
-. f

MR 63

Evaluation of determinants,

Solution of systems of linear equations

and

Matrix inversion.

by

T.J. Dekker

June 1963

.,...

CONTENTS.

o. Introduction.

1. Description of' the method f'or the general case.

2. Numerical considerations.

3. Test matrices.

4. The method f'or symmetric positive def'inite matrices.

pag.

2

5

8

11

5. Representation of' triangular and symmetric matrices in ALGOL 60. 12

6. The parameters def'ining triangular and symmetric matrices. 14

7. Some f'eatures of' the ALGOL 60 system f'or the Electrologica X1

Computer.

8. Calculation of' sums and inner products.

The ALGOL 60 procedures:

Indentif'ier Number in .AP-series

SUM

INPROD

DET 204

SOL 205

INV 206

DETSOL 207

DETINV 208

SYMDET1 224

SYMSOL1 225

SYMINV1 226

syminv1 227

SYMDET2 228

SYMSOL2 229
,.

Literature

BIBLIOTHEEK MATHEMATISCH CE~
AMSTERDAM

15

17

19·

19

21

22

25

26

29

29

30

33

35

37

38

41

42

O. INTRODUCTION.

The purpose of this paper is to give a coherent set of ALGOL 60 proce­

dures for the evaluation of determinants, the solution of systems of

linear equations and the inversion of matrices. The method used is

that of triangular decomposition with raw interchanges for the general

case, and the square root method for symmetric positive definite ma­

trices. The procedures have been tested by means of the ALGOL 60 sys­

tem for the Electrologica X1 Computer, written by E.W. Dijkstra and

J.A. Zonneveld of the Mathematical Centre.

Chapter 3 deals with a set of asymmetric testmatrices, derived from

segments of the Hilbert matrix. The matrices and their inverses are

integral matrices and seem to be very useful for testing matrix inver­

sion programs.

In Chapter 7 (and 8) some features of the ALGOL 60 system for the

Electrologica X1 Computer a.re mentioned in order to give some idea

about precision and organisation. A knowledge of these features is not

necessary for an understanding of the text of the procedures, except

SUM and INPROD.

Acknowledgements.

I express my gratutude to the Staff Members of the Computation Depart­

ment of the Mathematical Centre for their valuable suggestions. Espe -

cially I am indebted to J .A. Zonneveld for reading the manuscript and

suggesting various improvements and to Dr. P. Wynn for his help to
,,

bring the text into accord with the English idiom.

2

1 • DESCRIPrION OF TEE MEI'HOD FOR TEE GENERAL CASE.

,

The method used f'or general square non-singular matrices is that

of' triangular decomposition (Crout I s method) with row interchanges

(litt. [3], [9], [17]).

1. Triangular decomposition. A triangular decomposition of' a square

matrix is a decomposition of' the matrix into a product L XU, where

Lis a lower and U an upper triangular matrix. In Grout's method

the arrengement is such that U is a unit upper triangle, i.e. the

diagonal elements of' U are equal to 1.

2. Row interchanges. Triangular decomposition with row interchanges

(so called "partial" pivoting f'or size) means that the rows of' the

given matrix are suitably interchanged (viz. in such a wa:y that a

reasonable accuracy is attained) and the resulting matrix is trian­

gularly decomposed. Let A be the given matrix of' order n (sa:y), and

let P denote the permutation matrix def'ining the row interchanges,

so that P X A is the matrix with interchanged rows. Then we have

the relation P X A = L X U and the problem is f'or a given A to f'ind

a suitable P and to calculate the triangular matrices L and U.

The columns of' Land the rows of' U are calculated successively inn

steps. Each step is concerned with the calculation of' one column of'

Land the corresponding row of' U. Af'ter the calculation of' a column

of' L, an element of' this column satisf'ying some maximality condi­

tion (see 3 below) is selected as pivot. The pivotal and the diago­

nal element of' the column considered are interchanged together with

the corresponding rows of' A and of' that part of' L, which has

3

already been computed.(Thus, in fact, at each stage the elements of

the columns of L are known but for their order of succession, which

depends on the subsequent raw interchanges.) Thereafter the next raw

of U is calculated.

At each stage the calculated elements of L and U are written over the

corresponding elements of the given matrix and the index of the pivo­

tal raw is recorded in an auxiliary n-vector. This auxiliary vector

defines the permutation matrix P uniquely.

3. The maximality condition. As to the maximality condition for the

pivot selection, at each stage we select an element of the column

considered, with the property that its modulus divided by some norm

of the corresponding raw is maximal. The raw norms used are the

Euclidean norms of the rows of the original matrix, which need be

calculated in advance only once.

4. Determinant evaluation. It is convenient to invert, together with

each row interchange, the sign of one of the raws, in order to leave

the determinant unaltered in value. Then the determinant of A will

obviously be equal to the product of the diagonal elements of L.

5. Solution of linear systems of equations • After completing the

process described above, we can obtain, for any given right-hand side

b, a solution vector x of the linear system AX x = b in two steps,

viz. the forward substitution, i.e. the calculation of the solution

y of the linear system L X y = P X b, and the back substitution sol­

ving the linear system U Xx= y.

4

6. Matrix inversion. The inversion of the product matrix L x U ma;y

proceed as follows. The left inverse Q of L is calculated by solving

the matrix equation Q X L = I. The matrix Q is again a lower triangu­

lar matrix. The inverse matrix of L X U is obtained by solving the

matrix equation U XX= Q.

The rows of Q and X are calculated successively in reverse order inn

steps. Each step is concerned with the calculation of one row of Q

and the corresponding row of X. At each stage the new row of X can be

written over the corresponding row of the given matrix. For this pro­

cess only one extra n-vector is needed for temporary storage.

7. Column interchanges. Since L XU= PX A, the inverse of the origi­

nal matrix A equals X X P. This means that the interchanges, carried

out on the rows of A, must be carried out correspondingly in reverse

order on the columns of X, in order to obtain the inverse of A.

)·

5

2. NUMERICAL CONSIDERATIONS.

1. .An advantage of triangular decomposition (when compared with

Gaussian elimination) is that triangular decomposition gives more ac­

curate results than Gaussian elimination with the same pivoting stra­

tegy, provided however the inner products a.re calculated in extra

precision.

2. In order to obtain a reasonably accurate method, some process of

pivoting for size is needed, also in floating point arithmetic (cf.

[9], p. 50). The partial pivoting sketched above involves interchanges

of rows only. The administration of these row interchanges is rather

simple and requires a negligeable amount of extra computation. A draw­

back is that (in exceptional cases) "Partial pivoting may yield useless

results, even on a well-conditioned matrix (cf. [17], p. 327). In

order to avoid this, one may use Gaussian elimination with so called

"complete" pivoting. This means, that at each stage the pivot is se­

lected in the whole of the remaining square matrix. Complete pivoting

involves interchanges of rows and columns and requires a non-negli­

geable amount of extra computation (which for large order is a nearly

constant fraction of the total computation) . Unfortunately complete

pivoting cannot be car ied out in a triangular decomposition scheme.

So the use of triangular decomposition with partial pivoting seems

to be a good practical compromise.

3. Pivoting for size (and especially partial pivoting) is a reasonable

strategy only if all rows and columns of the original matrix have com­

parable norms. (Such matrices a.re called "equilibrated", cf. [1 7],

6

p. 284.) Therefore, since in the process described above the pivot is

selected from a certain column at each stage, it seems fair to select

as pivot an element in this column, not of maximal modulus, but with

the property that its modulus devided by some norm of the correspond­

ing row is maximal. If one uses the (e.g. Euclidean) norms, computed

beforehand, of the rows of the original matrix, the application of ·

this maximality condition requires only a slight extra effort.

4. No provision is made for detecting singularity. In a system of

floating point operations, division by zero should be allowed (i.e.

not lead to a stop) • In this wa;y we have no need to test whether a

pivot vanishes. If some very small pivot occurs, it :may be desirable

to take special measures. The programmer can do this after completing

the triangular decomposition; then the pivots are avaible as the

diagonal elements of L.

5. For the calculation of the inverse of L XU there are various

possibilities (cf. [3], p. 29 - 41). One wa;y is to calculate both L

and U and then to form the product U X L • Another wa;y is to cal-

culate a left inverse or a right inverse of Land then to compute X

by solving the matrix equation U XX= L • In the process described

above the scheme entailing the calculation of the left inverse Q of L

has been chosen, because it admits an arrangement of the computation

in n steps in such a wa;y that in each step a row of Q and a row of X

are obtained.

It is also possible to obtain the inverse X without inverting Lor U.

Indeed the conditions "Xx Lis a unit upper triangle" and "U XX is

a lower triangle" together just suffice to determine X.

_,..
1

If inner products are calculated in extra precision, this scheme has

the advantage that less intermediate results are rounded to working

accuracy. Since, moreover, this scheme also requires only one extra

n-vector for temporary storage and gives rise to a rather simple pro­

gram, it seems to be the most satisfactory scheme for matrix inver­

sion. The reason why I did not incorporate this scheme in the ALGOL

procedure printed below, is that I saw this possibility only after

writing and testing the ALGOL procedures.

8

3. TESI' MATRICES.

The procedures AP 204-208, which a.re now used regularly, have been

tested on several matrices with satisfactory results. I discuss here

only the following test matrices which a.re derived from segments of

the Hilbert matrix.

Consider the n-th order segment H of the Hilbert matrix with the

elements

Hij =1/(i+j-1) (i,j=1, ••• ,n).

he · ~ · H-1 ha the 1 t (~ [12]) T inverse maurix s e emen s c.1. • :

where

Let

:a-., . = (-1) i + j f. f . / (i + j - 1) ,
lJ l J

fi = (n + i - 1) t /(((i - 1) t)2
i

F = diag (f.) and E = diag ((-1)) •
l

Then we have obviously

H-1 = FE HE F ,

(n - i) t) •

where E H E is the "chess-boa.rd" matrix corresponding to H, i.e. the

matrix whose elements have the same modulus but a.re alternating in

sign.

Let f., separated into prime factors, have the form
l

f.
m1 Illk.

=p pk
l 1

and let gi
m1 :2 = p -
1

. Ir4c:2 P. - ,
k

where . denotes integer division, as defined in ALGOL 60, thus (for .
non-negative m) m: 2 = entier (m/2) (cf. [1] section 3. 3. 4. 2.).

Furthermore let G = diag (gi) and M = F G-
1

H G.

Then we have M-1 = G-1 F E H E G = E M E ,

i; other words: M-1 equals the chess-boa.rd matrix corresponding to M.

9

Moreover we have the following

THEOREM The elements of matrix Mare integers.

Proof Let y = i + j - 1 • Then fi

Indeed f. f . =

f.
J

contains a factor y2

J. J

(n+i-1 h (n+j-1) t (yt \2

(n-jHy! (n-i)!yt (i-1)! (j-1)t)

2 y .

-1 - 1 Consider now an element Mij = f i gi g j y and any prime number p.

Let f i , f j and y in this order contain exactly q 1 , q 2 and q prime

factors p.

Then q 1 + q 2 ~ 2 q, since f if j contains a factor y 2 • The number N

-1
of factors p in f i gi gj satisfies

N = q - q : 2 + q : 2 ~ (q
1

+ q
2

) : 2 ~ q •
1 1 - 2 -

-1 q
In other words f i g i g j contains a factor p _,
Hence f . g . g . contains a factor y, which proves the theorem.

J. J. J

We have, then, a set of integer matrices M (for n = 1, 2, •••) whose

inverses are again integer matrices. For large n these matrices are

very ill-conditioned, as are the segments of the Hilbert matrix. Thus

these matrices are very useful test matrices for matrix inversion pro­

grams. If the integers have an exact floating point representation,

the errors in the calculated inverses are due solely to the matrix

inversion program. This is important, as inaxact input of an ill­

conditioned matrix may yield a matrix whose inverse differs conside­

rably from the inverse of the original matrix (cf. [15] and [17],

p. 319 sqq).

The inverses of M of order up to 7 have been calculated using DET and

INV printed below. The machine representation of floating point

10

numbers has a relative precision of 40 binary digits, but the inner

products are calcuiated to 52 binary digits. (For further details see .

Chapter 7 and 8.) Moreover the calculations have been carried out with

two modified versions, viz. a version in which the pivoting is sup­

pressed and a version in which the inner products are calculated with­

out extra precision for the partial sums. The maximal absolute errors

are tabulated below. The calculation of inner products without extra

precision gives indeed a slightly worse result in most cases. The sup­

pression of the pivoting gives better results, which is not surprising

in view of the close relation of the matrices M to the positive defi­

nite segments of the Hilbert matrix. If the matrix is positive defi­

nite, and apparently also in this case, the pivots are preferably

chosen on the main diagonal.

Maximal absolute error in the calculated inverse of M = F G-1 H G

Order of M

4

5

6

7

Standard

DEI' and INV

5 .110 - 9

1 -210 - 7

2°910 - 4

3°710 - 2

pivoting

suppressed

6.510 - 9

1 .610 - 7

4.910 - 6

9.810 - 5

INPR0D without

extra precision

1.510 - 8

1 • 710 - 6

9°710 - 5

1 • 110 - 1

11

4. THE MEI'HDD FOR SYMMEI'RIC POSITIVE DEFINITE MATRICES.

The method used is the square root method of Cholesky (litt. [3], [9],

[17]).

In this case no pivoting for size is needed. (cf. [17], p. 305 sqq.)

The given matrix A is decomposed into a product UT x U, where U is

upper triangular.

The solution of the linear system AX x = b proceeds in two steps,

viz. the forward substitution, i.e. the calculation of the solution y

T of the linear system U x y = b, and the backsubstitution solving the

system U Xx= y.

The inversion of UT X U proceeds as follows: The left inverse Q of U

is calculated by solving the matrix equation Q X U = I and the inverse

X of A is calculated by the matrix multiplication Q x QT= X.

No provision is made for detecting singularity or non-definiteness.

The matrix may be given in triangular form. Furthermore for all these

processes only one extra n-vector is needed for temporary storage.

12

5. REPRESENTATION OF TRIANGULAR AND SYMMETRIC MATRICES IN ALGOL 60.

In ALGOL 60 a matrix is most obviously represented by a two-dimen­

sional array. If the matrix is triangular or symmetric, this represen­

tation has the disavantage tbat almost half of the space is wasted.

This can be avoided by putting the elements of an n-th order triangle

in a one-dimensional array of lenght (n + 1) X n: 2. Consider a

triangle A of order n with elements 8:i_j , where 1 ~ i ~ j < n. Then a

convenient arrangement of these elements in a one-dimensional array is

the following:

9, 1 ,9, 2 '~2 ,9, 3 '~3 '~3 '· • • • '9in ,a2n '•·•·,arm

In other words : the elements a. . are placed in a one-dimensional array lJ .

C [1 : (n + 1) X n ~ 2] according to the formula:

aij = C [(j - 1) X j ~ 2 + i]

In order to avoid repeated evaluation of the index-expression each

time an element a. . is needed, it is advisable to introduce an auxi-iJ

liary integer array J[1 : n] and to carry out once for all the state-

ment "for j: = 1 step 1 until n do J[j]: = (j - 1) X j : 2". -- -
Then we bave the rather surveyable formula:

(1) 8j_j =C [i +J[j]]

In this way we can refer, in an ALGOL program, to an element of a

triangle without appreciable loss of time.

Formula (1) is independent of the range of the indices. Indeed, let h

be the lower, and k = h + n - 1 the upper bound of the indices (thus

h < i < j ~ k). If in this case we introduce an integer array J[h: k]
,.

and carry out the prepatory assignments:

13

"for j: == h step 1 until k do J[j]: =- (j-h) X (j-h+1) i 2-h+1 11
, then

formula (1) remains valid. So we may consider formula (1) as a suita­

ble standard representation of triangular and symmetric matrices.

Using this representation one must of course take care that in each

reference to an element of C the relation i < j holds.

14

6. TEE PAR.AMEI'ERS DEFINING TRIANGULAR AND SYMMETRIC MATRICES.

In order to obtain flexible :procedures for dealing with triangular or

symmetric matrices, these matrices may be defined in the following wa:y

by means of 4 actual parameters, corresponding to the formal para­

meters A, i, j, n (say). The parameters i, j and n are specified

integer and A is specified real (or integer) • The value parameter n

is the order of the triangle, i denotes the smallest index, j the

largest index and A the (i, j)-th element of the triangle. In other

words:

the actual parameter for A must be a subscripted variable, whose

index (or indices) depend(s) on the actual parameters for i and j in

such a wa:y, that for each i and j satisfying 1 ~ i ~ j < n the actual

parameter for A is the (i, j)-th element of the triangle.

Using a procedure in which a triangle is defined in this wa:y, one

can freely choose dimension and range of the arra:y representing the

triangle.

15

7. SOME FEATURES OF TEE ALGOL 60 SYSI.'EM

FOR TEE EI.ECTROLOGICA X1 COMPUI'ER.

In the ALGOL 60 system for the Electrologica X1 Computer the real

arithmetic has a relative precision of 52 binary digits (i.e. about

1 5 decimals), but the assignment operation rounds off to 40 binary

digits (i.e. 12 decimals). This rounding-off takes place at each

assignment to a real (simple or subscripted) variable and at the eva­

luation of value parameters of type real, but not at the assignment

to a procedure identifier.

Division by zero is allowed and yields a result whose modulus is large

with respect to the numerator.

The absolute value of integer variables must remain less then 2 ~ 26.

As soon as an anonymous intermediate result which according to

ALGOL 60 should be of type integer, exceeds the integer capacity,

automatically transition to the real representation takes place.

The primaries in an expression are evaluated from left to right. The

value parameters of a procedure are evaluated from left to right in

order of specification.

The specifications real and integer of non-value scalars and arrays

are equivalent. The actual type depends only on the type of the cor­

responding actual parameter. Likewise the declarators integer proce-

dure and real procedure are equivalent. As each call the type of the

value of a function designator is determined only by the arithmetic

actually executed in the body.

The type of 11abs (E)" is the same as the type of the expression E.

16

The functions "sqrt" and 11 ln11 operate on the modulus of the argument.

In the ALGOL 60 system for the Electrologica X1 Computer some proce­

dures and type procedures, written in machine code, a.re avaible with­

out declaration. This set contains the standard functions mentioned

in the ALGOL 60 report [1] section 3.2.4. and 3.2.5, some fundamental

operations, e.g. SUM and INPROD, and procedures for input and output.

17

8. CALCULATIONS OF SUMS .AND INNER PRODUCTS.

It is important to calculate sums, and especially inner products, in

extra precision, in order to avoid accumulation of rounding errors.

By so doing one obtains appreciably smaller error bounds for many ma­

trix operations (see various papers of J.H. Wilkinson, e.g. [17],

p. 329).

In the ALGOL 60 system for the Electrologica X1 Computer the machine

code procedures SUM and INPROD, calculating sums and inner products

respectively, are available without declaration. These procedures do

not assign the partial sums to a local variable, but build up their

results in the full precision of the aritbmetic. So, in fact, sums

and inner products are calculated with 12 guarding binary digits. The

definitions given below of SUM and INPROD are nearly equivalent to the

corresponding machine code procedures. The definitions are in recur­

sive form in order to indicate that no local variable is used for the

partial sums and that the results are calculated in the full precision

of the aritbmetic. Note that in these definitions it is assumed (for

the sake of presentation only) that the primaries in an expression are

evaluated from left to right.

Of course inner products ma;y be calculated by means of SUM. The ma­

chine code procedure INPROD has been written especially for the case

that the actual parameters for xk and yk are subscripted variables

(of type real or integer), whose indices are linear functions of the

controlled variable. Under this restriction the machine code procedure

INPROD is nearly equivalent to the declaration given below.

18

Because of this restriction IN.PROD cannot always be used for the cal­

culation of inner products of rows or columns of triangles, since the

indices of the array elements a.re not always linear functions of the

controlled variable. Therefore in some procedures operating on trian­

gles, SUM is used for the calculation of inner products.

The machine code :procedure IN.PROD carries out the summation in reverse

order. Though the numerical result depends on the order of summation,

in general it is not important, which order of summation is chosen.

19

comment SUM: = the sum over k from a until b of tk. The actual para­

meter fork is the summation variable and the actual parameter for tk

is an expression depending on the summation variable. Note that after

a call of SUM the summation variable has the (so called rejected)

value: if a< b then b + 1 else a;

real procedure SUM (k, a, b, tk);

value b, a; integer b, a, k; real tk;

begin k: = a;

SUM:= if a> b then O else tk + SUM (k, a+1, b, tk)

end SUM;

21

comment INPROD: = the sum over k decreasing from b until a of xk. X yk.

In other words, the summation is carried out in reverse order.

The actual parameter fork is the summation variable and the actual

parameters for xk. and yk are expressions depending on the summation

variable. For matrix work it is of great value to have a real proce­

dure INPROD in machine code which calculates the inner product in ex­

tra precision. In order to obtain a rather fast and yet sufficiently

useful process, this machine code INPROD may be written for the spe­

cial case in which the actual parameters for xk. and yk are subscripted

variables with indices linearly dependent on the summation variable;

real procedure INPROD (k, a, b, xk., yk);

value a, b; integer k, a, b; real xk., yk;

begin k: = b;

INPROD:= if a > b then O else xk. X yk + INPROD (k,a, b-1 ,xk,yk);

k: = b + 1

end INPROD;

22

comment AP 204

DEr: = determinant of then-th order matrix given in arra;y

A[1 : n, 1 : n]. The first index of the arra;y elements is the row in­

dex, the second one the column index. The method is triangular decom­

position according to Crout with row interchanges. This process yields

a lower triangle Land a unit upper triangle U such that L XU equals

matrix A with interchanged rows. Together with each row interchange

the sign of the non-pivotal row is reversed, so that the determinant

equals the product of the diagonal elements of L. At each stage the

pivot is chosen in a column of L such that its modulus divided by the

Euclidean norm of the corresponding row of A is maximal. The integer

arra;y p[1 : n] is an output vector in which the pivotal row indices

are recorded. The elements of A are replaced by the corresponding cal­

culated elements of L and U. So enough information is retained for

subsequent solution of linear systems and for matrix inversion. DEI1

uses the non-local real procedure IN.PROD;

23

real procedure DEl' (A,n,p);

value n; integer n; a.rra;y A; integer a.rra;y p;

begin integer i,j,k; real d,r,s; a.rra;y v[1: n];

for i := 1 step 1 until n do

v[i]:= sqrt (INPROD (j,1,n,A[i,j],A[i,j]));

d:= 1;

for k:= 1 step 1 until n do

begin r:= - 1;

end LU;

DEI':= d

end DEl';

for i:= k step 1 until n do

begin A[i,k] :=

A[i,k] - INPROD (j, 1 ,k - 1 ,A[i,j],A[j ,k]);

s:= abs (A[i,k]) / v[i];

if s > r then begin r:= s; p[k] := i end

end LOWER;

v[p[k]] := v[k];

for j:= 1 step 1 until n do

begin r:= A[k,j];

A[k,j] := if j ~ k then A[p[k],j] else

(A[p[k],j] - INPROD (i,1,k - 1,A[k,i],A[i,j]))

/ A[k,k]; if p[k] f k then A[p[k],j] := - r

end UPPER;

d:= A[k,k] X d

25

co:mment AP 205

SOL replaces the vector given in array b[1 : n], by the so­

lution vector x of the linear system L XU Xx= b with interchanged

(and possibly sign-reversed) elements • Here L is the lower triangle

and Uthe unit upper triangle which are given in arrey LU[1:n, 1 :n]

such that the elements with first index< second index are elements of

U and the other elements of ill are elements of L. The integer arrey

p[1 : n] defines the interchanges with sign reversions of the elements

of bin correspondence with the pivoting administration in DEIT1. Hence

a call DEIT1(A,n,p), followed by a call SOL(A,b,n,p), has the effect

that b is replaced by the solution vector x of the linear system:

Sigma (A[i, j] X x[j]) = b [i]. The procedure SOL leaves the elements of

LU and p unaltered and uses the non-local real procedure INPROD;

procedure SOL (LU,b,n,p);

value n,; integer n; arrey ill,b; integer arrey p,;

begin integer i,k; real r;

fork:= 1 step 1 until n do

begin r:= b[k]; b[k] :=

.(b[p[k]] - INPROD (i,1,k - 1,LU[k,i],b[i])) / LU[k,k];

if p[k] + k then b[p[k]] := - r

fork:= n step - 1 until 1 do

b[k]:= b[k] - INPROD (i,k + 1,n,LU[k,i],b[i])

end SOL,;

BIBI.IOTHEEK MATHEMATISCH CENil\~
AMSTERDAM

comment AP 206

INV replaces the elements of array LU[1 : n, 1 : n] by the

corresponding elements of the inverse of L X U, where L is the lower

triangle and U the unit upper triangle which a.re given in array LU

such that the elements with first index< second index a.re elements of

U and the other elements of LU a.re elements of L. The inverse is cal­

culated by forming the left inverse of L and solving the resulting ma­

trix equation. Subsequently the interchanges with sign reversions,

defined by the integer array p[1 : n] in correspondence with the pivo­

ting administration in DET, a.re carried out in reverse order on the

columns of LU. Hence a call DEl' (A, n, p), followed by a call INV(A, n, p),

has the effect that matrix A is replaced by its inverse. INV uses the

non-local real procedure INPRDD;

27

procedure INV (LU,n,p); value n; integer n; array LU; integer array p;

begin integer i,j,k; real r; array v[1: n];

f'or k := n step - 1 until 1 do

begin f'or j := k + 1 step 1 until n do

begin v[j]:= LU[k,j]; LU[k,j]:= 0 end;

LU[k,k]:= 1 / LU[k,k];

f'or j := k - 1 step - 1 until 1 do

LU[k,j]:= - INPROD(i,j + 1,k,LU[k,i],LU[i,j])/LU[j,j];

f'or j := 1 step 1 until n do - --
LU[k,j]:= LU[k,j] - INPROD (i,k + 1,n,v[i],LU[i,j])

f'or k:= n step - 1 until 1 do

begin if' p[k] + k then f'or i:= 1 step 1 until n do

begin r:= LU[i,k]; LU[i,k]:= - LU[i,p[k]];

LU[i,p[k]] := r

end

end

end INV;

29

comment AP 207

DETSOL: = determinant of the n-th order matrix given in arra;y

A[1 : n, 1: n]. Moreover the vector, given in arra;y b[1 : n], is re­

placed by the solution vector x of the linear system:

Sigma (A[i, j] X x[j]) = b [i]. For further details see DET and SOL,

which are used by DETSOL;

real procedure DETSOL (A,b,n); value n; integer n; arra;y A,b;

begin integer arra;y p[1:n];

DETSOL:= DET (A,n,p); SOL (A,b,n,p)

end DETSOL;

comment AP 208

DETINV: = determinant of the n-th order matrix given in arra;y

A[1 n, 1 : n]. Moreover this matrix is replaced by its inverse.

For further details see DET and INV, which are used by DETINV;

real procedure DETINV (A,n); value n; integer n; arra;y A;

begin integer arra;y p[1 :n];

DETINV:= DET (A,n,p); INV (A,n,p)

end DEI'INV;

30

comment Af? 224

SYMDET1: = determinant of the n-th order symmetric positive

definite matrix M which is defined as follows: the actual parameter

for A - being a subscripted rea.l variable whose indices (or index)

depend(s) on the actual para.meters for i and j - is the (i,j)-th ele­

ment of M for each i and j satisfying 1 ~ i ~ j < n. Thus one needs to

give only the upper triangle of M. In order to avoid waste of space,

one ma:y give this triangle in a one-demensional array.

E.g. if the upper triangle of Mis given in array C[1: n X (n+1)~ 2]

columnwise, i.e. the columns one after the other, and the successive

values (j -1) x j : 2 have been recorded in an auxiliary integer array

J[1 : n], then the appropriate call of SYMIET1 reads:

SYMDET1 (C[i+J[j]],i,j ,n).

The method used is the square root method of Cholesky, yielding an

upper triangle which premultiplied by its transpose gives the original

matrix. SYMDET1 replaces the elements of M by the corresponding ele­

ments of this upper triangle and uses the non-local real procedure

SUM;

31

real procedure SYMDEI'1 (A,i,j,n); value n; integer i,j,n; real A;

begin integer k; real d,r; a.rra;y v[1 :n];

d:= 1;

for k:= 1 step 1 until n do

begin j := k; for i:= 1 step 1 until k do v[i] := A;

i:= k; A:= r:= sqrt (v[k] - SUM (i,1,k-1,v[i] 4 2));

d:= r X d;

for j := k+1 step 1 until n do

begin i:= k; A:= (A - SUM (i,1,k-1,A X v[i])) /rend

end LU;

SYMDET1 := d I} 2

end SYMDEI'1 ;

35

comment PJ? 226

SY.MINV1 replaces the matrix elements A by the corresponding

upper triangular elements of the inverse of U transpose XU, where U

is an upper triangle which is defined by the actual parameters in the

same wa:y as the upper triangle of Min SYMDET1.

Consequently a call of SUMDET1 , followed by a call of SYMINV1 with

the same actual parameters, has the effect that the upper triangle of

the symmetric positive definite matrix Mis replaced by the upper tri­

angle of the inverse of M. The procedure SYMINV1 uses the non-local

real procedure SUM;

procedure SYMINV1 (A,i,j,n); value n; integer i,j,n; real A;

begin integer k; real r; arra:y v[1 :n];

fork:= 1 step 1 until n do

begin i:= j:= k; A:= v[k]:= 1 / A;

for j := k+1 step 1 until n do

begin i:= j; r:= A; i:= k;

A:= v[j]:= - SUM (i,k,j-1,A X v[i]) / r

for i := 1 step 1 until k do

begin j:= k; A:= SUM (j,k,n,A X v[j]) end

end

end SYMINV1 ;

33

comment AP 225

SYMSOL1 replaces the vector given in arra;y b[1 : n], by the

solution vector x of the linear system: U transpose XU xx== b, where

U is an upper triangle which is defined by the actual parallleters for

A, i, j and n in the Sallle wa;y as the upper triangle of Min SYMDET1.

Consequently a call of SYMDET1, followed by a call of SYMSOL1 with

the same actual parameters for A, i, j and n, has the effect that bis

replaced by the solution vector x of the linear system M xx== b.

The procedure SYMSOL1 leaves the elements A unaltered and uses the

non-local real procedure SUM;

procedure SYMSOL1 (A,i,j,n,b); value n; integer i,j,n; real A; arra;y b;

begin real r;

for j := 1 step 1 nntil n do

begin i:= j; r:== A;

b[j]:= (b[j] - SUM (i,1,j-1,Axb[i])) / r

end;

for i:= n step -1 until 1 do

begin j:= i; r:= A;

b[i]:= (b[i] - SUM (j,i+1,n,A X b[j])) / r

end

end SYMSOL1 ;

37

comment AP 227

syminv1 calculates the main diagonal of the inverse of U

transpose X U, where U is an upper triangle which is defined by the

actual parameters for A, i, j and n in the same wa;y as the upper tri­

angle of M in SYMDEI11. The calculated diagonal elements are delivered

in arra;y d[1 : n].

Consequently a call of SYMDEI11, followed by a call of syminv1 with

the same actual parameters for A, i, j and n, has the effect that the

diaginal elements of the inverse of the symmetric positive definite

matrix M are delivered in arra;y d. The procedure syminv1 leaves the

elements A unaltered and uses the non-local real procedure SUM;

procedure syminv1(A,i,j,n,d); value n; integer i,j,n; real A; arra;y d;

begin integer k; real r;

for k:= 1 step 1 until n do

begin i:= j:= k; d[k]:= 1 / A;

for j := k+1 step 1 until n do

begin i:= j; r:= A;

d[j]:= - SUM (i,k,j-1,A X d[i]) / r

d[k]:= SUM (j,k,n,d[j] /} 2)

end

end syminv1 ;

comment AP 228

SYMDET2 = determinant of the n-th order symmetric positive

definite matrix, given in integer array A[1 : n X (n+1) : 2] in such

a way that, for all i and j satisfying 1 ~ i ~ j < n, the (i,j)-th

element is A[i + (j -1) X j ..:.. 2] • The method used is the square root

method of Cholesky, yielding an upper triangle U which premultiplied

by its transpose gives alfa X matrix A.

The elements of U are written over the corresponding elements of A.

The scaling factor alfa must be chosen such that the maximal element

of U is just within the integer capacity, in order to obtain a reason­

ably accurate representation of U. In view of the definiteness of A

this means that alfa must be slightly less (but not too critical, on

account of the inexactness of the arithmetic) than the square of the

integer capacity divided by the maximal element of A. One may use

SYMDET2 also with real array A, in which case the most obvious value

of alfa is 1.0. If A is negative def'inite, one may use SYMDET2 with

alfa negative. SYMDET2 uses the non-local real procedure INPRDD;

..
"'

39

real procedure SYMDET2 (A,n,alfa);

value n,alfa; integer n; real alfa; integer arra;y A;

begin integer i,j,k,kk,kj; real d;

d:= 1; kk:= O;

fork:= 1 step 1 until n do

begin kk:= kk+k; A[kk]:=

sqrt(A[kk] X alfa - INPRDD(i,1-k,-1,A[kk+i],A[kk+i]));

d:= A[kk] X d; kj:= kk;

for j:= k+1 step 1 until n do

begin kj:= kj+j-1;

A[kj]:= (A[kj] X alfa

- INPROD (i,1-k,-1,A[kj+i],A[kk+i])) / A[kk]

end

end LU;

SYMDET2:= d /} 2 / alfa /} n

end SYMDE1'2;

41

connnent AP 229

SYMSOL2 replaces the vector given in real arra;y b[1 : n], by

the solution vector x of the linear system: U transpose x U xx=

alfa X b, where U is an upper triangle, given in integer (or real)

arra;y A[1 : n X (n+1) : 2] in such a wa;y that, for all i and j sa­

tisfying 1::: i::: j::: n, the (i,j)-th element is A[i + (j-1) x j : 2].

The scaling factor alfa is chosen in relation to the scaling of U.

Consequently a call SYMDET2 (A, n, alfa), followed by a call

SYMSOL2 (A, n, alfa, b), has the effect that b is replaced by the so­

lution vector x of the linear system A X x = b. The procedure SYMSOL2

leaves the elements of A unaltered and uses the non-local real proce­

dure SUM;

procedure SYMSOL2 (A, n, alfa, b);

value n,alfa; integer n; real alfa; integer arra;y A; real array b;

begin integer i,j,jO; integer arra;y J[1 :n];

jO:= O;

for j:= 1 step 1 until n do

begin b[j] :=

end;

(b[j] X alfa - SUM (i,1,j-1,A[i+jO] X b[i]))/A[j+jO];

J[j] := jO; jO:= jO+j

for i:= n step -1 until 1 do

b[i]:= (b[i] - SUM (j,i+1,n,A[i + J[j]] X b[j]))/A[i + J[i]]

end SYMSOL2; -
'

42

LITERATURE.

1 • J. W. Backus, e. a. ; Revised Report on the algori tbmic language

ALGOL 60, Copenhagen 1962, Comm. ACM 6 (1 963) 1 - 1 7, Num. Math.

~ (1963) 420-453.

2. W.R. Busing and H.A. Levy; A procedure for inverting large sym­

metric matrices, Comm. ACM L (1962) 445-446.

3 • L. Fox; Practical solution of linear equations and inversion of

matrices, Nat. Bur. Stand. - App. Math. Ser. 39 (1954) 1-54.

4. L. Fox, H.D. Huskey and J .H. Wilkinson; Note on the solution of

algebraic linear simultaneous equations, Quart. J. App. Math. 1

(1948) 1 49-1 73 •

5. H.H. Goldstine and J. van Neumann; Numerical inverting of matrices

of high order, Bull. .Arn. Math. Soc. 53 (1947) 1021-1099.

6. A.S. Householder; A survey of some cl~sed methods for inverting

matrices, J. Soc. Ind. App. Math. L (1957) 155-169.

7. M. Lotkin; A set of testmatrices, Ml'AC 2_ (1955) 153-161.

8. M. Marcus; Basic theorems in matrix theory, Nat. Bur. Stand. -

App. Math. Ser. 57 (1960).

9. Nat. Pbys. Lab.; Modern computing methods, London 1 961 •

1 o. M. Newman and J. Todd; The evaluation of matrix inversion pro­

grams, J. Soc. Ind. App. Math.~ (1958) 466-476.

11. H. Rutishauser; Zur Matrizeninversion nach Gauss-Jordan, ZAMP 10

(1959) 281 -291.

12. I.R. Savage and E. Lukacs; Tables of inverses of finite segments

of the Hilbert matrix, Nat. Bur. Stand. - App. Math. Ser. 39

(1954) 105-108.

1 3. J. Todd; Computional problems concerning the Hilbert matrix, J.

Res. NBS-B 65 (1961) 19-22.

14. A.M. Turing; Rounding-off errors in matrix processes, Qua.rt. J.

Mech. App. Math. 1 (1948) 287-308.

1 5. J. H. Wilkinson; Rounding errors in algebraic processes, Proc. Int.

Conf. Inf. Proc. Unesco, Paris 1959.

16. J .H. Wilkinson; Error analysis of floating point computation, Num.

Math.~ (1960) 319-34o.

17. J .H. Wilkinson; Error analysis of direct methods of matrix inver­

sion, J. Ass. Comp. Mach. 8 (1961) 281-330.

18. H.C. Thacher; Crout with pivoting II, Alg. 43 (Revision of Alg. 16

of G.E. Forsythe),ACM ~ (1961), p. 176.

19. W .M. McKeeman; Crout with equilibration and iteration, Alg. 135,

ACM 2 (1962), p. 553.

