
-. f 

MR 63 

Evaluation of determinants, 

Solution of systems of linear equations 

and 

Matrix inversion. 

by 

T.J. Dekker 

June 1963 



.,... 

CONTENTS. 

o. Introduction. 

1. Description of' the method f'or the general case. 

2. Numerical considerations. 

3. Test matrices. 

4. The method f'or symmetric positive def'inite matrices. 

pag. 

2 

5 

8 

11 

5. Representation of' triangular and symmetric matrices in ALGOL 60. 12 

6. The parameters def'ining triangular and symmetric matrices. 14 

7. Some f'eatures of' the ALGOL 60 system f'or the Electrologica X1 

Computer. 

8. Calculation of' sums and inner products. 

The ALGOL 60 procedures: 

Indentif'ier Number in .AP-series 

SUM 

INPROD 

DET 204 

SOL 205 

INV 206 

DETSOL 207 

DETINV 208 

SYMDET1 224 

SYMSOL1 225 

SYMINV1 226 

syminv1 227 

SYMDET2 228 

SYMSOL2 229 
,. 

Literature 

BIBLIOTHEEK MATHEMATISCH CE~ 
AMSTERDAM 

15 

17 

19· 

19 

21 

22 

25 

26 

29 

29 

30 

33 

35 

37 

38 

41 

42 



O. INTRODUCTION. 

The purpose of this paper is to give a coherent set of ALGOL 60 proce­

dures for the evaluation of determinants, the solution of systems of 

linear equations and the inversion of matrices. The method used is 

that of triangular decomposition with raw interchanges for the general 

case, and the square root method for symmetric positive definite ma­

trices. The procedures have been tested by means of the ALGOL 60 sys­

tem for the Electrologica X1 Computer, written by E.W. Dijkstra and 

J.A. Zonneveld of the Mathematical Centre. 

Chapter 3 deals with a set of asymmetric testmatrices, derived from 

segments of the Hilbert matrix. The matrices and their inverses are 

integral matrices and seem to be very useful for testing matrix inver­

sion programs. 

In Chapter 7 (and 8) some features of the ALGOL 60 system for the 

Electrologica X1 Computer a.re mentioned in order to give some idea 

about precision and organisation. A knowledge of these features is not 

necessary for an understanding of the text of the procedures, except 

SUM and INPROD. 
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1 • DESCRIPrION OF TEE MEI'HOD FOR TEE GENERAL CASE. 

, 

The method used f'or general square non-singular matrices is that 

of' triangular decomposition ( Crout I s method) with row interchanges 

(litt. [3 ], [9 ], [17]). 

1. Triangular decomposition. A triangular decomposition of' a square 

matrix is a decomposition of' the matrix into a product L XU, where 

Lis a lower and U an upper triangular matrix. In Grout's method 

the arrengement is such that U is a unit upper triangle, i.e. the 

diagonal elements of' U are equal to 1. 

2. Row interchanges. Triangular decomposition with row interchanges 

(so called "partial" pivoting f'or size) means that the rows of' the 

given matrix are suitably interchanged (viz. in such a wa:y that a 

reasonable accuracy is attained) and the resulting matrix is trian­

gularly decomposed. Let A be the given matrix of' order n (sa:y), and 

let P denote the permutation matrix def'ining the row interchanges, 

so that P X A is the matrix with interchanged rows. Then we have 

the relation P X A = L X U and the problem is f'or a given A to f'ind 

a suitable P and to calculate the triangular matrices L and U. 

The columns of' Land the rows of' U are calculated successively inn 

steps. Each step is concerned with the calculation of' one column of' 

Land the corresponding row of' U. Af'ter the calculation of' a column 

of' L, an element of' this column satisf'ying some maximality condi­

tion (see 3 below) is selected as pivot. The pivotal and the diago­

nal element of' the column considered are interchanged together with 

the corresponding rows of' A and of' that part of' L, which has 



3 

already been computed.(Thus, in fact, at each stage the elements of 

the columns of L are known but for their order of succession, which 

depends on the subsequent raw interchanges. ) Thereafter the next raw 

of U is calculated. 

At each stage the calculated elements of L and U are written over the 

corresponding elements of the given matrix and the index of the pivo­

tal raw is recorded in an auxiliary n-vector. This auxiliary vector 

defines the permutation matrix P uniquely. 

3. The maximality condition. As to the maximality condition for the 

pivot selection, at each stage we select an element of the column 

considered, with the property that its modulus divided by some norm 

of the corresponding raw is maximal. The raw norms used are the 

Euclidean norms of the rows of the original matrix, which need be 

calculated in advance only once. 

4. Determinant evaluation. It is convenient to invert, together with 

each row interchange, the sign of one of the raws, in order to leave 

the determinant unaltered in value. Then the determinant of A will 

obviously be equal to the product of the diagonal elements of L. 

5. Solution of linear systems of equations • After completing the 

process described above, we can obtain, for any given right-hand side 

b, a solution vector x of the linear system AX x = b in two steps, 

viz. the forward substitution, i.e. the calculation of the solution 

y of the linear system L X y = P X b, and the back substitution sol­

ving the linear system U Xx= y. 
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6. Matrix inversion. The inversion of the product matrix L x U ma;y 

proceed as follows. The left inverse Q of L is calculated by solving 

the matrix equation Q X L = I. The matrix Q is again a lower triangu­

lar matrix. The inverse matrix of L X U is obtained by solving the 

matrix equation U XX= Q. 

The rows of Q and X are calculated successively in reverse order inn 

steps. Each step is concerned with the calculation of one row of Q 

and the corresponding row of X. At each stage the new row of X can be 

written over the corresponding row of the given matrix. For this pro­

cess only one extra n-vector is needed for temporary storage. 

7. Column interchanges. Since L XU= PX A, the inverse of the origi­

nal matrix A equals X X P. This means that the interchanges, carried 

out on the rows of A, must be carried out correspondingly in reverse 

order on the columns of X, in order to obtain the inverse of A. 
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2. NUMERICAL CONSIDERATIONS. 

1. .An advantage of triangular decomposition (when compared with 

Gaussian elimination) is that triangular decomposition gives more ac­

curate results than Gaussian elimination with the same pivoting stra­

tegy, provided however the inner products a.re calculated in extra 

precision. 

2. In order to obtain a reasonably accurate method, some process of 

pivoting for size is needed, also in floating point arithmetic (cf. 

[9], p. 50). The partial pivoting sketched above involves interchanges 

of rows only. The administration of these row interchanges is rather 

simple and requires a negligeable amount of extra computation. A draw­

back is that (in exceptional cases) "Partial pivoting may yield useless 

results, even on a well-conditioned matrix (cf. [17], p. 327). In 

order to avoid this, one may use Gaussian elimination with so called 

"complete" pivoting. This means, that at each stage the pivot is se­

lected in the whole of the remaining square matrix. Complete pivoting 

involves interchanges of rows and columns and requires a non-negli­

geable amount of extra computation (which for large order is a nearly 

constant fraction of the total computation) . Unfortunately complete 

pivoting cannot be car ied out in a triangular decomposition scheme. 

So the use of triangular decomposition with partial pivoting seems 

to be a good practical compromise. 

3. Pivoting for size (and especially partial pivoting) is a reasonable 

strategy only if all rows and columns of the original matrix have com­

parable norms. ( Such matrices a.re called "equilibrated", cf. [ 1 7], 
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p. 284.) Therefore, since in the process described above the pivot is 

selected from a certain column at each stage, it seems fair to select 

as pivot an element in this column, not of maximal modulus, but with 

the property that its modulus devided by some norm of the correspond­

ing row is maximal. If one uses the (e.g. Euclidean) norms, computed 

beforehand, of the rows of the original matrix, the application of · 

this maximality condition requires only a slight extra effort. 

4. No provision is made for detecting singularity. In a system of 

floating point operations, division by zero should be allowed (i.e. 

not lead to a stop) • In this wa;y we have no need to test whether a 

pivot vanishes. If some very small pivot occurs, it :may be desirable 

to take special measures. The programmer can do this after completing 

the triangular decomposition; then the pivots are avaible as the 

diagonal elements of L. 

5. For the calculation of the inverse of L XU there are various 

possibilities (cf. [3], p. 29 - 41). One wa;y is to calculate both L 

and U and then to form the product U X L • Another wa;y is to cal-

culate a left inverse or a right inverse of Land then to compute X 

by solving the matrix equation U XX= L • In the process described 

above the scheme entailing the calculation of the left inverse Q of L 

has been chosen, because it admits an arrangement of the computation 

in n steps in such a wa;y that in each step a row of Q and a row of X 

are obtained. 

It is also possible to obtain the inverse X without inverting Lor U. 

Indeed the conditions "Xx Lis a unit upper triangle" and "U XX is 

a lower triangle" together just suffice to determine X. 
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If inner products are calculated in extra precision, this scheme has 

the advantage that less intermediate results are rounded to working 

accuracy. Since, moreover, this scheme also requires only one extra 

n-vector for temporary storage and gives rise to a rather simple pro­

gram, it seems to be the most satisfactory scheme for matrix inver­

sion. The reason why I did not incorporate this scheme in the ALGOL 

procedure printed below, is that I saw this possibility only after 

writing and testing the ALGOL procedures. 



8 

3. TESI' MATRICES. 

The procedures AP 204-208, which a.re now used regularly, have been 

tested on several matrices with satisfactory results. I discuss here 

only the following test matrices which a.re derived from segments of 

the Hilbert matrix. 

Consider the n-th order segment H of the Hilbert matrix with the 

elements 

Hij =1/(i+j-1) (i,j=1, ••• ,n). 

he · ~ · H-1 ha the 1 t ( ~ [12]) T inverse maurix s e emen s c.1. • : 

where 

Let 

:a-., . = ( -1 ) i + j f. f . / ( i + j - 1 ) , 
lJ l J 

fi = (n + i - 1) t /( ((i - 1) t )2 
i 

F = diag ( f. ) and E = diag ( ( -1 ) ) • 
l 

Then we have obviously 

H-1 = FE HE F , 

(n - i) t ) • 

where E H E is the "chess-boa.rd" matrix corresponding to H, i.e. the 

matrix whose elements have the same modulus but a.re alternating in 

sign. 

Let f., separated into prime factors, have the form 
l 

f. 
m1 Illk. 

=p . ... . pk 
l 1 

and let gi 
m1 :2 = p -
1 

. Ir4c:2 ... . P. - , 
k 

where . denotes integer division, as defined in ALGOL 60, thus (for . 
non-negative m) m: 2 = entier (m/2) (cf. [1] section 3. 3. 4. 2.). 

Furthermore let G = diag (gi ) and M = F G-
1 

H G. 

Then we have M-1 = G-1 F E H E G = E M E , 

i; other words: M-1 equals the chess-boa.rd matrix corresponding to M. 
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Moreover we have the following 

THEOREM The elements of matrix Mare integers. 

Proof Let y = i + j - 1 • Then fi 

Indeed f. f . = 

f. 
J 

contains a factor y2 

J. J 

(n+i-1 h (n+j-1) t ( yt \2 

(n-jHy! (n-i)!yt (i-1)! (j-1)t) 

2 y . 

-1 - 1 Consider now an element Mij = f i gi g j y and any prime number p. 

Let f i , f j and y in this order contain exactly q 1 , q 2 and q prime 

factors p. 

Then q 1 + q 2 ~ 2 q, since f if j contains a factor y 2 • The number N 

-1 
of factors p in f i gi gj satisfies 

N = q - q : 2 + q : 2 ~ (q
1 

+ q
2 

) : 2 ~ q • 
1 1 - 2 -

-1 q 
In other words f i g i g j contains a factor p _, 
Hence f . g . g . contains a factor y, which proves the theorem. 

J. J. J 

We have, then, a set of integer matrices M (for n = 1, 2, ••• ) whose 

inverses are again integer matrices. For large n these matrices are 

very ill-conditioned, as are the segments of the Hilbert matrix. Thus 

these matrices are very useful test matrices for matrix inversion pro­

grams. If the integers have an exact floating point representation, 

the errors in the calculated inverses are due solely to the matrix 

inversion program. This is important, as inaxact input of an ill­

conditioned matrix may yield a matrix whose inverse differs conside­

rably from the inverse of the original matrix (cf. [15] and [17], 

p. 319 sqq). 

The inverses of M of order up to 7 have been calculated using DET and 

INV printed below. The machine representation of floating point 
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numbers has a relative precision of 40 binary digits, but the inner 

products are calcuiated to 52 binary digits. ( For further details see . 

Chapter 7 and 8.) Moreover the calculations have been carried out with 

two modified versions, viz. a version in which the pivoting is sup­

pressed and a version in which the inner products are calculated with­

out extra precision for the partial sums. The maximal absolute errors 

are tabulated below. The calculation of inner products without extra 

precision gives indeed a slightly worse result in most cases. The sup­

pression of the pivoting gives better results, which is not surprising 

in view of the close relation of the matrices M to the positive defi­

nite segments of the Hilbert matrix. If the matrix is positive defi­

nite, and apparently also in this case, the pivots are preferably 

chosen on the main diagonal. 

Maximal absolute error in the calculated inverse of M = F G-1 H G 

Order of M 

4 

5 

6 

7 

Standard 

DEI' and INV 

5 .110 - 9 

1 -210 - 7 

2°910 - 4 

3°710 - 2 

pivoting 

suppressed 

6.510 - 9 

1 .610 - 7 

4.910 - 6 

9.810 - 5 

INPR0D without 

extra precision 

1.510 - 8 

1 • 710 - 6 

9°710 - 5 

1 • 110 - 1 
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4. THE MEI'HDD FOR SYMMEI'RIC POSITIVE DEFINITE MATRICES. 

The method used is the square root method of Cholesky (litt. [3], [9], 

[17]). 

In this case no pivoting for size is needed. (cf. [17], p. 305 sqq.) 

The given matrix A is decomposed into a product UT x U, where U is 

upper triangular. 

The solution of the linear system AX x = b proceeds in two steps, 

viz. the forward substitution, i.e. the calculation of the solution y 

T of the linear system U x y = b, and the backsubstitution solving the 

system U Xx= y. 

The inversion of UT X U proceeds as follows: The left inverse Q of U 

is calculated by solving the matrix equation Q X U = I and the inverse 

X of A is calculated by the matrix multiplication Q x QT= X. 

No provision is made for detecting singularity or non-definiteness. 

The matrix may be given in triangular form. Furthermore for all these 

processes only one extra n-vector is needed for temporary storage. 
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5. REPRESENTATION OF TRIANGULAR AND SYMMETRIC MATRICES IN ALGOL 60. 

In ALGOL 60 a matrix is most obviously represented by a two-dimen­

sional array. If the matrix is triangular or symmetric, this represen­

tation has the disavantage tbat almost half of the space is wasted. 

This can be avoided by putting the elements of an n-th order triangle 

in a one-dimensional array of lenght (n + 1) X n: 2. Consider a 

triangle A of order n with elements 8:i_j , where 1 ~ i ~ j < n. Then a 

convenient arrangement of these elements in a one-dimensional array is 

the following: 

9, 1 ,9, 2 '~2 ,9, 3 '~3 '~3 '· • • • '9in ,a2n '•·•·,arm 

In other words : the elements a. . are placed in a one-dimensional array lJ . 

C [1 : (n + 1) X n ~ 2] according to the formula: 

aij = C [(j - 1) X j ~ 2 + i] 

In order to avoid repeated evaluation of the index-expression each 

time an element a. . is needed, it is advisable to introduce an auxi-iJ 

liary integer array J[ 1 : n] and to carry out once for all the state-

ment "for j: = 1 step 1 until n do J[j]: = (j - 1) X j : 2". -- -
Then we bave the rather surveyable formula: 

( 1 ) 8j_j =C [i +J[j]] 

In this way we can refer, in an ALGOL program, to an element of a 

triangle without appreciable loss of time. 

Formula (1) is independent of the range of the indices. Indeed, let h 

be the lower, and k = h + n - 1 the upper bound of the indices ( thus 

h < i < j ~ k). If in this case we introduce an integer array J[h: k] 
,. 

and carry out the prepatory assignments: 
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"for j: == h step 1 until k do J[j]: =- (j-h) X (j-h+1) i 2-h+1 11
, then 

formula (1) remains valid. So we may consider formula (1) as a suita­

ble standard representation of triangular and symmetric matrices. 

Using this representation one must of course take care that in each 

reference to an element of C the relation i < j holds. 



14 

6. TEE PAR.AMEI'ERS DEFINING TRIANGULAR AND SYMMETRIC MATRICES. 

In order to obtain flexible :procedures for dealing with triangular or 

symmetric matrices, these matrices may be defined in the following wa:y 

by means of 4 actual parameters, corresponding to the formal para­

meters A, i, j, n (say). The parameters i, j and n are specified 

integer and A is specified real ( or integer) • The value parameter n 

is the order of the triangle, i denotes the smallest index, j the 

largest index and A the (i, j)-th element of the triangle. In other 

words: 

the actual parameter for A must be a subscripted variable, whose 

index ( or indices) depend( s) on the actual parameters for i and j in 

such a wa:y, that for each i and j satisfying 1 ~ i ~ j < n the actual 

parameter for A is the (i, j)-th element of the triangle. 

Using a procedure in which a triangle is defined in this wa:y, one 

can freely choose dimension and range of the arra:y representing the 

triangle. 
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7. SOME FEATURES OF TEE ALGOL 60 SYSI.'EM 

FOR TEE EI.ECTROLOGICA X1 COMPUI'ER. 

In the ALGOL 60 system for the Electrologica X1 Computer the real 

arithmetic has a relative precision of 52 binary digits (i.e. about 

1 5 decimals), but the assignment operation rounds off to 40 binary 

digits (i.e. 12 decimals). This rounding-off takes place at each 

assignment to a real ( simple or subscripted) variable and at the eva­

luation of value parameters of type real, but not at the assignment 

to a procedure identifier. 

Division by zero is allowed and yields a result whose modulus is large 

with respect to the numerator. 

The absolute value of integer variables must remain less then 2 ~ 26. 

As soon as an anonymous intermediate result which according to 

ALGOL 60 should be of type integer, exceeds the integer capacity, 

automatically transition to the real representation takes place. 

The primaries in an expression are evaluated from left to right. The 

value parameters of a procedure are evaluated from left to right in 

order of specification. 

The specifications real and integer of non-value scalars and arrays 

are equivalent. The actual type depends only on the type of the cor­

responding actual parameter. Likewise the declarators integer proce-

dure and real procedure are equivalent. As each call the type of the 

value of a function designator is determined only by the arithmetic 

actually executed in the body. 

The type of 11abs (E)" is the same as the type of the expression E. 
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The functions "sqrt" and 11 ln11 operate on the modulus of the argument. 

In the ALGOL 60 system for the Electrologica X1 Computer some proce­

dures and type procedures, written in machine code, a.re avaible with­

out declaration. This set contains the standard functions mentioned 

in the ALGOL 60 report [1] section 3.2.4. and 3.2.5, some fundamental 

operations, e.g. SUM and INPROD, and procedures for input and output. 
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8. CALCULATIONS OF SUMS .AND INNER PRODUCTS. 

It is important to calculate sums, and especially inner products, in 

extra precision, in order to avoid accumulation of rounding errors. 

By so doing one obtains appreciably smaller error bounds for many ma­

trix operations (see various papers of J.H. Wilkinson, e.g. [17], 

p. 329). 

In the ALGOL 60 system for the Electrologica X1 Computer the machine 

code procedures SUM and INPROD, calculating sums and inner products 

respectively, are available without declaration. These procedures do 

not assign the partial sums to a local variable, but build up their 

results in the full precision of the aritbmetic. So, in fact, sums 

and inner products are calculated with 12 guarding binary digits. The 

definitions given below of SUM and INPROD are nearly equivalent to the 

corresponding machine code procedures. The definitions are in recur­

sive form in order to indicate that no local variable is used for the 

partial sums and that the results are calculated in the full precision 

of the aritbmetic. Note that in these definitions it is assumed (for 

the sake of presentation only) that the primaries in an expression are 

evaluated from left to right. 

Of course inner products ma;y be calculated by means of SUM. The ma­

chine code procedure INPROD has been written especially for the case 

that the actual parameters for xk and yk are subscripted variables 

(of type real or integer), whose indices are linear functions of the 

controlled variable. Under this restriction the machine code procedure 

INPROD is nearly equivalent to the declaration given below. 
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Because of this restriction IN.PROD cannot always be used for the cal­

culation of inner products of rows or columns of triangles, since the 

indices of the array elements a.re not always linear functions of the 

controlled variable. Therefore in some procedures operating on trian­

gles, SUM is used for the calculation of inner products. 

The machine code :procedure IN.PROD carries out the summation in reverse 

order. Though the numerical result depends on the order of summation, 

in general it is not important, which order of summation is chosen. 
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comment SUM: = the sum over k from a until b of tk. The actual para­

meter fork is the summation variable and the actual parameter for tk 

is an expression depending on the summation variable. Note that after 

a call of SUM the summation variable has the ( so called rejected) 

value: if a< b then b + 1 else a; 

real procedure SUM (k, a, b, tk); 

value b, a; integer b, a, k; real tk; 

begin k: = a; 

SUM:= if a> b then O else tk + SUM (k, a+1, b, tk) 

end SUM; 
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comment INPROD: = the sum over k decreasing from b until a of xk. X yk. 

In other words, the summation is carried out in reverse order. 

The actual parameter fork is the summation variable and the actual 

parameters for xk. and yk are expressions depending on the summation 

variable. For matrix work it is of great value to have a real proce­

dure INPROD in machine code which calculates the inner product in ex­

tra precision. In order to obtain a rather fast and yet sufficiently 

useful process, this machine code INPROD may be written for the spe­

cial case in which the actual parameters for xk. and yk are subscripted 

variables with indices linearly dependent on the summation variable; 

real procedure INPROD (k, a, b, xk., yk); 

value a, b; integer k, a, b; real xk., yk; 

begin k: = b; 

INPROD:= if a > b then O else xk. X yk + INPROD (k,a, b-1 ,xk,yk); 

k: = b + 1 

end INPROD; 
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comment AP 204 

DEr: = determinant of then-th order matrix given in arra;y 

A[ 1 : n, 1 : n]. The first index of the arra;y elements is the row in­

dex, the second one the column index. The method is triangular decom­

position according to Crout with row interchanges. This process yields 

a lower triangle Land a unit upper triangle U such that L XU equals 

matrix A with interchanged rows. Together with each row interchange 

the sign of the non-pivotal row is reversed, so that the determinant 

equals the product of the diagonal elements of L. At each stage the 

pivot is chosen in a column of L such that its modulus divided by the 

Euclidean norm of the corresponding row of A is maximal. The integer 

arra;y p[1 : n] is an output vector in which the pivotal row indices 

are recorded. The elements of A are replaced by the corresponding cal­

culated elements of L and U. So enough information is retained for 

subsequent solution of linear systems and for matrix inversion. DEI1 

uses the non-local real procedure IN.PROD; 
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real procedure DEl' (A,n,p); 

value n; integer n; a.rra;y A; integer a.rra;y p; 

begin integer i,j,k; real d,r,s; a.rra;y v[1: n]; 

for i := 1 step 1 until n do 

v[i]:= sqrt (INPROD (j,1,n,A[i,j],A[i,j])); 

d:= 1; 

for k:= 1 step 1 until n do 

begin r:= - 1; 

end LU; 

DEI':= d 

end DEl'; 

for i:= k step 1 until n do 

begin A[i,k] := 

A[i,k] - INPROD (j, 1 ,k - 1 ,A[i,j ],A[j ,k]); 

s:= abs (A[i,k]) / v[i]; 

if s > r then begin r:= s; p[k] := i end 

end LOWER; 

v[p[k]] := v[k]; 

for j:= 1 step 1 until n do 

begin r:= A[k,j]; 

A[k,j] := if j ~ k then A[p[k],j] else 

(A[p[k],j] - INPROD (i,1,k - 1,A[k,i],A[i,j])) 

/ A[k,k]; if p[k] f k then A[p[k],j] := - r 

end UPPER; 

d:= A[k,k] X d 
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co:mment AP 205 

SOL replaces the vector given in array b[1 : n], by the so­

lution vector x of the linear system L XU Xx= b with interchanged 

( and possibly sign-reversed) elements • Here L is the lower triangle 

and Uthe unit upper triangle which are given in arrey LU[1:n, 1 :n] 

such that the elements with first index< second index are elements of 

U and the other elements of ill are elements of L. The integer arrey 

p[1 : n] defines the interchanges with sign reversions of the elements 

of bin correspondence with the pivoting administration in DEIT1. Hence 

a call DEIT1(A,n,p), followed by a call SOL(A,b,n,p), has the effect 

that b is replaced by the solution vector x of the linear system: 

Sigma (A[ i, j] X x[ j]) = b [ i]. The procedure SOL leaves the elements of 

LU and p unaltered and uses the non-local real procedure INPROD; 

procedure SOL (LU,b,n,p); 

value n,; integer n; arrey ill,b; integer arrey p,; 

begin integer i,k; real r; 

fork:= 1 step 1 until n do 

begin r:= b[k]; b[k] := 

.(b[p[k]] - INPROD (i,1,k - 1,LU[k,i],b[i])) / LU[k,k]; 

if p[k] + k then b[p[k]] := - r 

fork:= n step - 1 until 1 do 

b[k]:= b[k] - INPROD (i,k + 1,n,LU[k,i],b[i]) 

end SOL,; 

BIBI.IOTHEEK MATHEMATISCH CENil\~ 
AMSTERDAM 



comment AP 206 

INV replaces the elements of array LU[ 1 : n, 1 : n] by the 

corresponding elements of the inverse of L X U, where L is the lower 

triangle and U the unit upper triangle which a.re given in array LU 

such that the elements with first index< second index a.re elements of 

U and the other elements of LU a.re elements of L. The inverse is cal­

culated by forming the left inverse of L and solving the resulting ma­

trix equation. Subsequently the interchanges with sign reversions, 

defined by the integer array p[1 : n] in correspondence with the pivo­

ting administration in DET, a.re carried out in reverse order on the 

columns of LU. Hence a call DEl' (A, n, p), followed by a call INV(A, n, p), 

has the effect that matrix A is replaced by its inverse. INV uses the 

non-local real procedure INPRDD; 
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procedure INV (LU,n,p); value n; integer n; array LU; integer array p; 

begin integer i,j,k; real r; array v[1: n]; 

f'or k := n step - 1 until 1 do 

begin f'or j := k + 1 step 1 until n do 

begin v[j]:= LU[k,j]; LU[k,j]:= 0 end; 

LU[k,k]:= 1 / LU[k,k]; 

f'or j := k - 1 step - 1 until 1 do 

LU[k,j]:= - INPROD(i,j + 1,k,LU[k,i],LU[i,j])/LU[j,j]; 

f'or j := 1 step 1 until n do - --
LU[k,j]:= LU[k,j] - INPROD (i,k + 1,n,v[i],LU[i,j]) 

f'or k:= n step - 1 until 1 do 

begin if' p[k] + k then f'or i:= 1 step 1 until n do 

begin r:= LU[i,k]; LU[i,k]:= - LU[i,p[k]]; 

LU[i,p[k]] := r 

end 

end 

end INV; 
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comment AP 207 

DETSOL: = determinant of the n-th order matrix given in arra;y 

A[1 : n, 1: n]. Moreover the vector, given in arra;y b[1 : n], is re­

placed by the solution vector x of the linear system: 

Sigma (A[ i, j] X x[ j ]) = b [ i]. For further details see DET and SOL, 

which are used by DETSOL; 

real procedure DETSOL (A,b,n); value n; integer n; arra;y A,b; 

begin integer arra;y p[1:n]; 

DETSOL:= DET (A,n,p); SOL (A,b,n,p) 

end DETSOL; 

comment AP 208 

DETINV: = determinant of the n-th order matrix given in arra;y 

A[1 n, 1 : n]. Moreover this matrix is replaced by its inverse. 

For further details see DET and INV, which are used by DETINV; 

real procedure DETINV (A,n); value n; integer n; arra;y A; 

begin integer arra;y p[1 :n]; 

DETINV:= DET (A,n,p); INV (A,n,p) 

end DEI'INV; 
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comment Af? 224 

SYMDET1: = determinant of the n-th order symmetric positive 

definite matrix M which is defined as follows: the actual parameter 

for A - being a subscripted rea.l variable whose indices ( or index) 

depend(s) on the actual para.meters for i and j - is the (i,j)-th ele­

ment of M for each i and j satisfying 1 ~ i ~ j < n. Thus one needs to 

give only the upper triangle of M. In order to avoid waste of space, 

one ma:y give this triangle in a one-demensional array. 

E.g. if the upper triangle of Mis given in array C[1: n X (n+1)~ 2] 

columnwise, i.e. the columns one after the other, and the successive 

values ( j -1 ) x j : 2 have been recorded in an auxiliary integer array 

J[ 1 : n], then the appropriate call of SYMIET1 reads: 

SYMDET1 (C[i+J[j] ],i,j ,n). 

The method used is the square root method of Cholesky, yielding an 

upper triangle which premultiplied by its transpose gives the original 

matrix. SYMDET1 replaces the elements of M by the corresponding ele­

ments of this upper triangle and uses the non-local real procedure 

SUM; 
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real procedure SYMDEI'1 (A,i,j,n); value n; integer i,j,n; real A; 

begin integer k; real d,r; a.rra;y v[1 :n]; 

d:= 1; 

for k:= 1 step 1 until n do 

begin j := k; for i:= 1 step 1 until k do v[i] := A; 

i:= k; A:= r:= sqrt (v[k] - SUM (i,1,k-1,v[i] 4 2)); 

d:= r X d; 

for j := k+1 step 1 until n do 

begin i:= k; A:= (A - SUM (i,1,k-1,A X v[i])) /rend 

end LU; 

SYMDET1 := d I} 2 

end SYMDEI'1 ; 
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comment PJ? 226 

SY.MINV1 replaces the matrix elements A by the corresponding 

upper triangular elements of the inverse of U transpose XU, where U 

is an upper triangle which is defined by the actual parameters in the 

same wa:y as the upper triangle of Min SYMDET1. 

Consequently a call of SUMDET1 , followed by a call of SYMINV1 with 

the same actual parameters, has the effect that the upper triangle of 

the symmetric positive definite matrix Mis replaced by the upper tri­

angle of the inverse of M. The procedure SYMINV1 uses the non-local 

real procedure SUM; 

procedure SYMINV1 (A,i,j,n); value n; integer i,j,n; real A; 

begin integer k; real r; arra:y v[1 :n]; 

fork:= 1 step 1 until n do 

begin i:= j:= k; A:= v[k]:= 1 / A; 

for j := k+1 step 1 until n do 

begin i:= j; r:= A; i:= k; 

A:= v[j]:= - SUM (i,k,j-1,A X v[i]) / r 

for i := 1 step 1 until k do 

begin j:= k; A:= SUM (j,k,n,A X v[j]) end 

end 

end SYMINV1 ; 
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comment AP 225 

SYMSOL1 replaces the vector given in arra;y b[1 : n], by the 

solution vector x of the linear system: U transpose XU xx== b, where 

U is an upper triangle which is defined by the actual parallleters for 

A, i, j and n in the Sallle wa;y as the upper triangle of Min SYMDET1. 

Consequently a call of SYMDET1, followed by a call of SYMSOL1 with 

the same actual parameters for A, i, j and n, has the effect that bis 

replaced by the solution vector x of the linear system M xx== b. 

The procedure SYMSOL1 leaves the elements A unaltered and uses the 

non-local real procedure SUM; 

procedure SYMSOL1 (A,i,j,n,b); value n; integer i,j,n; real A; arra;y b; 

begin real r; 

for j := 1 step 1 nntil n do 

begin i:= j; r:== A; 

b[j]:= (b[j] - SUM (i,1,j-1,Axb[i])) / r 

end; 

for i:= n step -1 until 1 do 

begin j:= i; r:= A; 

b[i]:= (b[i] - SUM (j,i+1,n,A X b[j])) / r 

end 

end SYMSOL1 ; 
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comment AP 227 

syminv1 calculates the main diagonal of the inverse of U 

transpose X U, where U is an upper triangle which is defined by the 

actual parameters for A, i, j and n in the same wa;y as the upper tri­

angle of M in SYMDEI11. The calculated diagonal elements are delivered 

in arra;y d[1 : n]. 

Consequently a call of SYMDEI11, followed by a call of syminv1 with 

the same actual parameters for A, i, j and n, has the effect that the 

diaginal elements of the inverse of the symmetric positive definite 

matrix M are delivered in arra;y d. The procedure syminv1 leaves the 

elements A unaltered and uses the non-local real procedure SUM; 

procedure syminv1(A,i,j,n,d); value n; integer i,j,n; real A; arra;y d; 

begin integer k; real r; 

for k:= 1 step 1 until n do 

begin i:= j:= k; d[k]:= 1 / A; 

for j := k+1 step 1 until n do 

begin i:= j; r:= A; 

d[j]:= - SUM (i,k,j-1,A X d[i]) / r 

d[k]:= SUM (j,k,n,d[j] /} 2) 

end 

end syminv1 ; 



comment AP 228 

SYMDET2 = determinant of the n-th order symmetric positive 

definite matrix, given in integer array A[1 : n X (n+1) : 2] in such 

a way that, for all i and j satisfying 1 ~ i ~ j < n, the (i,j )-th 

element is A[ i + ( j -1 ) X j ..:.. 2] • The method used is the square root 

method of Cholesky, yielding an upper triangle U which premultiplied 

by its transpose gives alfa X matrix A. 

The elements of U are written over the corresponding elements of A. 

The scaling factor alfa must be chosen such that the maximal element 

of U is just within the integer capacity, in order to obtain a reason­

ably accurate representation of U. In view of the definiteness of A 

this means that alfa must be slightly less (but not too critical, on 

account of the inexactness of the arithmetic) than the square of the 

integer capacity divided by the maximal element of A. One may use 

SYMDET2 also with real array A, in which case the most obvious value 

of alfa is 1.0. If A is negative def'inite, one may use SYMDET2 with 

alfa negative. SYMDET2 uses the non-local real procedure INPRDD; 
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real procedure SYMDET2 (A,n,alfa); 

value n,alfa; integer n; real alfa; integer arra;y A; 

begin integer i,j,k,kk,kj; real d; 

d:= 1; kk:= O; 

fork:= 1 step 1 until n do 

begin kk:= kk+k; A[kk]:= 

sqrt(A[kk] X alfa - INPRDD(i,1-k,-1,A[kk+i],A[kk+i])); 

d:= A[kk] X d; kj:= kk; 

for j:= k+1 step 1 until n do 

begin kj:= kj+j-1; 

A[kj]:= (A[kj] X alfa 

- INPROD (i,1-k,-1,A[kj+i],A[kk+i])) / A[kk] 

end 

end LU; 

SYMDET2:= d /} 2 / alfa /} n 

end SYMDE1'2; 
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connnent AP 229 

SYMSOL2 replaces the vector given in real arra;y b[1 : n], by 

the solution vector x of the linear system: U transpose x U xx= 

alfa X b, where U is an upper triangle, given in integer ( or real) 

arra;y A[ 1 : n X (n+1) : 2] in such a wa;y that, for all i and j sa­

tisfying 1::: i::: j::: n, the (i,j)-th element is A[i + (j-1) x j : 2]. 

The scaling factor alfa is chosen in relation to the scaling of U. 

Consequently a call SYMDET2 (A, n, alfa), followed by a call 

SYMSOL2 (A, n, alfa, b), has the effect that b is replaced by the so­

lution vector x of the linear system A X x = b. The procedure SYMSOL2 

leaves the elements of A unaltered and uses the non-local real proce­

dure SUM; 

procedure SYMSOL2 (A, n, alfa, b); 

value n,alfa; integer n; real alfa; integer arra;y A; real array b; 

begin integer i,j,jO; integer arra;y J[1 :n]; 

jO:= O; 

for j:= 1 step 1 until n do 

begin b[j] := 

end; 

(b[j] X alfa - SUM (i,1,j-1,A[i+jO] X b[i]))/A[j+jO]; 

J[j] := jO; jO:= jO+j 

for i:= n step -1 until 1 do 

b[i]:= (b[i] - SUM (j,i+1,n,A[i + J[j]] X b[j]))/A[i + J[i]] 

end SYMSOL2; -
' 
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