stichting mathematisch centrum REKENAFDELING MR 82/70 NOVEMBER RA T.J. DEKKER NEWTON-LAGUERRE ITERATION 2nd (unrevised) edition # Contents | | | page | |----|------------------------------------------------------|------| | 1. | Introduction | 1. | | 2. | Laguerre's formula | 2 | | 3. | Newton's formula | 3 | | 4. | Formula for the multiplicity | 4 | | 5. | Choice of p and q in Laguerre's formula | 5 | | 6. | Upper bounds for the error of zeros of polynomials | 6 | | 7. | Numerical experiments | 7 | | | References | 10 | | | ALGOL 60 program for calculating complex eigenvalues | | | | of real matrices | 11 | | | Data nr. 1 | 16 | | | Output nr. 1 | 17 | | | Data nr. 2 | 18 | | | Output nr. 2 | 19 | | | Data nr. 3 | 20 | | | Output nr. 3 | 21 | ## 1. Introduction Laguerre's formula is cubically convergent, provided one uses the right guess of the multiplicity of the zero. B. Parlett [2] assumes in his procedure for calculating the eigenvalues of a Hessenberg matrix that the multiplicity of the eigenvalue is either one or two, the latter in the case that convergence is slow. The purpose of this paper is to show how the multiplicity may be estimated by means of a Newton formula. If this multiplicity, or rather the integer nearest to it, is used in Laguerre's formula, we get cubic convergence for multiple zeros also. The author has done some experiments with this formula and has the impression that the method is favourable if many zeros are multiple or in clusters. In sections 2, 3 and 4, some formulas are derived and some theorems about the order of convergence are proved. It is assumed that the given function f is sufficiently may times differentiable in a neighbourhood of a zero r of f, so that it makes sense to speak about the multiplicity of that zero and about Taylor expansion. As to convergence, only the local convergence, i.e. convergence in a sufficiently small neighbourhood of r is considered. Section 5 discusses the choice of the two parameters, p and q, in Laguerre's formula and section 6 gives some practical upper bounds for the error in the case that the function is a polynomial. Section 7 describes some features and results of an ALGOL 60 program for calculating the eigenvalues of a real matrix. #### Acknowledgements The author is indebted to the staff members of the Computation department of the Mathematical Centre for their valuable suggestions and to R.J. De Vogelaere for his suggestions on iteration and iteration control. ### 2. Laguerre's formula To derive this formula, we start from the interpolating function 2.1 $$f^*(z) = c(z - a)^p(z - b)^q$$ and choose, for given p and q, the parameters a, b and c such that the values of f and its first and second derivative are equal to those of the given function f. Let 2.2 $$s_1 = f'(z)/f(z)$$, $s_2 = s_1^2 - f''(z)/f(z)$. We then find 2.3 $$s_1 = \frac{p}{z-a} + \frac{q}{z-b}$$, $s_2 = -\frac{ds_1}{dz} = \frac{p}{(z-a)^2} + \frac{q}{(z-b)^2}$. Putting $s_0 = p + q$ and eliminating b, we obtain Laguerre's formula for the next iterate a, which we call L(z): 2.4 $$a = L(z) = z - s_0/(s_1 \pm \sqrt{(q/p)(s_0s_2 - s_1^2)}).$$ Herein, we choose the sign of the square root such that the absolute value of L(z) - z is minimal. We then have for the Laguerre iteration L, i.e. the iteration which in each step replaces z by L(z), the following 2.5 Theorem. The Laguerre iteration L converges cubically in a neighbourhood of a zero r of f having multiplicity m, if p and q satisfy 2.5.1 $$p = m + 0(z - r)^2$$, $q > constant > 0$. <u>Proof.</u> For convenience, we shift the root r to the origin. Then $s_1 = \frac{m}{z} + \sigma$, where σ tends to a finite value and $s_2 = (m + O(z^2))/z^2$. The condition on p now reads $p = m + O(z^2)$ and we have $$z\sqrt{(q/p)(s_0s_2 - s_1^2)} = \sqrt{(q/m)(s_0m - m^2 - 2m\sigma z) + o(z^2)}$$ $$= \sqrt{q(q - 2\sigma z) + o(z^2)} = q - \sigma z + o(z^2).$$ So we find for the Laguerre iterate (we have to take the + sign, since m and q are both positive): $$L(z) = z - s_0 z/(m + \sigma z + (q - \sigma z) + O(z^2))$$ $$= z - s_0 z/(s_0 + O(z^2)) = O(z^3).$$ If the sign of the square root is chosen the other way, the same theorem holds but for the condition on q which has to be replaced by "q < constant < 0". If, however, the condition on p is replaced by p = m + O(z - r) the convergence is only quadratic. ## 3. Newton's formula Let now 3.1 $$f^*(z) = c(z - a)^p$$, in which a and c are chosen such that f and f have equal function value and derivative at z. Then we have 3.2 $$s_1 = f'(z)/f(z) = p/(z - a)$$ and we obtain Newton's formula for the next iterate a, which we call $N_p(z)$: 3.3 $$a = N_p(z) = z - p/s_1$$ 3.4 Theorem. The iteration N converges quadratically in a neighbourhood of an m-fold zero r of f if p = m + O(z - r). Moreover, if the Taylor series of f is 3.4.1 $$f(z) = a_m (z - r)^m + a_{m+1} (z - r)^{m+1} + O(z - r)^{m+2}$$ and p satisfies 3.4.2 $$p = m + \frac{a_{m+1}}{a_m} (z - r) + 0(z - r)^2$$, then the convergence is cubic. Proof. We again shift r to the origin. Then we have $$1/s_1 = f(z)/f'(z) = \frac{z}{m} \left(1 - \frac{a_{m+1}}{a_m} \frac{z}{m} + O(z^2)\right).$$ Let $p = m + \mu z + O(z^2)$, then $$N_{p}(z) = z - z(1 + \mu \frac{z}{m})(1 - \frac{a_{m+1}}{a_{m}} \frac{z}{m}) + O(z^{3})$$ $$= (\frac{a_{m+1}}{a_{m}} - \mu) \frac{z^{2}}{m} + O(z^{3}).$$ So the convergence is cubic, if $\mu = \frac{a_{m+1}}{a_m}$, and otherwise quadratic. # 4. Formula for the multiplicity We again start from the interpolating function (3.1), but we now choose the parameters a, c and p such that the values of f and its first and second derivative are equal to those of f. Then 4.1 $$s_1 = p/(z-a)$$, $s_2 = p/(z-a)^2$. Hence, we have for p and the next iterate a = M(z) (say): 4.2 $$p = s_1^2/s_2$$, 4.3 $$a = M(z) = z - p/s_1 = z - s_1/s_2$$ (This is, in fact, the ordinary Newton formula $N_{\eta}(z)$ for the function f(z)/f'(z).) 4.4 Theorem. The iteration M converges quadratically in a neighbour-hood of a zero r of f and the values p converge linearly to the multiplicity of r. <u>Proof.</u> Let f have the Taylor expansion (3.4.1). Then it easily follows that 4.4.1 $$s_1^2/s_2 = m + 2 \frac{a_{m+1}}{a_m} (z - r) + 0(z - r)^2$$. Thus, p converges linearly to m and, according to theorem (3.4), the convergence of the iteration M is quadratic. ## 5. Choice of p and q in Laguerre's formula We may choose p according to (4.2) and use this value in Laguerre's formula (2.4). Since condition (2.5.1) is not satisfied (cf. 4.4.1), we obtain not cubic, but only quadratic, convergence. In fact, the formula thus obtained is equivalent to Newton's formula (4.3). In order to obtain a cubically convergent process, we must therefore use a better estimate for the multiplicity. As the multiplicity is an integer, we may simply choose p as the integer which is nearest to s_1^2/s_2 . If we are sufficiently near the limit, this yields the correct value and we get cubic convergence. If, on the other hand, we are not near the limit, it may very well happen that this value for p is useless, either because it is negative or 0 (which happens often if f has non-real zeros) or because, in the case that f is a polynomial, it exceeds the degree. In these cases, the most obvious choices for p seem to be p = 1 or p = degree, respectively. In this way, we may obtain a negative argument for the square root and thus a real start leads in a natural way to non-real iterates. Of course, then s_1^2/s_2 will become non-real also, in which case we simply disregard its imaginary part for the determination of p. As to the choice of q, reasonable values seem p and ∞ or, in case of polynomials, degree-p. In the latter case we should avoid the situation p = degree, q = 0, since this formula would not converge cubically; so it is better to take p \le degree -1 and thus q \ge 1. Summarizing, we obtain the following choices for p and q: - 5.1 if f is not a polynomial: $p = \text{the positive integer nearest to } s_1^2/s_2^2,$ $q = \infty$ or q = p; - 5.2 if f is a polynomial of degree $n \ge 2$: $p = \text{the positive integer smaller than n nearest to } s_1^2/s_2$, q = n p or $q = \min(n-p,p)$. ## 6. Upper bounds for the error of zeros of polynomials If the given function f is a polynomial of degree n, we have the following upper bounds for the error z-r, where r is the nearest zero of f. a) expressed in the Newton step $\Delta_1 z = N_1(z) - z$ (cf. 3.3): 6.1 $$|z - r| \le n/|s_1| = n|\Delta_1 z|$$; b) expressed in the Laguerre step $\Delta z = L(z) - z$ (cf. 2.4), where p satisfies $1 \le p < n$: 6.2 $$q = n-p \rightarrow |z - r| \le (1 + \sqrt{2(n-1)})|\Delta z|$$, 6.3 $$q = \infty \rightarrow |z - r| \leq \sqrt{n} |\Delta z|$$, 6.4 $$q = p \rightarrow |z - r| \leq n |\Delta z|$$. We prove only (6.2). $$|z - r| = \frac{|\Delta z|}{n} |s_1 + \sqrt{\frac{q}{p}} (ns_2 - s_1^2)| |z - r|$$ $$\leq \frac{|\Delta z|}{n} (n + \sqrt{(n-1)(n^2 + n^2)}) = (1 + \sqrt{2(n-1)}) |\Delta z|.$$ These upper bounds are certainly not all best possible. In practice, however, they are good enough, especially (6.2 & 3). So the criterion " $|\Delta z|$ smaller than a desired tolerance" seems to be a good acceptance test for zeros of polynomials. If z is near the limit, we have $|z - r| \approx |\Delta z|$ and otherwise the error is at worst only a modest factor times $|\Delta z|$. It should be borne in mind, however, that no rounding errors are considered here. Cancellation of figures may cause a much smaller $|\Delta z|$ and thus a far too optimistic error estimate. This may especially happen near already accepted, and removed, zeros. Therefore, it is important to avoid circles around the accepted zeros during the iteration. This difficulty around the already accepted zeros is, in fact, the most serious drawback of any non-deflating method. ### 7. Numerical experiments The author did some experiments with an ALGOL 60 program for calculating the eigenvalues of a real matrix. The main features of the program are - a) The matrix is first transformed to Hessenberg form by means of Householder's transformation. - b) For calculating f, f' and f" Hyman's method is used. - c) The iteration formula used is Laguerre's formula (2.4), where p and q are chosen according to (5.2). - d) The iteration is continued until either $|\Delta z|$ < norm × eps, where eps is a given parameter and norm is the infinity norm of the matrix, or the number of iterations exceeds a given number. Here, for the number of iterations, the program allows a higher maximum in case of convergence, i.e. in case $|\Delta z|$ is decreasing, then otherwise. (This strategy is inspired by J.W. Garwick's procedure "converge" [3] and an unpublished procedure for iteration control by R.J. De Vogelaere.) - e) Iterates outside the circle around the origin with radius the infinity norm of the matrix are rejected and replaced by a suitable number on the edge of the circle. (This often saves an iteration from divergence.) - f) Accepted zeros r_i are removed by subtracting $\sum (z r_i)^{-k}$ from s_k (k = 1, 2). Moreover circles around these zeros with radius norm times given parameter, eta, are avoided during the iteration, as long as $|\Delta z|$ is greater than 4 times this radius. - g) After accepting a zero (in fact either a real zero or a pair of complex conjugates), the program calculates a start from the next iteration by means of a Newton step (cf. Parlett [2] p.473). The first start is $L(\infty)$ with p = 1 or, in an earlier version, L(0). - h) After accepting a non-real zero, the program accepts its complex conjugate without any checking. The problem here is how to define non-reality. On the one hand, one has to prevent an accepted conjugate pair from causing a too-high multiplicity in a cluster of zeros, and on the other hand, one wants to deliver complex conjugates pair-wise. In this program the non-reality criterion is "Im(z) > norm × eta". - i) In an earlier version not only the multiplicity p (cf. 5.2) was used in Laguerre's formula, but also the limit of z was accepted as a p-tuple zero, where p is the last value used. This, however, yields difficulties, because, especially in the last step, cancellation of figures may cause a useless value of s_1^2/s_2 and thus yield a wrong multiplicity. If this multiplicity turns out too high, it ruins the whole subsequent calculation. A more fundamental objection is the following. Because of the cubic convergence one may use a rather modest tolerance and expect a much higher precision for the last iterate. Thus one may accept the zero as a cluster of multiplicity p in the prescribed tolerance, but not in the higher precision expected. The newer version accepts each zero as a single one. In case of a multiple zero r the Newton step $\Delta_1 z$ (cf.(g)) usually vanishes and thus the next iterate starts outside a circle around r with radius norm \times eta (cf.(f)). In case r is multiple, the next iteration will again enter the circle and converge to r (this may be considered a numerical definition of multiple zeros). The program was run on the Electrologica computers X1 and X8 by means of the ALGOL systems of the Mathematical Centre, Amsterdam, the X1-system written by Dijkstra and Zonneveld and the X8-system by Kruseman Aretz. The test matrices used were, among others, Rosser's matrix of order 8, Frank's matrix of order 12, Eberlein's matrix of order 16 (see Parlett [2]), and 5 tenth order matrices in Frobenius canonical form. The results were correct and the number of iterations was about the same as with Parlett's procedure Eig 3. A first impression is that the program is favourable (as to the number of iterations required) for matrices with clusters of eigenvalues. For matrices with well separated eigenvalues, Muller's method, with its high efficiency rate of 1.84, will presumably do better than Laguerre, which has an efficiency rate of $\sqrt[3]{3} \approx 1.44$. (Efficiency rate is the order of convergence for steps consisting of one function evaluation, more precisely: if the order of the process is m and the number of function evaluations per step is k, then the efficiency rate is defined as $\sqrt[k]{m}$.) Mathematical Centre, 2e Boerhaavestraat 49, Amsterdam. ## References - 1. E.N. Laguerre, Oeuvres de Laguerre, Gauthier-Villars, Paris, vol I, p. 87-103. - 2. B. Parlett, Laguerre's Method applied to the Matrix Eigenvalue Problem, MTAC 18 (1964), 464-485. - 3. J.V. Garwick, Algorithm 1, BIT 1 (1961), p. 64. 11 begin comment R 1089, TJD 080866. Complex eigenvalues of real matrices. The method used is Newton - Laguerre iteration. Input: bigeps, smalleps, maxdiv, maxconv, then the matrices each preceded by its order, and finally the end marker 0. Output: bigeps, smalleps, maxdiv, maxconv, then for each matrix: if details then zreal, zimag, deltaz and parameter p of each iterate. moreover the order and the infinity norm of the matrix and the spur of the given matrix and the transformed one, subsequently real and imaginary part of each eigenvalue together with the error estimate and the number of iterations, and finally the sum of real and imaginary part of the eigenvalues and the total number of iterations; integer n, i, j; real spur; Boolean qeqm, transpose, details; array es[1:2]; integer array ms[1:2]; comment NLCR causes new line carriage return. PRINTIEXT(s) prints the text between the outer quotes of the string s, ABSFIXT(n,m,x) prints x as un unsigned fixed point number having at most n digits before and m digits behind the decimal point, print (x) prints x as a decimal floating number having a 13 - digit fraction and an exponent of at most 3 digits; real procedure SUM(i,a,b,x); value b; integer i,a,b; real x; real s; s:= 0; begin for i:= a step 1 until b do s:= s + x; SUM:= s SUM: end real procedure INPROD(i,a,b,x,y); value b; integer i,a,b; real x,y; real s; s:= 0; begin for i:= a step 1 until b do s:= s + x x y; INPROD:= s end INPROD; procedure comeigval(a, n, e, m, re, im, er, c, out, aux); value n; integer n; array a, e, re, im, er, aux; integer array m, c; procedure out; begin integer k; real norm; array b[1:n]; tfmreahes(a, n, e[2] \wedge 3, norm, b); aux[17]:= norm; for k:= 1 step 1 until n do begin comvalhes(a, n, b, e, m, k, re, im, out, aux); er[k]:= aux[13]; c[k]:= aux[14] end comeigval; end ``` procedure comvalhes(a, n, b, e, m, k, re, im, out, d); value n, k; integer n, k; array a, b, e, re, im, d; integer array m; procedure out; begin integer j; real norm, spur, w; array u, v[1:n]; procedure deltaz; begin if d[13] > e[1] then cregion(d[6], d[7], k, re, im, norm, e[1]\times.25); chyman(a, n, b, d[6], d[7], d[7] \neq 0, 2, u, v, d); laguerre(n-k+1, k, re, im, d); d[13]:= sqrt(d[8] \(2 + d[9] \(\ 2 \)/norm; out end deltaz; d[15]:= k; norm:= d[17]; if k = 1 then begin d[16]:= spur:= SUM(j, 1, n, a[j,j]); w := (n-1) \times (n \times (SUM(j, 1, n-1, a[j,j] \land 2)) + 2 \times a[j,j+1] \times b[j] + a[n,n] \wedge 2 - spur \wedge 2; if w > 0 then begin d[6]:= (spur end else begin d[6]:= spur/n; d[7]:= sqrt(-w)/n end; go to newroot if abs(im[k-1]) > e[1] \times norm \wedge d[14] > .5 then begin re[k]:= re[k-1]; im[k]:= -im[k-1]; d[14]:= 0; d[3]:=-d[3]; d[5]:=-d[5]; d[7]:=-d[7] begin d[0]:= d[2]x2; d[1]:= d[3]x2; d[2]:= d[4]; d[3]:= d[5]; laguerre(1, k-1, re, im, d); newroot: d[13] := e[1] \times 2; d[14] := 0; out; iter(deltaz,e[2],m,13,d); re[k]:= d[6]; im[k]:= d[7] end comvalhes; end procedure iter(step, eps, max, n, X); value n, eps; integer n; real eps; integer array max; array X; procedure step; begin integer j, count; Boolean conv; array ULDX[0:n]; count:= 0; count:= count+1; X[n+1]:= count; step; next: conv:= if count = 1 then true else X[n] < .99 \times OLDX[n]; if conv then for j:= 0 step 1 until n do OLDX[j]:= X[j]; if X[n] > eps \land count < max[if conv then 2 else 1] then go to next; if OLDX[n] < X[n] then for j:= 0 step 1 until n do X[j]:= OLDX[j] end iter; ``` ``` procedure laguerre(degree,k,RE,IM,F); value degree,k; integer degree,k; array RE,IM,F; begin integer j,m; real a,b,d,s1,t1,s2,t2,dx,dy,p,x,y,w; x:= F[6]; y:= F[7]; s1:= F[2]; t1:= F[3]; s2:= s1 \wedge 2 - t1 \wedge 2 - (F[0] \times F[4] - F[1] \times F[5]); t2:= 2 \times s1 \times t1 - (F[0] \times F[5] + F[1] \times F[4]); for j:= 1 step 1 until k-1 do begin a:= \overline{x}-RE[j]; b:= y-IM[j]; d:= a/2+b/2; w:= (a \times F[0] + b \times F[1])/d; b:= (a \times F[1] - b \times F[0])/d; a:= w; s1:= s1-a; t1:= t1-b; s2:= s2-(a/2-b/2); t2:= t2-2xaxb end; a:= s1 \land 2 - t1 \land 2; b:= 2 \times s1 \times t1; p := (a \times s2 + b \times t2)/(s2 \wedge 2 + t2 \wedge 2); m:= if p > degree-1 then (if degree > 1 then degree-1 else 1) else if p > 1 then p else 1; comment temporary amendment; if qeqm \land 2 \times m < degree then degree:= 2 \times m; \overline{w} := (\text{degree-m})/m; comsqrt(w \times (degree \times s2 - a), w \times (degree \times t2 - b), a, b); if s1 \times a + t1 \times b < 0 then begin a:= -a; b:= -b end; a:= s1+a; b:= t1+b; d:= a \wedge 2 + b \wedge 2; dx = - degree \times (a \times F[0] + b \times F[1])/d; dy := - degree \times (a \times F[1] - b \times F[0])/d; F[6]:= x+dx; F[7]:= y+dy; F[8]:= dx; F[9]:= dy; F[10]:= p; F[11]:= m; F[12]:= degree end laguerre; procedure cregion(x, y, k, RE, IM, norm, eps); value k, norm, eps; integer k; real x, y, norm, eps; array RE, IM; begin integer j; real ratio, neps; ratio:=sqrt((x/norm) \land 2 + (y/norm) \land 2); if ratio > 1+4\times eps then begin x:= x/ratio; y:= y/ratio end; neps:= eps × norm; again: for j:= 1 step 1 until k-1 do begin if (x-RE[j]) \land 2 + (y-IM[j]) \land 2 < neps \land 2 then begin x:=x+2 \times neps; go to again end end end cregion; ``` ``` procedure chyman(A,n,B,x,y,complex,m,u,v,F); value n,x,y,complex,m; Boolean complex; integer n,m; real x,y; array A,B,u,v,F; begin integer i,k; real f,g; procedure element(uv,fg); real fg; array uv; begin real a; integer j; a:= if k = 0 then 0 else k × uv[i]; uv[i]:= if i + n then fg/B[i] else fg; fg:= x \times uv[i] + \overline{a - INPROD(j,i,n,A[i,j],uv[j])} end element; for k:= 0 step 1 until m do begin f := if k = 0 then 1 else 0; g := 0; for i:= n step - 1 until 1 do begin element(u,f); if complex then begin element(v,g); f:= f-y \times v[i]; g:= g+y \times u[i] end F[2\times k]:= f; F[2\times k+1]:= g end end chyman; procedure comsqrt(a, b, rp, ip); value a, b; real a, b, rp, ip; begin rp:= sqrt((abs(a) + sqrt(a \times a + b \times b)) / 2); ip:= b:= if rp \neq 0 then b / rp / 2 else 0; if a < 0 then begin ip:= if b > 0 then rp else -rp; rp:= abs(b) end end comsqrt; procedure tfmreahes(A, n, eps, norm, B); value n, eps; integer n; real eps, norm; array A, B; begin integer i, j, k, k1; real w, alfa, tol, tol2; array P[1:n]; norm := 0; for i:= 1 step 1 until n do begin w:= SUM(j,1,n,abs(A[i,j])); if w > norm then norm:= w end; tol:= eps \times norm; tol2:= tol \wedge 2; for k:= 1 step 1 until n-1 do begin k1:= k+1; w:= INPROD(i,k+2,n,A[i,k].A[i,k]); If w > tol2 then begin B[k] := sqrt(w + A[k1,k] \wedge 2); If A[k1,k] > 0 then B[k] := -B[k]; \overline{A[k1,k]} := A[k1,\overline{k}] - B[k]; w := A[k1,k] \times B[k]; for i:= 1 step 1 until n do P[i] := INPROD(j,k1,n,A[i,j],A[j,k])/w; alfa:= INPROD(i,k1,n,A[i,k],P[i]); for j:= k1 step 1 until n do B[j]:=(INPROD(i,k1,n,A[i,k],A[i,j]) + alfa \times A[j,k])/w; for j:= k1 step 1 until n do begin for i:= 1 step 1 until k do A[i,j] := P[i] \times A[j,k] + A[i,j]; for i:= k1 step 1 until n do A[i,j] := A[i,k] \times B[j] + P[i] \times A[j,k] + A[i,j] end end else begin B[k]:= if abs(A[k1,k]) > tol then A[k1,k] else tol×0.5; A[k1,k] := 0 end end; B[n] := tol end tfmreahes; ``` ``` start: qeqm:= 7 true ; comment temporary amendment; transpose:= | true ; details:= | true ; PRINTTEXT(≮ bigeps smalleps maxdiv maxconv≯); NLCR: for i:= 1, 2 do begin es[i]:= read; print(es[i]) end; for i:= 1, 2 do begin ms[i]:= read; ABSFIXT(8,0, ms[i]) end; NLCR; for n:= read while n = 0 do begin array matrix[1:n, 1:n], re, im, erval[1:n], aux[0:17]; integer array cval[1:n]; procedure outline; if details then begin integer count; count:= aux[14]; print(aux[6]); print(aux[7]); if count > 0 then begin print(aux[13]); print(aux[10]) end; end outline; for i:= 1 step 1 until n do for j:= 1 step 1 until n do if transpose then matrix[j,i]:= read else matrix[i,j]:= read; If details then begin NLCR; PRINTTEXT(≮ pþ z real z imag error); NLCR; NLCR end; spur:= SUM(i,1,n, matrix[i,i]); comeigval(matrix,n,es,ms,re,im,erval,cval,outline,aux); NLCR; PRINTTEXT(≮order spur transformed); spur NLCR; ABSFIXT(4,0,n); print(aux[17]); print(spur); print(aux[16]); NLCR; NLCR; PRINTTEXT(Ł real part imaginary part count* error); NLCR; NLCR; for j:= 1 step 1 until n do begin print(re[j]); print(im[j]); print(erval[j]); ABSFIXT(4, 0, cval[j]); NLCR end; NLCR; print(SUM(j, 1, n, re[j])); print(SUM(j, 1, n, im[j])); PRINITEXT({<\!\!\!\!\!<} sums \longrightarrow {>\!\!\!\!>}); ABSFIXT(4, 0, SUM(j, 1, n, cval[j])); NLCR end end ``` ``` * smalleps = * ₁₀-3 ' bigeps = ' 10 maxconv = 1 * maxdiv = * matrix of Eberlein of order -10+10+10+10+ 2- 2- 2- 2-20+20+20+20+ 4- 4- 4- 4 -15+15+10+10+ 3- 3- 2- 2-30+30+20+20+ 6- 6- 4- 4 -10 0+20+10+ 2 0- 4- 2-20 0+40+20+ 4 0- 8- 4 -5 0 0+25+ 1 0 0- 5-10 0 0+50+ 2 0 0-10 -10+10+10+10- 2+ 2+ 2+ 2-20+20+20-4+ 4+ 4+ 4+ -15+15+10+10-3+3+2+2-30+30+20+20-6+6+4+4 -10 0+20+10-2 0+ 4+ 2-20 0+40+20-4 0+ 8+ 4 - 5 0 0+25- 1 0 0+ 5-10 0 0+50- 2 0 0+10 40+40+40+40+ 8 8 8 8 30+30+30+30+ 6 6 6 6 -60+60+40+40+12-12-8-8-45+45+30+30+9-9-6-6 -40 0+80+40+8 0-16-8-30 0+60+30+6 0-12-6 -20 0 0+_{10}2+4 0 0-20-15 0 0+75+3 0 0-15 -_{40}0+40+40-40-8+8+8+8-30+30+30+30-6+6+6+6 -60+60+40+40-12+12+ 8+ 8-45+45+30+30- 9+ 9+ 6+ 6 40 0+80+40-8 0+16+ 8-30 0+60+30-6 0+12+ 6 -20 0 0 + 10^2 - 4 0 0 + 20 - 15 0 0 + 75 - 3 0 0 + 15 ``` matrix of Eberlein of order ^{+15+11+ 6- 9-15} ^{+ 1+ 3+ 9- 3-8} ^{+ 7+ 6+ 6- 3-11} ^{+ 7+ 7+ 5- 3-11} ^{+17+12+ 5-10-16} end marker (``` bigeps smalleps maxdiv maxconv +.999999999994; 3 +.999999999993; 6 30 spur transformed order norm Spur +420 +240 16 +239999999998n+ real part imaginary part count error -.300000000746_{in}+ 0 +.6753525089633 8 1 +.9999999979009₁₀ 0 +.6753525089633 -. 3000000000746₁₀+ 1 -. 999999979009 0 1 +.5650517028877 4 -. 5999999999105₁₀+ 1 - 2000000004009_{10} + 1 +.5650517028877 0 1 + .2000000004009_{10} + -. 599999999105n+ 1 +.2342138034103₁₀ -- 900000000509₁₈+ 1 + .2999999998709_m + 1 + 2342138034103 1 - 2999999998709_m + -.900000000509₁₀+ 2 -.3999999999800₁₀+ 1 + .1874531488239_{10} - 13 -.1199999999985_m+ 0 2 +.3999999999800₁₀+ 1 +.18745314882391 13 -.1199999999985₁₀+ 2 +.9667010237706₁₀- 10 5 2 - 100000000180_{10} + +.300000000052₁₀+ Ó 2 +.9667010237706₁₀- 10 +.300000000052₁₀+ 2 + .1000000000180_{10} + 8 +.449999999997110+ 2 - 1500000000026_{10} + 2 +.1080814464134₁₀ 12 2 + .1500000000026_{10} + 2 +.1080814464134₁₀- 12 0 +.44999999997110+ 3 +.600000000006_{in}+ 2 -.1999999999983₁₀+ 2 +.2055620514102₁₁ 0 2 +.2055620514102 +.60000000000610+ 2 +.1999999999983₁₀+ 2 2 + 4999999998327_{in}+ 1 + .7078564979711_{10} = 10 +.150000000001₁₀+ +.150000000001₁₀+ 2 -. 4999999998327_{in}+ 1 + .7078564979711_{11} = 10 0 +240 -0 sums 37 order spur transformed norm spur +60 5 +5 +.50000000001510+ real part imaginary part error count +.1500019082881 m+ 1 + .3570720966396_{10} + 1 +.2448380706389 5 1 - .3570720966396_{m} + 1 +.2448380706389 +.1500019082881₁₀+ 0 +.1499981967787_m+ 1 - .3570707634317₁₀+ 1 + .1633034000587_{10} 2 1 + .3570707634317_{10} + 1 + .1633034000587_{10} +.149998196778710+ 0 -.100000000075₁₀+ 1 - 4235164736271 - 21 + 1074449963813 - 11 3 +.5000002101267_{10} + 1 -.4235164736271_{10} 21 < -. 10 sums ``` ``` * bigeps = * ' smalleps = ' 10⁻³ maxdiv = maxconv = 1 30 10 * matrix of order 10 0,0,0,0,0120,0,0,0,0,0,0 1,0,0,0,274,0,0,0,0,0, 0,1,0,0,-225,0,0,0,0,0,0, 0,0,1,0, -85,0,0,0,0,0, 0,0,0,1, -15,0,0,0,0,0, , 120 ـ ب 274 ـ و 225 ـ ر 85 ـ و 5 أ ـ و 0 0,0,0,0 0,1,0,0,0,0, 0,0,0,0, 0,0,1,0,0,0, 0,0,0,0, 0,0,0,1,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0,1,0 matrix of order 10 0,1,0,-35,0,0, 0,0, 0,0, 0,0,1,+10,0,0, 0,0, 0,0, 0,0,0,0,0,0,0,+6,0,0,0, 0,0,0,0,11,0,0,0,0, ,0, 0 ,0, 6+,1,0, 0 ,0,0,0 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,1,+3,0, 0,0,0,0,0,0,0,0,0 ``` end marker | bigeps
+.999999999999 ¹ 10 | 3 | smalleps +.999999999993 ₁₀ - | 6 n | naxdiv 1 | maxconv
30 | | |--|--------------------------------------|--|---|---|--|---| | | rm
19 | | ur
30 | spur | transfor | rmed | | real part | | imaginary part | | erro | r | count | | 400000001142 ₁₀ +299999999276 ₁₀ +3000000000586 ₁₀ +2000000000156 ₁₀ +1999999999194 ₁₀ +10000000000009 ₁₀ +999999999873 ₁₀ 400000001979 ₁₀ +4999999809937 ₁₀ +5000000063090 ₁₀ + | 1
1
1
1
1
0
1
1 | 10 | +.302
+.56
+.26
+.16
+.11
8 +.54
6 +.71 | 10824423
80759814
82899702
35621555
468423530
21215430
32137445
73232283
11538700
52325040 | 86 10
787 12
904 9
933 6
338 7
765 11
240 6 | 3
5
4
4
3
3
3
3
3
2
2 | | | | | | | | | | 2999999987541 ₁₀ + | 2 | +.2167246608681 | 6 < | sums | > | 32 | | order no | 2
rm
51 | sp | 6 <
ur
20 | | transfor | _ | | order no | rm
51 | sp | ur | | transfor
+20 | | | order no | rm
51 | sp
+ | +.88
+.48
+.15
+.14
+.29
+.48
+.35 | erro:
851244955'
853043156
876667007'
853166015'
802244399' | transfor
+20
r
744 6
094 6
328 6
508 6
922 6
664 1
13
+0
415 6
12
324 1 | rmed | ``` ' smalleps = ' 10-6' maxconv = ' 30 bigeps = 1 10 matrix with double eigenvalues -5(1)-1, the order is 10 - 360 0 0 0 0 0 120 0 0 - 822 0 274 0 0 0 Õ 3 - 675 Ö 0 0 0 225 0 3 - 255 0 0 45 0 0 Ö 3 0 0 0 15 _ 480 0 0 0 0 0 0 0 120 0 4 Ó 0 -1096 O 274 0 - 900 0 0 - 340 0 0 0 60 0 0 * matrix from a 5-th order matrix of Eberlein, the order is * 10 ``` ``` 22 12 -18 -30 -15 -11 -6 30 9333 15 - 3 - 6 - 7 -12 18 - 6 12 - 6 10 - 6 - 1 - 7 - 7 6 -16 8 2 -22 -22 -32 14 12 11 14 11 34 24 10 -20 -17 16 - 9 - 3 6 -15 15 11 0 36 96 0 0 7 -- 3 -11 0 0 0 0 0 5 5 7 7 - 3 _11 0 0 0 0 0 -10 12 -16 ``` end marker 0 | bigeps | smalleps | m | xdiv max | conv | | |---|--|--|---|-------------|--| | +•999999999999 | 4 + 99999999999931 | 6 | 10 | 30 | | | order no
10 +13 | orm sp
75 — | ur
30 | spur tr
2999999 | | | | real part | imaginary part | | error | | count | | 3999899733910 ₁₀ +4000005259033 ₁₀ +3000027706683 ₁₀ +2999984608075 ₁₀ +2000014592817 ₁₀ +1999983257934 ₁₀ +9999999589027 ₁₀ 999999957927 ₁₀ 5000000003070 ₁₀ +4999999995700 ₁₀ + | 1 +0
1 +0
17296685768499 ₁₀
1 +.5491460202955 ₁₀
12302103213440 ₁₀
1 +.1703961456778 ₁₀
04762801672581 ₁₀
0 +.7523237179584 ₁₀
11419928190858 ₁₀
1 +.1345993837996 ₁₀ | +.41° 4 +.53° 4 +.29° 6 +.89° 6 +.22° 5 +.34° 5 +.20° 3 +.75° | 80279266116
72092563422
+3925570865
39639197686
79248888795
22638813894
+4804070472
07604636096
07035066522 | 67686888 | 3 2 4 2 3 2 4 2 | | 2999991511193 ₁₀ + | 2 - 227450696104210- | 4 < | sums | > | 28 | | | orm sp
80 + | ur
10 | spur tr
+.1000000 | | | | real part | imaginary part | | error | | count | | $+.1500002361647_{10}+$ $+.1500002361647_{10}+$ $+.1500016387492_{10}+$ $+.1500016387492_{10}+$ $+.1499824760253_{10}+$ $+.1499824760253_{10}+$ $+.1500013385417_{10}+$ $9999840087548_{10} 1000014427047_{10}+$ | | 1 +.18;
1 +.58;
1 +.57;
1 +.57;
1 +.61;
1 +.61;
11 +.90; | 28237746628
28237746628
99138871583
99138871583
08445962160
20317852755
20317852755
83298989051 | 766666667 | 6
0
4
0
2
0
2
0
6
2 | | +.9999715353828 _n + | 1 +.6173096327445 ₁₁ | 11 < | sums | | 22 |