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I. Introduction 

Recently a number of algorithms, which have important 

application in Numerical Analysis, have been developed. 

These algorithms concern themselves with quantities lying 

in a tv\J'o dimensional arrayJ and relate four quantities 

lying at the vertices of a lozenge in thisarrayJ This 

simple fact means that one can easily derive equations 

governing the propagation of error which takes place when 

applying the algorithms 1 ; it means that one can easily 

derive singular rules which may be applied when the 

quantities involved become indeterminate 2 ; it meanP 

that nrogramming these algorithms can be done in a par·v1-

cular erficient way 3 , 4. ; it means that confluent 

forms of these algorithms may easily be derived 5; it 
means £inally that by contracting the lozenge into a point, 

partial dirferential equations corresponding to these algo­

rithms may easily be derived. These partial differential 

equations are the subject of this paper. 

It transpires that in all cases which are considered 

in detail the lozenge algorithms are first order finite 

difference approximations to the derived partial differen­

tial equations. It is emphasised at the outset that in this 

treatment the partial differential equations are derived 

from the finite difference equations, and not conversely 

as is more often the case. 
' 

The purposes of this paper are twofold. In the 
• 

following section we shall discuss some properties of the 

algorithms being considered and introduce certain deftnitions 

of which subsequent use will be made. In the last section 

we place on record 

have been referred 

solutions to these 

The algorithms 

the partial dirferential equations which 

to,and derive certain properties of the 

equations. 

of this paper 

JY means of rational non-linear 

connect certain quantities 

relationships: the partial 
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differential equations to which they lead may be expressed 

as simultanec1J.s non-linear partial differential equations 

of the first order in two dependent and two independent 

variables. In this paper we do not claim to give a general 

theory of non-linear partial differential equations ncr 

even to give a comprehensive treatment of the type of 

partial differential equation being considered. This paper 

is merely a first step in this direction~ in which we place 

on record certain partial differential equations whicl. 

would seem to have fundamental significance in analysis. 

and d.erive certain properties of their solutions. We hope 

that hy so doing we shall stimulate the more searching 

inqujry which the subject undoubtedly merits. 

II. Lozenge Algorithms 

The ~ -array 

The algorithms with which we are concerned relate members 

of an array of quantities the general member 

be denoted ror the purposes of exposition by 

may be displayed as follows: 

(c) 

-,1 
(o") 

. (41) 0 
(o) 

·-4 (4') Co) 
(t) 

0 
(.r) '~ 

., 
·•-1 (~) (~ ') .. 

(1) 
0 (2.) 

r 

--4 4 

• 
• 

• 

of which may 
(M) 
s· The array 

(o) 

(o) 

(1) 
~t.f 



so that the superscript m indicates a diagonal and the 

suffix s a column. 

each 

The algorithms are furthermore lozenge algorithms: 
("') 

quantity """4i is derived from a relationship of the 

form 

1 

The quantities occurring in this relationship are placed 

in the -array thus: 

5 .. ~ 

i.e. they occur at the vertices of a lozenge in the -
array. 

In the so-called forward use of lozenge algorithms the 
• • .. .. lrA (Ml . 

··-A ) 

1 for • 

Letting s=1, 2, ... ; m., ... o., 1 ~ . . . in the resulting formula the 

whole of the -array is built up column by column. 

As a simple example 

following: 

(M (W\) (W\~4 

S-/f + -s-A 

ot' a lozenge algorithm we give the 

• 

.. 

Note: In the most general case relationship 1 

but to simplify the exposition the examples in 

section will be confined to linear cases. 

is non-linear, 

this explanatory 

Ir ·the most general case~ the functional relationship 
(M) J ,' 1 

vs ~~- depends upon both m ands. However~ in many 
0 ~ .,;~::~~ i:,.rhich have found practical application., the functional 

(M) ~) 
relationship= , H has two differing forms which depend 

upon whether sis even or odd. For this reason we shall 

distinguish the quantities <•> with even and odd suffix 
by writing 
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c~) 
"1-.. 

....., ~t"-2. ~ 

. (~) (~) 
0- , ~&6-A 

·- 2.. _. 

and i~1e shall replace the single relationship 

relationships 
...... <~) (iM) . (iM) on ~A) . (~ 4--A) ,, 

'.l ·r-.1 ·} "I " 3 2 F-4 ~ --1 P-,t 

(Mt-A · (~,,,rA 

~ ' ~ ,-~ 

3 
by the two 

The -array relating to dual lozenge algorithms is as 

:f o 11 ow s: (o) 

The 

found in 

• 
quantities 

this array 

' 

(1.i} "1 t. -
,. 

2. ~ 

•• 

occurring in relationship 

as follows: 
<~) 

{W\t'Ji) '2. Y-A 

r--,1 ...... <~ ~) -1 

" ;, 

-

~ ,ri 

•• (,,jJ 

,j 'r' 

are to 

An important advantage which results from this change ir 

2 

that in many special cases which have been considered~ if 

the lozenge algorithm is presented in the dual form 4 tne 

functional relationships involved can be represented solely 

by means of rational operations; if the single relationship 

1 is retained this is not so. 

An added reason for introducing the substitutions 3 
is that in the practical cases which have been studied, the 

(c "") 

'f' 

(A.) 
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n1..1meri cal ber,.a ,ri o·u.r of' t r.;2 qu.ant it ies 

Lastly;, text, it is mentioned 

" - . ·t· ., 1 th d t " t 1 c er t a in s p e c :1. a 1 i n :i ... 1. a J... ·v a ..Lue s j .1 a. e rJ e er m.1 nan ·" a, . 
,, ~) 

expressions rr1ay be derived for the quantities 1 : these 

expressions di.ffer in form dependi.ng upon wheth.er sis 

even or odd. As a simple example of a dual lozenge algori.th.m 

we give the following~ 

' (~) (~t-~) 
C We 

,, 

~) (ilAA\hfi} • 

• ~ i---6'1) 

'J... J ·- • 

r J 
•+• .. "1 -

It happens that relationships (5 

to produce a recursion among the 

themselvesa Indeed we have 

• 
-1 

_'5!.. 

; (~)· 
• • 

&'1J \t . :, 'rP •• 
• . . 

may be so 

qu.ant it ies 

mar1:ipul.ated 
~ 

,, ' ~ 5 .) 

as 

,,,.. 
b' 

. ,~, 
and a similar relationship obtains for the quar1tities ~,~~ ~ 

If the single relationship 2) is to be expressed in 

the form of a dual lozenge algorithm relationship, then we 

have 

Again 

yield 

alone. 

c~, • (WuH) (~e-A) (~) 
,;; ,;. .,.,s;p 

.)) ' r A f~ f " 'i . " 

it transpires that relationships 

recursions among the quantities ~ 

(7) 

7 ma.y be ma.de 
('M) (~) 

ll1J and ~ 19 

to 
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We have 
• (M t-,i) (M --~) (iM ~) ~r-4 

0 """ ·+ cxr:e '1 . '""' 
:¾mQ 1 . 

,,f ~ ... 77 1 --1 ~rA 

and a similar relationship for the quantities ~· ~ 

II.1 The Derivation of Partial Differential Equations 

8) 

• 

We now consider the following constellation of values 

in the -- array: 

. 

<~) 1L ~ ,~-~) # • 2. ,~ 
(_M.~~) 

-1 f-4 ,~t--4) '9 fl <~) ,fl ft-4 

~ ·(aM.t-J} ~ fl 
2. 4 

If ,. 

fig. 1 . _ 

These values lie at certain points, the positions of itJhich o..r~ 

determined by m and r, in the plane of the paper. We now 

introduce ne,"' coordinates x and y vrhi ch are assumed to be 

continuous and an interval h, so that the quantities lying 

in the above large lozenge do so at the following points in 

the x-y plane: 

• 

X.·+ 

This transformation of coordinates corresponds to the 

substitutions 

) 

where a and bare two constants. 

We shall derive partial differential equations from the 

lozenge algorithm relationships 4 in the following vvay: 
(IM) • (~) 

vJ'e replace the quantities -1 ~ and 12., ,, by possibly awciliary 
• 

with corresponding substitutions for the further quantities in 

Fig.1; we then let the interval h tend to zero. 



... 

• 

[f"'1/ - ( --

In many cases we sh.all see that th:is process Jeads to the 

de:ri ,rat ... ion C·1"') pa·rt :i a. 1. cl i i'"'Jt-"ererrt ial eq·ua t :i orlS sat i.sf•'i ed by 

the .f1.lnctions 

For exam.p .. le -

• 
f- ·,:). .... :-, ,f' t\ 

\ X ., 1r ) and 2 'l, X. j y ) 0 

relationships(~~)· lead 
~ ~· 

, 

c::w:a 

II , ... 
c.::, 

,, 

Ash tends to zero we have the pair of partial differential 

equations 

(11) 

These are, of cour~se, · allowing for a change in notatio11. 

the Cauchy-Riemann equationsQ Eliminating the funct:ion~ 

we have 

Equation (6 · is a well-known first order finite-di.fference 

approximation to the Laplace equation (12)o 

As a second example to illustrate the above techr1ique 

for deriving 

lationships 

equations 

partial difrerential equations, we consider re-

7), which lead to the partial di.fferential 

Again the function~ may be eliminated.J and we have the 

hyperbolic partial diffe~ential equation 

Using the coordinates x 

relation?Ship .. 
may oe 

1 

and y, the finite diI'ference 

i"lri tten as 

) 15) 

As is well knov1n., both the pa:rti.al different:i.al. eq_11ation 

14 and its r1rst order finite difference approxLmation 

15 have the same solution 
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independent of the size of the interval h; we shall see that 

a phenomenon closely resembling this is to be found .in the 

case of a partia,J. differential equation derived from another 

lozenge algori thr1~. ,.. 
11 

0 V\/ - u..k\ i-~ lA~ V\eiS t;. " 

It will immediately be seen that if the functions A x,y, 

x,y in equations 10 are replaced by the two functi07s 
·I 

x,y and x,y where 
()(· 
➔ (x,y , i.. x,y = t2 x,y 

I 

• , I ./ Ol 

where C< is any constant, then the resulting partial 
· I , 1· 

tial equations relating~ and~ are the same as 11 

. ' 
' 

1, 17. 
dif.feren­

.. ThE re 

is a similar freedom of choice in the auxiliary substitutions 

leading to all the partial differential equations of this 

paper. 

II.2 Certain Properties of Lozenge Algorithms 

Centro-Symmetric Algorithms 

At this point we mention a remarkable property which is 

possessed by the algorithms which have been used for tht 

purposes of illustration, and by certain of the algori t11111s 

which have found application in practice. 

We consider four quantities A,B~C,D, lying at the ver­

tices or the lozenge of Figo2~ 

ex 

C 

Fig.2 

B' 

Fig.3 

I 
C 

and connected by the relationship 
., 

Fig.2 about the line 

I/ 

B 

Fig.4 

ancl 

f 

A 

We transpose the lozenge of 

attach single dashes to the quantities involved, obtaining 
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the lozenge of Fig.3~ If we replace the quantiti.es involved 

in relationship 18 by the corresponding quantities occur­

ring in the lozenge of Fig.3, then we obtain the relation-

ship 
• 

(19 

Similarly we can transpose the lozenge ot' Fig.2 about the 

tine to obtain Fig.4 and the resulting relationship 

" "0 ·20 

Now in many cases it just so happens that if the dashes 

are removed, relationships 18, 19. and (20 are the same. 

Relationship 2 may be used to illustrate thi.s pheno­

menon~ in the notation o~ Figo2 this may be written as 

B - D C -- A 21 

In this particular case~ relationships 19 and 20 become 

22 

and 

23 

respectively~ Clearlv, if the dashes are discarded~ relation­

ships 21 , 22 and 23 are the same~ 

It is easily shown that the same property i.s possessed 

by the dual lozenge algorithm relationships 7 • 
Definition 1. if the relationships of a lozenge algorithm 

possess the property which has been described we shall refer 

to such an algorithm as being centre-symmetric. 

Partial differential equations derived from centro­

symmetric lozenge algorithms have a curious property. 

We first introduce 
' 

' ' . 

Def i.ni ti on 2. It' a system of two simultaneous f•irst order 

pBrtial differential equations in the independent variables 

x and y, and dependent variables~ x,y) and q x,y is given 

and the system remains 
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unchanged if x and y, and simultaneouslyA x,y and ~ x,y 

are interchanged, then this system is called self-conjugate 

We have the following simple 

Theorem 1. A system of partial differential equations 

deriving from a centre-symmetric lozenge algorithm is self­

.-conjugate. 

For example, subject to the interchanges described, the 

partial differential equations 11 become 

' . ' : . ' . ' ' . 

··~ ·r• • . .Jt ·x... ~·.' '1 'X, .;. 

i.e. the system remains the same. 

Multiple Lozenge Algorithms 

So far we have only considered dual lozenge algorithms 

• 

It is not difficult to envisage systems of distinct laze 

algorithm relationships concerning systems quantities t 

i=1,2J .. . , of the form 

C 

0 

However in the examples which have been given, and it ap­

pears generally to be true, the principle under which the 

partial differential equations of this paper have been de­

rived is as follows: the lozenge algorithms lead to differ­

ence equations involving for example the functions-~ · x-h, ~ 

~nd a· x+y,y+h; when these functions are replaced in 

the difference equation by their equivalent Taylor series ex-
, 

pansions., the function ~ x,t is cancelled from the equa-
• 

tion and after division throughout by there results an 

equation involving the derivative • 
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In the case of a, rp,C1ltiple lozenge a,1.gorithm o,f order higher 

than two, the above process leads to an eq~-~L.lon between, 

for example, x-h, y+h) and ~ (x+h, y+h): after these 

functions hav~ been replaced by their equivalent Taylor 

cancet from the resulting equation. 

Thus two is the highest order or the lozenge algorithms 

which can lead to systems of simultaneous first order partial 

differential equations. 

II.3 Properties of Partial Differential Equations 

Adjoint Partial Differential Equations 

As is vJe 11 known (_ 6 , p .13 systems of tiAJo simultaneous 

first order partial differential equations involving two de­

pendent variables do not always lead to one partial differen­

tial equation involving one of the dependent variables. How­

ever, let us assume for the purposes of the following defini­

tion that in the cases considered in this paper~ this is 

possible .. 

Definition 3. If we are given a partial differential equation 

with the dependent variable~ x,y, and another with the 

dependent variable x,y, then we shall say that two 

equations are adjoint if they may be derived by eliminating 

the dependent variables ~ x,y and ➔ x,y respectively 

from a system or two simultaneous first order partial diffe­

rential equations which relate these dependent variables. 

The reason for giving this phenomenon this name is 

that if we are giyen, for example, the partial differential 

equation sattisfied by ~ x,y, then we may adjoin to this 

equation the partial diff~8rential equation by 2 x,y and 

in this way proceed to a system of two simultaneous partial 

dlfferential equations of the first order which may be 
• 

• 

easier to handle than the original partial differential 

equation. This process is analogous to the use of the adjoint 

equation in the linear theory of partial differential equations. 

, 
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Theorem 2o Partial differential equations deriving in the 

first place from single lozenge algo·ri thms are self-adjoi.nt Q 

Classes of Partial Differential Equations 

Notation: We denote the argument sets 
' . 

")t. 1 ~ } 4 ) '2. 'ti "1 
. I r1 

'lt,, J ~IA -; ~ P A 

by D and D' respectively, 

·x... ~ ld Jl .:P't ~ i) ·~ 

by A and A' respectively 

and the 

and 

argument 
J 

sets 

Definition 4. Suppose that 

order partial differential 

two systems of simultaneous first 

equations 

-o 
") 

-0 26 

and 
-o 

27 
exist, and furthermore that either by means of a pair of sub-

stitutions of the rorm 

equations r6) are transformed into equati.ons 
/' 

means of a pair of substitutions of the form 
I ,~ ') /) 

' .:.z& <.")t 
4 

equations 27 
two systems 

differential 

1;6 c.... 

are transformed into 

and 27 are said 

class . 

equations 26, then the 

to be members of the same 

• Definition 5. If tn the conditions of Definition 4 the argu-

ment sets s' and S of equations 28 and 29 may be replaced 
' 

by the sets A' and A respectively, then the two systems 26 
and 27 are said to be members of the same analytic class. 

In the derivation of the partial differential equations 

of this paper some degree of generalisation may be achieved 

by letting the lozenges be of irregular size, and replacing 

the substitution 9 by 



However the resulting system of part:ial differenti.al equa­

tions belongs to tr1e same analyti.c class as the ori.ginal 

system, and in this general exposition where si.mplicity of 

presentation is to be desired, the substitutions (9 are ad-
• 

hered to. 

III Special Lozenge Algorithms 

III .1 The E -algorithm ;7_ 
rhe e-algorithm is a single lozenge algorithm whose 

relationships are 
(.'W\ +--t) 

f. ... s--4 

be described as follows. 
~-:.=.g 

it is formally possible ~8 to construct a double sequence 

F ' 
. i ' 

i,j=0,1. •o of rational functions of z. The function 

f • • is the quotient of two 
~,l 

polynomials, the numerator of the 

the denominator 

is characterised by the property that its series expansion 
~ 

in ascending powers of z agrees 
0 ... 

\,+ 
.iS 

M > 
M IP 

-· I 

with the series 

.. Specifically 

C 7L 'S s s·; 

where ~,. ~ is some power series expansion with in 
~ ='-+J t-4 

general non-zero coefficientso 

in a two-dimensional 

array the Pade array in which the rirst suffix i indicates 

a row number and the second suffix j a column number. 

The connection between the '£ -algorithm and the Fade 

array is this~ that if the £-algorithm relationships 31 

are applied to the initial values 
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l 
' 

33 

then 10 

. v, :. b., 4 J ... - • ; 

~ --= ...::, ~ > ..... r •+-- i ; .; e., 111 

We mention in passing that with the initial conditions 33 

the following determinantal formulae may be given 

.. 

• • 
• 

. 35 

' 

f 

I 
• 

Partial differential equations may be derived from relation­

ship 31 by making the substitutions 
(M n• 1i (~) -A 

1 38 

Ash tends to zero we have in turn 

' 

39 



.q. ,.., ~ 

The 1""t1..1nct.ions A~ tx,y ana 

fy the part:ial d.ifferential equation 

. ;f 7 
' ? 

(~) 
As has been said the quantities 

Pade array; i.f the grid variables 

£.~~ are members 01· 

the m and rare renlaced .... 

by continuous variables x and y and the dimensions of the 

grid are red·L:.i.ced, then the Pade array may be regarded as 

points on a Pad~ surface~ Equation ·40, which is satisfied 

by the function ·~ (x,y is the partial differential equation 

of the Fade surface. 

The f -algorithm is centro-symmetr.ic. 

Theorem 3. Equations 39 are self-conjugate 

The f -algorithm is a single lozenge algorithm. 

Theorem 4. Equation 40 is self-adjointo 

There is a further property which is possessed by the 

solutions to the partial dirferential equations which may be 

derived from the € -algorithm. Subtracting the .first of 

equations 39 from the second we see that the Jacobian 
• 

va:1.ishes. 

Theorem 5o If the pair of functions A€ x,y and 

any two soluti.ons of equations (39 then a functional relation­

ship of the form 

·-- 0 

prevails between theme 

The q-d algorithm is a dual lozenge algorithm whose re­

lationships are 



-16-

In Numerical Analysis the maj_n application. of tr1e q-d. 

a.lgori thrr1 i~3 i•r·1 the spectral decomposition of a sec1uence of 

j_terateso Ir1 Ana.l.ysis the q-d algori.thm is sJ~gnificant. for 
$ 

the following reason~ Given a power series ........ c~rz. i.t is 
~~c;., 

formally possibl.e to construct a continued fraction o:f the 

form 
~ 11 <~ ,~ <~) <~) "1 e s c~~ -1 z ee1 z iP f 43 c~z ·t- a:t£J• 

·-"'· -◄s.1;- :•z:1 ,,. 
et, -- (I- ~ ., 

1 \-=--o 1 ,1 1 · ... ,,. '1 <ll:0 
er::rr~ 

,C:: jflj • • 

the so-called corresponding continued fractio11) wnose coef­

ficients are uniquely determined by the power series expan­

sion relationships 
~ 

s ~ 
Cs z •+ c~·, 

~:::.-0 
1-

• 

~v ..,_. ~~ z ·+ -s·z 
S,,~~ S--·~·•~ 

• ~ 
~ 

~-'1 \.~) I (~) ~, f $ ,, C . S 
~ er ·z • ,a 

z eAz z ~-+ -a C -~ ' ~ -~ 
. 

sZ + a'\, ~ '£-=- ~t-J cl> ~ IY 
~---=--@ 

• s.: 0 ~ 
• 

1 ·- /j 1 • ,. co r 'T _., • 

I t 
-P~ . - z where - ....... ~ ~ and «: .....,,.'-,,, are two power series ex-.S.·.::J..M-t--L ~ z,..-~._..1re 

pansions with in general non-zero coefficients. If the q-

-d algorithm is applied to the initial values 

c~ 
45 

then the coefficients of the continued fractions 

43 are the quantities occurring in relationships 42 . 

1 

We mention in passing that if we denote the Hankel deter~ 

minant 



.. 

by with 
. 

4fi /: 

then it may 1Je sr1r.)wn that the quantities obtained by applyi.ng 

the q-d algorithm relationships to the initial conditions 

45 are given by· 

Partial differential. equations may be derived from the 

relationships 

(W\) 

~ 

by making the substitutions 
(~') .. . 

e , ·::. ... e -x: ) 

Ash tends to zero, relationships 42 become 
49 

The functions q x,y) and e x 11 y separately satisfy tr1e par­

tial differential equations 

) 

• 

52 
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course, an adjoint system. 
(~) . ~1 

coeffi.cients , and e ~ may be regarded as 

poi.nts on two surfaces 

eq11at ions 

q~x,·y a11d e x.,y ; we may speak of 

as being the partial di.fferential 

equations of the corresponding continued fraction coeffic~ent 

surfaces 
The q ·d algor~ithm 1s centre-symmetric. 

Theorem 6. The partial differential equations 50 are self-

conjugate. 

Note: When conducting experirrents in the application of the 

q ~d algorithm, H.F1.1.ltishauser noticed a n·umerical phenomenon 

closely akin to shock waves: this corresponds to the case in 

which the equations 49 form a hyperbolic system. 

To conclude this section on the q-d algorithm we describe 

a remarkable phenomenon concerning the solutions of the par­

tial differential equations 50 and their first order finite 

difference approximations 42 . 

Clearly, two solutions of 50 are 

These conform to the initial conditions 
(Wi) 

e ·-.O 
0 

in 42 . In order to derive solutions of 42 corresponding 
to 

use may be made of the following result 

and 48 

then 

' 

t,✓' 57 
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Substituting 

in 

42 

the sol.utions of the finite di.fference equations 

seeri to be 
(~orb 

S2, e 

i.eothey agree with 53. 

e 
b 

e 
59 

The meaning of this result is as follows: if we wish 

to solve the partial dirferential equations 50 subject to 

certain initial conditions and replace the partial differen­

tial equations by first order finite difference approximations 

then no matter how large the resultant truncation error may 

be, the agreement between the finite difference approximation 

and the analytic solution is exacto 

Note~ The same phenomenon may be observed when considering 

the solutions • 

• p 

but this case is somewhat trivi.al, since the truncation 

error introduced by replacing the derivatives by first dif­

ferences, i.s zero. 

III. 3 The t'irst g-algorithm 

This, a dtlaJ lozenge algori tt.1t·r1 ~ is i.n essence a gene­

ralisation of the q-d algorithm; a displacement factor 

is introduced into the formulae which run . 
.,... cw., (~l ~ ~, (\llf\~r> b' ~l 

'9 c:, "l.3---41 (, ,,. > ~~ 
61 

• 

' ( <~~) 
.-

( ::) 2.$· ~ 
p -

Partial 

61 by 

difr--iierent ·~ .al equations may be derived from r·t:;.La.tions 

making the substitutions 
.;I 

(M) 
]J 'LS J , 62 

• 
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Ash tends to zero, ther~ follows 
I 

III.4 The Second g-algorithm 1>_ J 

is a variant of 
~1 

q-d algorithm. Quantities satisfy the relationships 
'S 

the 
(WI; a-,ia) 

J 

·- c::, Jt. 2..-S. c ...... ., "ii,:\-~ 

(t,y .. ) 
I 

y t.~hf .. 

Partial differential equantions may be derived ~rom relations 

64 by making the substitutions 
(iri-1) c~-"i.) 

J 

Ash tends to zero, ther~ follow 

' 
We conclude this 

remarking that if the q-d and the first and second g-algorithms 
-

are used to extend the 

which correspond, it may 

duced are inter-related. 

array from sets of initial conditions 

be shown that the quantities pro-

ir_'\ ,:A_\ 
More 

algorithm 
("1\) 

preci~ely, if 

are proc.uced 

-- (WI-' e ·-- o 0 :, --1 

the quantities 
I (IN\) 
"""' s Of 

(VA\ I (\IA) 

0 ) 

the quantities 

from the initial 

,Jv J \Jl-"I 
'f .) e~ of the q ·d 

concitions 

the first 

........ c~1 
g-algorithm from 

, 



and the quantities 
, 

~) 

then the following 

; (~ 
0 

✓ (~) 

_ 2.lr·-'2., 

,·IN,.) 
• 

A 
9 '2.S~ 
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-~ of the second g-algorithm from 
(~ ... , 

; 
;;;~ 
C:,·~ 

• 
C ~ ., .. 

) 

relationship~may be shown 

l~) ~· (W\1 
'S ) -.. 62.3-;;t 

t~) 
; 

(fM-1 

~At 

to obtain 

,_<~) 

7o 

These relationships may be transformed into functional 

relationships between the solutions of the partial differen­

tial equations 50, (63) and 66 which result from sets of 

corresponding initial conditions. 

If the functions e x,y, (x,y are produced from the 

initial conditions 

the functions Q x,y 
'°'D 

I ,,. .. 

and the functions~­

tions 

then 

• , 

O· ) 

. 

" Q ·., 
(:) 

.. _ 

• 

" ., 

.. 

x.,y 

.. 

71 
from the initial conditions 

J 72 
x,y from the boundary condi-

.. 

J 

... 
I 

-
,I-A ••• 

NI 1 L -&., 

Theorem 7. The system of partial differential equations 50, 
63 and 66 are merr.bers of the same analytic class. 

III.5 The -algorithm 
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This is a dual lozenge algorithm whose relationships 

are 

(MhB)-A 
' 

~ +-~ '3 iu.--..4 .. ,t--

(~Hit ·•;,1 

'L,f; 
• 

Partial differential 

ships 76 by making 

equations may be derived from rPlation­

the substitutionE 
• 

(M 
"X- ' 

) 

(Ml\) 
~ -- '2.- I 

Ash tends to zero th< r1 follow 

• 

) 

77 

The functions ...\ · and a. separately satisfy the partial 

differential equations 

•• J 

• + 

and 
) 

.......... 

80 
The partial differential equations 79 and 80 form, of 

course,an adjoint system. 

The · -algorithm is centro-symmetric. 

T'1eorem 8. The partial differential equations 78 are self~ 
conjugate 



the 

t.he 

and the qu·an~i·t~P~ 
• \.J -· J., ... •' :::::, 

conditions 

... C • 

then 

of· ·the 

) 

•'' D 

ar·e --~ela· ·ted by ,. .., L ,. - .- ~ . 

M-1>2J- u 

(82 

f -algorithm from the initial 

U .fr-A 
i 

(~M·l (IM.) ,, ·A . - ;• . 

(84 
2/4 ~ 

Again these relationships may be transformed. intu 

functional relationships between certain solutions of the 

partial differentj_al equations (39) and (78). 
If the fu.:r1ctions 

initial conditions 

then 

• 

~ 

O· ) 

-- 62.. ') 

A 

2. f.1, - A 

~£~ - ~ 

0 
) 

from the 

85 

(87 

Theorem 9- The partial di.fferential equations 39 and (78 
are members of the same differential classo 
III.6 The -algorithm 14-

This is a single lozenge algorithm whose relationships 

are 
• 
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~ (~M) (kt-11 
• 1%> 

"i- 62. ~ ~ 1 •• IP 

Its principal application in Numerical Analysis is in the 

transformation of slowly convergent series. 

If the cuantities 
t~) 
s are constructed from the initial 

• 

values 

'O 

it may be shown that 

r ~ 

n~-----------------------------
il-JI ~' V'" . 

Mt-1 ...... wi.~ 1 W\,~ 

~ -=- ~ .I 1., .. .. ~ ) l1 

~.~ 

VV\~ ~) ..... ) - M~ f 

-----------------------------

M,~ 
MH ~~ 

\'- t-A , -) 

.. ,- .,,,,,~ J ·-
' 

where the numeratJrs and denominators in these expressions 

Partial differential equations may be derived from re­

lation 88 by making the substitutions 

(IN\ -=- (IN\) 
~ ?I , .. -1 I ) 'l-4 ..,_ ~ 

Ash tends to zero we obtain 

The functions~- and~ separately both satisfy the partial 

differential equation 

-

91 



Th.e 

\"1 e h.a "'v e 

T~r1e or·em 11 . 

any· tv,10 

ship of the form 

• 

prevails beti1een t~em~ 

IV co·nclusior1. 

-.. .. .. ,. 
- -~-,) ~' lo.UM· . ' _, 

1e, ~ / 7"" O· 
u 

Tr1e de:r .1 vat~ .i on of' t r:;.e par··t :i a.l dif f eren.t ial. eqtl~a ti ons ·r,e­

sult ing from certa:1n lozenge algc•r1thms and the d.escription 

of their formal properties, which were announced in the 

introduction, has now been completed. We remark that a theory 

of the types cf initial and boundary conditions wh:ich are 

necessa·ry .f•:rr, a solut ior1 to triese eq·uations to e.x:i.st., haE 

been constr11cted; b1~t at the present time this somev1hat 

speculati.ve and incomplete, and we do not examine this aspect 

of the theory herew 

w·hen cons:ide:r.1.r1.g questi.or~s r'elati.rig to t:r1.e ex:istence and 

uniqu.eness s1f· tl1e solutions ofj a partial di.f.f'ere·n·ti.al equation 

it is often of grea~ ass!stance if explicit solut:ions to a I'i­

nite d:ifference equation appr1oximati.on tc the partial d.ifferen-

tial equation can 

of this paper, if 

In the case of all the algorithms 

·the initial conditions are chosen in acer-

tain manner, determinantal formulae for the sol.u·tions of the 

algori.th.mic rel.atioriships can bei derived (:i.n ce·r .. ta.i•t1 cases such 

formu.lae ha.ve bee~1 g~i vet1) o Th.is property may v-.rell. :f~ac. ili tate 

further researchJ and makes the algorithms of this paper parti­

cularly j_nterest1ng~ 
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