A Proposal for Definitions in ALGOL

by

B.A. Galler') NI

University of Michigan and Mathematisch Centrum, Amsterdam

and
A.Js Perlisa)

Carnegie Institute of Technology and Mathematisch Centrum, Amsterdsm

1o Introduction.

It has long been clear that no matter what notational devices and
_conveniences are defined as primitives of a language, its users will in-
evitably want others which are equally fundamental for their particular
needs., This can not be taken as a criticism of the language designers,
since it is impossible to forsee and provide in one langusge every
notational device anyone could ever want. These inevitable omissions can
be mitigated by providing a basic set on which there is general agreement
(éuch as the arithmetic and relational operators, and so on), and by
providing also a framework within which new devices can be defined into
the language by a user for his particular needs.

A complete definition facility requires the capability to dynamically
define the gyntax of the language, as well as the accompanying semantics
(as embodied in the processor or interpreter). Such a system, which provides
a mechanism for changing the syntax and semantics, has been in use at

Carnegie Institute of Technology since 1964, under the name Formal Semantics
Language [1]°

1) The work presented here was supported in part by the National Science
Foundation (GP - 4538) and the Air Force Office of Scientific Research
(AF -~ AFOSR = 1017=66),

2) The work presented here was supported in part by the Advanced Research

Project Agency of the Office of the Secretary of Defense (SD = 146),

CENTRUNM

I
¥

9




mgﬂt

A moré limited form of definition facility (but still extremely
flexible and powerful in use) has been available for several years in the
MAD [ 2] lenguage at the University of Michigen. In the latter, for example,
definition packages are now available to introduce into the language
vector and matrix arithmetic, complex number arithmetic, and multiple
precision arithmetic. The importance of the facility is not that these
specific packages are now available, but that any user is free to develop
his own within a broad framework that creates no difficulty in their
implementation in the MAD processor and is simple to use,

The definition facility described in the following is similar in
many ways to that which is available in MAD, and is intended as a proposal
to extend ALGOL 60, It is not as complete a proposal as one might make,
since the underlying syntax of the language may not be arbitrarily modified.,

A strong feature of this proposal is that each new operator, or each
new interpretation for an existing operator, is invoked via an implicit
macro call; in fact, by the insertion of in=line code, The advantages
here over explicit calls on procedure (which may already be written in
ALGOL), lie in the notational convenience of composing operations into
expressions using infix notation, i.e. with operators appearing bétween
their operands instead of as nested procedure calls, together with a simple
means of producing efficient ALGOL codes

The basic proposal presents means by which new operators and/or new
data types may be introduced within programs. For each new operator one
must show how to interpréet its action on new or old data types., For each
new data type one must show how it behaves under the action of new or old

gperators.

" Moreover, it often is necessary to determine dynamically whether a
varigble has been assigned a given type. We therefore postulate the
generation for each declared type g of a Boolean = valued procedure a ()
which is true if x has the type g, otherwise false, Examplcs would be real(x),
Boolean(x), etc. Such procedures would presumably need dynamic access to
a generalized symbol table carrying type information, among other things.

In order to introduce a new operator into the official ALGOL syntax

specifications, it would be necessary to (1) specify how it would appear




3=

among other syntatic units, and (2) relate it to existing operators by
syntax forms which in effect establish its "precedence" in the extended
set of operators. A short study of the treatment of "addition operator”
and "multiplying operator" in the ALGOL 60 Report [?]Lwould suffice to
show how this specification process is achieved. We shall summarize the

insertion of a new operator's syntax form by the declaration:

" unary “above
‘ nane, precedence same as op
binary below

where one choice is made in each set of braces, and name is the symbol
introduced for the new operator. The symbol op &s the neme of any operator
already available (Whether originally in ALGOL or already declared in this

way), such as +, v,% or +, The interpretation of above and below is

exactly that obtained by carrying out the syntax modification suggested
sbove, In other words, name is inserted into the syntax "just above" op,
and below any other operatbrs already above op. For example, a typical
operator declaration such as ‘

binary cons , precedence above x

modifies the syntax of arithmetic expressions so that
<term>3s = <factor>l£term><multooperator><factor>
is replaced bys:
<term1>:: = <factor>|<termi>cons<factor>
<term>:; = <terml>|<term><mult.operator><terml>,
Similar replacement rules hold for unary operators.
In order to describe the behavior of any operator on any particular
data type (and thus include all of the cases mentioned above), we introduce

the context definitions, which specify those and only those contexts in

which an operator or data type may legally occur, and the interpretations
to be applied when these contexts are encountered,

A typical context definition iss

. list a sum list b 3= real sum(a,b)

© emansman ememTs  coeTRoas

which says that whenever sum occurs with two operands of type list, the

code used is a call for a real procedure named sum, with the actual operands

of type list becoming the actual parameters in the procedure call, (The




solfun

typed identifier expression appearing as the left side of a context

definition is known as a type context.) As will be seen in the detailed

- syntax and semantics description given below for the proposed definition
facility, this procedure call form is merely a special case of the ex-
plicit array form stipulated after the := in the syntax of the context
definition. The explicit array form will normally contain a block
expression involving the variables mentioned in the type context and
local variables declared in the block containing the declaration, and

it will usually produce a value for a result variable 331

An explicit arrsy form becomes & block expression when its formal para=-
meters (those specified in the type context) are replaced‘by thé actual
expressions through which this context has been recognized as applicable.
It is clear that the context declaration not only defines the meaning

of the context; it also acts as a restriction on the allowable combing-
tions of operators end data types. Advantage can be taken of this to
produce desired code constructs from a set of possibilities.

Another structure in the language which needs an appropriate
notation is the enumerated array, representing explicitly an instance
of & new data type. Since it is intended that existing ALGOL shall be
a subset of what is proposed here, existing forms of expressions are
acceptable without change. However, a new form of expression may also
be written; viz., a list of expressions preceded by a type symbol. An
example would be complex (3, x + 2} representing the complex number
usually written as 3 + (x + z)i, Thevrepresentaxion as a sequence of
components assumes a particular internal representation, i.e.; as a-
real array. Multi-dimensional arrays are linearized by varying the last
subscript first.

" In this definition facility we assume that data structures can be

allocated storage capable of description in terms of ALGOL arrays.

1) As ably demonstrated in CPL E5]9 block expressions are so useful

that it is assumed that they have already been made available in
ALGOL,




=

The declaration of this storage allocation is called the primitive

representation below. Thus, a list is assumed, in one of the examples

below, to be stored as a one-~dimensional ALGOL array with two elements:
the name of the first list item (stored as the first element of the
array), and the name of the rest of the list (considered also a list),
stored as the second element. We also assume that prlmltlve procedures

called name of and contents of are avallable which produce real numbers

representing the name (or machine location) of the value of a variable,

or vice versa.

The code created from an occurrence of a context involving new data
types will often prqduée a result which has again one of the new data
types. In particular, it may very well require an array for‘its storage,
and the code needed to produce all of the elements of this array must
be provided. In particuler, when a block expression is executed whose
result has a new data type which requires an array for its storage,it
is necessary that this storage be automatically and dynamically supplied.

In a larger context, however, the separate parts of the computation
for the general element of a result array can often be combined inside
the outermost iteration structures, thus eliminating much unnecessary
red-tape and intermediate storage computation. Thus, the code for summing
three n x n arrays (d =a + b + ¢):

o

begin integer i,j; for i:=1 step 1 until n do

s 0o ca P ape caer 2o 320 OB e 0

for j:=1 step 1 until n do

ali,i] ¢= ali,i] + o[i.5)+ ¢[i,3]

end;

o o 320

is much preferred over the code produced by treating the sum as two
consecutive binary sumég as shown below. The much better code given
first results from the replacement rule given below, provided the ex-
plicit array form in the context definition is written appropriately.

(The matrix arithmetic package exhibited below does produce the first

form. )

&




6

begin integer i,J;

for i:=1 step 1 unti& n do

Py - i oo o

for j:=1 step 1 until n do

d[i,ﬂ o= a[i,j] + bl:isﬂ H

for i:=1 step 1 until n do

cawn cams caey s g pan s o oty e o s

for j:=1 step 1 until n &

o s cax s oaw oo o P L]

afi,4] = ali, i + c[i,5] ena;

In order to be sure that the best code is produced in a given

situation, it may be necessary to assign more than one type to a
variable., Thus, for a reéeated matrix product. A X B X C, we shall

find'ﬁﬁ useful in the examples below to declare B and C to have type

row of columns (r/s), while A is declared to be of type column of rows

(glg)o Since B x A x C could occur in the same program, we need to be
able to declare B of type ¢/s and A of type r/s, also. In other words;
a variable may have several types, and it will have to follow from
the context in Which the variable occurs which is intendede Should
more than one context aefinition apply, the first one is used which
results in a data type which then enters into legitimate larger con-
texts, etc. Should a choice of context definition lead eventually to
an undefined context, an earlier choice will have to be changed. In
géneral, the largest context applicable is used whenever possible.

To summarize what is being proposed here as extensions to ALGOL
60, we have new data types (and procedures which test for these types),
and declarations introducing new'operatorso Explicit instances of these
data types may be written, but more often variables which have been
assigned these types will be involved in expressions. In either case,
the storage requirements of new data types are explicitly declared in
terms of ALGOL arrays (by the primitive representation). By providing
type contexts with corresponding explicit array forms, instances of

contexts involving new operators and data types may be replaced by

open code" generated from the explicit array forms under the replace=

£




T

ment rule given below. This rule is such as to eliminate excessive
iteration control computation whenever possible.

We also include name of and contents of as primitives, since
they are useful in generating list structures as data types. It was
observed that results of expressions may be assigned new data types,
and thus require temporary storage in the form of arrays. This use
of temporary storage is considerably reduced, however, by the
elemination of excessive iterations Ei]o Multiple type assignments
for variables are introduced to allow the best context recognition
strategy. All of these concepts will appear in the examples below.

Certain featufes9 which are an important part of existing macro
systems, afe missing from this treatment;, e.g., conditional expansions
and "expansion timeﬁ v,ariables3 with the implicstions to écope that
they provide. This treatment, here limited to expressions, could with
the aid of the above features, be expanded to provide a facility
capable of handling contexts at the statement level, or even at the

program level,

2. Syntax

The syntax additions for the proposed extension to ALGOL 60
follow. In each case of conflict with the ALGOL 60 report [3] (in-
dicated by a bold~face period (.) in the left margin), the form
given here is to be used. Forms already defined in the ALGOL 60 report
are not repeated here.

<boldface character>::= a|b|...|zl1].. . legl;&;l cos | 2]g]osa £

ool leonlulll ool
<boldface symbol>::=<boldface character>i<boldface symbol>

<boldface character>

<new operator>::=<boldface symbol>

<new type>::=<boldface symbol>|<new type><typed identifier list>




..

o <Operatbor %= arithmetic operaxor>l<relational operator>l
<logical operator>|<sequential operators |
<new operator:

o <type>syis real|integer|Boolean|<new type>

<type declaration list>sé=<type declaration>|<type declaration lists,
<type declarations

<open set>::=<type>|<operators|<open set>,<types|<open sets,

zoperators

<set>3:= (<open set>)

<set name>::=<boldface symbols

<set declaration>::=<set names:=<set>

<primitive representation>::=<type declaration list-means.

<array declarations
<typed identifiers::=<types<identifiers
<typed identifier list>::=<typed identifier>l<typed identifier lists,
<typed identifiers

<type context>::=<any arithmeticy Boolean or designational
expression built out of typed identifiersvand set names
in the sane way that they are normally built out of
idenfifierso>2>53)

<type context list>::=<type context>|<type context list>,

<type context>

2) This is a short description of what could be (and should be
considered to be) a formal syntatic statement.

3) In this treatment := is taken to be a binary operator whose
precedence is below all arithmetic or Boolean operastors in ALGOL.
The semantics of := as an operator are obvious,

&




=G

<expression list> s:=cexpression>|<expression list>,<expression>
<enumerated array>:s=<types<expressions|<type>(<expression lists>)
<generated arrays:s=<types<expression> ‘
<explicit arrays::=<enumerated arrsay>|<generated array>

o <primary>::=<unsigned numbers|<variables>|<function designator>

| <explicit arrays|(<arithmetic expressions) '

<explicit array forms::=<generated array>|<enumerated array>
<context definitions::=<type context list>:=<explicit array form>

<adjectivess:= unary|binary

<precedence phrases::= abovelsame a§|below
<operator definitions::=<adjective><new operator>, precedence

<precedence phrases><operators

3. Semantics

(1) A context, set,or operator definition is local to the block
containing it and must precede its use.

(2) Operators become defined in the lexicographic order in which
their definitions are written.

(3). An operator definition must involve only an operator for
vhich a definition has already been encountered.

(4) The expression on the right side of a context definition must
involve only operators which have already appeared in operator’
definitions.

(5) An explicit array form becomes an expression only after
certain replacements have been made for some of the variables which
appear in it, This is explained as part of the replacement rule given
below,

(6) A context definition is interpreted as if it had been a
sequence of separate definitions, each one containing one item from
the type context list on the left, and always the explicit array form
on the right.

(7) The array declarstions after the means in a primitive re-

presentation may not involve new types. This declaration is required




o] Qun

vhenever an instance of a new data type requires an array for its
storage, and it applies to each of the types involved in the declara=-
tion.

(8) The primitive representation implies a storage allocation
to be invoked whenever one of the types so declared occurs in a
procedure or block heading.

(9) Whenever snexplicit array needs to have storage set aside
for it, such as for the result of & block expression or for an
enumerated array, it is assumed to have the array structure declared
for its type in a primitive representation. Multi-dimensional arrays
will be linearized to accept enumerated arrays by varying the final
subscript first.

(10) In a block expression the value produced by the block is
(by convention) the value of the veriable r on exit from the block.
This variable is always local to the smallest block containing it.

(11) In any block expression which appears in an explicit array
form there must be exactly one occurrence of the result r, possibly
subscripted, and that occurrence must be on the left side of an
assignment statement. A block expression nested within this block exw-
pression will have its own single occurrence of its own r.

(12) In type declarations and in type contexts one may use & new
type with or without a bracketed list adjoined.(A bracketed list may
not contain bracketed lists,) If a match is to0 be made with a type
context which also contains a list, then the entries in the lists must
agree in type and number.

If the match is made (according to the replacement rule below),
then the list entries declared for the varlable in question are sub=-
stltuted for their correspondlng entrles in the explicit array form.
If the type context contains the new type without a list, & match nay
be made without reference to the declared list of constants, and no
substitutions result from their presence,

(13) A set may appear in only one set declaration.

(14) A type context containing one or more set names is equivalent

to the type context list obtained by substituting all combinations of

£




]l

representatives from those sets for the set names.
(15) All primitive representations, set, operator, and context

definitions are part of the block heading.

i, The Replacement Rule

The rule for the replacement of defined constructions by ALGOL
code is as follows: We assign a type to each expression on the basis
of the types of its sub-expressions. Identifiers and constants are
assigned types on the basis of declaration and form. Wherever there
is a choice of types, the tyﬁe is chosen by ‘the followingArulez

(1) Defined contexts have priority over ALGOL syntax,

(2) Among the defined contexts, priority is assigned in order

of listing. ' |
When using a context definition, assuming that the sub-expression
matches the type context in form, the type assigned té the sub=-
expression is that which appears to the right of the := in the context
definition. '

Either of two possibilities may now occur: (1) all expressions
are assigned types, or (2) an expression has been encountered for
which no type can be assigned. In case'(a), either (2.1) this expres-
sion has the form E[%subsgript 1ist>], where E has the form and type
occurring in a context definition, or (2.2) it doesn’t. In the latter
case (2.2), an alternate choice of types must be made where such a
choice was possible, and the entire process must be repeated. If no
further choice can be made, the original text was not syntactically
correct. In the former case (2.1), consider the explicit array form
in thé context definition associated with E. Either (2.1.1) it contains
& single pair of boldface parentheses, or (2.1.2) it does not. In the
latter case (2.1.2) it must be an enumerated array, and the subscript
0° Then select the

=th element of the enumerated array. In this expression form sub-

list must consist of a single integer constant i

i
0 .
stitute the corresponding sub-expression from E. The resulting ex-

£




=] Pas

pression is then substituted into the text for E[id]9 and the type
assignment is performed on the new text.

If the explicit array form does contain a pair of boldface
parentheses (case 2.1.1), select the text bounded by these parentheses.
This text must contain a single occurrence of r (the result of the
block expression containing this text), and this occurrente must be
of the form(gf%subscript list>] :=F, where F is an expression. These
formal subscripts must agree in number and type with those occurring
with E, and then the formal subscripts are replaced in the text by the
correponding actual subscripts. From this resulting expression form an
expression E' is obtained by substitution of the corresponding sub-
expréssions from E. Then the "arithmetic context is moved inside,"
as follows: Substitute F for E[<subscript list>] in the maximal arithe
metic expression G containing E, to obtain G'. Substitute G' for
r[<subscript list>]:=F in E', obtaining E". (Note that if G follows

a then or else in a conditional expression, we may extend G even

further by considering the arithmetic context of the conditional ex-
pression to be the arithmetic context of each of the arithmetic ex-
pressions within the conditional expression.) We now replace G in the
original text by E", and the type assignment process is performed on
the new text. ‘

We now consider the case (1) in which all expressions have been
assigned types. Either (1.1) there are still defined comstructions,
or (1.2) there sre not In case (1.1), for each maximal‘expression E
whose type and form correspond to a context definition: (i) form an
expression E' by substituting corresponding sub-expressions from E ine
to the explicit array form associated with L, and (ii) substitute E'
for E in the text. In this substitution, if E' consists of a block
expression, move the srithmetic context of E inside, just as was

done in case (2.1.1). The replacement rule is applied to the resul-

ting text.

If no defined constructions exist (case 1.1), then all boldface
parentheses (together with any immediately preceding type symbols
that may accompany them) are deleted, and declarations of new types




=] 3=

are dropped after replacing them, when necessary, with appropriste
arrey declarations obtained from the ﬁrimitive representations. The
resulting text is either a syntactically correct ALGOL 60 program,
or the original program was syntactically incorrect.

The examples which follow were chosen to illustrate the power
and versatility proposed here. Each "package" shows the strategy

employed in choosing appropriate definitions.

5. Examples
A, Matrix Arithmetic Package

(1Y r/s a, ¢/s & means array a.Ehn, 1:rﬂ;

(2) col a means array aE‘Imj %

(3) row a means array a[l:u];

(4) wunary T, precedence above +3 .

4)

(5) unery I, precedence asbove ¥;

i+ n do row (»yoEl']g %E:Jl 3;5)96)

BADESIES (o8 s

(6) c/s az=¢

~
)
for

|
|

»n do col (r[f]:= alf]) e

Camd
-3
Chaaat”?
2}
()
©
it
2]
~
n
o’
.

+n do real (r[j]:= alj]) e

Fam
o
S
"
o
2
b
i
"
o
2
fo
Cuio

|
|

+n do real (r[i]:= T afi]

|
|

e
©
S
Q
o
5
i
o
o
l—l
fo
|

nteger K] Llnteger 1J°- real aL Ry

—
N

O
Taw?

Q
\
=—;

4) ¢ is the symbol used here for subscription.
5) i+ n will be used here as an abbreviation for: integer i3

for i:=1 step 1 until n

6) b and e are begin and end, resp.




oo} Y

(11) T real arin'beger Iﬂ [integer J_:] 3= real atlskj 5

(12) 2 e/s ai=z/s T 8;
(13) I ¢/s ai=_¢/s inv(a);

(14} I I c/s as=c/s a3

(15) g¢/s a+c/sb:=c/s i+ ndorow ££Eﬂ:= ali] + b[i:u_e;;

(16) r/sa+zx/sbs=zx/sbj+ndocol (r[jls=ali] + v[3]) e;

(17) c/sa+ce/sb :=1r/s (Ta+1T0);

(18} rowa + row b :=row b j + n do real ir[j]zia[:j] + b[3]) e3

(19} ¢fsaxr/sb:=c/sbi+ndorow gztils-'-' b row t;

t:=a[i];£z=txbel£;

(20) row a x r/s b :=rowd j+n doreal (r[j]s=a x b[§]) e

(21) row a x col b 3= real b integer j; real t; t:=0; for j:=1 step

1 until n do ts=t + a[j]x T b[j]s r := t &3

in]

(22) ¢fsa i=c/sbi=c/sbi+n dorow (rli]e= ali]:= b[i]) e;

(23) xowa :=rxowb :=rowd j »n do real (r[i]:= a[j]e= p[J]) &3
(24} col a :=col b :=col (Ta :=THhb);

(25% c/saxr/sb+c/saxzr/sce:=c/sax (bt

Statements 1 to 3 give the primitive representations for the new
data structures being created, in terms of basic ALGOL arrays. State-
ments 4 and 5 introduce the two new operators T (the transpose) and I
(the inverse, implement by a procedure named inv).Statements 6 through
9 show how each level of structure is defined in terms of the next
lower level. Statement 10 provides the accessing function needed to
actually reach a value. (Here it is a trivial mapping, but in the
file maintenance package below, for example, it is more complicated.)
Statements 11 to 14 define the behavior of the two new operators.

Note that the cancellation of pairs of applications I or T will be

&




effected during the reductlon to ALGOL eode, and thus lead to no
unneeeesary code, Statements 15 to 21 define the action of + and %
on the various comblnatlansAof date types that may occur, while
statements 22 to 24 define the "store" operation for the new data
structures. Statement 25 takes advantage of an idenfity appropriste
to matrix arithmeticy e.g. the distributive law, to effect a simplifi-
cation before any other substitutions can occur, thus leading to better
code at the highest level. In view of the action of the replacement
rule, statement 25 will automatically extend to more than two terms,
8o that ' " |
a xXb 4+ axco + a/x d+axe
will first be transformed to
ax (b+ec+d+e)
with a dramatic reduction in the amount of code subsequently generated.
' This set of context definitions does not proviée correct ALGOL
code for expressions where an array appears on both side of the ¢= and
on the right gide not only as the left most factor in a term. Additional
definitions can be added, at the expense of efficiency, should this
case have to be handled,

Examgle’of use:s

real r/s ¢fs x,y,z,wy W = (x+y) x 2z

(22) B i+ndowi]ls= ((xvy) x 2)[i]e;

(19) Di+ndobrowts te= (x+y)[i]s w[ile=t x 2 ¢ ¢

(6,15,23) b i+ ndob rowts te=x[f] + y[i]s b » n do w[i][§]:=
=(tx2)[jle ee; |

(6,7,8410, bi>ndobrowtsbd=ndot[i]e= (x[L] + y[E])[i]es

20,23) bi+ngdow[igli=t x z[fleee;
(6,7,18,21) b i+ ngdoBrowts b+ ndoefile= x[EI[) + vli] [1es

3

bJj+ndob integer k, real sys:=0, for ki:=1 step

. 1 until n
do = st[]x T zEjJ Kl wlijliz=seeee,

AN R




B

(6,7:8,9, bi~+ndobrowts; i~ ndotli]:=x[i,i] +y[i.iles

10,11) b Jj > ngdobd integer k, real s; s:=0, for k:=1 step

| 1 until n do
s s=s + t[J] x z[k,]svli,dli=sec e
(1,3) real srray x,¥,z,w[isn, 1:n]s
> i > n do b array t[1:n]; B > ndo t[i]s= x[3,5] +

+ y[i,d] &3

b Jj + n do integer k; real s; s:=03; for k:=1 step 1
until n do
s i=s + t[J] x a[k, )]s w[i,j]:=s eee e

In this example the numbers to the left of each line show the
definition declarations which were invoked to obtain1£hat line. The
first statement of the example, containing the type declarations,
was suppressed‘auring the intermediate steps of~the expansion. The
use of k aﬁd s (instead of j and t) was introduced for clarity; the
block structure of ALGOL would make this unnecessary in practice.
Note that in the application of (22) and (23), the r[i] := was deleted.
This 1s in accord with the natural interpretation of the use of block
expressions,

If one wished to take advantage of special properties of arrays,
e.g. triangularity, symmetry, or to organize their store by using a
column vector of row names to speed up accessing (hereafter denoted

as a column=-array), then new contexts must be appropriately inserted

so as to cause their application before those of the original set,

such as:

1.1

ae

column-grray & means array aE]:n];

9.,9: c/s [?olumnmarray él al |integer {][?nteger j]:=

on

real contents of (a[i] + 3.

1bo1:, column-array |c/s a{] a :=c/s al;




w] T

In any use an actual declarstion would be like

e/s [§] ¥; column-array [Y]X;

One may also incorporate into the original set of definitions
an explicit dependence on the row length n by using bracketed type
lists. Then modified storage mappings could be introduced to accomo-
date symmetric and triangular arra&s by making them depend in the
same way on the row index i. In these cases one would also introduce
alternate access functions just before statement 10, so that the new
storage mappings could be effected. Details are left for the reader.

-

B. File Maintenance Package

B o= (A,v)3 A 3= (4, =, x, /o%, :=)3

Rs= (=, #;, <, <5 >y 2)5 xat := (real, attr);
(1) TV a, file a means array al[l:m];
(2) rec a means array alt:n];
(3)  file a :=file bi~m do rec (r[i] := ali]) e
(4)  reca s=rech > ndoreal (r[jle= a[i]) e
(5) TV & := TV b i » m do Boolean S_g[_i] = afi]) e3
(6) file a[integer i] Enteger j] s= real contents ?f' (a[i] + j=1)3
(7 unary count of, precedence below v;
(85 binary on, precedence above count of;
(9) count of}_'];'ym a := real b real c; integer i; ¢ :=0;

for i:=1 step 1 until m do

¢ :=c + if a[i] then 1 else 0; r :=c e;
(10) Boolean a on file x := TV b i » m do Boolean ££Ei]a= a on xl:i]lgg

(11a) Boolean a B Boolean b on reg ¢ := Boolean a on ¢ B b on c;




] B

(11b) =7 Boolean b on rec ¢ := Boolean b on c;

(12) rat a B rat b on rec ¢ o= Boolean aoncRDboncy

(13) attr E’.n‘teger j] a on rec ¢ = real c[ﬂ;

(14) real a on rec ¢ ;= real a3

(15) real a on file x, attr a on file x := file b i > m do rec
(<[] = o o (3] )es

(16) rat a Arat bonrecc s=recaonc Aboncs

(17a)  if Boolean a then real b on file x := file bi~mdo rec

(rEl] = if a on x[f] then b on x[i]) e

(170)  if Boolean a then real b else real ¢ on file x:=file b i »+ m

do rec(r[i]:= if a on x[i]then b on x[i] else c on x[i])e;

(18)  rat a R rat b := Boolean & R b;
(19) rat a A rat b ¢= real a A b;

(20) file as= file b 3= file b i » m do rec (r[m g aE11°" 'b[:ll)e,
(21)  rec a :=rec b :=recb j > m do real (r[j]:= atg]:= bli] )es

(22)  TVa :=TVb:=TVbi=+mdo Boolean (r[i]:= ali]:= b[i])e;

Statements 1 and 2 define the new data types that need storage
allocation. Statements 3 , 4 and 5 show how each type is construc-
ted out of the others. Statement (6) gives the explicit access for these
data types. Statements T and 8 define two new operators, while 9
through 17Tb define their behavior, Statements 18 and 19 are used
‘to assign types to subexpressions while looking for a match, State-
ments 20 through 22 define the behavior of := with the new data
types.

Example of use:

file a3 attr [1] name, attr EQE sex; attr [33 height:

real ents cnt:= count of sex = 1 A height > 6 on x;

&




“19u

Expansion of assignment statement:

(9,10,17) b real c; integer i; c:=0; for i:=1 step 1 until m do

c i=ec¢ + if
(sex = 1 A height > 6 on x)[i] then 1 else 0; cnti= c e;

Using only the Boolean expression after if:

(10) sex = 1 A height > 6 on x[{]

(11a) (sex =1) gg x[1i] A (neight > 6) on x[i] :

(12) sex on x[{]= 1 on x[i] A height on x[i] > 6 on x[i]
(13,14) x[i]02) = 11 x[i][3] > 6

(6) contents of (x[i] + 1) = 1 A contents of (x[i] + 2) > 6

The full expansion is than:

array xD zmj; real cnt; b real c; integer i; c:=0;

o

for iz=1 step 1 until m do c:= ¢ + if contents of

(x[I] + 1)=1 A contents of (x[i] * 2) > 6 then 1 else 03

ent = ¢ g3

Example of uses

file y3 y:= if height > 6 then 1 else 0 on x;

Expansion of assignment statement:

(170,20) b i » m do y[i]:=(if height > 6 then 1 else 0 on x)[i] e;
Using only the right side of the assignment statement:

(170,18)  if height > 6 on x[i] then 1 on x[i] else 0 on x[i]

(12,13,14) if x[i][3] > 6 then 1 else O
(6) if contents of (x[i] + 2) > 6 then 1 else O

The full expansion is:

ar’rax y[1im]; b i+ m do y[i]:= if contents of (x[i] + 2)> 6
then 1 else O e;




w20

C. Complex Arithmetic Package

(0)
(1)

(2)
(3)
(%)

(12)

(13)

(1h)
(1¢)
(16)
(17)
(18)
(19)

& 3= (+’ “’); "
complex & means array & L‘i :2:] H

binaery i, precedence above x;

unary realpart, precedence below +3

unary imegpart, precedence 3ame as realpart;

unary mag, precedence same as realpart;

unary arg, precedence seme as realpart;

unary conj, precedence same as realpart:;

realpert complex a:= real al[1];.

imagpart complex a:= real a.[izj;

real a i real b:= complex qomplex(a,b);
complex a A complex b § = - complex complex(a[i] A v[1],
ale] Av[2]);
complex a * complex b := complex complex(a[1] x b[1]-
al2] % vl2],af2) * b[1] + ali] = o[2]);

complex a / complex b := complex

(a x gonj b)/(b[1] + 2 + v[Z] + 2);

real a x complex b := complex complex(a x b[i], a x b[2]);

complex b x real a:= complex a x by

mag complex a:= real sqrt(a[1] + 2 + a[2] + 2);

arg complex as= real arctan(a[2]/a[1])s

conj complex as= complex complex (a[:ﬂ 9«-5.[:2] s

complex a= complex b:= Boolean a[T]= b[1] A a[Z]= v[2];




ang ] oa

D. List Package (based on the LISP [6] primitives).

(1) 1list x means array x E‘I:Z‘J;

(2) binary cons, precedence same as X}

(3) unary car, precedence above cons;

(4)  unary cdr, precedence same as car;

(5) real a cons real b := real name of list(a,b);

= real a[1];

(7) cdr real a := real al[2];

(6) car real s

ou

Then: car(e cons b)

car name of list(a,b) = @
end cdr(a cons b) = cdr name of 1list(a,b) = b

and car(a) cons cdr(a) = real name of list(a[1],a[2]) =y,

vhere equal(b,a) is true (in the LISP sense).
LISP Composition:

(8) opf (¥) ope :=op £ cons g;T)

(9) opf @ resl x := real procedure E(f,x); op £; real X}

E := if atom(x) then eval(f,x) else

E(f,car x) cons E(f,cdr x);

T) f@x means f{x), and this operator is now being extended to new

contexts.




.-;.22..

The procedure eval(f,x) is defined as follows:

real procedure eval(f,x); op f3 real x;

if atom(f) then f(x) else eval(edr £, (car £)(x));

Context definitions (8) and (9) provide an efficient rule for
sequencing through s composition of operations on lists (such as f and
g of type(gg)9 each one of which operates only on atoms to produce
atoms or even lists. The sequencing is organized in this case (others
are of course possible using different comstructions) so that as each
atom is encountered the remaining operators in the composition are
applied to it. Thus the lists are not totally decomposed and composed

for each successive operator.

Example of use:

begin atom g,h; op F,G;

real procedure subst(x,y,z); real x,z; atom y; subst 3=

if atom(z) then real b r := if eq(z,y) then x else z

io

else subst(x,y,car z) cons subst(x,y,cdr z);

real procedure F(x); real x; Fs= subst(a,g,x);

real procedure G(x); real x; G:= subst(b,h,x);

=6 () F @ b eng;




and

3.

and

5

J.A,

B.W.
B-A.
ReM,

Feldman,

Arden,
Galler,

Graham,

P, Naur ed.

B.A,
A.J.

DQWO
JD NO
DﬂFb

Galler

Perlis,

Barron,
Buxton,
Hartley,

E. Nixon,

and C. Strackey

6.

J. McCarthy,
et al

23w

References

A Formal Semantics for Programming Languages,
Proc. I.F.I.P. (1965).

"Michigan Algorithm Decoder",
University of Michigan Press, Ann Arbor,
Michigan, 1963,

"Revised Report on the Algorithmic Language
ALGOL 60", ’
Num., Math. 4(1963), p. 420-453,

"Compiling Matrix Operations",
Comme A.C.M., vol. 5(1962), p. 590-59k.,

"he main features of C.P.L.",
The Comp. Journ. 6(1963), p. 13h-1k2,

"LISP 1.5 Programmers Manual",
MIT, Cambridge, Mass. 1962,




Errata for "A Proposal for Definitions in ALGOL"
by B.A. Galler and A.J. Perlis

Title page Insert as l.-1 March 29, 1966

p-

P

P

D.

6
7

10

11

14

15

16

21

1.11

(<arithmetic expression>)) | <e.e.>

1. 1 (5) The revision ...
. . k
1.-10 . ..o B4JJ represents (A )ij'
1.=-3 such <procedure>s ...
1. 3 «ss <actual parameter> I <8eLeSepe>
Insert <actual type set parameter (a.t.s.p.)> ::=
after 1.6 <a.t.> | <c.t.s.n.>
1.10 see <a,t,> ] <8eteSeDe>ArTEY 0.
1.16 <operators(0.)> :1:= ...
1.17 «+o | <relational operator> |, |+|® ")

Move footnote from page 15 to page 9.

1..9
1.16

10-2

1. 2
15—2

1.1

ves <Cotoll> | <ast.s.p.> L?rogra@l cos

ves <r.t,><string> | <c.> = <r.t.>

+ss ignore it since <delimiter> has no ...

ss’s <context>s. 1) o808

»so every <context definition> which has a <string> and
<result

(+);

Delete footnote here after moving it to p. 9.

o N O

1.
1.
1.

eeo Units let Lx be the ... legal strings in

ALGOL x. To each D there ... analyzer AD which has ...
»o0 that : if peLD then AD(p) = t(p), where t(p)sLC,
or t(p)

«so necessity ... when AD

««s The analyzer AD’ for one of <arithmetic ...

+ P[ﬁ,k} x Q[},k];

s s
K[i,i] t=c xs e e




p. 21

p. 28

p. 29

p. 31

P 37

p. 38

l.~4,..0,=1- This.program requires only 2n+2 locations for temporary

storage, but it takes more time. Should one wish to produce
the faster code, definitions could be written to generate
the full temporary storage required. The key definitions would
reflect. a "bottom-up" syntax analysis. For example:
matrix(u,v)a x matrix(v,w)db := matrix(u,w) 'matrix(u,w)
b array P‘[1 1y, 1 :v] s Q[1':v,1 :w];'P" :=a3°Q := b3 b integer i,j.k;
real's.y. i~+udo j+wdobs :=0; k+>vdos :=
s + P[i,k] x Q[k,J]s r[i,i] :==seee's
Some of the transitional states of the tree for the second
expansion were as follows (nﬁm’bers in parentheses refer to
definitions invoked):

.+« follows (numbers in ...

+sos real'real b real c; ...
c:=c+3‘._§a[i]... h
(10) op (F)f of list x ...

(11) op (F)f of op (d)g
(12) 1list y of op (F)f := ...

L

such as op (H)h, the ...

else E(car £, (pic of ...

ve. 'complex (a x b[1], a x b[2])';
tion 5. Then a <context definition> and <declaration>
are:

complexmatrix (b,c)a := complexmatrix 'b,c';

matrix (complex, m, m) means array D:m, 1:m, ‘1:2];

«+» naming techniques, as in COMIT and SNOBOL, for
example.

Insert after 1.11 (ii) Create another <context definition> using

1.12
1.1k
1.16

Pc 39 » lo‘-s

the <result type> Yy of Q:

Y[program] [ [bound. pair list] 1 :=v
Now for each <context definition> use ...
(iii) If there iS already 8o e

(iv) Represent P ...

Successive replacements o..



