end druck ;
boolean procedure even (integer) ; integer inieger ;
even : = (integer = (integer = 2) X 2);

integer procedure mf (m 1, m 2) ; value m 1 ; integer m 1, m 2 ;
mf: = ((m1—1) X (fourrmarx — m 1)) - 2 + m 2 ;

procedure NT ;

comment This procedure uses the (non ALGOL) real procedures
NLCR and TAB : the first gives a Newline Carriage Return

and the second shifts the typewriter carriage to the next tabu-
lator stop ;
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begin NLCR ; NLCR ; TAB; TAB; TAB
end NT ;

procedure cma (res, one, other, tt) ; real res, one, other, it ;
begin array auz 3 [0 : 1] ;

cm (auz 3 [1], one, other) ; eq (res, aux 3 [t] + i)
end cma ;

procedure sum and display remainder term ;
begin NLCR ; druck (Laplace term [— 2, t]) ;

druck (termr [— 2, 1]) ;
eq (remainder term [i], rematnder term [1] + termr [— 2, t]);
for s : = — 2, — 1 do
begin eq (Laplace term [s, t], Laplace term [s 4 1, 1]) ;
eq (termr [s, 1|, termr [s + 1, t]) ;
modtermr [s] : = modtermr [s -+ 1]
end s

end sum and display remainder term ;

comment Introduction ;

pt: = 3.14159 26535 89793 ;

n : = entier (rho) ; eta : = rho — n ; NLCR ;
PRINT (rho) ; PRINT (multiple of pt) ; PRINT (n) ;
PRINT (eta) ; theta : = muliiple of pt X pi ;

polar form (beta [i], 1.0, theta) ;

eq (z [1], rho X beta [1]);

comment Evaluation of terms and partial sum of asymptotic
series ;

eq (sum [i], 0.0) ;

for s : = O step 1 until n — 1 do

begin NLCR ;

cd (u[r], (if s = O then real (1.0) else — s X uft]), z[t]) ;
druck (u[i]) ; eq (sum[i], sum|t] + ufi])

end computing terms ;

NLCR ; NLCR ; druck (sumlt]) ;

comment Determination of b[s] ;
b[O] o sqrt (2.0) .

for s : = 1 step 1 until twormaxzx do
begin au : = 0.0 ;
for m : = 0O step 1 until s — 2 do

au : = au -+ bim + 1] X (m 4+ 2) X b[s — m — 1]/2.0;
bls]: = (bls — 1] — au) X b[0] /(s + 2)

end computing b[s] ;

comment Determination of b[— 1, s];

b|— 1 — twormaz] : = 1.0 /b[0] ;

for s : = 1 step 1 until twormazx do

begin au : = 0.0 ;

for m : = 1 step 1 until s do
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au : = au + b[m] X b[s — m — twormax — 1] ;
b[s — 1 — twormazx] : = — au [b][0]
end computing b[— 1, s];

comment Determination of b[r, s] ;

for r : = 2 step 1 until twormax — 1 do

for s : = O step 1 until twormax — r — 1 do

begin au : = 0.0 ;
for m : = O step 1 until s do
au : = au + b[m] X blmf(r — 1, s — m)] ;
bimf(r, s)] : = au

end computing b[r, s] ;

if1 non singular then
begin comment Determination of b[— 2, s] ;

for s : = 0 step 1 until twormazx do

begin au : = 0.0 ;
for m : = O step 1 until s 4+ 1 do
au : = au + b[— 1 — twormax + m]

X b[— twormax + s — m]

b{— 2 — fourrmax 4+ s] : = au

end s

end computing b[— 2, s];

comment Determination of ¢[s] ;
if non singular then

comprecip (c[t, 0], beta[t] + real (1.0))
else eq (c[i, 0], real (1.0)) ;
au : = 1.0 ;
for s : = O step 1 until iwormax — (if non singular then 1 else 0) do
begin if non singular then
begin cd (c[i, s + 1],
real (au X (s + 1 — eta)) — cl1, s],
betal1] + real (1.0)) ;

if s 5~ twormaxr — 1 then au: = —eta X au[(s + 2
end non singular case
else
begin ratio : = — eta[(s + 1) ;
eq (c[r, s + 1], real (au X (1.0 4+ ratio))) ;
if s =4 twormax then au : = au X ratio

end singular case
end computing c¢[s] ;
comment Computation of remainder term ;
compexp (aux 1[i], — real (rho) — tmaginary (n X theta)) ;

eq (factor[i], :
(if even(n) then 1.0 else — 1.0) X 2.0 X sqri(pi/n) X auz 1[t])

gammafnquot : = power of n: = 1.0 ;
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still converging : = true ;

eq (1[0, 1], 0.0) ; eq (remainder term|1], 0.0) ;

for r : = O step 1 until rmazx do
begin twor : = 2 X r;

eq (gammali]),
if non singular then c[i, O] X b[— 1 — twormaz + twor]
else c[t, 0] X b[— 2 — fourrmax - twor)
+ ¢[t, 1] X b[— 1 — twormazx -+ tworl])) ;
for s : = 2 step 1 until twor do
eq (gammali], gammalt] + blmf(s — 1, twor — s)]
X c¢[i, (if non singular then s else s + 1)]) ;
rl: = (if r > 2 then O else r — 2) ;
eq (Laplace term[r 1, 1], gammai]

X gammafnquot [power of n) ;
cm (termr(r 1, t], factor[i], Laplace term[r 1, i]) ;
modtermr(r 1] : = mod (termr[r 1, 1}]) ;
if r > 2 A still converging then
begin if (modtermr{— 2] > modtermr [— 1])

A (modtermr[— 1] > modtermr[0])

then sum and display remainder term

else still converging : = false
end adding in remainder series term (or not) ;
gammafnquot : = gammafnquot X (r -+ 0.b);
power of n: = n X power of n;

comment Application of epsilon algorithm to series for
remainder term ;

eq (aux 1[1], Laplace term[r 1, 1] + 1[0, 2]) ;
for s : = O step 1 until r do
begin comprecip (auz 0[i], (if s = O then Laplace term [r 1,7}
else aux 1{i1] — [[s, 1])) ;
if s =% O then
begin eq (aux O[i], auzx O[t] + s — 1, 1]) ;
eq (l[s — 1, t], aux 2[1])
end s non zero ;
eq (auzx 2[i], auzx 1[1}]) ; eq (auzx 1[t], aux O[1]) ;
if even(s) then
begin rs : = (s X (twormazx + 2 —s)) + 4 + r + 17
eq (di[0, rs, 1], aux 2[1]) ;
cma (di[1, rs, 1], factor{i], aux 2[i], sum|[i])
end even s ;
if s = r A 7 even(r) then
begin rs : = ((r + 1) X (twormax — r + 9)) + 4 ;
eq (di[0, rs, 1], aux 1[1]) ;
cma (di[l, rs, t], factor[i], aux 1[1], sum|1])
end s = r




192 REVUE FRANCAISE DE TRAITEMENT DE L INFORMATION

end s ;
eq (I[r, 1], auzx 2[1]) ; eq ({[r + 1, 1], aux 1[1])
end r ;

it still converging N\ modtermr[— 1] < modtermr[— 2] then
begin sum and display remainder term ;

sum and display remainder term ;
end adding in last two terms ;

comment Print remainder term and complete sum ;
forrl:=0,1do

begin NT ; druck (remainder term[i] + r 1 X sum[i])
end printing remainder term and modified result ;

comment Display application of epsilon algorithm to

Laplace series and corresponding complete sums ;

display Laplace series alone : = frue ;

Triangular display : for 1 : = 0, 1 do

begin for sanfang : = 0 step 2 X col until rmax |+ 1 do
begin NLCR ;

for r : = 1 step 1 until rmax + 1 — sanfang + 2 do
begin NLCR ;

for s : = sanfang step 2 until
sanfang + 2 X (col — 1) do
if(s—2< A (r<rmax + 1 — (s+2)) then
begin rs : = (s X (twormazx + 4 — 8))+4 -+ r;
PRINT (di] if display Laplace series alone
then O else 1, rs, 1))
end s
end r
end sanfang

end real and 1maginary parts ;

if display Laplace series alone then

begin display Laplace series alone : = 1alse ;

goto Triangular display
end returning to Triangular display
end 1nner block
end whole programme

IV. — NUMERICAL RESULTS (%)
A. — The Non-singular Case

Some numerical results which have been produced by means of the
preceding ALGOL programme are summarised in the following tables

(1) The numerical results of this paper were produced on the X1 computer at

Amsterdam using an ALGOL translator constructed by J. A. Zonneveld and
E. W. Dikstra.
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which relate to the choice of argument z = 5,51 (1.e. p = 5,5 ,0 = 0,5,
n =5, n=0,5).

TasLe I gives the terms (real part, imaginary part and modulus)
and the partial sum of the asymptotic series (15).

TasLe |
r BB(Ur) Im(uf-) I Uy l
0 0,0 — 0,1818 1818 0,1818 1818
1 + 0,0330 5785 0,0 0,0330 5785
2 0,0 + 0,0120 2104 0,0120 2104
3 — 0,0065 5693 0,0 0,0065 5693
4 0,0 — 0,0047 6368 0,0047 6868
4
» + 0,0265 0092 — 0,1745 6582 0,1765 6592
r=={

TaBrLe Il gives the value of the coefficients vs, and of the terms

el

(— 1)7 e—176 ¢—2 2 \/Z Y 2r (%-) (—g-) (r — -—%) n—T (= t,)

(r = 0, 1, ...), the numerical sum of these terms, and the modified sum

n—1
Z ur + Rnlz).
=0
Tasre Il
r Re(yer) Im(yer) | Yar | Re(tr) Im (t,) | &r |
0 +0,35355339 —0,35355339 0,5 + 0,0022 9063 4 0,0022 9063 0,0032 3944
1 —0,05597929 <+ 0,0206 2395 0,0596 5759 — 0,0001 3362 — 0,0003 6268 0,0003 8651
2 -+ 0,01621681 4 0,00352326 0,01659512 — 0,0000 2283 - 0,0001 0507 0,0001 0752
3 —0,00548122 —0,0050 9715 0,0074 8496 - 0,00003302 — 0,0000 3551 0,0000 4849
4 +-0,0013 8464 + 0,0043 7594 0,0045 8978 — 0,0000 2835 -+ 0,0000 0897 0,0000 2974
5 +0,0007 5148 —0,00350770 0,00358729 + 0,0000 2273 4 0,0000 0487 0,0000 2324
i Ml esle I
2 tr = Rs(3) + 0,0021 6158 - 0,0020 1134 + 0,0029 5262
=0 B — —
4
Y, ur + Rs(3) + 0,0286 6251 — 0,1725 5448 0,1749 1880
r=0

Tasres III and IV give the real and imaginary parts respectively
of those modified sums wich are to be derived by applying the c-algorithm
to the series expansion of the remainder term, and using the members of

the resulting even column e-array as approximations to the remainder
term.



| <

OO 00 ~3 OO O™ QD b

Jony

0

+ 0,02879 1554
02865 7934
02863 5107
02866 8131
02863 9730
02866 2505
02864 5958
02865 3899
02366 02638

+ 0,02862 8662

0

— 0,17227 5189
17263 7872
17253 2806
17256 8318
17255 9347
17255 44738
17256 9279
17254 5504
17257 7531

— 0,17254 1127

2

1 0,02865 6507
02864 9860
02865 4137
02865 1444
02865 3266
02865 2067
02865 2813
02865 2466

1 0,02865 2349

2

— 0,17259 6330
17255 1797
17256 1545

17255 9180 °

17255 9553
17255 9866
17255 9212
17256 0096
— 0,17255 9040

TasrLe III

4

e

+ 0,02865 3523
02865 2108
02865 2704
02865 2460
02865 2584
02865 2516

4 0,02865 2545

Tasre IV

4

e

— 0,17256 0646
17255 9388
17255 9667
17255 9616
17255 9573
17255 9640

— 0,17259 9567

+ 0,02865 2633
02865 2501
02865 2559
02865 2032

4+ 0,02865 2541

— 0,17255 9644
17255 9614
17255 9600
17255 9608

— 0,17255 9599

4 0,02865 2552
02865 2537
4 0,02865 2541

— 00,1725 9605
17255 9607
— 0,17255 9602

10

+ 0,02865 2541

10

— 0,17255 9603

61

¢
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m -
i em5.51t

1 T ~ dt computed independently (by means

The correct value of‘/
0

of an ascending power series and by means of a continued fraction) is

+ 0,02365 2539 — 1 0,17255 9604.

Numerical experiments indicate that the rate of convergence of the
series for the remainder term decreases as the argument of z increases
from 0 to w. This 1s illustrated in Table V which gives the values of vo

and yg (with v = 0,5) when arg (z) = 0, = /4, = /2 and 3r /4.

TasrLe V
Arg (z) | Yo | | Ys |
0 0,35355 0,09148
r /4 0,38268 0,55350
Tt/2 0,5 5,31446
37c/4 0,92388 151,28530

B. — The Singular Case

When arg (z) = =, the formulae involved are, it will be recalled,
shghtly more complicated. We illustrate their use by giving numerical
results relating to the case z = — 4,0, 1.e. n = 4, h = 0,0. The terms
and partial sum of the asymptotic series are given in Table V1.

TaBrLe VI

r Uy

0 — 0,25

1 0625

2 03125

3 — 0,0234375
3 .
Z Uy — 0,3671875
r=_

Table VII gives those modified sums which are to be derived by

applying the e-algorithm to the series expansion of the remainder term,
and using the members of the resulting even column e-array as approxi-
mations to the remainder term.

TasrLe VII
m/s 0 2 4
1 — 0,35953 5750 — 0,35954 6363
2 35954 6378 35955 9796 — 0,35955 2079
3 395955 2308 35955 2084 — 0,35955 2003
4 35955 2075 —0,35955 1960
5 — 0,35955 1998
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REVUE FRANCAISE DE TRAITEM

The correct value of the [Cauchy) integral 1in question 1s

It can thus be seen the as ymptmw series alone yields an absolute
error of 0,367 — 0,360 = (007, that use of the series expansion of the
inder term vields an absolute error of

0.35955 2008 — 0,3955 1908 — 0,00000 0010,

and that application of the to the wn’mmdw term expansion
yields an absolute error of i} 00000 0005 {these last two figures relate,
of course, to the use of five terms Bf the s term expansion).

Thus, in the singular case, application of the c-algorithm to the
rmzmmdw term expansion ﬂﬁﬁ‘% not seem to be so favorable.
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