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Introduction

Numerical values of certain elementary functions (e.g.
exp(x), sin(x),cos(x),1ln(x))are made available to digital
computer users by means of programmed subroutines. The tendency
will be to extend this list of "elementary" functions, and
considerable interest therefore attaches to general and efficient
methods for computing numerical values to great accuracy of the
nigher functions of Mathematical Physics.One such method is the
application of the converging factor.

The Converging Factor

The converging factor is an important numerical device for
hastening the convergence of slowly convergent series and
increasing the accuracy obtainable by use of an asymptotic
serles. If the series is

Swu-o“‘“‘»t"‘“z“"“ (1)
and the partial remainder Rn is

an Wpt W+ Wi + 000

(2)

the converging factorc‘}s defined by

Farw=‘*h(:h (3)

The converging factor is most efficiently used, in the case of
most applications to asymptotic series, with that value of n
which corresponds to the term of smallest modulus in the series
(1).

Miller [{] has given a method for developing the converging
factor Cn elther as series of the form
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Or Aas A seriesgs of the form
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cases In which either the function
erential equation In z or the terms w, satisfy a linear
equation in r. He illustrated his method

weber parabolic cylinder functions.
In the paper referred to, real values only of the argument
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formally satisfies the differential equation
2
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linearly independent situations of equation (8) are

S,(@;2) ana
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The terms w, of the series (6) satisfy the recursion
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We wish to determine that value n of r for which Eg&nﬁ
is a minimum. From (40) this is seen to occur when

ZV\ 1‘2 {: (Q.r* ZHW %’ZXQ+ 2” ""4/2> (11)

where

8

In order to derive an easily usable approximation we ignore the
Term

M= (o= ) (o= %)

independent of n in (11), and obtain

xzr} 2in+ ) (14)

where

A = 2 (o=1)

Qn = Iam)“‘“‘“ k

where k is real and may always be chosen so that

Agke1.

The integer n having been determined, we define the
remainder term Rn and converging factor E: by
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We shall obtain a series development of the form

W
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G s flrst using the fact that hm satisfies a
iifferential equation in z and secondly the fact that Ez

satisfies a recursion in n.

Differential Equation
The converging factor satisfies the differential equation

‘22 - ;. (\ _~Z (‘; <+ 2 O -+ 4‘ N + 4) d, r - (Q. + zh -+ 4/2 X_O.. -+ ZH A S m
doz*

+ 2nz? (r 4\) 0. (21)

This may quite crudely be verified by substituting the
seriles

in (21). A constructive derivation, based on an idea which is
early capable of general application to the construction of
converging factors,; has been given by Miller. He writes

mflz?“m,‘mﬁa -
U, = QL cxnm?hxﬁi‘u;eg % Z . Va,%b
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and further

but

Removing u_ and its derivatives from (27) by way of (24) and
(25), we arrive at (21).

In This section we shall suppose that a and n are fixed,

SO that z and k vary together. We have from equations (12)
and (16)

Az

B
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By means of equations (12),(16) and (28) we may remove n from
equation (21) and transform the result into a differential

equation with k as the independent variable. We obtain, after
some rearrangement

x* {_4 r” 2 @H-Z) + <¢+f1) -~ ¢
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and dashes denote differentiation with respect to k.

From (20) and (28) we have successively

Substituting the series (20) (31) and (32) in (29) and
equating to zero the coefficients of the successive powers of
X we obtain a recursion system between the functions ﬁ,. Ck)
We have, in succession;

< ‘4‘/g:* 2 (Q"’ Z)ﬁ; + <¢+/Dﬁo """2¢’ . (33)

x 473,:' -2 ($+2) P 41 +(d+1) /3 = =42k +2-2) A,
T D, — 4- C)«l— k) ¢ (34 )

and

B A (DB + @D B4 fhr - 2k2) £
+2 ik (3+2) + 2 (@+1) -2 (=D P-4 ﬂf

_4 {kﬁ kQerad) koo -DE-N+4 CORY:

(¢=253;.- ) (35)
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Inspection of equations (33)(34) and (35) reveals that

they are formally satisfied by polynomials of the form
- %:L

determing the coefficients 1S In principle this can be

Br2(K), A

done since, knowing /5 oA ( k) and (O B GC) may be derived Irom

in (35) we obtain, after some rearrangement
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Equating to zero the coefficients of k in the order
S=r ,r-1,..., O, we obtain

Pi-»,,a = {Z(‘}’*Z) Ph-'i,i’*“/t ”4"P“""-’>*‘“"2}/@}*4>3' (42)
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Thus, if equations (37),(38) and (42)-46) are used in that
order the coefficients Pp’g (r=0,1,000355=0,1,...,r) may always
be expressed in terms of quantities which have previously been
derived.

It will be observed, however, that equations (42)-(46)
differ from one another according as to whether certain powers
of k do or do not exist in the various sums in (41). This fact
may also be expressed by the use of conditional statements, and
thus an expression for P“‘:ﬁ which 1s generally true for r ; 2
may be constructed. The special forms for Py, and P’M > P4,0
may also be incorporated in this expression, and thus we have

Pi',s :—-...[ 130 s<r [fhen 2 @H— 2 Y S+ 1) Ph,s-m
-if s<r-1 I

i 4 (5+2)(s+1) Prysiz

+\[ s<r-1 en 4-(4t-2+2)(5+4) Pr-1,5+4
-1 0<s<t lhen &TsPrys

+ s>0 Wien 2(P+2) Pr-q,5-4

+ i][‘ s<Pr ﬂ?\‘em 2{>\ (@4)“ 2 @'“4)4) “4”} Fh-«z,s




This definition is uniformly wvalid for rmosﬁ,,aa and
Smrgrmﬂ,aaosoa Its derivation does not, of course, represent
an attempt at elegance for its own sake. It will be realised
that there is considerab.Ae duplication in formulae (42)-(46),
so that if we were to write down the formulae for PP)S in some
algorithmic language for a digital computer based on formulae
(42)-(46), we would in effect be wasting a large number of
instructions in needless repetion. Use of formula (47) avoids
this at the cost of a few conditional statements, which (in
comparison with the complexity of the form
negligible |
Difference Equations

1lae used) is

48) we have

In the notation of equation

(48)

and since

(49)

we have

LLV‘_.,.,‘ ﬁ:..../! + WhD - uﬂmﬂ (50)
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‘n this section we shall suppose that a and x are fixed, sO
rnat when n decreases to n-1,k becomes k+2; thus 1f

(52)

(53)

jZ,:L

In equation (51) we write X (#) for Z* , sSubstitute for 2n
tn terms of x and k, and insert the series (52) and (53),
iy nallv obtaining

By equating to zero the coefficients of the successlive powers

of x in (54) we shall again obtain a system of recursions
en the functlons ﬁ (k) r=0,15.... - We have:

B (k)= ZéP (55)
(k) = 2{43 (A+ k'),gc(k-%@ + O\+2k)/80(k)
- 29 (>‘+\<)7T (56)
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+A. (k> = 7 {(t) ( >\ + k) ﬁhw A Ck—t— Z) +<>\+2'<) /g A (k)
-2 (k% k+/A) Ve HOY

(57)

Before proceeding further we introduce factorial functions
»f the form

rg“”’ _ k(k-2)...(k-25+2) (58)

These quite clearly satisfy a recursion of the form

(59)

(60)
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Equipped with these formulae, we see that equations (55) -
(57) are formally satisfied by expressions of the form

(65)

From (55) and (56) we have successively

m'fip* O <s<r hew ‘2,(45+>\*'Z)C%,Qisﬂ,,

- if s <v-1 thew 7
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Comparison with the work of Miller and Airey.

As mentioned at the beginning of this paper, Miller has
derived relationships similar to equatilions (33)-(35) and
(55)~(57) for the case in which z is real. Allowing for the
difference in notation (Miller uses an auxllary variable b
defined by b=a-2 as opposed to A= QCOLM ”3), and derives sets
of equations in which the unknown function is [3..,, (k) and not
[;; CK) ), equations (33)-(35) and (55)-(57) reduce to Miller's
quations when @=1. Miller derives explicit formulae for the
initial '*:}. (k) rather than a recursive definition of the
coefficients Pﬁ s and {4 5; nevertheless, since we have
derived eXpressions for ﬁ;  _ G,1, 2»,3) for the purpose of
checking, we remark in passing that these expression reduce
to those of Miller when @=1.

We now recall the work of Airey |2| . He is concerned
with the asymptotic series

ol 4!

7 = O
.Zf 2(2 (7 )
where
and writes (70) as
¥l ~4
Ay v Z Mb*uncﬂ (72)
H‘aﬁ:/ﬁ ;

where
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He makes an auxiliary substitution

By formal expansion of each term of (75) in inverse powers

of x', and regroupment, he obtains the expansion

EQ,thatA t%e constant terms of thepolynomial coefficients

nich he derived for the expansion of .: s were the same as

Airey's numbers. We shall later see that, allowing for the

i f'erence in notation, the coefficients of ‘X.’w > <5 =0,% .. *)
76) are in agreement with those given by (37)-(40).

At first sight this should seem to be more a cause for

'})@14%Q)@1+£%£X31*;%{)

(77)



(78)

(79)

In order to explain this curious agreement we must first
establish the true significance of Airey's converging factor.
We consider the asymptotic series development

(80)
which may be associated with the incompleteljifunction‘
We write this as
.9 v, -
Z Wy (81)
V=
where
Uy = (82)
and the converging factor
+ i) (a+in -+
C J'U/I - CCl-Hrf) 4 (Q. )( )m . o o (83)
Jzi vzg-
where n is so chosen that if
/ RS -
Z =xe (84)

and

= f*b (85)




then OShS"lo

wa<C% satisfies the differential equation

™

- (,Q' + N+ Il) Cn -z (86)

1

We may change the independent variable to h, and
eliminate n form this equation by means of (85), and obtain

We may substitute a series development of the form C ny £
N s=o
in (87) and obtain a recursion system among the /35(\/\\ <$ Oﬂ,“ ,)

as done earlier in this paper. The point to notice about this
system of recursions is that the functions ﬁs ("\\)
produced via equation (87), are independent of the parameter
a, so that Airey's converging factor (75) is not only the
converging ractor for the exponential integral, but also for
the incomplete!mifunctionﬁ

But the series (78) and (79) are special cases of (80).
The only outstanding point is that the relationship between z'
and h given by (85) is exact, but that that between zz' and k,
given by (16), was derived under the assumption tha§/~s(given
by (13)) was negligible compared with H?g;But'when a=1/2 or 3/2
/Mv is not only negligible but zero, and so the correspondence is
complete, and the agreement referred to occurs.

It only remains to show how (37)-(40) reduces to (76) when
/LL:OQ Replacing 14 by the complementary argument h'=h-1 in (76)
we obtain

i} };
] .

: #
S
g




If, in (88), we put @= f” - = LK we arrive at the
coéfficients (37)~(40),*and thus again Airey's work serves, to
a certain extent, to check our own.,
Singular Case
When”Z?is real and negative, @ =-1? the formalism of the
preceding two sections breaks down completely; we examine the
prdblem afresh.
In the case being considered, equations (33)-(35),(55)-(57)

become

Inspection of equations (89)-(94) reveals that at least the
possibility exists that Tthey are satisfied by polynomials of the
form

(95)
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But it 1s quite certain, at least; that equations (9°
L} do not serve to determine Pboandi%M? respective

since, for example wagi > Prya,g  BTE determlined [row

i1t would appear that matters become progressively worse,
Let us, however, proceed upon the assumption that
everything is known on the right hand sides of equations
(Q4) except Pkﬁa andC%erespectivelya Equations (&8G,
(02) give to begin with

:h i'.! ) ; ;ﬁ -‘1? (3 i ] ﬂl}
,4& T
3 e '
0 4 0 i 4 W g
& ¥ 4
*

;Q%?tion (91) may be rearranged as

4

Jo gy
L -
i B
*It
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a relationship which may be used without difficulty.
Equation (94) may be rearranged to give

4
The coefficients of k and
in (99) respectively give




The

Now so far we have used the facts that fg: satisfies a

differential equation and a difference equation quite seperately

; p(k) as a polynomial and as a series of factorial

functions quite independently. Now we must use these facts in
conjunction.

Firstly

(105)

derive waﬂéjo = & Sse may be su

- % e (3
[}
| ) \



of r. Use of conditional statements enables the anomalous

equations (89),(90),(92) and (93) to be brought into this
general scheme.

Checking @
Since the expressions /3

, ff,'whether derived as a
polynomial or as a series of factorials, represent the same
function, there exists the possibility of expressing one set

of coefficients in terms of the other, and this may be used as
8 check. |

In the non-singular case we have the matrix equations

(112)

(113)




If the elements in L are referred to as 1’&35

- e A
and those in L 1 as Qrp (rys=0,1,...) then
<w=492)&u « ;

S
/
Q y {th - (Lb@’i‘,S-i + 231!\‘453
aetd - A - A .
wmane - an gq Q ¥ & e p
““'Qﬂ» {L’Y{.S = Q’Mﬁ,sw o QCP‘”/'3 (qu-'us Cb“ 41’2’7 evy 3 > ’ ) "
Use of these formulae (as we shall see in the ALGOL
programme to be given) enables the matrix multiplications (112)

to be replaced by a system of algebraic relationships.
Application of the & -algorithm.
We have now shown how the converging factor ﬂ: may be

expressed formally as the sum of a series. But it 1s a matter
of numerical experience that in many cases a continued fraction
which may in a certain sense be associated with a given power
series converges far more rapidly than the series. We wish;
Cherefore, to transform Tthe seriles for‘:rinto such a continued
fraction. This may conveniently be done by application of the

&€ -algorithm [3] the theory of which has been described elsewhere
[}:i; it will suffice have to state that if from the initial values

<Ma432)wuwj (445)




(m =O1,.. @> (116)

further quantities ' are constructed by

means of the relationship

e &) A

. S —
5“2 (m+1) (wr) (117)
6 - € 4

@ i

LN
then the quant ities €?3 are convergents of certain continued
functions, and as such provide better estimates ?f the formal
sum of the series whose partial sums are given bxgikan the partial

(i
sums. The gquantities e )may be displayed in the array

c (Q)
0
@ NG
€, e, 6
(2) @ 3
G@ €,
(3 ® ;
eo) . ‘
Table 1.

and it can be seen that the quantities in (117) occur at the
vertices of a lozenge in this array. The various numbers of this
array are most economically (with regard to storage space)
computed by retaining a vectoer'which at given stage contailns

. 4 () (m-—»n (- ,
the following quantities: é ’Ld =< Q’?.““ 6 2y bee ) Q,m:.- Gm .

(This corresponds to what, in a table of a function and its

differences, would be a l?(,ne‘JE of backward differences). We arrive
WA )
with a new partial sum € _ and replace in succession



locations. In certain singular cases, as occur 45r example Wwhen
a term is equal to zero, thejiatter procedure h©jeaks down, This

An ALGOL Programme

We now summarise .the formalism which has been developed,
1in the form of an ALGOL programme. It must be borne in mind,
however, that application of the converging factor to an
asymptotic series is but one of a number of methods by means
of which the Weber function may be computed. Thus this programme
1s not to be regarded as any sort of fool-proof procedure Dby
means of which the Weber function may be computed for any value
of argument and parameter. It should Dbe regarded as a basis
from which the interested reader if he so desires may, at fhe
cost of an hour or so of somebody else's typing, continue the
author's provisional inquiry into the numerical behaviour of the
converging factor.

Before giving the programme it is necessary to make a few
remarks. The algorithmic language‘[?l in which this programme
1s written, does not immediately cater for arithmetic operations
upon complex numbers. It is therefore necessary to construct an
arsenal of procedures for doing this, and to devise a convention
which governs their use . We therefore stipulate that all complex
numbers are to be represented by arrays containing at least two
members. There 1s an integer i which is defined globally throughout
the block in which the complex arithmetic takes place, and all

complex numbers (eg. z, D, ) may be recognised throughout the
programme by virtue of the fact that they contain the index i

(e.g. z[ilﬁ P [R,s,i])g 1 takes two values, zero corresponding

to the real part (e.g. Re(z) =z Re(pr S) = p[R,s O] ) and unity
>

corresponding to the imaginary part. The integer 1 may not,
therefore, (except in circumstances which are difficu;t to




envisage) be used for any other purpose.
Referring to the ALGOL programme, there is a procedure
e.g. (one, other) which carries out an instruction analogous to
the operation-one:=other-for real numbers. Similarly segeq (third,
second, first) carries out an assignment similar to thifd:;seoond:m
first. The procedure cm(res,one,other) carries out an assignment
similar to RS :=one’X other, and cd(res, aone, other) one similar to
res:=one/other. It is however necessary to ensure that numbers
which occur in the arithmetic as real numbers are treated as
such (i.e. with their imaginary parts put equal to zero), and
for this purpose the procedure real (variable) is used. The
function of further procedures, such as mod(it), is obvious.
The input to all these procedures can either take the form of
a compleX number, or a linear combination of complex numbers
in which the coefficients are real. Further details are to be found
in{?;j o . . |
It will be recalled that O@ ls determined from ﬁg«e_q d()
and ﬁpmz(k), thus we need only tore in the machine two vectors
of coefficients, since when -' ®has been computed 1ts coefficients
may be written upon the space occupied by those of ﬁg«...q(‘()
since the latter are no longer needed. But we also wish to make
the programme as comprehensible at a glance as possible. We
 at*introduce integers R, Rminus 1, Rminus 2 which take on
the values 0,1,0 when r is even and 1,0,1 when r is odd. In
this way the mathematical formulae and the algorithmic formulae
preserve a close similarity, and the required economy in the

use of' storage space 1s achileved.
’;)(by a Horner process 1in both the cases

Having evaluated O

in which 51 expresed as a polynomial &nd 2aaes a series of
factorial function) the series 21 (k) AR ¢ 1s summed either

as far as a given upper bound vmax,; or until

(027522 | 5| B.(K) 2

(118)
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when it is assumed that the converging factor series has itself
an asymptotic character and has begun to diverge. _
As the terms uii P F ="  are produced the &€ -algorithm
is applied immediételye It will be recalled that only the quantities
€(m'§ with even suffix are of interest in the present application.
As these are produced they are mapped onto a display vector 5
(diljo, mgﬂ]), and afterwards picked out and printed in a table
which corresponds to the &€ -arrays (Table I) with the columns of
odd order missing. |
W-ith these remarks in mind and the comments to guide him
the following ALGOL programme may be read without difficulty.
It reads, as data, a,x, and 6/t , and immediately prints out
a,X, 6/<T , k and n. It then computes and prints out the terms
Uog, Wy ,. - , W —a of the asymptotic series, their partial sum, and
u . It then computes and prints out (real and imagilinary parts
seperately) the coefficients Pp)s » the coefficients Ch,s derived
from them-by means of equation (112), the value of the polynomial
A(k) (real part, imaginary part, modulus )m?nd of the term
ﬁ,.(kw) 'Zmrw - ; if condition (118) is,\ obeyed the term 1s added

in to the converging factor sum. Application of the €-algorithm

to the converging factor takes place at the same time. After p=v¥maXx

the numerical sum [; |

the product uw[; » and the modified sum é We ¥ M""'r
are printed out in turn (reai part, imaginary part, and modulus).
Next the (triangular) even column € -array resulting from the
application of the € -algorithm to the converging factor are
printed (real and imaginary parts seperately) and two further
triangular arrays which correspond to the application of the
transformed converging factor are also printed. The whole process
is then repeated with the computation of g .

In this way one 1s able to observe the numerical behaviour
of the asymptotic series (6), the coefficients Phg ,q,ns and to
check these; one is able to observe how rapidly the converging
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factor series converges; the effect of applying the & -algorithm

to it, and the improvement which i1s to be obtained by applying it.
A seperate programme has been made for the singular case

in which Wg(’z) = "EE/Z . Its construction is as above with

the excepftion that all the guantities involved are real, and the

computation of Fm and C}m proceeds simultaneously.
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COMMme n‘b COHV@ I"gi

function of complex argums

of pi,xsqueared, .-f::.f u,k, theta, power of X 3

integer i,r,8,n,J, tvormax

senteng,rs, col,R,Rminl,

boolesn polynomisl,still converging,displey converging factor alone ;
red,u, sum, converging factor[0:1],

pa[0:1,0 srmex, O :1 ] ,betar, termr[~2:0,0:1] ,modtermy[-2:0], [0 :rmax],

check[O :rmax,0 21 ] , 1[0 :rmex+1,0:1],d1[0 1 ,'a o( ( x )x(rmex+5)) :4,0:1] 3

procedure eq(one o*ther) sreal one, other ;for 1:=0,1 do one:=other ;

procedure seqeq(third,second,first) jreal third, second,first 3

“H““ﬂ““‘? Eam SUNR welp VT

for 1 ~O 1 do thixﬂ*msecond °mfirst -

Erocedure cm( res, one ;Other) jreal res,one,other ;

mummmmmm e DN SR K

begin reel Reone,Imone,Reother,Imother ;

1:=0 j;Reone ::=one jReother:=other i:=1 :Imone:=one 3;Imother :=other }

res 'mReone)&mothemlmoneXReo'ther e :=0 sres :=ReonexReother-ImoneXimother end ;

p:mcedure cd( res,one , other) sreal res,one,other 3

'_t;_egin T, ]

Reone,Imone, Reother,Imother,denom 3

1:=0 jReone :=one ;Reother:=other 3i:=1 jImone:sone jImother:=other ;
denom :=ReotherxReother+ImotheryImother 3

res :=(ImonexReother-ReonexImother)/denom ;

1:=0 jres: (Reoneﬁeotheﬁlmoneﬂmother)/ denom end ;

real procedure reel(verisble) 3real variable :

real :=( i1f i1=0 then variable else 0.0 )

g NS WRER ST witi BOE WS WS

real procedure mod(it) jreel it 3'ge§i.?z real Reit,Imit 3

PR SIUK TWEE DN DU NN Ry SR MmN TSN NNE i N WENET 390Ny Dt e

1:=0 jReit:=it 3i:=1 jImit:=it jmod:=sqrt(ReitxReit+ImitxImit) end ;
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real it sbegin real Relt,Ilmit ;

{:=0 sReit:=it $i:=1 3Imit:=it j

arg:=( if Reit>0.0 then ercten(Imit/Reit) else

AL LESD Wb

sign(Imit)x1.57079 63267 SU9-arctan(Reit/Imlt) ) end ;

¥

procedure poler form(res,r,theta) jreal r,thete jbegin real rl,thetal ;

- 2 7 fF B B PR S SN M Sty U aatl MRE BRe o SR

ri1:=r jthetal :=theta ;i:=0 jres:=rixcos(thetal) ;3

i:=1 sjres:=rixsin(thetal) end ;

procedure compln(res,it) jreal res,it jbegin reel aux j

2 _ 5 N 3 ¥ F- W o WER B wny WEp

aux:=In(mod(it)) 3i:=0 jres:=aux jaux:=arg(it) 3i:=1 jres:=aux end ;

procedure compexp(res,it) jreel res,it j;begin real auxl,sux2 ;

1 =0 jauxl :=exp(it) ji:=1 jaux2:=it ;

e S

res :=auxixsin(aux2) 3i:=0 jres:=euxixcos(sux2) end 3

procedure onehochother(res,one,other) j;real res,one,other ;

e 8 R B R | -

begin array sux1[0:1] scompln(eux1[i],one) jem(auxi[i],other,euxi{i]}) ;

compexp(res,aux1{i]) end ;

ﬂ“?

procedure comprecip(res,it) jreel res,it jbegin reel Reit,Imit,denom ;

N ount N MRS wnl ezt WEE XN N Gxlm K S e -8 %K -

1:=0 3Reit:=it $1:=1 j3Imit:=it jdenom:=RelitxXReit+Imithdmit ;

- reg:==Imit/denom ;i:=0 ;res:=Reit/denom end ;

procedure compprint(it) jreal it 3for 1:=0,1 do print(it) ;

H

#

procedure druck(it) ;reai it jbegin compprint{it) sprint(mod(it)) end ;

* "

procedure *printcompvect( it,J,h,k,co0l) j;velue h,k,col ;

n

T

integer J,h,k,col jreel 1t jbegin integer Jjanfang ;

for ,j ]

Wl NS axun s AN A Sy ral DIV I VR W WES o RS

fang:=h step col until k do for 1:=0,1 do begin NLCR 3}

TN i

o El N k1 :

step 1 until Janfang+col-1 do if J < k then print(it) end end ;

for Jj:i=Jjanfeng

boolean procedure even(integer) jinteger integer ;

= K 4 K K B L “B.-F ¥ R 3 SR CON S IR O K08 R
. :

even:=( integer=(integer:2)x2 ) ;



- 31 -

| . f. f - g . *+
rocedure addianl ons,other) jreal

one , other 3

begin arrey eux3[0:1] jem{eux3[1],one,other) ;

eq(aux1 (L], et {il+aux3{1]) end ;

Akid AR 2N

procedure NT stegin NICR 3NILCR ;TABR ;TAR 3TAB end ;

N PRET 0 w2 vl iy iy g5 AT BT MEM

procedure sum and displey converging fector ;
‘Eggig NLCR ;dmck(betar -2,:3’..]) ;druck( termr{ué,i]) ’
eq( converging factor[i],converging fector{il+termr{-2,1i]) 3

for s:==2,-1 do begin eq(beter[s,i],vetar[s+1,1]) ;

eq( termr(s,i], termr{s+1,1]) jmodtermr[s] :=modtermr[s+1] end end ;

comment Introduction ;

8 =read jxXi=read jmiltiple of pii=reed ;col :=read ;
xsquared :=xxx jlambda:=2x(e-1) jmu:=(a~0.5)x(a=1.5) ;
n:=(entier(xsquared-lambde)) :2 ;

if n<O then begin n:=0 3k :=xsquered-lembda end else

begin k:=xsquered-lenbde-2xn 3;if k>1.0 then begin k:=k-2.0 jn:=n+1 end end ;

NICR ;print(e) ;print(x) sprint(mltiple of pi) :print(n) ;print(k) 3

twormex :=2xamex jthetea :=multiple of pix3.14159 26535‘ 8979 3

poler f‘om(phi{i] ,1.0,2.0xthets) jpolar form(z[i],x,theta) ;
eq(zsqueared[i], xsquaredxphii]) 3

comment Eveluetion of terms end rertial sum of asymptotic serles ;

eq(sum[i],0.0) jcompexp(auxi{i],-zsquered{i]/L.0) ;
onehochother(eaux2{il,z{i], reel(«a~0.5)) jem(uli],suxi[i],eux2{1i]) ;

for ri=1 step 1 until n do begin NLCR jdruck(u[il) jeq(sum[i],sum[i]+u[i]) ;

ot SN p NERS XY Min R SN AIN 5N W ey Bl Wi RN

cd(ulil,~(a+2xr=0.5)x(a+2x=1.5)xuli], o2xrxzsquared(i]) end ;

NLCR 3;NLCR jdruck(sum{i]) ;NLCR ;NLCR ;d




comment Computation of converging

poiynomial :=true 3

e

COEFFICIENTS: eq(1[0,1},0.0) spower of x:=2.C 3still converging:=true ;

eq(eonverging

factor{il,0.0) 3R:=0 ;

-

for r:=0 steB T until mex do begig Bminl :=R 3R:=Rmin2:=1=~Rminl ;

»

for si=r atep -1 until O do begin

Ny WIR PRep SO TN sy g Ny ol e E KR ey S ADE Yy SN Bl

Ed

if polynomial then begin

comment Determination of polynomisl coefficients 3

eq(aux1[i] , (1f r=0 then 2xphili] else 0)

.

x .

--(_i_;‘ r=1 A s=0 then Wxdembdexphi[i] else if r=1 A s=1 then Uxphi[i] else O)

R WU a0 SN NN e W W oy N NN R sy WD) Shn |

--(g_" s<r A 8>0 then Oxsxpql[ Rminl,s,1] else _ 0)

WD W e L &

ROV WU e SN 2NE N JRER 0N J

"(}_g‘ s<r-=1 then Ux(s+2)x(s+1)xpq[R,s+2,1] else O

+(1f s<r-1 then Lx(lbyr-lembde-2)x(s+1)xpq[Rminl,s+1,1i] else 0)

£

VL SN NN Y s FIA REn ER%

-(if s>1 then bxpq[Rmin2,s-2,1] else 0)

-(1f &>0 A s<r then Lx(lembde-lbxr+h)xpq[Rmin2,s-1,1i] else O

SR pyl eORp L mmm* .

-(1f s<r-1 then bx(m+2x(r-1)x(2x(r=1)-lenbde) )xpq[Ruin2,s,1] else 0) ) ;

] * -

if s<r then begin addin(2x(s+1)x(phili]+reel(2.0)),palR,s+1,1]) ;

a.d;din( 2x( (phi[il+real(1.0))xambda+2xphi[i]-2xrx(phi{i]+real(2.0))),pa[ Rmint,s,1])

end 3

if >0 then addin(2x(philil+real(2.0)),pq(Rminl,s-1,1]) ;

*“?‘

cd(palR,s,1],aux1[1],(phili]+real(1.0))) end else begin

i [
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ination of factorisl coefficients ;

eq(aux1{i], ox( (gg r=C then phi{i] else 0)

O™ AR BTy Sadi S UM Dud 128

"(32 r=1 A s=0 then Dambdexphi{i] else if r=1 A s=1 then 2xphi[i] else O)

WEEP S Y S SON BN U WA gmat NON b st SPE o WON WO S

- { 2:§ s>1 then 2xpg! Rmin2

R R YW A0 LN K

-(1f s<r A s>0 then 2x(lxs+lembde~-2)xpqlRming, s-1,1] else 0)

-(1f s<r-1 then 2x(2xsx(2xs+lambda)+mi)xpq(Rmin2,s,1] else 0) ) ) 3

if s<r then begin eddin(-2x(s+1)xphi[il,pq[R,s+1,1]) 3

addin(ox(bxs+lambda)x(phi{i]+real(1.0)),pq[Rminl,s,i]) end ;

o NN .

1f s < r-1 then eddin( x( s+1 )X(lambda«-s»e:,(s)xphi{i],pq[Rmin1 ,S+1,1]) 3

if s>0 then addin(2x(phil[i]+real(2.0)),pq[Rminl,s=1,1]) 3

?"*H +i

cd(pqlR,s,i],aux1[i],phi[i]+reel(1.0)) end ;

eq( check[s,1],0.0) ;f[s]:=0.0 end ;

comment Printing out coefficients

8 3 X N F -k

printcompvect(pqlR,s,i],s,0,r,col) 3

coefficients and conversely

eq(check{0,1],pq(R,0,1]) ;f[1]:=1.0

- 98

for s:i=1 step 1 until r do for J:i:=s step -1 untll 1 do begin

S Y My W D RN LM P e DU K R s WPl KR NS R F - X - B N i g W

if e>1 then f£[J3]:=f[J~1]1+(if polynomiel then 2xJ else -2x(s-1))xf[J] ;

W R TN e B W SN L R e e

E

eq( check[ j,1] ycheck[J,1]+f[j]xpql[R,s,1]) end ;

printcompvect(check|s,il,s,0,r,col) ;

r1:=(if r»>2 then 0 else r-2 ) ;

. N WY W e Y SR SN SOl

eq(betar[r1,1],0.0) s3for s:=r step -1 until O do

aﬂ;*w 0 R ey WY L TN st NN

o -
5 3

eq(betar|r %i] ,PalR,s,1]+( if polynomiel then k else k-2xs )xvetar[r1,i]) ;

eq(termr(r1,1],petar(r ,1]/pover of x) jmodtermr{r1] :=mod(termr{ri,i]) ;
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comuent Add in converging factor term if series still converging 3

1f r>2 A still converging then begin if

modtermr|{—2] > modtermr{—=1] A modtermr([—1] > modtermr|O)

then sum and display converging factor else still converging:=false end ;

AN

comment Application of epsilon algorithm to converging factor series ;

[r1,1]+1[0,1]) »

GQ(B.u)ﬂ [ i} [ term
for s:=0 step 1 until r do

begin comprecip(aux0[1],( if s=0 then termr(rl,i] else aux1{i]-l[s,1] )) ;

if s$0 then begin eq(aux0[i],aux0[1]+1[s~1,1]) jeq(1l[s—1,1],aux2[1]) end ;

eq(aux2{i],aux1{1]) j;eq(auxi[1],aux0(1]) ;

if even(s) then begin rs:=(sX(twormax+2-s)):b+r+1 ;eq(di[O,rs,i],aux2[1]) ;

cm(di[1,rs,1],ul1),aux2[1]) end ;

if s=r A Teven(r) then begin rs:=((r+1)X(twormax-r+5)):L4 ;
eq(di(0,rs,1],aux1(1]) ;em(di[1,rs,1],uli],aux1(1]) end end ;
eq(llr,1),aux2[1]) j;eq(i[r+1,1i),auxi[1]) ;

power of Xx:=2XxsquaredXpower of X end ;

if still converging A modtermr(-1] < modtermr(-2] then

begin sum and display converging factor ;

sum and display converging factor end 3

-gg_f_fqgw Print converging factor,product of converging factor and un,

and modified sum
NT sdruck{converging factor[i]) sem(auxi[i]),u[1], converging factor[i]) 3

NT s;druck(aux1[1]) ;NT jdruck(sum[i]}+auxi[1i]) ;
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:ffji'!f_f Display application of epsilon aslgorithm to converging factor

and the corresponding modified sums ;

display converging factor alone:=true 3

TRIANGULAR DISPLAY: for 1:=0,1 do begin

for sanfang:=0 step 2Xcol until rmax+1 do begin NLCR 3

for ri=l step | rmax+1-sanfang:2 do begin NLCR ;

for s:=sanfang step 2 until sanfang+2X(col-1) do if s:2<r A r<mx+1--(s 2)

then begin rs:=(ax(twormax+i—s)):4+r ;

print( if display converging factor alone then di[0,rs,1] else sum{1]+di[1,rs,1] )

end end end end ;

i m m W

if display converging factor alone then begin

display converging factor alone:=false ;goto TRIANGULAR DISPLAY 3_1}51_ ;

if polynomial begin polynomial:=false ;goto COEFFICIENTS end end end
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omment, Converging factor for Webher function of pure ilmeginary argument ;

‘r -

ERRE T XSy BN v Wt I3 T3 A0 vy LD

begin resal B, Kk, X, xequared, lembde, mu, pover of X,sum,u,auxsun, rminl,

B3 2% W O BTSN 4R

coefftofpRminZeminl jaux0, aux? ,aux2,Pr2,Pr1,qR1, converging factor 3

integer n,s,r;i,rs,sanfang, r1,col, R, Rmint , Rmin2, twvor ;

I J2W OE BTN akn I 1o

s

| ; ,bEt&I‘, temr[~2 :O] ,l[o :rmex-+1 ] ’
ai{1 :((rmex+1)x(rmex+5)) :4],p,q[0:1,0 :twvormex+3] 3

boolean procedure even(integer) jinteger integer ;

procedure sum and displey converging factor ;

begin NLCR j;print(betar[-2]) jprint(termr[-2]) ;
converging factor:=converging factor+termr(-2]

for s:==2,-1 do begin betar[s] :=betar[s+1] jstermr[s]:=termr[s+1] end end ;

i=read X i=read jcol:i:=read jxsqueared:=xXXxX ;
lembda :=2.0x(a~1.0) jmi:=(a=-0.5)x(e=1.5) jn:=(entier(xsquered-lambda)):2 ;

if n<0 then begin n:=0 jki=xsquered-lembde end else

begin k :=xsquered-lambde~2xn 3;1if 1.0 then begin ki=k=2.0 jni=n+i end end j

NICR 3print(e) ;print(x) jprint(n) iprint(k) 3

comment Evelueaetion of terms and partisl sum of asymptotic series ;

sum:=0.0 jus=exp(xsquared/L.0)soeA(-8~0.5) 3

for ri=1 step 1 untlil n do begin NILCR sprint(u) ;sums=sum+u

nne rX s o DS LRl Xamks SR ONF veE nl WA [ o 3

veo

w =@+ 2ar-0.5)x(e+2xr-1.5) %/ ( Daxxsquaered) end ;

NLCR sNLCR sprint{sum) ;NLCR ;NLCR j;print(u) 3
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aluation of converging factor coefficlents ;
plO; 1] :=q{0,1] :=1.0 jR:=Rmin2:=1 ;Rmin?:=0 3power of x:=2.0 }

convergd,

12 factor:=1[0)] :=0.0 3still converging:=true

for ri=1 step 1 untll rmex+1 do begin twvor:=2xr jrminl i=r-1 ;

r1:=( if r>2 then O else r3 ) jpolynomial :=true jauxsum:=0.0 ;

coefftofpRminssminl s=mu+2.0xrminix(2.0xxminl-lambds) 3

COEFFICIENTS : for s:=twor+l step =1 until 3 d

¥ £

begin if polynomial then begin

plR,s] :==(p[Rminl, s-2]

+2.0x(=( if s<twor then sx(s+1)xp[R,s+1]+(r+2xs~1)xp[Rminl,s-1]+p[Ruin2, s=3]

pad R W SN

else 0.0 )

+( if s<twor-1 then sx(lLxr-lambde-2)xp[Rminl,s]

- (lembde~lsxr+i)xp[ Rmin2, s-2] else 0.0 )

-( if s<twor-2 then coefftofpRmin2sminixp[Rmin2,s-1] else 0.0) ) )/s 3

suxsum :=p[ R, 8] +2.0xauxsum end

else

“““W

ql R, s8] :==(ql Rmini , S=2]

-2,0%( ( if s<twor then q[Rmin2,s-3] else 0.0 )

+( 1if s<twor-1 then sx(lembde+2xs-2)xqlRminl,s] :

+(lambde+2x(2x%s=3) }xq[ Fmin2, s=-2) else.0.0 )

- B

+( if s<twor-2 then ((s=-1)x(kx(s=-1)+>dambda)+mi)xq[Rmin2, s=1]

elge 0.0 ) ) )/s end ;

i

if polynomial then begin polynomiel :=false j;goto COEFFICIENTS end 3

. PREE U Wy XD ol U AR e TP NS ST WS TN W B

Pr2:=12.0xp[R,3]=2.0x(( if r>1 then 2.0x(4.0xx-lembde-2.0)xp{Rmninl, 2]

mﬂ.*ﬂ £

~coefftofpRmin2sminlxp[ Rmin2, 1]=(1lembde=U4 .Oxr+k .0)xp[ Rmin2, 0]

else 1.0 )

-{r+3)xp{Rminl, 1] ) 3
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Pr1:=2.0x(( if r>1 then coefftofpRmin2sminixp[Rmin2,0] else -lambda )

s { }4

w lambda=-2.0)%p[Ruinl 1] ) ;
aRT ¢=2.0%( lembdexy | Fminl, 1 14( if ™1 then mixq[ Rain2,0] else -lembda )) ;3

p{mm , 0] s=q[ Rmini ,Q] o =( q31~3>@r2-Pr1wh,Omuxsum)/(2xrw1 ) 3

plR, 2] = Pro=-pl Rul n1 ,01)/2.0 3p[R,1] :=k .Oxp[R, 2] +Pr1+2.0x(r+1 ) xp[ Rmin? ,0] 3

alR, 2] :=( =q{Rmin1,0]

+( 1f r > 1 then 2.0x((lembde+2.0)x(q[Rmin2,0]+2.0xq[Ruinl,2])

Da il s Sl "

+(mu+2.0xlenbde+l ) g Rmin2,1]) else =2.0))/2.0 ;

alR,1] :=qR1 3

comment Print plr-i ,03 3

L F R B B _ R-_ N

NLCR sprint(p[Rminl,0]}) ;3

comment Add in converging factor term 1f series still converging ;

PRI ENN R S SN LN el

betar{ri] :=0.0 3

for si=twor-1 step -1 until O gg betar{ri] :=kxbetar| r1]+pl Rmin1 ,s] -+

- F o R R ] SRS O CIXE WP W

termr[r1] :=betar[r1]/pover of x ;

if r>2 A still converging then begin

IR "I LA e N

if ebs( termr{=2]) > ebs(termr[-1]1) A sbs(termr[-1]) > ebs( termr[0]) then

ey BEE widly AZN oo T NN F 1

sum and display converging factor else still converging:=felse end ;

comment Print Converging factor coefficients ;

R NN ST TAR S

polynomigl :=true 3

R AT WM LN

COEFFT PRINT: NLCR 3for s:=0 step until twor+l do begin

SRR P walbih RV WS o IGE AR IR Tk AN Y - TR

KX Y SR sl

if (s:col)xcol=s then NLCR ;

1f s=0 then TAB else print( if polynomiel then p[R,s] else q[R,s] ) end ;

N e W SRR SR YA % . -F K AR £33 E5sE CR e AN RS W WEE ank

if polynomiel then begin polynomiel :=felse 3g0TO COEFFT PRLNT end ;

- A & 5 K | N AR AN Same A RS W R A S NN oW
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coefficients and conversely 3

polynomiald :=true 3

CHECK: for s:=1 step 1 until twor+1 do f[s] :=check[s] :=0.0 3

for s:=1 steg T until tvor+l 4o for 1:=s step =1 until 1 do begig

if s>1 then fi]:=f[1i=-1]+( if polynomiel then -2x(s-1) else 2d )xf[i] ;

check[i] :=check[1]+f[1]x( if polynomiel then q[R,s] else plR,28] ) end ;

NILCR 3for s:=0 step 1T until tvor+1 do begin if (s Ecol)xcolms then NLCR 3

SEn SR X N A &3 2 % N K SO S . LR . R SO0 W0 M N

if s8=0 then TAB else print(check[s]) end ;

1f polynomial then begin polynomiel ;=false jgoto CHECK end 3

L N 8 N .. ¥ - F N NN A N awn s

comment Application of epsilon algorithm to converging factor series ;

aux1 :=termr{r1]+1[{0] ;3

for s:=0 steE 1T until r~1 4o beg}x_g

aux0:=1.0/( if s=0 then termr[ri1] else eux1-1[0] ) ;

1f 840 then begin auxO:=auxO+l{s=1] 3l[(s-1] ;=aux2 end ;

K- K 8 ! AN WM Xk EPER TR _““i

aux2 i=euxl seuxl i=aux0 ;

if even(s) then di[(sx(twormex+2-s)) :l+r] :=aux2 ;

if s=r-1 A even(r) then di[(rx(twormex-r+6)) :4] :=eux1 end ;

- T G ek ok

1[r=1] :=aux2 31[r] :=eux! jpower of x:=2.0xxsquaredxpower of X 3

Rminl :=R jR:=Rmin2:=1=Rminl1 end ;

if still converging A ebs(termr[-1]) < abs(termr{-2]) then

begin sum end displey converglng factor ;

sum and display converging factor end ;
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rging factor,product of convergling factor &l d un,

NLCR jprint(converging factor) jauxC:i=uxconvergling

NTLCR 3NLCR ;print(aux0) ;NLCR ;NLCR ;print{su

mment Display epplicetion of epsilon algorithm to converging factor

mmﬂ”ﬂmﬂ

nnd the corresponding modified sums

o
d

displey converging factor alone:=true j

NG S et SN RN A WM SSRGS =R WA

TRT ANGULAR DISPLAY: for senfeng:=0 step 2xcol untll rmax+1 do begin NLCR 3

foxr r:=1 step 1 until rma

then begin rs:=(sx( twormex+h=s) ) ih+r ;

print( if display converging factor alone then di[rs] else sum+tuxdi[rs] )

By B Bl Wi LR Eni I e

end end end 3

RN ST R B 3 ;M £33 SN

1¥X displey converging factor alone then begin

MR SN b AR K

displey converging factor alone:=false jgoto TRIANGULAR DISPLAXY end

end end



Numerical Results

The Non-singular Case
Some numerical results which have been produced by means
of the preceding ALGOL programmes are summarsed in the following
tables which relate to the choice of argument
ijo5eiﬁ’/4} a=0.0 (i.e., n=T7,k=0.25)
Table I gives the terms (real part, imagmary part and
modulu.s) and the partial sum of the asymptotic series (o)
& Re(LwD IW“QM:) ‘“wl
O -0,50845 2329 + 0.16489 5465 0.53452 2484
1 -0.00504 7820 -~ 0.01556 4867 0.01636 2933
2 +0.00277 9441 - 0.00090 1396 0.00292 1952
3 +0.00030 3531 + 0.00093 5934 0.00098 39273
4 -0.00046 5579 + 0.00015 0991 0.00048 945
5 -0.00009 9531 - 0.00030 6902 0.00032 2638
6 +0.00025 2098 - 0.00008 1758 0.00026 5024

vu;":“ 073 0190 + 0.14912 T467 0.53205 6696
740.00008 OU4T + 0.00024 8056 0.00026 0775

Table 1

Tables II and III give the polynomial coefficients Fhﬁ
and factorial coefficients

s respectively



S 0 1 2 3 5
+ 1.0
° 5 1.01
~ 2.0 + 2.0
T 2.01 + 0.01
+ 1.0 - 12.0 + 2.0
e + 12,01 + 0.01i - 2.01
+ 60.0 + T6.0 - 24,0 + 0.0
> 98.01 + 38.01i + 24,01 - 4.01
-1175.5 + 480.0 + 3%6.,0 - 0.0 - 4.0
4 + 747 .51 - 872.01 - 170.0i 4+ 80.01i - 4,01
Table 1T
.S 0 1 2 3 4
+ 1.0
O + 1.01
~ 2.0 + 2.0
T 2.01 + 0.01
+ 1.0 - 8.0 + 2.0
2 + 12.01 - 4.01 - 2,01
+ 60.0 + 28.0 - 24,0 0.0
> - 98,00 + 7T0.04 +  0.0i - k.01
~1175 .5 + 160.0 + 224.0 -48.0 - 4,0
4 +T47 .51 - 924901 + 198.01 +32.01 - 4,01
Table II11

Table IV gives the values of the coefflcients ﬂp (k)
and the terms ﬁ,. ('(3 2 X s The numerical sum of the

convgrging factors series, the productuncm and the modified

sum 2y Wy, 4+ w, Ch

r=o



% { ﬁp Ge)') LMSUg’(](B S ﬁ (\Q Eei rf 24 Iw.{ OF+4.
+4.0 4 414Q44 40« & 0670'7407
1.5 2.5 ~0+0300b12 0. 051020
-414+375 12 + 6224 +0 - COGES 0,010 014

+T7-5  -¥7.0625 M6.580 40 002635 -0 - ooz%o 0+ 003963
"127‘4‘52 4+520.:H 4376 Yo -0 Z A0 « QOO0 ZZZ 00004940

C, 1043692 +0.46837  0:&61520
Mol —0:0000/BA)T +0.000153817 O« 000172508

Z Uy + W Chn - O-SAOBOTIET +0- 449281284 0832174791

Table IV

Tables V and VI give the real and imaginary parts
respectively of those modified sums which are to be derived
by applying the € -algorithm to the converging factor series,
and using the members of the resulting even column €-array as
approximations to the converging factor

w S O 2 4

1 =-0.51081 3995 -0.51080 6941

2 . 51080 6332 51080 8523 -0.51080 8194
3 . 51080 8912 .51080 8171 -0.51080 8220
!
5

,51080 7966 -0.51080 8223
-0-51080 8237

Table V
S 0 2 .
+ 0. 14929 1718 + 0.14928 1499
. 14928 0841 14928 1472 +0.14928 1461
14928 1250 14928 1442 1+0.14928 1440
. 14928 1665 + 0.14928 1438
+ 0. 149028 1284

4

g W D Aas

Table VI
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The value of S/; Ca ;Z) computed by means of the asym
serles and converging factor may be checked by use of the

An ALGOL programme which computes the function 34 (a, §“Z)
by means of the series (119) is given in [_6] o Vhen A =0
and L= 3*56&'”4, the correct value of 34 (&;1)
computed by means of formula (119) is

- 0.51080 8214 + i0.14928 1449,

factsriall  coefficients Py and Gyywhenf =0 ang .= o.
It will be noticed that the constant terms +1,- 1,44, 4 4
are id._entical with a sequence of numbers computed by Airey

and mentioned by Miller

+ 1
— 1 + 1
4 1 ~ 3+ 1
+ 1 + 7T - 6 + 1
5 + 25 - 10 <+ 1

+ 47 - 8% - 60 + 65 - 15 - + 1
+ (5 + 637 - 203 = 280 + 140 - 21 + 2
-2447 - 1425 + 3710 + T7 - 910 + 266 - 28 + 1

O
1
2
5
4y - 13 -
5
6
!
8 +16811 - 22341 - 21347 4+ 13146 + 2667 -2394 4+ 462 -36 + 1




" O L 2 2 4 > 6 7 8
O + 1

1 - 1 + 4

2 + 1 - 1 + 1

5 + 1 - 1 O + 1

4 - 13 4+ 1 - 7T + 2 4 1

5 + hr - 7 + 30 - 15 + B 4+ 1

6 + T3 - T3 + 13 + 20- 20 + 9 + A

T = 2447 - 2447 -1260 + 413 - 70 - 14 + 14 + A

8 +16811 - 16811 +9629 -4OT4 +1323 -294 + 14 + 20 + 1

Table VIII

Numerical experiments indicate that the rate of convergence
of the converging factor series is not greatly influenced by the
value of a. This is illustrated in Table IX which gives the

values of l /30 (0 25)] and p4 &- ’when a)g@)r-l)éi- and a=0,%5, and 3.0

2 | B (025} |B4(029)

O 1.41421 1376.56
1.5 1.41421  1403.36
3.0 1.41421  1378.71

Table IX

In contrast with this, the effect of tv‘ upon the rate
of convergence of the converging factor series appears to be very

great; the rate of convergence decreases markedly as Cu‘g (‘Z)
. This is illustreted in Table X which

increases from Q0 to




lﬁ&(;“ZS)’
73.12109
131 .64265

1376 . 55506
61313 514129,210

The Singular Case

The numerical results produced by the preceding ALGOL
programmes for the case in which the argument 1s pure
imaginary may be illustrated by the following Tables which

relate to the case QU= O} ‘L-ﬁ465'ij nm44, kmO'QSa

Table XI gives the terms and partial sum of the
asymptotic series
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Tables XII and XIII give the polynomial and factorial
coefficients Pps and Qys Tespectively

< P 0 1 2
O - 0.6666 6667 - 1.2629 6296 + 12,0902 9982 - 113
1 + 1.0 - 1.3333 3333 - 3 0518 5185 30
2 + 1.3333.3333 - 1.2851 8519 19
> - 0.3333.%333 + 2.2222 2222 O
4 - 0.6666 6667 >
5 + 0.0666 6667 1
6 0
7 O
Table XII
g ¥ Q 4 2
0 - 0.6666 6667 - 1.2629 6296 + 12.0902 9982 - 113
1 + 1.0 O - 1.0 2
2 - 0.6666 6667 + 1.3814 8148 6
3 - 0.3333% 3333 + 00,8888 8889 0
h + 0.6666 6667 1
5 + 0.0666 6667 1
6 0
O

Table XIII

b
LTHOT
L6473
.2007
. 8864
.5296
244N
ATTT
. 0095

3

. T40T7
. 1055
. 0451
. 8419
. 8037
2444
. 2222
. 0085

9955
5449
0547
1975
29673
IRIRIDIE
7778
238

9955
5556
4991
7531
0370
Bann
2222
2381

Table XIV gives ’t;irlme4 valages of the coefficients ﬁ,‘. a()
and the terms ﬁp da Zw X P, the numerical sum of the .
conver§ing factor series, the product w,C, , and the modified

}

sum 23 @, + wn Che
*=0



QO ™= 0.4166 6667
1 - 1.5181 7130
2 + 11.2791 96

5> - 107 .2802 4

Yy + 1510.9878

5 - 27825.923

-

0.208% 3333
0.0187 4286

0.0034 3826
0.0008 OTA4T
0.0002 8081
0.0001 2769

C/W - 0.2242 9228

NI RTT
+76.0507 4294

Table XV gives the modified sums which are to Dbe

derived by applying the

€ ~algorithm to the converging

factor series, and using the members of the resulting
even column € -array as approximations to the converging

factor.

m > 0

+ T76.0507
76 .0507
76 .0507
76 .0507
76 .0507

+ T76.0507

AU & U VA

5127 + T76.0507

4149

4329
4286

T76.0507
76.0507
76.050T7

4301 + T76.0507

4294

o
.
¥ A "‘
%,

<

4454
4328
4286
4301
4294

®*V

< &

+ T76.0507 4328
76 .0507 4286 + 76.0507 4286
+ T76.0507 4301

When =00 and Z=4"S¢ , the modulus of expression
(119) is T76.0507 4302.

It would appear the
effected by applying the

series is not so marked.
The effect of the parameter a upon the rate of

L 1in the singular case the improvement
& -algorithm to the converging
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convergence of the converging factor series is illustrated in
Table XVI which gives the values of |f3 :

w , fﬁﬁﬁﬁkﬂg when
L "i:;o) 4§ , and 3”0! F.

0 0.4166 6667  107.2802 4017
1.5 0.4166 6667 5.0140 1211

5.0 0.4166 6667 151.9949 9718
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