
STICHTING

MATH_EMATISCH CENTRUM
2e BOERHAAVESTRAAT 49

AMSTERDAM

REKENAFDELING

MR 76

Orthogonal design

and description of

a formal language

by

A. van Wijngaarden

Premature and preliminary

edition, intended for use

by IFIP WG 2.1 only

October 1965

Rll:H.l<i!It!EE!r. MATHEMATISCM CENTflUM
AMSTERDAM

PILlnted at .the Mathema:tlc.ai. Cen:tlte, 49, 2e BoeJt.haavut:Jutat 49, Am6.teJtdam.

The Mathema.tic.a.i. Cen:tlte, fsounded .the 11-.th ofs FebJW.aJUJ 1946, L6 a. non
pMfsU -ln6.t,ltu,,tlon alming at .the pMmoUon o0 pWte mathematlc.6 a.nd U:1,
a.ppUca.tioYl-6. I.t L6 .6pon60Jl.ed by .the Ne.thrvci,a.ndJ., GoveJLnment :thJtough .the
N e.thrvci,a.ndJ., 01tga.nlzatlo n fsoJt .the Adva.nc.ement o O PUite Ru eaJtc.h (Z • W. 0.) ,
by .the Mu.nlcupaU..ty ofs Am!>.tell.da.m, by .the UnlvVL6-l.ty o0 Am6.teJLda.m, by
.the F1tee UnlvVL6-l.ty at Am!>.tvr.da.m, a.nd by -lndU6.tJue1.>.

Amsterdam, 4th April 1972

One of the basic documents in the history of ALGOL 68 is MR 76, Orthogonal

design and description of a formal language. It was only made available to

members of the IFIP WG 2.1 at its meeting in St. Pierre de Chartreuse in

October 1965. It was never properly published by the Mathematisch Centrum,

since its state was too premature and the following developments of ALGOL 68

made the paper rather obsolete. However, there have been so many requests in

the course of time to get a copy that this reprint is made available. On

purpose, I did not correct any of the many misprints and more serious errors

in it, but just have added the coverletter of October 22 and the list of

errata and amendments of October 24 which were available before the meeting

started. Moreover, it has been slightly reduced in size in order to distin

guish it from the original edition. Actually, one of the reasons why this

reproduction came so late, was that I could not find a copy which was not

covered with remarks and so on. Lately, however, I found a clean copy, suit

able for reproduction.

A. van Wijngaarden

,,

Amsterdam, October 22, 1965.

Dear WG 2.1 member or affiliate,

Herewith you receive a very premature copy of report MR 76 to serve as a
document during our meeting in Grenoble next week. I apologize for not
producing it earlier but only without a great effort I got it sufficiently
in shape so that it might fulfil its purpose at all. During July of this
year I had the privilege and pleasure to have Niklaus Wirth as guest at
the Mathematical Centre, who prepared here his document MR 75. I enjoyed
tremendously the discussions, that we had on the design of ALGOL X and
also accept several of his concepts which have been put into it. However,
we disagreed on some points and I promised to make a number of amendments
on these points. My main objections were certain to me unnecessary restrictions
and the definition of the syntax and semantics. Actually the syntax viewed
in MR 75 produces a large number of programs, to very few of which the
semantics attribute a meaning, whereas I should prefer to have the subset
of meaningful programs as large as possible, which requires a stricter
syntax. Of course, this has nothing to do with my appreciation for the
work of Niklaus.

When I started to phrase my thoughts immediately afterwards it soon came
out that some better tools than the Backus notation might be advantageous,
though I did not want to use my other symbolism that you know from the
report MR 74 by De Bakker. I developed a scheme which is explained in the
first section, which enables the design of a language to carry much more
information in the syntax than is normally carried. As to the design of a
language I should like to see the definition of a language as a Cartesian
product of its concepts. I tried to find which concepts were involved in
the work of Wirth and' added a few ones. I made some models and the last
version of this was written down in a hurry. Since its scope is greater than
the design of ALGOL X, which is only used as an example, it is intended
after some amendments have been made and some missing chapters have been
added to become an official publication. Since it was written down in such
a hurry there was no time to check the sections completely against one
another, but the fact that e.g. the word compatible does not occur in the
text does not mean that this concept has not been fully incorporated by·means
of the syntactical construction.

I had no time to generalize some notions, because also the declarations
obviously can be considered as expressions of a type, declarative say.
Moreover parallel elaboration of expressions has not been included, but I
hope to have the amendments for this, which will only cause a change here
and there, ready for the time of the meeting.

Looking forward to see you in Grenoble,

yours truly,

~_y~
~gaarden,
Mathematical Centre, Amsterdam.

,,

24 - 10 - 1965,

A. VAN WIJNGAARDEN. Errata and Amendments to MR 76.

1. Contents. 14: For "active expressions" read "active value expressions".

2. Basic constituents. Semantics. 3rd line from below: For "lexicographic"

read "lexicographical".

3. Identifiers. Semantics. 5th line from below: For "en" read "or".

4. Values and value denotations. Syntax. 4th line from below: For "comma A"

read "comma S".

5. Id. Semantics. 11th, 12th line from below: For "row value" read

"row of some type value".

6. Blocks. Syntax. 5th line from above: For "VE" read "active VE".

7. ibid. 6th line from above: For ",semicolon S" read ":points; semicolon S".

8. Declarations and designators. Syntax. 2nd line from above: For "VMD"

read "UMD".

9. ibid. 10th line from above: For "opening" read "closing" and for

"closing" read "opening".

10. ibid. Semantics continued. 15th line from above: For "of lower" read

"of the lower".

11. ibid. 15th and 16th line_ from below: For "an unspecified order" read

"parallel".

12. Expression. Semantics. 1st and 2nd line from above: For "type" read

"type and kind".

13. ibid. Add at bottom: "The elaboration of an expression which consists

of a number of simple expressions separated by also symbols exists

of the elaboration of those simple expressions in parallel, i.e. a

sequence of units of action made up by an unspecified merging of the

sequences of units of action which constitute the elaboration of the

simple expressions themselves. The elaboration of an expression may,

moreover, appoint a so-called successor of that expression. The

elaboration of a jump appoints its successor explicitly (cf. active

value expressions). The successor of a block or designator whose

elaboration is terminated by the elaboration of a jump is the

successor of that jump. The successor of anyother expression which

is the choice of an expression option which is followed by a block

separator containing a semicolon symbol is the expression which

follows that block separator. All other expression have no successor",

14. Location expressions. -Semantics: Delete the last three lines, i.e.

"The result ••• following it".

15. Value expressions. Syntax: For "UXE." read "UVE, also S, simple UVE;

UXE.".

16. ibid. 3rd line from below: For "The order in which the operands are

evaluated is left undefined" read "The operands are elaborated in

parallel".

ibid. 1st line from below: For "evaluation" read "elaboration".

17. Three value expression. Semantics. 2nd line from above: For "Some

unspecified order" read "parallel".

18. Active expressions. Title: For "Active expressions" read "Active

value expressions".

ibid. Syntax. 1st line from below: For "jumpS" read "goto S".

19. ibid. Semantics. Delete first three lines, i.e. "The elaboration ••• units".

·ibid. Delete lines 12 uptil 17, from above, i.e. "The successor of a

block ••• has no successor".

ibid. 2nd line from below. For "some order" read "parallel".

20. Declarations and designators. Syntax. 2nd line from above: For 11UMED."

read "UMD, also S, simple UMD.".

21. ibid. Between 2nd line and 3rd line from above: Insert "simple UMD:

announcing UMD; UMED."

22. ibid. 3rd line from above: For "simple" read "announcing".

23. Declarations and designators. Semantics Continued. 5th line, 7th line,

11th line from above: For "simple" read "announcing".

24. ibid. Between 17th and 18th line from below: Insert "The elaboration

of an declaration which consists of a number of simple declarations

separated by also symbols exists of the elaboration of those simple

declarations in parallel (cf. expressions).

25. Language and Metalanguage. Syntax. 2nd line from below: For "UMW"

read "UM".

Contents

0 Title page

1 Language and metalanguage

2 Basic constituents

3 Identifiers. Sequences and lists

4 Values and value denotations

5 Programs

6 Options

7 Blocks

8 Declarations and Designators

9 Expressions

10 Variable expressions, Location expressions, Value expressions

11 Complex, real and integral value expressions

12 Logical and binal value expressions

13 String value expressions, Tree value expressions, Row of some

type value expressions

14 Active expressions

15 Conventions

16 Letters

17 Basic symbols

Language and Metalanguage.

Syntax.

A

B

complex

logical

real ; integral.

binal.

C specification.

D declaration.

E expression.

F string S, letter, digit, bit.

G UMI , Q, E, VN .

H UM ; UME ; UMW

I identifier.

J K ; JRK.

K VN ; KVN.

L location.

M V; L ; X.

N denotation.

0 operator.

P parameter.

Q UME, YNP.

R row.

S symbol.

T

u
A

T

B ; string

TJR.

V value.

W YP;YPW.

X variable.

Y UMW ; UMWI.

Z actual, formal.

Semantics.

label.

tree active.

The strict language is a phrase structure language, defined by a formal system,

which uses the notation and the definitions explained below.

The structure of the language is determined by the three quantities:

Tl, called the set of basic constituents of the strict language,

T2, called the set of syntactic entities,

T3, called the set of syntactic rules.

Moreover are defined

T4, the set of all possible sequences of members of Tl, and

T5, the set of all possible sequences of members of Tl and T2.

Language and Metalanguage continued.

Members of these sets will be denoted by tl, t2, t3, t4 and t5 respectively

and different members of one set by using apostrophes or subscripts.

Any t2 is denoted by a word or word sequence, i.e. a sequence of small metaletters,

possibly separated by me~aspaces. Small metaletters are typographical symbols

used in this description of the language. Metaspaces are blanks between words.

Any t3 has the form

t2 : t5.

where t2 differs from t5.

Definition 1: t5' is said to be a direct production of t5 iff there exist

possibly empty sequences t5'' and t5''' and a t2 and a t3 such that t5 =

t5''t2t5 11
I ',t5'=t5' 't5' I 't5 1111

, t3=t2 : t5' II'

Definition 2: t5' is said to be a production of t5 iff there exists a set

t5(0), t5(1), ... ,t5(n) such that t5=t5(0), t5(n)=t5' and t5(i) is a direct

production of t5(i-1) for all i=l, . .. ,n.

Definition 3: A terminal production of t5 is a production of t5 which is a t4.

The elements tl, t2 and t3 are defined through enumeration in the sequel under

the heading Syntax. In order to attribute a meaning to syntactic entities,

explanations are given in the sequel under the heading Semantics. When words

or sequences of words are used under Semantics that are defined under Syntax,

then they refer to this definition. It is recognized that the structure of

the English language may cause deviations from the words used under Syntax and

understood that partly capitalized forms, plural forms, split forms and

generalising forms will be properly interpreted.

The formal system itsel1is a phrase structure language, called metalanguage,

which can be defined analogously. Its basic constituents are the names of the

syntactic entities of the language and their constituting words. Its syntactic

entities are denoted by a capital metaletter. A set of syntactic rules is

defined by the rules given above under Syntax. These are to be interpreted

by means of the following proces.

Process 1. Each rule containing a I I ,

' '' is replaced by two new rules. The

first new rule is the part of the rule before that '' '' followed by a''

and the second new rule is the part up to and including the '' : '' followed

by the part of the rule after that '' ; ''. This action is repeated until each

'' ; '' has been eliminated.

The capital metaletters used in the sequel under Syntax have no relation with

the capital letters occurring under Semantics, but refer to the syntactic

entities of the metalanguage. rhe rules occurring in the sequel under Syntax

stand for one or more syntactic rules of the strict language. They are to be

interpreted in the following steps.

I I

Language and Metalanguage continued.

Step 1. The process referred to above as Process 1 is performed.

Step 2. If a rule contains a capital metaletter then this is replaced at each

occurrence of it in the rule by the same arbitrary terminal production of it.

Step 2 is repeated until each capital metaletter has been eliminated.

Some syntactic entities of the metalanguage produce only one word and serve

only to shorten the text. Others produce more words and give rise to a corresponding

number of syntactic rules of the language. This number may be infinite.

The definition given sofar defines the strict language. The language is a

phrase structure language which is defined as follows. Any terminal production

of a specific entity of the strict language, called "program" may be subjected

to a number of notational changes which are defined in the section on conventions.

Any text obtained in that way is a production of that same entity "program"

when viewed as a syntactic entity of the language.

Basic constituents.

Syntax.

basic constituent : basic _S

S : basic S ; non basic S.

string.

basic S : string quote S ; non basic S.

string S : basic string S ; non basic S.

basic string S : letter value S ; delimiter.

value S : digit ; logical VN ; bit ; active VN.

Semantics.

The existence outside the realm of the language of a set of information carrying

entities, called characters, is recognized. Certain characters or compositions

of characters are referred to in the language as symbols. Neither the set of

available characters nor the full set of available symbols will be discussed

here. Certain symbols are called basic symbols. They are basic constituents of

the language and are syntactically defined by enumeration. All but one, the

so-called string quote symbol, form together with the other, non basic symbols

the set of so-called string symbols. They are references of all characters or

character compositions, coherent sequences of zero, one or more of which are

referred to in· the language as strings. Strings are the other basic

constituents of the language.

For letterscf. the section on letters, for strings and value symbols the

section on value denotations and for delimiters cf. the section on delimiters.

The text of the program is considered to be presented as an ordered sequence of

symbols. This order will be called the lexicographic order. Typographical display

features such as blank space and change to a new line do not influence this

order, but may be used freely for facilitating reading.

Identifiers.

Syntax.

I : letter

HI : I.

Semantics.

I, letter I digit.

Identifiers have no inherent meaning, but serve for the identification of

quantities, labels and formal parameters. They may be chosen freely.

Every identifier occurring in the program must be defined. If it identifies

a quantity then it is defined by its occurrence immediately following the

declarator in a declaration of a quantity. If it identifies a label, then it

is defined by its occurrence in a label definition. If it identifies a formal

parameter, then it is defined by its occurrence as a formal parameter. The

identification of the quantity, label or formal parameter identified by a

given occurrence of an identifier is determined by the following process:

First the smallest block embracing the given occurrence is considered.

Step 1: If the identifier is defined within·this block by a declaration of

a quantity or by a label definition, then it identifies that quantity or that

label.

Step 2: Otherwise, if that block is a declared meaning, and if the identifier

is identical with a formal parameter in the immediately preceding formal

descriptor, then it identifies that formal parameter.

Otherwise, the process is repeated considering the smallest block embracing the

block which has previously been considered.

If either step 1 en step 2 could lead to more than one quantity,_label or formal

parameter, then the identification is undefined.

The scope of a quantity, a label, or a formal parameter is the set of occurrences

of the identifier which by the given process are shown to identify that quantity,

label, or formal parameter.

Sequences and lists.

Syntax.

F sequence

G list : G

Semantics.

F; sequence, F.

F sequence, comma S, F.

The elements of sequences and lists have successive ordinal numbers running

from one upwards.

Values and value denotations.

Syntax.

VN : single VN ; structured VN.

single VN: AVN ; BVN ; string VN

structured VN : tree VN ; TJRVN.

active VN.

complex VN : complex number N; real VN.

complex number N: real part N, imaginary part N.

real part N: real VN.

imaginary part N : plus i times S, real VN.

real VN: real number N integral VN.

real number N : unsigned real number N

unsigned real number N : fixed point N

mines S, unsigned real number N.

floating point N.

fixed point N integral part N, fractional part N.

integral part N unsigned integer N.

fractional part N : point S, digit sequence.

floating point N : unscaled part N, scale factor N.

unscaled part N: fixed point N ; integral part N.

scale factor N : times ten to the power S, integral VN.

integral VN : unsigned integer N ; mines S, natural number N.

unsigned integer N: zero S ; natural number N, digit.

natural number N figure natural number N, digit.

figure : one S two S ; three S ; four S ; five S ; six S

nine S.

digit : zero S ; figure.

logical VN true S ; false s.

binal VN : bit sequence.

bit : flip S ; flop S.

string VN : string quote S, string S sequence, string quote S

string quote S, string quotes.

seven S eight S

tree VN opening bracket S, closing bracket S ; opening bracket S, VN list,

closing brackets.

TKVN : TK, comma A, TVN.

TJRVN : opening brace S, TJ, closing brace S.

TJRKVN : TJRK, comma S, TJRVN.

active VN : vanity S.

values and value denotations continued.

Semantics.

A value is said to be either a simple value or a structured value, i.e. an

ordered set of values, and to be of a certain type. The following types of

simple values are distinguished.

complex value, i.e. a complex number, a special case of which is a real number.

real value, i.e. a real number, a special case of which is an integral number.

integral value, i.e. an integer.

logical value, i.e. either true or false.

binal value, i.e. an ordered sequence of bits, a bit being either flip or flop.

The number of bits is called the length of the bit sequence. The

elements have ordinal numbers running from one to this length.

string value, i.e. an ordered sequence of string symbols. The number of symbols

is called the length of the bit sequence. The elements have

ordinal numbers running from one to this length.

active value, i.e. only vanity.

The following types of structured values are distinguished.

tree value, i.e. an ordered set of values.

and an infinite number of different types of

row value, i.e. an ordered non empty set of values of equal type. The number of

elements is called the width of the tree value or row value.

The elements of a tree value other than the empty set and of a row value have

successive ordinal numbers. The lowest and uppermost ordinal numbers of the

elements of a tree value are one and the width of the tree. The lowest and

uppermost ordinal numbers of the elements of a row value are given by the values

of the lower bound and upper bound which occur in the associated declaration.

Associated with a value is a value denotation which is syntactically defined for

all value types, i.e. a conveniently chosen sequence of basic symbols which can

be handled in the language or by the computer. With the operations on values

which are a part of the information processing to be described, correspond also

operations by the computer on the value denotations it uses.

Programs.

Syntax.

program: active VE.

Semantics.

The elaboration of a program written in the language describes the processing

of information performed by a computer, i.e. an automaton or a human being.

The language distinguishes different kinds of quantities which are involved

in this process and assumes the existence of a fictitious computer. In the

computer quantities are represented by means of an internal denotation and for

each kind there exists a fixed set of different denotations. The computer disposes

over a number of discrete information units, each of which is of a fixed kind,

has a specific location and contains an arbitrary quantity of its kind.

The contents of certain information units, said to contain an instruction, may

cause the execution of a part of the process, in which the contents of other

information units, said to contain a value of a certain type, may be replaced

by another value of that type, followed possibly by the stimulation of an

information unit of the former kind to execute the next part of the process.

In the language a specific denotation for values and instructions is used

which together with the highly recursive definition of the language admits to

handle and to distinguish between arbitrarily long sequences of basic constituents,

to distinguish between arbitrarily many different values of any given type but

two and between arbitrarily many types, which admits arbitrarily many quantities

to occur in a program and which admits that the execution of a program involves

the execution of an arbitrarily large, not necessarily finite number of

executions of instructions.

This is not meant to imply that either the internal denotation of quantities

in the computer is the denotation used in the language on that the computer admits

the same possibilities. It is, on the contrary, not assumed that the computer

can handle arbitrary amounts of presented information. It is not assumed that

the two denotations are the same or even that a one to one relationship exists

between them in that the set of different internal denotations of quantities

of a given kind may be finite and that the number of kinds for which this set

is not empty may be finite. It is not assumed that the number of information

units is sufficient to cope with the requirements of a given program and it is

not assumed that the speed of operation of the computer is sufficient to execute

Programs continued.

a given program within a prescribed lapse of time.

A model of the fictitious computer, using an actual machine, is said to be

an implementation of the language, if it does not restrict the use of the language

for other reasons than the ones mentioned above. Otherwise, if additional

restrictions can be formulated defining a language whose programs are a subset

of the programs of the language then a model is said to be an implementation

of a subset of the language if it does not restrict the use of the language

for other reasons than the ones mentioned above and those additional restrictions.

A sequence of basic constituents which is not a program but can be turned into

a program by a certain number of deletions or insertions of basic constituents

and not by a smaller number is said to be a program with that number of syntactical

errors. Any program that can be obtained by performing that number of deletions

or insertions may be called the possibly intended program. Whether a program

or one of the possibly intended programs describes the process that the writer

of it intended to describe is a problem outside the realm of the language.

Options.

Syntax.

Q option basic Q ; if c~ause, Q, else S, Q option;

r
I

case clause, opening parenthesis S, Q list, closing parenthesis s.
if clause if S, logical VE, then S.

case clause : case S, integral VE, of s.

Semantics.

An option is a syntactical construction which displays a number of constituting

constructions. The elaboration of an option determines a constituting construction,

called the choice of the option.

The elaboration of an option is a unit of action which may consist of smaller units

of action, viz. the elaboration of other options and of expressions.

The choice of a basic construction is that basic construction.

The choice of an option which begins with an if clause is made after the

elaboration of the logical value expression contained within it. If its value

is true then the choice is the construction between the if clause and the else

symbol. If its value is false then the choice is the construction following

the else symbol. If its value is undefined then the choice is undefined.

The choice of an option which begins with a case clause is made after the

elaboration of the integral value expression contained within it. The choice

is the element of the list of constructions whose ordinal number equals the

value of that expression. If this value is undefined or if no element with that

ordinal number exists then the choice is undefined.

Blocks.

Syntax.

block: UM block.

UM block opening parenthesis S, UM block body, closing parenthesis S.

UM block body UM block tail ; declaration, semicolon S, UM block tail.

UM block tail UME ; UM block E, block separator, UM block tail.

UM block E : UME ; VE.

block separator, semcolon S ; block separator, label definition.

label definition : label, colon S.

label : label I.

Semantics.

The elaboration of a block is performed in the following steps.

Step 1: If an identifier occurs within the block which identifies there another

quantity, label or formal parameter than it would do at the place from where

the elaboration of the block is initiated, then it is replaced within the block

by an identifier which is defined neither within the block nor at that place,

and step 1 is repeated. Otherwise step 2 is performed.

Step 2: If the block contains declarations, then these are elaborated.

Step 3: The lexicographically· first expression of the blocktail is considered.

Step 4: The considered expression is elaborated. If this elaboration appoints

a successor within the blocktail, then its result is ignored, the successor is

considered instead and step 4 is repeated. Otherwise this elaboration is said

to terminate the elaboration of the block, and its result is the result of the

block.

Declarations and designators.

Syntax.

D: UMD.

VMD : simple UMD ; UMED.

simple UMD: UDS, MDS, UMI list.

UMED : UDS, MDS, formal UM descriptor, equals S, UM meaning.

UM designator: actual UM descriptor.

UM meaning: quotation S, UME, quotation S.

ZUM descriptor: UMI ; UMWI, opening parenthesis S, ZW, closing parenthesis S.

ZYPW : ZYP, P separator S, ZW.

P separator S : comma S ;

opening parenthesis S, letter sequence, closing parenthesis s.

formal YP: YCS, YI.

UMCS : UCS, MCS.

UMWICS : UMCS, IS ; UMCS, WCS, IS.

YPCS : PS ; YCS, PS.

YPWCS : YPCS , WCS .

TCS : TS.

TJRCS: TS, RS

KR.CS : RS.

TS, JRCS

JRKRCS : JRCS, RS.

TDS : TS.

TJRDS : TS, JRDS.

KRDS : RS, bound pair.

TJRDS.

bound pair: opening bracket S, lower bound, col©n S, upper bound, closing bracket S.

lower bound integral VE.

upper bound integral VE.

JRKRDS : KRDS , JRDS .

actual UMWIP : UMWINP.

actual UMEP : UMENP; UMEVP.

YNP : YNP option.

basic YNP: quotation S, Y, quotations.

UMEVP: UME.

Semantics.

A declaration of a certain type and kind is a denotation of one or more

information units of that type ·and kind, called the result of the declaration.

The elaboration of a declaration determines its result. It is a unit of action

Declarations and designators continued.

which may involve other units of action, viz. the elaboration of expressions.

It establishes an information unit of the type and kind whose declaration

symbols occur in the declaration, for each identifier in the list which

occurs in the declaration·and whose location is that identifier.

The contents of the information unit established by a simple declaration of

a single type is a value of that type which is left undefined.

The contents of the information unit established by a simple declaration of tree

type contains a reference to a sequence of information units, which sequence

is not established, and whose locations will be the location of the former·

information unit subscripted with an ordinal number which will run successively

from one upwards. The contents of the information unit established by a simple

declaration of a type which is row of another type contains a reference to a

sequence of information units of that other type and whose locations are the

location of the former information unit subscripted with an ordinal number which

runs successively from the elaborated value of lower bound up to the elaborated

value of the upper bound, which values also-are part of the contents of the

former information unit.

The contents of the information unit established by an expression declaration

contains moreover a reference to the text of the expression which is contained

in its meaning and if the formal descriptor contains formal parameters also

references to information units whose contents are those formal parameters.

A designator is elaborated in the following steps.

Step 1. All actual value parameters, if any, are elaborated in an unspecified

order.

Step 2.A fictitious copy is taken of the text of the expression to which the

identifier of the designator refers, and enclosed between parentheses, to make a

block of it.

Step 3. In this block identifiers are changed as described in step 1 in the

section uP blocks, where the place from where the block is initiated is

understood to be the position where the designator occurs.

Step 4. In the modified block each occurrence of a formal parameter that

corresponds with an actual denotation parameter is replaced by the text of the

expression contained within it and each occurrence of a formal parameter that

corresponds with an actual value parameter is replaced by either the text or

the location of that actual parameter depending upon whether the formal parameter

occurs as value expression or not.

Step 5. This block as modified in step 3 and 4 is elaborated as if it were

written at the position of the designator.

Expressions.

Syntax.

E : UME.

primary UME : UME option.

basic UME : UM primitive UM block; UM designator; subscript~d UME.

subscripted UME : static subscripted UME ; dynamic subscripted UME.

static subscripted TME : basic TKRME, subscript.

static subscripted TJRME : basic TKRJRME, subscript.

dynamic subscripted UME : basic tree ME, subscript.

subscript opening bracket S, subscript·E, closing bracket S.

subscript E : integral VE.

Semantics.

An expression of a certain type is a denotation of one or more information

units of that type, called the result of the expression.

The elaboration of an expression determines.its result. The result may be

either an information unit which has been established already by the declaration

of a quantity or otherwise one which is established ad hoc. The value of a

value expression is the value of its result. The location of a location

expression is the location of its result. The value and location of a variable

expression are the value and location of its result respectively.

The elaboration of an expression is a unit of action which may consist of

smaller units of action, viz. the elaboration of options, of substitutions,

of other expressions and of name parameters.

The result of a value identifier, a location identifier or a variable identifier

is the information unit established by the declaration that defines the identifier.

For the result of a block or designator cf. the sections on blocks and designators.

The result of a subscripted expression is the information unit of that element

of the result of the expression itself whose ordinal number equals the value

of the subscript expression. If that value is undefined or if no element with

that ordinal number exists, then the result is undefined.

The elaboration of an expression option exists of the elaboration of the option

followed by the elaboration of its choice. A not selected expression is not

elaborated.

Variable expressions.

Syntax.

UXE : primary UXE.

Semantics.

Variable primitives are not denotable.

Location expressions.

Syntax.

ULE : simple ULE ; ULE, also S, simple ULE.

simple ULE primary ULE ; UXE.

Semantics.

Location primitives are not denotable.

The result of a location expression which contains an also symbol is the result

of the location expression preceding it as well as that of the simple location

expression following it.

Value expressions.

Syntax.

UVE : simple UVE UXE.

Semantics.

The result of a value denotation is an information unit established ad hoc

whose value is denoted by that value denotation.

Expressions may stand as operands in other expressions. The result of an expression

formed either by a monadic operator followed by an operand or by two operands

separated by a dyadic operator is an information unit established ad hoc whose

value is obtained by performing the operation indicated by the operator on the

value(s) of the operand(s).

The order in which the operands are evaluated is left undefined and, moreover,

if the result of the operation does not depend on the value of an

operand, then the evaluation of that operand may be omitted.

Complex, real and integral value expressions.

Syntax.

simple AVE : A term: sim~le AVE, plus 0, A term.

plus 0 plus S ; minuss S.

A term A factor; A term, A times 0, A factor.

complex times 0: real times o.
real times 0 : times S divided by S.

integral times 0 : times S ; quotient S ; remainders.

A factor A secondary VE ; A factor, exponent 0, exponent.

exponent 0 to the power S.

exponent unsigned integer absolute 0, integral VE.

absolute 0: absolute value of S.

complex secondary VE : complex primary VE

monadic minus 0 : minus S.

monadic minus 0, complex primary VE.

real secondary VE real primary VE ; sign 0, real primary VE

absolute 0, complex primary VE.

sigµ 0: absolute 0

integral secondary VE

AV primitive : AVN.

Semantics.

monadic minus 0.

integral primary VE sign 0, integral primary VE.

The operation denoted by an operator is suggested by the word used to name it.

The value of a complex or real value expression consisting of an operator and

one or two operands is the mathematically understood value produced by the

operation on (an) operand(s) which may deviate from the given operand(s). The

same holds for an integral expression if the mathematically understood value

would otherwise exceed certain unspecified limits.

Logical and binal value expressions.

Syntax.

simple logical VE : logical term

binal VE binal term.

relation.

B term B factor; B term, or 0, B factor.

or 0 : or S.

B factor: B secondary VE

and 0 : and S.

B factor, and 0, B secondary VE.

B secondary VE

not 0 : not S.

B primary VE not 0, B primary VE.

relation

equals 0

UVE, equals 0, UVE ; AVE, order 0, AVE.

equals S ; differs from s.
order 0: is less than S ; is at most S

BV primitive : BVN.

is at least S

Semantics.

is greater than S.

The. operation denoted by the operators is suggested by the words used to describe

them. An operation on binal values is performed on each pair of corresponding

bits of the operands and an operation on logical values is aequivalent with an

operation on binal values if true and false are considered to be aequivalent

with flip and flop respectively.

String value expressions.

Syntax.

Simple string VE : string.primary VE

concatenation 0 : concatenations.

string V primitive : string VN

Semantics.

string VE, concatenation 0, string primary VE.

The concatenation of two strings denoted by the concatenation operator yields

a string which is the string symbol sequence of the first operand continued

by that of the second one.

Tree value expressions.

Syntax.

simple tree VE : tree primary VE ; tree VE, concatenation 0, tree primary VE.

tree V primitive : tree VN; expression tree.

expression tree : opening bracket, E list, closing bracket.

Semantics.

The elaboration of an expression tree consists of the elaboration of all

expressions of its expression list in some unspecified order. The denotation

of its value is obtained by replacing in the expression list each expression

by a denotation of its value.

The concatenation of two trees denoted by the concatenation operators yields

a tree which is the ordered set whose elements are the elements of the first

operand in their order followed by the elements of the second operand in their

order.

Row of some type value expressions.

Syntax.

simple TJRVE TJR primary VE.

TJRV primitive : TJRVN.

Active expressions.

Syntax.

simple active VE : primary active VE.

active V primitive active VN; store

store: ULE, becomes S, UVE.

jump : jump S, label I.

Semantics.

jump.

The elaboration of an active value expression may have three effects: it yields

a result, it may appoint a successor and it may change the value of one or more

information units.

The value of any active value expression is the one denoted by the vanity symbol.

The successor of a jump is determined in the following steps.

Step 1. Among the blocks which are being elaborated the one whose elaboration

was initiated last is considered.

Step 2. If some block separator of this block contains the label identifier

which occurs in the jump, then the successor is the expression which follows

that block separator. Otherwise, the elaboration of this block is considered

as terminated and Step 1 is taken as specified above.

The successor of a block or designator whose elaboration is terminated by the

elaboration of a jump is the successor of that jump. The successor of any other

active value expression which is the choice of an active value expression option

which is followed by a block separator, is the expression which follows that

block separator.

Any other active value expression has no successor.

The elaboration of an active value denotation or a jump causes no other effect.

The elaboration of a store causes the elaboration of its location expression

and its value expression in some order, followed by the assignment of the

resulting value to the resulting locations.

Conventions.

The conventions referred to at the end of the section on language and metalanguage

are expressed by means of productions of the strict language which may be

replaced by simpler constructions or even may be omitted altogether.

If in a convention a syntactical entity followed by a digit occurs then this

denotes that only those texts are terminal productions in which corresponding

with each occurrence of that entity when followed by the same digit within the

whole convention the same terminal production of that entity occurs.

Convention 1: A vanity symbol may be omitted.

Convention 2: A variable declaration symbol may be omitted.

Convention 3: A semicolon symbol immediately following a semicolon symbol,

a colon symbol or an opening parenthesis symbol may be omitted.

Convention 4: The active value expression

opening parenthesis S,

if S, logical VEl, then S, active VEl, else S,

closing parenthesis S

may be denoted by

if S, logical VEl, do S, active VEl.

Convention 5: The active value expression

opening parenthesis S, integral DS, Il, 12, 13, semicolon S,

Il, becomes S, integral VEl, semicolon S,

12, becomes S, integral VE2, semicolon S,

13, becomes S, integral VE3, semicolon S,

label 1, colon S, ifs, 11, minuss S, 13, is greater than S, zero S, and S,

12, is greater than S, zero S, or S,

11, minuss S, 13, is less than s, zero s, and s,

12, is less than S, zero S,

then s, goto s, label 2,

else s, opening parenthesis s,

active VEl, semicolon S,

Il, becomes S, 11, plus S, 12, semicolon S,

goto S, label 1,

label 2, colon S,

closing parenthesis S,

closing parenthesis S,

and the active value expression

opening parenthesis S,

label 1, colon S, opening parenthesis S,

closing parenthesis,

active VEl, semicolon S,

goto S, label 1,

closing parenthesis S,

Conventions continued.

in both of which the active value expression 1 does not contain label 1 and

label 2, may be denoted by

for S, 11, from S, integral VEl,

step S, integral VE2,

until S, integral VE3,

do S, active VEl,

and

for S, 11, from S, integral VEl,

step S, integral VE2,

do S, active VEl

respectively. lf,moreover, the active value expression 1 does not contain

identifier 1 then

for S, 11

may be omitted.

Convention 6: The sequences

from S, one S

and

step S, one S

may be omitted .

Convention 7: The active value expression

opening parenthesis S,

label 1, colon S, if S, logical VEl,

closing parenthesis S,

may be denoted by

then S, opening parenthesis S,

active VEl, semicolon S,

goto S, label 1,

closing parenthesis S.

else S,

while S, logical VEl, do S, active VEl.

Convention 8: The sequences

closing bracket S, opening bracket S

and

closing bracket S, row declaration S, opening bracket S

may be replaced by

comma S

Conventions continued.

Convention 9: The sequence

comment S, S sequence, semicolon S,

where the symbol sequence does not contain a semicolon symbol, may be inserted

between any two basic constituents.

Convention 10: A letter sequence may be inserted after each closing parenthesis

symbol.

Letters.

Syntax.

letter: letter a S let1;er b S letter c s letter d S letter e S

letter f s letter gs letter h s letter i s letter j s

letter k S letter 1 S letter m s letter n s letter 0 s

letter p s letter q s letter r s letter s s letter t s

letter u s letter VS letter w s letter X s letter y s

letter z s other letter.

Semantics.

All letters are basic symbols. For the first twenty six mentioned above

productions are given in the section on basic symbols. They form together

a so called alphabet. The other letters are not defined.

Basic symbols.

Semantics.

Each symbol is represented in a presentation or an-application of the language

by a representation, i.e. a specific distinguishing mark. Which mark is chosen

to represent a specific symbol is logically irrelevant. In this presentation

of the language, the so-called reference language, the marks chosen to represent

the basic symbols are shown in the syntax. Which marks are chosen to represent

the non basic symbols is left open.

Each version of the language in which representations are used which are

sufficiently close to the marks given here to be identified with them without

further elucidation is equally well entitled to be called reference la~guage.

Versions of the language in which notations or representations are used which

are not obviously identifiable with the ones defined here but bear a one to one

correspondence with them may be referred to as publication language or hardware

language, i.e. versions of the language adepted to the supposed preference of the

human or mechanical interpreter of the language.

The fact that the representations of the letters, given above, are usually

referred to as small letters is not meant to imply that the so called corresponding

capital letters could not serve equally well as representations. On the other

hand if both a small letter and the corresponding capital letter occur, then

one of them is considered to be the representation of an other letter.

If in a program a mark occurs outside a string which does not match one of the

given symbol representations, then it is to be interpreted as an other letter,

provided that a letter is syntactically admissible in that position·. Otherwise

its occurrence may be ignored.

