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I. Introduction

Recently a number of algorithms, which have 1lmportant
application in Numerical Analysis, have been developed.
These algorithms concern themselves with gquantities lying
in a two dimensional array, and relate four gquantlties
lying at the vertices of a lozenge 1in thisarray. This
simple fact means that one can easily derive eguations
governing the propagation of error which takes place when

applying the algorithms [1 ] ; it means that one can easily
derive singular rules which may be applied when the
quantities involved become indeterminate [2] ; it means
that programming these algorithms can be done in a parc.i-
cularlyefficient way [ 3],[%4]; it means that confluent

forms of these algorithms may easily be derived |[5]; it
means finally that by contracting the lozenge into a point,
partial differential equations corresponding to these algo-
rithms may easily be derived. These partial differential
equations are the subject of Thls paper.

It transpires that in all cases which are considered
in detail the lozenge algorithms are first order finite
difference approximations to the derived partial differen-
tial eguations. It is emphasised at the outset that in this
treatment the partial differential equations are derived
from the finite difference equations, and not conversely
as is more often the case.

The purposes of this paper are twofold. In tThe
following section we shall discuss some properties of the
algorithms being considered and introduce certain definitions
of which subsequent use will be made. In the last section
we place on record the partial differential equations which
"have been referred to,and derive certaln properties of the
solutions to these equations.

The algorithms of this paper connect certain guantities
Oy means of rational non-linear relatlonships: the partial
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differential equations to which they lead may be expressed
as simultanecus non-linear partial differential eguations
of the first order in two dependent and two independent
variables. In this paper we do notclaim to give a general
theory of non-linear partial differential equations ncr
even to give a comprehensive treatment of The type of
partial diff'erential equation being considered. This paper
is merely a first step in this direction, in which we place
on record certain partial differential equations whicl.
would seem to have fundamental significance 1in analysis.
and derive certain properties of their solutions. We hope
that by so doing we shall stimulate the more searching
inquiry which The subject undoubtedly merits.

I11. Lozenge Algorithms

The (b~array
The algorithms with which we are concerned relate members

of an array of qgquantities the general member %%*Which may
be denoted for the purposes of exposition by z. The array

may be displayed as follows:
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so that the superscript m 1indicates a diagonal and the

suffix s a column.
The algorithms are furthermore lozenge algorithms:

each quantity CE%‘lS derlved from a relationship of the

(iw) (M) (m+4) [ (m+4)
{4)51—4 , P, by, &s,fl} . 0. (1)

The gquantitilies occurring in this relationship are placed

form

G@

in the<b~array thus: ()
w

(m {-4) ()
4)5 -2, (m H) (b
Ps_.

i.e. they occur at the vertices of a lozenge in the ¢>~
array.
In the so-called forward use of lozenge algorithms the “
procedure 1s as follows: initial values of ¢(:1 . (b(w (vvwo.s ,)
are prescribed and relationship (1) is solved for Cb(m)
Letting s=1,2,...; m=0,1,... in the resulting formula the
whole of the ¢)marray is bullt up column by column.

As a simple example of a lozenge algorithm we give the

following:

G) () (m + WA 4
cb‘-’?"d t+ (b (3) ? - 435'--:3 = (2)

Note: In the most general case relationship (1) is non-linear,
but to simplify the exposition the examples in this explanatory
section will be confined to linear cases.

Ir the most general case, the functional relationship

L0 PO :
;Jmmjv depends upon both m and s. However, in many

rroas which hawé)found practical application, the functional
g

relationship E; { 3 has two differing forms which depend

upon whether s is even or odd. For this reason we shall

distinguish the quantities :ﬁtq with even and odd suffix
by writing
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20=-2 ~ AT e 7 7 = 2% (3)
and we shall replace the single relationship (1) by the two
relationships

(4)

Tﬁmz(b~armﬁy‘relating to dual lozenge algorithms 1s as
follows: Cb(ﬂ
2.

o (o)
N

o

“) (0)
2.¢o (4) 2 14 4}(,0)
cb@ 4 ¢4 ) 1T 2 )
40 (2) 2 V4 ‘

The quantities occurring in relationship (4) are to
found in this array as follows:

4 !

1 1¥

An important advantage which results from this change 1i-
that 1n many special cases which have been considered, if
the lozenge algorithm is presented in the dual form (4) tne

functional relationships involved can be represented solely

by means of rational operations; if the single relationship
(1) is retained this is not so.

An added reason for introducing the substitutions (3)
is that in the practical cases which have been studlied, the
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numerical behaviour of The gquantlities markedly
for odd and even values O 8,
Lastly, in anticipation of later tText, 1t Is mentioned

1
that if the lozenge algorithm relationshics are applied to

G‘Zl

7

certain special Initliai values,; Then determinant
expressions may be derived for the quantit.ies

expressions differ in form depending upon whether s is
even or odd. As a simple example ¢f a dual lczenge algorithm
we give The following:

to produce & recursion among The guantities
themselves. Inueed we have

(w—A) o
»id> ’ b M)

beqd t A P =— A

(6)

g \ G

and a similar relationship obtains for the quantities i@m .
If the single relationship {(2) is to be expressed in

the form of a dual lozenge algorithm relationsnip, Then we
have

yvield recursions among the quantitieg
alone.



We have

e (8)

(34 () [ ()
A oy 4%3' |
o)
and a similar relationship for the guantities @,¢ o
ITI.1 The Derivation of Partial Differential Egquations

We now consider the following constellation of wvalues
in the dib - array:

(m—4)
(g}(m) 4 ¢l‘° (p—4)
(M ¢ lﬂ 2 Vi Cb@ﬁ? 21 ¢CM}
ATy (i +-4) ¢ @4‘%"‘) 41 Frd
z.(b*-«ﬂ 4)4‘”‘ ) 2T
AT P
fig.1..

These values lie at certain points, the positionsof which are
determined by m and r, in the plane of the paper. We now
Introduce new coordinates x and y (which are assumed to be
continuous) and an interval h, so that the gquantities 1lying

1n the above large lozenge do so at the following points in
Che x-yv plane:

X, Y- 2h,
x—h, H"“""h’ 'zc.{—k) Bw\f\
x -2l )Y X, Y X+ Zk_,g
xwk)g'%-h, ‘@ x*é-ke,lj%—‘m
L,y+'2

This transformation of coordinates corresponds to the
substitutions

W= A+ th’v) j - LD*:&' Q,(M%t;) t"é, (9)

where a and b are two constants.

We shall derive partial differential equations from the

lozenge algorithm relationships (4) in the following way:

o (wn) i (wn) : C o
we replace The guantities 443,,@ and ,¢€, by (possibly auxiliary
functions of) the functions , c}:;(x,,, ) and 24) (x+h,y+h), together
wlth corresponding substitutions for the further quantities in

Fig.1; we then let the interval h tend to zero.
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derivatrion <¢I
the functions

.

)

3
O(x,v; and  LPlx,yi.
For example relationships (5) lead to trhe eqguarions

As h tends to zero we have The pair of partial differential
equations

These are, of course, (allowing for a change in notation)

the Cauchy-Riemann equations. Eliminating the function &

we have
Equation (6} is a well-known first order finite-difference
approximation to the Laplace equation (12;.

As a second example tc illustrate the akbove technique
f'or deriving partial differential equations, we consider re-

lationships (7)), which lead to the partial differential
equations

(13)

Again the function 2¢a may be eliminated, and we have tThe
nyperbolic partial differential equation

=0 (14 )

Using the coordinates x and y, the finite difference
relationship (8) may be written &s

¢ Ci’* Zk; 3) +4¢<% - QLU 3) = 4 é)(fi Yt 52‘“) “‘5‘”. 4 l

As 1s well known, both the partial differential equation
(14) and its first order finite difference approximation
(15) have the same solution
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independent of the size of the interval h; we shall see that
a2 phenomenon closely resembling this 1s to be found 1n the

case of a partial differential equation derived from another
lozenge algorithu.

NDW“’ Umxc:iw?.ness UF- H"\l A’U\-’ﬁa«ié&b‘y S\AJOS.(‘LHNM

It will immediately be seen that if the functlonsij$(x.yj,
{ft(qu) 1n.equatlons (10) are replaced by the two functicns
cb(x y) and cb(:x: y) where y x
B = Wy, 0 euy= h by )
where X is any constant, then the resulting partial differen-
tial eqguations relatlng,@ and .zc? are the same as (11). There
is a similar freedom of choice in the auxiliary substitutions

leading to all the partial differential equations of this
paper.

|

II.2 Certain Properties of Lozenge Algorithms
Centro-Symmetric Algorithms

At this point we mention a remarkable property which 1s
possessed by the algorithms which have been used for the

purposes of illustration, and by certain of the algoritl..us
which have found application in practice.

We consider four quantities A,B,C,D, lying at The ver-
tices of the lozenge of Fig.Z2.

X A & o P/ A . : /8
D 5 N ¢’ c” Af
C 'y >’
Fig.?2 Fig.3 Fig.4
and connected by the relationship
¢§A,B,C,'l>} =0 (18)

We transpose the lozenge of Fig.2 about the line ¢ and

attach single dashes to the quantities involved, obtaining
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the lozenge of Fig.3. 1If we replace the guantities involved
in relationship (18} by the corresponding guantifties occur-

ring in the lozenge of Fig.>3, then we obfTaln the relation-
Shilp

¢{D?309589:A}:O o {49)

Similarly we can transpose The lozenge of Fig.2 abouft the
%imelﬁ to obtain Fig.4 and the resulting relationship

P3IB",A",D",C" Y =0 (20)
Now in many cases it Just so happens that 1if The dashes

are removed, relationships (18), (19) and (20) are the same.

Relationship (2) may be used to illustrate this pheno-
menon: in the notation of Fig.2 this may be written as

B - D = C - A (?")
In this particular case, relationships (19) and (20) become
c' - A" =B' - D' (22)

and
AT? _ C‘!? — DW‘““ B" (23)

respectively. Clearl,, 1f the dashes are diliscarded, relation-
ships (21), (22) and (23) are the same.

It is easily shown that the same property 1s possessed
by the dual lozenge algoritnm relationships (7).
Definition 1. if the relationships of a iozenge algorithm
possess the property which has been described we shall refer
To such an algorithm as being centro-symmetrlic.

Partial differential equations derived from centro-

symmetric lozenge algorithms have a curious property.
We first introduce

Definition 2. If a system of two simultaneous first order
partial differential equations in the independent varliables

X and y, and dependent variables 4¢Kx,y) and 6z;gé::;(,:-<;_,.y) is given
and the system remains
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unchanged if x and y, and simultaneouslyﬁb(x,y) and g,éD(x,y)
are interchanged, then this system 1is called self-conjugate
We have the following simple
Theorem 1. A system of partial differential equations
deriving from a centro-symmetric lozenge algorithm is self-
-gonjugate.

For example, subject To the interchanges described, the
partial differential equations (11) become

i.e. the system remalns the same.
Multiple Lozenge Algorithms

So far we have only considered dual lozenge algorithms

. . L e (wn) | ()
which concern two systems of quantities P, and ,O,

It is not difficult to envisage systems of k distinct 1028%6
algorithm relationships concerning ‘Q systems quantlities : Pp
(i=1,2,..., k) of the form

() (!M\ () Cm&-a') (wat 4) D)

49” {k‘i}h’“”’" ¢ )k¢*‘-—-&7kﬂ-4 D VA T = O
e | W (mEd) (med) D

2.6\;' {4 4)(9' » A% (r )) Acb T{—? k¢',:" J =

() W) () (e 4) e FA)
{,eg- {/{,W‘C&)(*p), chb 5 Lm4¢ "IN L“‘?~¢(h H‘)} = O,

(25)

However in the examples which have been given, and it ap-
pears generally to be true, the principle under which the
partial differential equations of this paper have been de-
rived is as follows: the lozenge algorithms lead to differ-
ence equatlions involving for example the functions ,,Lc;) (x-—h,g&-(&)

and ab(x-&-y,yﬁ—h); when these functions are replaced in
the diff;rence equation by their eqguivalent Taylor series ex-
pansions, the function q_tb (x,t) 1is cancelled from the equa-
tion and after division throughout by L\z there results an
equation involving the derivative 2_<b1c.
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than two, the above process leads to an egu....ilon between,
for example, k&(}wh, v+h) and 143{x+h, v+ih): after these
functions have been replaced by their eqgulvalent Taylor

~case of a multiple lozenge algorithm of order higher

series expansions, thas functions X o and O (x, do not
i f f

@ .
cancell from the resulving equation.

Thus two 1is the highest order of the lozenge algorithms

.

which can lead to systems c¢of simultaneous first order partial
differential equations.
IT.% Properties of Partial Differential Egquatilions
Adjoint Partial Differential Eqgquations

As is well known [6],p.13 ) systems of two simultaneous
first order partial differential equations involving tTwo de-
pendent variables do not always lead To one partial differen-

tial equation involving one of the dependent variables. How-
ever, let us assume for the purposes of the following defini-
tion that in the cases considered in this paper, this 1s
possible.
Definition 3. If we are given a partial differential eguation
with the dependent wvariable 4dix,y), and another with the
dependent wvariable g@(x,y), then we shall say that two
equations are adjoint if they may be derived by eliminating
the dependent variables ‘Z¢Kx,y) and ‘4§Kxgy0 respectively
from a system of two simultaneous first order partial diffe-
rential equations which relate these dependent variables.

The reason for giving this phenomenon = this name 1S

that if we are given, for example, The partial differential

equation sattisfied by 4®(x,y), then we may adjoin to this
equation the partial differential equation by Z¢Kx,y) and

in this way proceed to a system of two simultaneous partial
differential eguations of the first order which may be

easier to handle than the origlinal partial differential
equation. This process is analogcus to the use of the adjoint

equation in the linear theory of partial differential equations.
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Theorem 2. Partial differential equations deriving 1in the
first place from single lozenge algorithms are seli-adjoint.

Classes of Partial Differential Egquations
Notation: We denote the argument sets

J { ¢
1 & e = K ] ' ’
I”)‘ﬂ;’g , = ?qul’g ? 45

by D and D' reSpectlvely, and the argument sets
c o

and 3% y o @ 2

by A and A’ reSpectlvely
Definition 4. Suppose that two systems of simultaneous first

order partial differential equations

4 B {b } =0, 20 % D :j’ = O _ (26)

| | ! ;9 ¢ fn-)m
4@%D ch’ 2 "L@{\DEWO (27)

exist, and furthermore that either by means of a pair of sub-

and

stitutions of the form

(28)
eqpations (76) are transformed into equations (?7),owk+%ﬂ+ b

means of a pair of substitutions of the form

$m DT, 2d = 71D O (29)

equations (27) are transformed into equations (26), then the
two systems (26) and (27) are said to be members of the same
diff'erential class. _ _
Definition 5. If ih the conditions of Definition 4 the argu-
ment sets S' and S of equations (28) and (29) may be replaced
by the sets A' and A respectively, then the two systems (26)
and (27) are said to be members of the same analytic class.
In the derivation of the partial differential egquations
of this paper some degree of generalisation may be achieved
by letting the lozenges be of irregular size, and replacing
the substitution (9) by

x=a+f (r)h, y=b+g(m+r)h (30)
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However the resulting system of partial differential equa-
tions belongs to the same analyticclass as the original
system, and in this general exposition where simplicity of
presentation is tc be desired, the substitutions (§) are ad-
hered vl0.
IIT Special Lozenge Algorithms
IIT.1 The € -algorithm L7 |

The €&-algorithm 1s a single lozenge algorithm whose
relationships are

(52 20 = Lg ff:% =1, (31)

3~—A4

The main function-theoretic property of the 'i;flgoritnm may

be described as follows.(Gwwen a power series

it is formally possible 28:[ to construct a double seqguence
PL i (1i,3=0,1...) of rational functions of z. The function

[
b ¢ is the quotient of two polynomials, the numerator ol the

ial
f“‘ degree, the denominator of the fﬂl degree : This quotient

1s characterised by the property that 1ts seriles _expanslion

in ascending powers of z agrees with the series 2; { Z
berd >0

1s far as TtThe term <%h52; Specifically

(32)

2; <is 3 q , , a :
where o S Z is some power series expansion with (in
= ¢ *
general) non-zero coefficients.
The functions Pi 3 may be arranged in a two-dimensional

array (the Padé array3 in which the first suffix 1 1ndicates

a row number and the second suffix J a column number.
The connection between the € —algorithm and the Pade€
array is this: that if the €&-algorithm relationships (31)

are applied to the initial wvalues



- =0 . €
€., =9, < nunrn < (33)
then [ 97 [107}
() P p= 6,4, -
Ear = vtk P T (34)

We mention in passing that with the initial conditions (33)

Partial differential equations may be derived from relation-
ship (31) by maklng the subst 1tut10ns

(
A A D R ARt D) (38)
As h tends tTo zero we have in turn
1 81 123 =1 2

qﬂix, 423 ‘:AT (39)
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The functions ,£(x,y) and %Eix,y) separately both satis-
fy the partial differential eqguatiocn

(10)

()
As has been said the quantities Eype are members ol

the Padé array; if the grid variables m and r are replaced

by continuous variubles x and y and the dimensions of the
grid are reduced, then the Pade array may be regarded as
points on a Padé surface. Equation (40), which is satisfied
by the function fﬁb@x,y) 1s the partial differential equation
of the Padé surface.

The & -algorithm is centro-symmetric.

Theorem 3. Equations (39) are self-conjugate

The € ~algorithm is a single lozenge algorithm.
Theorem 4. Equation (40) is self-adjoint.

There is a further property which is possessed by tThe
solutions Tc the partial differential egquations which may be
derived from the ¢ -algorithm. Subtracting the first of
equations (39) from the second we see that the Jacobian

lgx &gﬂ

4% 4&3

vanishes.

Theorem 5. If the pair of functions _g€(x,y) and Qg(x,y) are
any two solutions of eguatiocns (39) then a functional relation-

ship of the form

P (a2Gog), 2Gy) =0

prevails between them.

III.2 The q-d algorithm [11]
The g-d algorithm is a dual lozenge algorithm whose re-

(41)

lationships are



In Numerical Analysis the main application of thune Q-d
algorithim is in the spectral decomposition of a sequence of

iterates. In Analysis the g-d algorithm is signifi@ant for

S

the following reason: Given a power series Cg Z 1t 1s
= &

formally possible to construct a continued fraction of the

form

T < g (%%} im}

24 CZ + Swmk Gt 4z
$=o 1 - 1= q4-

(the so-called corresponding continued fraction) whose coef-
ficients are uniquely determined by the power series expan-

sion relationships

(44)

Z —~
and Smm&;ﬂ% are two power series ex

pansions with (in general) non-zero coefficients. If the g-
-d algorithm is applied to the initial values

() (%m) ,, :
e@‘mo 0 Cgfé ECM%,A C o (m:bgf’%ﬁa“>
| (45)
(wn) Qw«ﬂ
then the coefficients C?w;,*gb of the continued fractions

(43) are the quantities occurring in relationships (42).
We mention in passing that if we denocte the Hankel detel-

minant



3

/oy ;
(#7)

then it may be shown that the guantities cobtalined by applying
the g-d algorithm relationships to the initial conditlons

(45) are given by
(v +4)

| (,m&- ) (Wﬂ OM)
(o) H 4 va4 () H P H F—4

qv T ()  {im H) 2 * (i) (mi4)
H e iq‘ P =4 W ¥

(48)

Partial differential equations may be derived from the
relationships (42) by making the substitutions

g g (ust) , eV - eGb)

(49)
As h tends to zero, relationships (42) become
qrgj = €y 7 ,
(50)
s S A j

be &

The functions q{x,y) and e(x,y) separately satisfy tiie par-
tial differential equations

(51)
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these fform, of course, an adj%iPt sys&gm.

Again the coefficients C?g and €y may be regarded as
points on two surfaces g . Xx,y) and e(x,y); we may speak of
equations (51) and (5?) as being the partial differential
equations of the corresponding continued fraction coeffic.ient
surfaces

The g -d algorithm is centro-symmetric.

Theorem 6. The partial differential equations (50) are self-
conjugate.

Note: When conducting experinents in the application of tThe

q -d algorithm, H.Rutishauser noticed a numerical phenomenon

closely akin to shock waves: this corresponds ©ToO The case 1n

which the equations (46) form a hyperbolic system.

To conclude this section on the g-d algorithm we describe
a remarkable phenomenon concerning the solutions of the par-
tial differential equations (50) and their first order finite
difference approximations (42).

Clearly, two solutions of (50) are

A : X N
Cp(jlﬁ,g,D = ex'hi ? e(jiﬂ»ﬁ) = <€ “436 (53)

These conform to the initial conditions

¢

in (42). In order to derive solutions of (42) corresponding
to

(55)

and (54), use may be made of the following result Zﬂ&tl:
if in (46) and (48)

¢ = L\JM qum}é—ﬁmﬂf




Substituting
(58)

(59)

i.e.they agree with (53).

The meaning of this result is as follows: 1T we wilsh
to solve the partial differential equations (50) subject to
certain initial conditions and replace the partial differen-

tial equations by first order finite difference approximations
then no matter how large the resultant truncation error may
be, the agreement retween the finite difference approximatlion
and the analytic solution 1s exact.

Note: The same phenomenon may be observed when considering

the solutions

C{,Qﬁﬁ,(ﬂ)ﬂ- | ) 6(1)5>-ﬂ?€» (60)

but this case is somewhat trivial, since the Truncation
error introduced by replacing the derivatives by first dif-
fferences, 1s zero.

ITII. % The first g-algorithm ( Lﬂjzl, D.8)

This, a dual lozenge algorithun, 1S 1n esseneé a gene-
ralisation of the g-d algorithm; a displacement factor
1s dintroduced into the formulae which run

CS(m\ %Y 3 é: _ (S(‘MM) QMM\‘>

Partial differential egquations may be derived from rwciations
(671) by making the substitutions

: (62)
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As h tends to zero, ther: follows

IITI.4 The Second .
This, another dual lozenfe algorithm, 1s a wvariant of

the q -d algorithm. Quantitlies <énssatlsfy the relationships

(W) ( :a) (wr +2) (Wn -4

gax-—ﬂ 82:5 ~ g 29-9 8‘24-1)
(v ) (wq (w ()
C/' o SMXCS* <4 XS é%—d) a

Partial differential equantions may be derived from relations

(64)

(64) by making the substitutions
(™) (M)

S =gy, .- F&9). e

As h tends to zero, ther: follow
‘7-5455”’43 2Hx ; R

) (66)
<4 — 5 9» A 5 < = ( S 4 25 2 \g

We conclude this section on the second g ol _orlitnm by
remarking that if the 9q-d and the first and second g-algorithms
are used to extend the(b array from sets of initial conditions

which correspond, it may be shown That the gquantities pro-
duced are inter-related.

()
More precicely, if the quantities qéf,\) of the gq -d
algorithm are produced from the initial conc1tions
(wn) (wn)
eo:O)Gh a2 Cmig /CVM) (M"-’*Ofb“’) 1
e (67)
the quantltlesiégs of the first g-algorithm from
(wn) () ()
5.4 ¢ _ [Cor) (a0
S o 4 , 84 = S Con b4 ) (68)



s b

These relatlonships may be transformed into functional
relationships beftween the solutions of the partial differen-

tial equations (50), (63) and (66) which result from sets of
corresponding initial conditions.

If the functions e(x,y), g({x,y) are produced from the
initial conditions

| S (0 = O p (0) ﬁ) = '
Y) % ) 1)
the functions g(x,y) , Qg(x,y) from the initial conditions

1 &(@y) = S -d), = 8loy) =1, (72)

and the functionsﬁjg(x,y),_5(x,y) from the boundary condi-

tions
(73)
then
(74)
(75)

Theorem 7. The system of partial differential equations (50),
(63) and (66) are menbers of the same analytic class.

I11.5 The W/-algorithm ( [15] .p.16)
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This is a dual lozenge algorithm whose relationships

al'e

Partial differential equations may be derived from relation-
ships (76) by making the substitutions
” {wa)

) ' x
“{/Qm = 4 ’?)(51/"3) 72V "”7,(1’ Lﬂ) (77)

As h tends to zero ther: ffollow

I YA R
{M{/L (78)

The functions ,4¥, and 11/ separately satisfy the partial
differential equations

195 4

ol {;{1‘/]3 -

(80)
The partial differential equations (79) and (80) form, of
course, an adjoint system.
The vvmalgorithm is centro-symmetric.
Theorem 8. The partial differential equations (78) are self—
conjugate



h * - - " : “ —n £
I the seguences C~TSM m=0,%,...) are related by ;

S@:‘-O (Mﬁ'%zsw ) gyl

. ) gy
the quantities %@ of 1thm are cceustructed from
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Again These relationships may be transformed into
functional relationships between certain solutions of the
partial differential equations {39) and {(78).

If the functions 4;(x}y}y ggixﬁy) are procduced from the

initial conditicons

4 & CG;%E"’?ﬁﬁ) 3 ig(gﬁﬂjﬁop (85)

and the functions 4Qﬁxﬂy), lﬁixjy} from the initial conditions

() ﬂ“é/é% ‘ﬁ) =9 (86)

Then

=€1%;ﬁ Ep (87

Theorem 9. The partial differential equations (39) and (78)
are members of the same differential class.
III1.6 The [-algorithm |14 ]

This is a single lozenge algorithm whose relationships

al’e



, _ (83)
Tts principal application in Numerical Analysis 1s 1In the

transformation of slowly convergent series.
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where the numeratoors and denominators in these expressions
represent the sth row of a determinant.

Partial differential equations may be derived from re-
lation (88) by making the substitutions

W P(:)ﬂ 4P (xg) W (:’ = 3P

As h tends to zero we obtain

- = - CA y [y = X—A,
4£0x, 2Py > «iﬂﬁ £ (92)
The functions 4P and ?_Fseparately both satisfy the partial

(91)

differential equation

: %. o I (93)
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we hnave

TV i . , B 2 VO DR o s P L .
Trnecrem A1, If w-e pa:r of Jun;t@omsﬁﬂﬁijyj and LpIX,y ) are
4 *:a -
any two soiuartions of equations (82) then a functifnal relation-
shzp of Tthe form
(b
L9H )

rrevalls between Them.

IV Conclusiocn

The derivation of trne partial differential sguations re-
sulting from certain lozenge algerithms and the descr
of their formal properties, which were announced in the
introduction, has now been compiseted. We remarik that a theory
of the types cf initial and boundary conditions which are
necessary fosr a solution to these equations to exist, has
been constructed; kut at the present time this i3 somewhat
speculative and incomplete, and we do not examine this aspect
of The thecocrvy h=re.

When considering gquestiors relating to the existence and
unigueness of the sclutions of a rartial differential egquation
1T 1s of'ten of great assistance 1f expiicit solutions to a fi-
nite difference equation aprroximation tc¢ the partial differen-
tlal equation can te given. In the case of all the algorithms
of This paper, if the initial conditions are chosen in a cer-
rtain manner, determinantal fcrmulae for the solutions of the
algorithmic relationships can ke derived (in cerftain cases such
formulae have been given). This property may well facilitate
f'urther research, and makes the algoritnms of this paper parti-
cularly interesting.
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