RA

stichting
mathematisch
centrum MC

REKENAFDELING MR .82/70 NOVEMBER
RA
T.J. DEKKER

NEWTON-LAGUERRE [TERATION
o

2nd (unrevised) edition

2e boerhaavestraat 49 amsterdam

MATHEMATISCH ~ CENTRUM

slollUTHEER
- AMSTERDAM

Contents

Introduction

Laguerre's formula

Newton's formula

Formula for the multiplicity

Choice of p and q in Laguerre's formuls

Upper bounds for the error of zeros of polynomials
Numerical experiments

References

ALGOL 60 program for calculating complex eigenvalues

of real matrices

Data nr, 1
Output nr. 1
Data nr. 2
Output nr, 2
Data nr, 3

Output nr. 3

page

10

11

16

17

18

19

20

21

1. Introduction

Laguerre's formula is cubically convergent, provided one uses the
right guess of the multiplicity of the zero. B. Parlett [2] assumes
in his procedure for calculating the eigenvalues of a Hessenberg
matrix that the multiplicity of the eigenvalue is either one or two,
the latter in the case that convergence is slow.

The purpose of this paper is to show how the multiplicity may be
estimated by means of a Newton formula. If this multiplicity, or
rather the integer nearest to it, is used in Laguerfe's fgrmula,

we get cubic convergence for multiple zeros also. The author has
done some experiments with this formula and has the impression that
the method is favourable if many zeros are multiple “or in clusters.
In sections 2, 3 and 4, some formulas are derived and some theorems
about the order of convergence are proved. It is assumed that the
given function f is sufficiently may times differentiable in a
neighbourhood of a zero r of f, so that it makes sense to speak
about the multiplicity of that zero and about Taylor expansion. As
to convergence, only the local convergence, i.e. convergence in a
sufficiently small neighbourhood of r is considered.

Section 5 discusses the choice of the two parameters, p and g, in
Laguerre's formula and section 6 gives some practical upper bounds
for the error in the case that the function is a polynomial.
Section T describes some features and results of an ALGOL 60 program

for calculating the eigenvalues of a real matrix.

Acknowledgements

The author is indebted to the staff members of the Computation
department of the Mathematical Centre for their valuable suggestions
and to R.J. De Vogelaere for his suggestions on iteration and

iteration control.

2. Laguerre's formuls
To derive this formula, we start from the interpolating function

2.1 £(z) = c(z - a)P(z - b))

and choose, for given p and q, the parameters a, b and ¢ such that the
values of £ and its first and second derivative are equal to those

of the given function f. Let

2.2 5 £1(z)/£(z) , 5, s? - f"(z)/t(z).

We then find

ds
1 P q
2.3 s, =—£—+ -3 | 5 =_ =By .
1 Z-3 Z=b 2 dz (Zeg,)2 (2-b)2
Putting sp =P *a and eliminating b, we obtain Laguerre's formula

for the next iterate a, which we call L(z):

2.4 a=1L{z) =2~ s,/(s, * \/(q/p)(sos2 - S‘f)f).

Herein, we choose the sign of the square root such that the absolute

value of L(z) - z is minimel.

We then have for the Laguerre iteration L, i.e. the iteration which

in each step replaces z by L(z), the following

2.5 Theorem. The Laguerre iteration L converges cubically in s

&
neighbourhood of a zero r of f having multiplicity m, if p and q
satisfy

2.5.1 p=m+ 0(z - r)2 , 4 > constant > 0.

Proof. For convenience, we shift the root r to the origin. Then

s, = %=+ 0, where ¢ tends to a finite value and s, = (m + O(z%))/ze.

The condition on p now reads p =m + O(zz) and we have

\/{;ﬁm)(scm - n? - 2moz) + 0(22)

Z\/‘;./P)(SOSQ - s12)

=Vq(q - 20’2) + O(Zg) = q - 0% + 0(22)0

So we find for the Laguerre iterate (we have to take the + sign,

since m and q are both positive):

L(z) =2 - soz/(m + o0z + (q - 0z) + 0(22))

= 1.2vy o ArL3

=z - soz/(sO + 0(z7)) = o(z”).

If the sign of the square root is chosen the other way, the same
theorem holds but for the condition on g which has to be replaced
by "q < constant < 0",

If, however, the condition on p is replaced by p =m + 0(z - r)

the convergence is only quadratic.

3. Newton's formula

Let now

3.1 £(z) = clz - a)p,

in which a .and ¢ are chosen such that £ and f have equal function

value and derivative at z. Then we have

3.2 s, = £'(2)/£(z) = p/(z - a)

and we obtain Newton's formula for the next iterate a, which we call
Né(z):

3.3 a = Np(z) =z - p/s1.

3.4 Theorem. The iteration Np converges quadratically in a neighbour-

hood of an m=fold zero r of £ if p =m + 0(z - r). Moreover, if the

Taylor series of f is

_ m m+1 m+2
3.b.1 f(z) = gm(z -r) + am+1(z -7r) + 0(z - r)
and p satisfies
a
1, .
3.kh.2 p=m+ B (2 - r) + 0z - r)2,
m
then the convergence is cubic.
Proof. We again shift r to the origin. Then we have
4 am+1 2z 2
= ¥ = - - ——)
1/s1 (z)/£' (z) = (1 — - 0(z%)).
m
2
Let p =m + uz + 0(z°), then
z am+1 Z 3
N (z) =2z~ 2(1+u=)(1 -~ =) + 0o(z”)
o) m m
m
2 2
m+ 1 Z 3
= (——-u) —+o(z7).
m
e
So the convergence is cubic, if u = —E-,and otherwise quadratic.
m

L. Formula for the multiplicity

We again start from the interpolating function (3.1), but we now
choose- the parameters a, ¢ and p such that the values of f*'and

its first and second derivative are equal to those of f. Then

b1 s, =p/l(z - a) , 5, = p/(z = a)z.

1

Hence, we have for p and the next iterate a = M(z) (say):

2
k.2 yo) 31/52’

4.3 | a=M3z2) =z - p/s1 =z - s17s2.

(This is, in fact, the ordinary Newton formuls NT(Z) for the
function f(z)/f'(z).)

4.4 Theorem. The iteration M converges quadratically in a neighbour-
hood of a zero r of f and the values p converge linearly to the
multiplicity of r.

Proof. Let f have the Taylor expansion (3.4.1). Then it easily

follows that

WL 1)k oo(z -)2,

2 -
h.h.1 s1/s2 =m + 2 2

Thus, p converges linearly to m and, according to theorem (3.4),

the convergence of the iteration M is quadratic.

5. Choice of p and q in Laguerre's formula

We may choose p according to (L4.2) and use this value in Laguerre's
formula (2.4). Since condition (2.5.1) is not satisfied (cf. 4.kh.1),
we obtain not cubic, but only quadratic, convergence. In fact, the

formula thus obtained is equivalent to Newton's formula (k.3).

In order to obtain a cubically convergent process, we must therefore
use a better estimate for the mﬁltiplicity. As the multiplicity is
an integer, we may simply choose p as the integer which is nearest
to s?/sz. If we are sufficiently near the limit, this yields the

correct value and we get cubic convergence.

If, on the other hand, we are not near the limit, it may very well
happen that this value for p is useless, either because it is

negative or O (which happens often if f has non-real zeros) or because,
in the case that f is a polynomial, it exceeds the degree.

In these cases, the most obvious choices for p seem to be p = 1 or

p = degree, respectively.

In this way, we may obtain a negative argument for the square root

and thus a real start leads in a natural way to non-real iterates.

Of course, then sf/s will become non-real also, in which case we

2
simply disregard its imaginary part for the determination of p.

As to the choice of g, reasonable values seem p and » or, in case
of polynomials, degree-p. In the latter case we should avoid the
situation p = degree, q = 0, since this formuls would not converge
cubically; so it is better to take p < degree ~1 and thus q > 1.

Summarizing, we obtain the following choices for p and q:
5.1 if £ is not a polynomial:

the positive integer nearest to s?/sz,

b

Q= or 4 = p;

5.2 if £ is a polynomial of degree n > 2:
p = the positive integer smaller than n nearest to s?/se,
@q=n-p or q =min(n-p,p).

6. Upper bounds for the error of zeros of polynomials

If the given function f is a polynomial of degree n, we have the
following upper bounds for the error z-r, where r is the nearest

zero of f.
a) expressed in the Newton step Az = N1(z) -z (ef. 3.3):
6.1 |z = x| < n/]s| = nIAiz];

b) expressed in the Laguerre step Az = L(z) - z (ef. 2.4), where p

satisfies 1 < p < n:

np+ |z-r|=<(1+ V 2(n - 1))|az],

6.3 a== ~+ |z=-rz|[< Vb |sz],
6.4 g

6.2 q

p > lz-rl<n ozl

We prove only (6.2).

o - el =122l 1o 4\ /S (me, - 6] o -]

i"‘"l'ﬁz (n +\/(n-1)(n2 +0°))= (1 + [/2ta = 1020 [az].

These upper bounds are certainly not all best possible.

In practice, however, they are good enough, especially (6.2 & 3).
So the criterion "|Az| smaller than a desired tolerance" seems to
be a good acceptance test for zeros of polynomials. If 2z is near

the limit, we have |z - r|a |Az| and otherwise the error is at

worst only a modest factor times |Az].
It should be borne in mind, howe&er, that no rounding errors are
considered here., Cancellation of figures may cause a much smaller
|Az| and thus a far too optimistic error estimate. This may
especially happen near already accepted, and removed, zeros.
Therefore, it is important to avoid circles around the accepted
zeros during the iteration. This difficulty around the already
accepted zeros is, in fact, the most serious drawback of any non-

deflating method.

T. Numerical experiments

The author did some experiments with an ALGOL 60 program for calcule-
ting the eigenvalues of a real matrix. The main features of the

program are

a) The matrix is first transformed to Hessenberg form by means of
Householder's transformation.

b) For calculating f, f' and f" Hyman's method is used.

c¢) The iteration formula used is Laguerre's formuls (2.4), where p
and q are chosen according to (5.2).

d) The iteration is continued until either |Az| < norm x eps, where
eps is a given parameter and norm is the infinity norm of the

matrix, or the number of iterations exceeds a given number.

&

e)

£)

g)

h)

Here, for the number of iterations, the program allows & higher
maximum in case of convergence, i.e. in case |Az| is decreasing,
then otherwise. (This strategy is inspired by J.W. Garwick's
procedure '"converge" [}] and an unpublished procedure for iteration
control by R.J. De Vogelaere.)

Tterates outside the circle around the origin with radius the
infinity norm of the matrix are rejected and replaced by a
suitable number on the edge of the circle. (This often saves

an iteration from divergence.)

Accepted zeros r; are removed by subtracting z (z - ri)_k from S
(k = 1, 2). Moreover circles around these zeros with radius norm ti-
mes given parameter, eta, are avoided during the iteration, as
long as |Az| is greater than 4 times this radius.

After accepting a zero (in fact either a real zero or a pair of
complex conjugates), the program calculates a start from the next
iteration by means of a Newton step (cf. Parlett [2] p.473). The
first start is L(«) with p = ' or, in an earlier version, L(0).
After accepting a non-real zero, the program accepts its complex
conjugate without any checking.

The problem here is how to define non-reality. On the one hand,
one has to prevent an accepted conjugate pair from causing s
too~high multiplicity in a cluster of zeros, and on the other
hand, one wants to deliver complex conjugates pair-wise. In this
program the non-reality criterion is "Im(z) > norm x eta'.

In an earlier version not only the multiplicity p (ef. 5.2) was
used in Laguerre's formula, but also the limit of z was accepted

as a p~tuple zero, where p is the last value used. This, however,

yields difficulties, because, especially in the last step, cancellation

of figures may cause a useless value of s?/sa and thus yield a wrong
multiplicity. If this multiplicity turns out too high, it ruins the
whole subsequent calculation. A more fundamental objection is the
following. Because of the cubic convergence one may use a rather

modest tolerance and expect a much higher precision for the last

iterate. Thus one may accept the zero as a cluster of multipliecity
p in the prescribed tolerance, but not in the higher precision

expected. The newer version accepts each zero as a single one.

In case of a multiple zero r the Newton step A1z (ef.(g)) usually
vanishes and thus the next iterate starts outside a circle around
r with radius norm x eta (ef.(f)). In case r is multiple, the next
iteration will again enter the circle and converge to r (this may

be considered a numerical definition of multiple zeros).

The program was run on the Electrologica computers X1 and X8

by means of the ALGOL systems of the Mathematical Centre, Amster-
dam, the Xl-system written by Dijkstra and Zonneveld and the X8-
system by Kruseman Aretz.

The test matrices used were,among others, Rosser's matrix of

order 8, Frank's matrix of order 12, Eberlein's matrix of order

16 (see Parlett [}ﬂ), and 5 tenth order matrices in Frobenius
canonical form. The results were correct and the number of iterations
was about the same as with Parlett's procedure Eig 3. A first impres-
sion is that the program is favourable (as to the number of iterations
required) for matrices with clusters of eigenvalues. For matrices
with well separated eigenvalues, Muller's method, with its high
efficiency rate of 1.84, will presumably do better than Laguerre,
which has an efficiency rate of ‘;@;.z1.hh. (Efficiency rate is the
order of convergence for steps consisting of one function evaluation,
more precisely: if the order of the process ig m and the number of

function evaluations per step is k, then the efficiency rate is
defined as \5/51)

Mathematical Centre,
2e Boerhaavestraat 49,
Amsterdam.

10

References

1. E.N. Laguerre, Oeuvres de Laguerre, Gauthier-Villars, Paris,
Vbl I, po 87'—103'

2. B. Parlett, Laguerre's Method applied to the Matrix Eigenvalue
Problem, MTAC 18 (196L), L6L-L85.

3. J.V. Garwick, Algorithm 1, BIT 1 (1961), p. 6L.

11

begin

‘comment R 1089, TJD 080866, Complex eigenvalues of real matrices.,
The method used is Newton = Laguerre iteration,

Input: bigeps, smalleps, maxdiv, maxconv, then the matrices each pre-
ceded by 1ts order, and finally the end marker O,

Output: bigeps, smalleps, maxdiv, maxconv, then for each matrix:

if details then Zreal, zZimag, deltaz and parameter p of each lterate,
moreover the order and the infinity norm of the matrix and the spur of
the given matrix and the transformed one, subsequently real and imagiw
nary part of each elgenvalue +together with the error estimate and the
number of iterations, and finally the sum of real and imeginary part
of the eigenvalueg and the total number of iterations ;

integer n, i Js real spur; Boolea.n qeq_m s transpose, details;
array esl1: 2], integer array ms

comment NLCR causes new line carriage return,

PRINTTEXT(s) prints the text between the outer quotes of the string s,
ABSFIXT(n,m,x) prints x as un unsigned fixed point number having at
most n digits before and m digits behind the decimal point,

print (x) printe x as a decimal floating number having a 13 — digit
fraction and an exponent of at most 3 digits ;

real procedure SUM(i,a,b,x); value b; integer i,a,b; real x;
begin real 85 S:= 0;

Tor i:= a step 1 until b do. si= 8 + x; SUM:= s
end BOW; -
real procedure INPROD(i,a,b,x,y)}; value b; integer i,a,b; real x,y;
begin resl 8; 8= 0;

Tor i:= a step 1 until b do s:= 8 + x X y; INPROD:= s
end IRPROD; -

procedure comeigval(a, n, e, m, re, im, er, c, out, aux);
value n; integer n; array a, e, re, im, er, aux; integer array m, c;
procedure out;
YegIn Infeger k; real norm; array bl1:n];

Tfmreahes(a, n, el217K 3, norm, b); aux[17]:= norm;

for k¢= 1 step 1 until n do

Pegin comvelhes(a, n, b, &, m, k, re, :Lm, out, aux);
er[k]:= aux[13], cfk] 2= gux[1h]
end Sr_xg. comeigval;

12

procedure comvalhes(a, n, b, e, m, k, re, im, out, d);

ue n,
procedure ou

eg

3 integer n, k; array a, b, e, re, im, d; integer array m;

eger J3 real norm, spur, w; array u, vi1:nl;

end

procedure deltaz;

begin 1T al13] > e[1] then
“eregion{al6], ATI, k, re, im, norm, e[1]x.25);
chyman(a, n, b d[6] al7i, df'{] $£0,2,u, v, 4);
laguerre(nk+1, k, re, im d),
al13]:= sqrt(de] A2+ df9] A 2)/norm, out

end deltaz;

AT5]:= k3 norme= al17]1;

if k¥ = 1 then

begin al1B51:= spurs= SUM(j, 1, n, alj,il);

we= (n=1) X (n x (SUM(j, 1, n-1, alj,jl A 2

+2xalg,+]1 x bfa]) + aln,n] A 2) = spur A 2);

if w > O then

Pegin al6T:= (spur

+ (if spur > O then 1 else -1) X sqrt{w))/n;

al7Tz= o

end else

Begin dl6]:= spur/n; dl7]:= sqrt(-w)/n end ;

g0 to newroot

d;

'?.%_abs(im[k—ﬂ) > el1] X norm A a[14] > .5 then
Pegin relk]ls= relk=1]; imlk]:= ~im[k=1]; a[TETs= O;
dl3]:= ~a[3]; al5]:= —als]; al7l:= —al7]

end else
Begin dl0]:= dl2]x2; dl1]:= al3lxe; al2]:= alu]; al3l:= als];
rre 1 k=1, re, im, d), :
newroot: a%'u3]._ ef1] X 23 d[m] 0; out;
iter(deltaz, e[2],m,13,d), relk]:= d[6], im{k]z:= al7]
end comvalhes; ‘

procedure iter(step, eps, max, n, X); value n, eps;
Integer n; real eps; integer array max; array X; procedure step;

Pegin integer j, count; Boolean convs; array OLDX[Osnl;

next:

counts= O;
counts= count+1; X[n+1]:= count; step;
convi= if count = 1 then true else X[n] < .99 x OLDX[n];
if conv Then for j:=0 step | until n do OLDX[jl:= x[j];
ir X[n] >7eps™A count < max[if conv then 2 else 1] then
go to next;
if oLDX[nT<X[n] then
for ji= 0 8%tep 1 until n do X[5]:= OLDX[J]

end iter;

13

procedure laguerre(degree,k ,RE,IM,F);

value degree,k; integer degree,k; array RE,IM,F;

PegIn integer j,m; real a,b,d,sl,tT,s2,t2,dx,dy,p,X,¥,w;
X:= FL6]; yi=Fl7]; s1:= F[2]; t1:= F[3];
82:= 81 A2 =1t1 A2 = (F[0] x F[L4] - F[1] x F[5]);
t2:= 2 X 81 X 1 = (F[0] x F[5] + Fl[1] x F[L]);
for je= 1 step 1 until kw1 do
Pegin as= X=RALj]T bi= y=IM[J]; d:= aho+bh2;

wi= (a x F[0] + b x F[1])/d;

bi= (a X F[1] — b x F[0])/d; a:= w;"

s1:= sl=a; tl:= ti-b; s2:= so~(af2-bA2); t2:= t2~2xaxb

end ;

a:= 8t A2 =11 A2 bi=2 X 81 X t13

pi= (ax 82 + bx t2)/(82 A 2 + t2 A 2);

me= if p > degree-1 then (if degree > 1 then degree=l else 1)

else if p > T then p else 1;
comment Temporary amendment;
I qeqm A 2Xm < degree then degree:= 2Xm;
wei= (degree-m)/m;
comsqrt%w X (degree X 82 = a), w X (degree X t2 = b), a, b);
if 81 X a + 1 X b € O then begin ai= =a; bi= =b end ;
a:= sl+a; b= tl+b; di=a A2 + b A 2; -
dxs= = degree X (ax¥[0] + bXF[1])/d;
dy:= = degree X (axF[1] = bxF[0])/4;
F[6]:= xtax; F[7]:= y+dy; F[8l:= ax; F[9]l:= dy;
F[10]e= p; Fl[11]:= m3 F[12]2= degree

E{l_d_. laguerre;

procedure cregion(x, vy, k, RE, IM, norm, e'ps);
value kK, norm, eps; integer k; real X, y, norm, eps; array RE, IM;
begin integer j; real ratio, neDs; -
ratio:=sqrt((x/nom5 A 2 + (y/norm) A 2);
if ratio > 1+LXeps then begin x:= x/ratio; y:= y/ratio end ;
neps:= eps X norm; - -
again : for j:= 1 step 1 until k=l do
Pegin if (FRELJITAZ + (y=IM[5]) A 2 < neps A 2 then
egin x:= x + 2 X neps; go to again end
end end cregion; - -

14

procedure chyman(A n,B,x,y,complex,m,u,v F), value n,x,y,complex,m;
Boolean complex; integer n,ms real X,y5 array K,Bu,v,F;
begin integer i,k; Teal T -3
procedure eTement(uv,fg); real fg; array uv;
begin real a; integer j; at= If k = O then O else k X uvlil;
uvlil:=IF 1 # n then Tg/B[1] el8e fg3
fge= x X ovli] + 3 = mPRoD(J,I,_‘A[i,J],uv[J])
end element;
Tor k:= 0 step 1 until m do
Pegin f:= Tf Xk = O then 1 else 0; g:= 03
for i:= n step = until 1 do
Pegin element{u,f); if complex then
Eegin element(V,_)', fi= fyXvlil; ge= gryxulil end
end ;
FTZXk]:= 5 Flaxk+1]:= g
end end chyman;

procedure comsqr”bga, , D, ip); value a, b; real a, b, rp, ip;
begin rp:= sqrt((abs(a) + sqrt(@ X a + b X BJT/ 2);

ip:= bi= if rp # O then b / rp / 2 else 0;

if a < 0 Then -

Pegin ip:=if b > O then rp else —rp; rp:= aba(b) end
end comsqret; -

procedure tfmreshes(A, n, eps, norm, B);
ﬁ'.'[ue n, eps; integer n; real eps, norm; arrsy A, Bj
egin integer T, J, Kk, k17 real w, alfa, Tol, tol2; array P[1:nl;
norm:= 0j
for i:= 1 step 1 until n do
begin wi= BOM(j,1 n,abs(AlT, 3])), if w > norm then norm:= w end;
foI:= eps X norm; tol2:= tol A 2 -
for k2= 1 step 1 until n=1 do
bPegin kil:=k+1; wi= INPROD(T;k+2,n,A[1,k],Al1,k]);
T 1if w > tol2 then
Begin Blk]:="sqrt(w + Alk1,k] A 2);
T 1If Alk1,k] > O then Blk]:= — B[k];
k1 ,k]:= Alk1,k] = Blk]; wi= Alk1,x] x Blk];
for i:= 1 gtep 1 until n do
~ P[1] :="INPROD(J,kT,n K‘L‘l,,;] Al3,x1) /s
alfas= INPROD(i,k1,n,Ali,k],P j
for ji= k1 step 1 until n do
B[3]l:= (InP 1,kT,n,A01,KT,A[1,5]) + alfa x Alj,k])/w;
for ji= k1 step 1 until n do
begin for it= 1 step 1 wntil k do
TR[1,5)1:="PlI] X AL k] ¥ AL4,3];
for it= k1 step 1 until n do
T AL, = ATLL KT Bl I+ PLi] x Alj,k] + Al1,5]
end end else
Begin BIKI:= if abs(A[k1,k]) > tol then Alk1,k] else t01x0,5;
— Alx1,kI:= 0

)

end end ;
. BlnlT= tol

end tfmreahes;

15

start:
degmt= 1 true ; comment temporary amendment;
transpose:= | true ; details:= 71 true ;

PRINTTEXT(

& bigeps smalleps mexdiv — maxconvi);
NLCR;

for is= 1, 2 do begin es[il:= read; print(es[il]) end ;

Tor i:= 1, 2 d begin melil:= read; ABSFIXT(8,0, mslil]) end ; NICR;
Tor ni:= read while n * O do

Pegin array matrixll:n, 13inl, re, im, ervalli:n], aux[O 171;

Thteger array cvalli:nl;

procedure outline;

i details then

Pegin integer count;
comnts= auxl1h]; print(auxl6]); print(aux(7]);
if count > O then
Pegin print(aux(T3]); print(aux[10]) end ;

end outline;
Tor is= 1 step 1 until n do for j:= 1 step 1 until n do
IT transpose then matrix[j,il:= rea.d else matrixli,jl = read;
TF details then
Pegin NLCR; PRINTTEXT(
£ z real z imag error ob
); NLCR; NLCR
end -
spur:= SUM(i,1,n, matrix[i,i1);
comeigval (matrix,n,es,ms,re,im,erval ,cval ,outline,aux);
NLCR; PRINTTEXT(
forder norm spur spur transformed});
NLCR; ABSFIXT(L4,0,n); print(aux[17]);
print(spur); prmt(aux[16]), NLCR; NLCR;
PRINTTEXT(
& real part imaginary part error count}
); NLCR; NLCR;
for je= 1 step 1 until n do
Begin printlrel 3177 print(Imlj1); print(ervalljl);
sBsFIXT(h, 0, evall3l); NLCR

a;
men 5 print(SM(j, 1, n, relj1)); print(suM(j, 1, n, imlj1));
PRINTTEXT (4<m sums —> 3});
ABSFIXT(L4, 0, SUM(j, 1, n, cvalljl)); NLCR

16

' bigeps = ! =3 ' smalleps = ! -
' maxdiv = * 10 ' maxconv = ! 30

' matrix of Eberlein of order ! 16

=1 0+10+104+10+ e O 2 2=R0+20+20+20+ L bm hm bt
=15+15+104+10+ 3= 3= O 230+304+20+20+ 6= G L bt
=10 O+20+10+ 2 O= L 220 O+4O+20+ b 0= 8= L
-5 0 O0#25+ 1 O O=5=10 0 O+50+ 2 O O=10
=1 OH+10+10+10= 24 2+ 24+ 2=20+20+20+20— b+ b+ Wt L
=15+15+104+10= 3+ 3+ 2+ 2=30+30+20+20- 6+ 6+ L+ bt
=10 O+20+10~ 2 O+ U+ 220 O+L0O+20- 4 O+ 8+ L
=5 0 O425=1 0 O+ 5=10 O O+50=2 0O O+10
=NhO+40+hO+40+ 8= 8= 8w 8=30+30+30+30+ 6= Hm 6= 6
—60+60+ 40+ 10+ 121 2= B B-U5+45430+30+ G G 6= 6
=40 O+80+40+ 8 0=16= 8=30 O+60+30+ 6 O=l12- 6
20 0 O+y2+ 4 0 0=20~15 0 O+75+ 3 0 015
=hOo+L0+LO+0= B+ 8+ 8+ B=30+30+30+30= 6+ 6+ 6+ 6
=60+60+40+40-12+12+ 8+ B8-L5+45+30+30~ 9+ O+ 6+ 6
-0 0+80+40= 8 0+16+ 8-30 0+60+30— 6 O+12+ 6
=20 0 O+p2=U4 O 0+20-15 0 O+75~3 0O O0+15

' matrix of Eberlein of order ! 5

+15+114 6= O=15
+ 1+ 3+ 9= 3= 8
+ T+ 6+ 6= 311
+ T+ T+ 5= 3=11
+17+12+ 5=10-16

! end marker ? 0

L

bigeps smalleps
+,999999999999% = 3 +,9999999999993~ 6
order norm spur
16 +h20 +240
real part imeginary part
=, 3000000000746+ 1 +,9999999979009y~ O
=, 3000000000746+ 1 =,9999999979009~ O
= 5999999999105+ 1 =,2000000004009+ 1
= 5999999999105+ 1 +,2000000004009+ 1
—. 9000000000509+ 1 +,2999999998709+ 1
~, 9000000000509+ 1 =,2999999998709+ 1
=e1199999999985 ¢+ 2 =,3999999999800,+ 1
—e1199999999985 5+ 2 +,3999999999800,+ 1
+,3000000000052+ 2 =,10000000001805+ 2
+,3000000000052,,+ 2 +,10000000001804+ 2
+,4499999999971 ;+ 2 =, 1500000000026+ 2
+,1499999999971 j+ 2 +,1500000000026+ 2
+,6000000000006+ 2 =—,1999999999983;+ 2
+,60000000000065+ 2 +,1999999999983,+ 2
+,1500000000001 o+ 2 +,4999999998327 4+ 1
+,1500000000001 g+ 2 =,4999999998327+ 1
+240 =0
order norm spur
5 +60 +5
real part imaginary part
+,1500019082881 4+ 1 +,3570720966396,+ 1
+,1500019082881 i+ 1 =,3570720966396,+ 1
+,149998196778Ty+ 1 =,357070763431 7+ 1
+.149998196778Tg+ 1 +.357070763431 7+ 1
=, 1000000000075+ 1 =,L4235164736271 = 21

+, 5000002101267 4+

-, 4235164736271 = 21

maxdiv
10

maxconv

30

spur transformed
+42399999999998,+ 3

error

+.6753525089633 -
+.6753525089633 4
+, 5650517028877 =
+4 5650517028877 ;=
+,2342138034103 4=
+,2342138034103 4=
+,1874531488239,- 13
+.1874531488239,~ 13
+,9667010237706,= 10
+,9667010237706,= 10
+,10808144601 3 - 12
+,108081 446k 13U~ 12
+.2055620514102,0= 7
+,2055620514102;0~ 7
+, 7078564979711 4= 10
+,7078564979711 0= 10

NI 0O\

Lo sums ——

count

ONOWO XMOVIO FOWO FO @

37

spur transformed
+ 5000000000015+ 1

error

+, 2448380706389, 6
+,2148380706389,0= 6
+,1633034000587 0= T
+,163303400058T = T
+,107h449963813 = 11 .
—

Loz sums

count
5
0
2
0]
3

10

18

' bigeps
! maxdiv

10

' matrix of order

5 =27l =120,

OOOOOmﬂOOOO
OOOOOSOOO.I

-

OOOOO 001..0
0000050100

S

OOOOO _}_IOOO

o *” LR
oR_NoNoNeoNoNoNoNoNe

10

! matrix of order

LN S L . A N
COO0OO0O0O0OQO —
L N N O S N N
©oooo0o00OogMmo
LN U Y S N RS J+) -
CO0O00O0O0O O
CC S N N S S T N N
OO0 OWVr VOO0
¥
CE N N N U S NN
OCO0OO0OO0O~—00O
M R B B B A R @ @ @
00000 ~000O
LN
4 0OINO
53HOOOOOO
0001000000
OO...OOOOOOO

0100000000

' end marker !

19

bigeps smalleps maxdiv maxconv

+4999999999999% = 3 +.9999999999993,~ 6 10 30
order norm spur spur transformed

10 +719 30 ~30
real part imaginary part error counﬁ
—.11000000001 142+ 1 ~0 +,14108241h23796 - 6 3
—=2299999999276 y+ ~0 +,3028075981486 4= 10 5
-, 3000000000586+ 1 -0 +,5682899702787 4~ 12 L
~=e 20000000001 56,5+ 1 =0 +,263562155500l 0= 9 L
—. 199999999919k y+ 1 -0 +,4646842353033,;~ 6 3
-, 1000000000009+ 1 =0 +,1621215430338,~ 7 3
~.9999999999873)~ O -0 +,1132137LL586T = 7 3
-, t000000001979+ 1 +,38538207842L3 = 8 +,5473232283765, 11 3
-, 1999999809937;+ 1 +,319660090841 7= 6 +,7111538700240= 6 2
—s 5000000063090+ 1 =~,1067892507578~ 6 +,3452325040621 0~ 9 2
=29999999875M1 i+ 2 +,2167246608681 g 6 <o _sums —_— 32
order norm spur spur transformed

10 +51 +20 +20
real part imeginary part error count
+42999999999822,+ 1 -0 +,885124L955 Tkl 6 3
+0299999999997 5+ 1 -0 +,4885304:31509L = 6 2
+,1999999999889+ 1 o) +,1576667007328= 6 L
+,2000000000040,+ 1 -0 +,1453166015508,0= 6 2
+,200000000036T o+ 1 -0 +,29022414399922 pm 6 2
+,9999999999918= 0 -0 +,14801869767664 = 13 3
+,1000000000002,+ 1) - +0 2
+,1000000000029,,+ 1 -0 +,2860100071415 = 12 2
+,999999999976k - 0 -0 +,359711847932l - 11 2
+43999999999909 5+ 1 =0 +.7370651060735~ 8 2
+20 w0 e sums — 2L

' bigeps

=

?]ﬂ_h

8 maxdiv = ' 10

' matrix with double eigenvalues =5(1)=1, the order is !

OO0 FOOOOWO
QO FOOOOWOO

T T
17 12

OFOOOOWOOO

FOOOOWOOOO

- 360
- 822
- 675
- 255
- U5
- 480
-1096
- 900
- 340
- 60

' smalleps

! maxconv

0O ©
0 =
0 O
0O O
0 O
=1 0
0 =l
0 O
0O ©

20

='30

60 ©
0 o
0 ©O
0 =i
0 O
0O O
0O O
=] O
0 i

120
27k
225
85
15
120
27k
225
85
15

10

from a S5=th order matrix of Eberlein, the order is !

-18
-6
-6
-6
-20

end marker !

=30
-16
-22
-22
~-32
=15
-8
11
=11
-~16

0

-15 =11 =6 9
-1 -3 =9 3
-7 =6 =6 3
-7 -7 =5 3
=17 =12 =5 10
0 0 O Q
0 0 0 o
0 0 0 o0
0O 0 0 O
0O 0o 0 o

15

8
1
11
16

eReNoRoNe,

bigeps

21

smalleps

+49999999999999~ L4 +.9999999999993,~ 6

order
10

real part

-.3999899733910m+
~, 0000052590335+
= 3000027706683+
-, 2999984608075+
-e 2000014592817 1+
-, 199998325793k ,+
=+9999999589027 4=
e 3999999957927 1=
=, 5000000003070+
—.11999999995T00 4+

=e2999991511193 5+

order
10

real part

+,15000023616L7 ,+
+,1500002361647 ;+
+,1500016387L92,+
+,1500016387492,,+
+,1L99824760253 +
+,1499824760253 +
+,150001338541 75+
+,150001338541 7+
= 9999840087548 =
e 100001414 270UT 11+

+.9999715353828 5+

norm

+1375

— o wwd wend b d

0
0
1
1

2

norm
+180

—lo-ﬂ—l_l-—l—d.—l—l—l

——

spur
=30

imaginary part
+0

+0
e 7296685768499 e
+, 5491460202955 =
e 230210321 3440,~
+, 1703961456778 4=
- 1762801672581 =
+,752323717958% =
=, 114199281 908584
+,1345993837996 ;=

=y 2274506961 OLH2,

WWwWUIui N0\ & &

spur
+10

imaginary part

+43570T09L4B8T7936 4+
=, 3570709487936 o+
== 357073793101 95+
+.3570737931019+
+.3570814503051 4+
e 3570814503051 1+
=, 3570508061 923+
+,3570508061923 ;+

o e e e

1

+.6331372925938~ 11
=0 1582765981939~ 12 +,8855455801551 yy=

+,6173096327LhU5 pm 11 <o

PloLivimcomn

MATHEMATISCH

maxdiv
10

maxconv
30

spur transformed
—-.2099999999983 4+ 2

error

+41580279266116 4=
+41172092563422
+45343925570865
+29396391 97688 =
+,89792L48888795 =
+,222263881 389 (-
+¢ 344 80LOTOLT2 Y
+,2007604636096 4=
+47507035066522 4=
+ 54033734341 7y

Lt sums

DOWDONDANANT OO

—

count

N FEPWN FOFPW

28

spur transformed
+,1000000000007 i+ 2

error

+,1828237746628
+,1828237746628 =
+45899138871583 -
+45899138871583 =
+, 5708445962160 =
+, 570841459621 60 =
+,6120317852755
+,6120317852755 =
+,9083298989051 =

sums

CENTRUM

AMSTERDAM

O~ ONONONONONONIT

!

count

Rg PDAOMNMNOMNO FOO

