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Preface

This note concerns a problem which was suggested to the author while
listening to a lecture by J.C P. Miller at the IBM Symposium on
t'tilisation of Computers in Mathematical Research held at Blaricum,
August 29 to 31, 1966

Dr Miller's problem was actually a different one, but the present
one is intimately related with it and the result may shed some light

on similar problems



Triangular arrays of digits

Let Tn be the set of triangular arrays D of binary digits di ., 1.e.
d = = M i = . - j: i = "

i3 0 or di,' 1: 1 1, ..., n+1 Ji J 1, ..., n, that
satisfy the relations
d. . + d, . d = 0O 2

i,J i+l1,j N i, j+1 mod  2) (1)

for all relevant values of i and j.

An array D may be pictured as an equilateral triangular array of O's
and 1's, the i-coordinate counting from left to right and the

j-coordinate upwards (cf. fig. 1).

A reflection M with respect to the altitude through the apex and also
a counter-clockwise rotation over 1200, R, do not only transform the
array into a similarly constructed one, but also leave the relation

(1) intact Indeed, (1) states that on each elementary triangle with
its apex pointing upwards, there occur either one or three zero digits,
a property which is invariant under reflection and rotation. Hence,
with D also MD, RD, MRD, RRD and MRRD are, not necessarily different,
elements of D. Our problem is to determine the number t(n) of essen-
tially different elements of Tn, where by essentially different is
meant not transformable into one another by a number of rotations and

or or reflections.

An array D is completely defined by its base, i.e. the sequence

d d ce., d , since by means of (1) the remaining digits
1,17 “2,1° n,1 y 1 g dig
can be determined successively. Hence, the number of elements of Tn

is the number of different bases, i.e. 2n

The number of essentially different elements in the subset (D, MD,
RD, MRD, RRD, MRRD) is called the rank of that subset, and may be
either 1, 2, 3 or 6. If the elements possess a centre of symmetry

and an axis of symmetry as well then the rank is 1; if they only
possess a centre of symmetry then the rank is 2; if they only possess
one axis of symmetry then the rank is 3; otherwise the rank is 6.

In fig. 2, 3, 4 and 5 a number of arrays of order 4 and of different



rank are pictured Since the total number of bases in these figures

is 16, actually, all arrays of order 4 are depicted. Let tl{n)

3

tzfn), ts(n) and t_ fn) denote the number of essentially different

6
arrays of order n and of rank 1, 2, 3 and 6 respectively. Thus, e.g

t1«j4) = 2, 12(4) =1, t3(4) = 2, t6»:(j4) = 1, and t(4) = 6 Obviously,

in general,

, . ( . _ i ;
tlgn) + tz(n) +t3'n) + te(n) t(n) . (2)
Moreover, since an array of rank r disposes over r different bases,

. . . . n .
. (n 2t _( : : { = i
tl n) + tz_n) + 3t3(4) + 6t6(n) 2 3)

First the number of arrays, of order n and of rank either 1 or 3

is determined An array of order 2n + 1 and of rank 1 or 3 consists
of an array of order 2n and of rank 1 or 3 "on top" of a symmetric
sequence of 2n + 1 digits, of course, satisfying (1) . Since the
middle digit of this sequence can be chosen freely to be either O or
1 (cf. Fig. 6) one has

tl(zn + 1) + t3(2n + 1) = 2(t1(2n) + t3(2n)); (4a)
Half of the arrays thus produced have as middle digit a O, half of
them a 1. By "underlining" an array of order 2n and of rank 1 or 3
having a O as middle digit two essentially different arrays of order
2n + 1 and of rank 1 or 3 are obtained (cf. fig. 6) By underlining
an array of order 2n and of rank 1 or 3 having a 1 as middle digit
one does obtain two arrays of order 2n + 1 and of rank 6 which are

identical but for a reflection. Hence,

t1(2n + 2) + t3(2n + 2) = t1(2n + 1) + t3(2n + 1) . {4b)
Since, moreover, tl(O) = 1 and tB(O) = 0 one has

£ (2n) + t (2n) = 2",

t (20 + 1) + tgn s D =28 T (4)

An array of order 2n + 3 and of rank 1, is obtained by '"lining" an
array of order 2n ard of rank 1, i.e. by extending it on all three
sides with the same sequence of digits, of course, satisfying (1)

(cf. fig. 7). On the same grounds as above one obtains two essentially
different arrays, one having a O as middle digit of its sides and one
having a 1 as middle digit. Hence,

tl(Zn + 3) = 2t1(2n), {5a)
Lining an array of order 2n + 1 and of rank 1 and having a O as middle
digit of its sides yields two essentially different arrays of order

2n + 4 and of rank 1 (cf. fig. 7). Lining an array of order 2n + 1 and



of rank 1 and having a 0 2s middle digit yields two arrays of order
2n + 4 and of rank 2, which are, moreover, identical but for a
reflection. Hence

t]&2n + 4) = tl(2n + 1), {5b)
whereas half of this amount is a contribution to t2(2n + 4) .

Since, moreover, Tle) =1, Tl(l) = 2 and T](2) = 1 one has

t (6K) = t 16k + 2) = ok

y

tl(BR + 1) = r1¢‘6k + 3) = tl(‘Gk + 4) = tl(6k + 5) = 21“ * ], 15)
and in view of (4)
t, 6k) = 23k _ ok,
tgf6k L1 = 23k + 1 _ 2k + ]’
t 6k + 2) = 3k + 1 _ ok ‘6
t 06k + 3) = t 16k + 4) = 2°F T2 ok 1

3 %k + 3 k +1

13(6k +5) =2 - 2 .
The other way to produce an array of rank 2 is by lining another
array of rank 2 {(cf. fig 8) This yields two arrays which are
identical but for a reflection Hence,

{ 3) = 2 (7
tz(Zn + 3) t2(2n), a)
t2(2n + 4) = 2t2(2n + 1) + %tllZn + 4) (7b)
Since, moreover, t_f0) = t_(1) = t_{2) = O, one has in view cf 75):

2 2k g 1 k2- 1
t (6k) = t (6k + 2) = 2 -2 ,
2 2 2k k
t2( 6k + 1) = tE(Gk + 3) = t2(6k + 5) = 2 - 2, (7)
t,i6k + 4) = g2k + 1 _ ok
From {3), (5), (6) and (7) follows tG(n) and then from (2).

. ! - - 2k
t(6k) = (26k Togxo®® -1, ) + 3,

) g 3k 2k 1. .
tek + 1) = (2%F 43 x 2°% L 22K T Ly 4 3

. : 1 3k 2k
t(6k + 2) = (26k * + 3 x 2 +2 ) %3, (8)
: q . 2k 1
te6k + 3) = (25K T2 g 03kl o2k ly g g

) § : 3k 1 2Kk + 2, ,

t{(6k + 4) = (26k +3 + 3 x 2 * + ) # 3,
. 2k 1
te6k + 5) = gzek *4 3y g3k + 2 p2k A ) + 3.

It is seen that t(n) = 2n ¢ 6. Hence, with increasing n the fraction

of arrays of rank 1, 2 or 3 tends to zero, as might be expected.

In Table I values of tl(n), tz(n), ts(n), t6(n) and t(n) are displayed



for small values of n

The problem is easily generalized. One may,for instance, let T be
n

the set of arrays D of digits di]’iOS‘ Sip in the scale of a, i.e
0= dilﬂiZ’ i <8, il =1. . ., n+ k-1 - 12 - = iki
12 =1, ., n + k -2 - 13 - .. = ik; e ik =1, , n,
that satisfy the relations
4 1 i T 41, S S G i
172 e L S S B I S *
. . == r(mod a
1,015, ’lk + 1=="" ),
0L r < a, for all relevant values of i_, 12, . ik

In principle, the same methods may be used, but the complexity soon gets
tremendous with increasing dimension and scale. Still very interesting
is the case a = 2, as before, but in several dimensions. The residu

r is either O or 1. If the number of dimensions is even then the set
defined by r = 0 is intrinsically the same as that defined by r = 1,
i.e. each array of the one set is transformed into one of the other
set by changing every O into 1 and every 1 into 0. If the number of
dimensions is odd, however, the two sets are intrinsically different,
i.e. each array in a set is transformed into one of the same set by
changing every O into a 1 and every 1 into a 0. The one dimensional
case, k = 1, is, of course, trivial. The case k = 3 is already quite
complex . The array is now tetrahedronal and the transformation group
is of order 12. There are, therefore, arrays of rank 1, 2, 3, 4, 6

and 12. For some results, cf. Tables II and III.



41 .4
41,3 93,3
d1,2 992 935
d d d d

fig. 1 Array of order 4.

0 0 1 1 0 0
00 00 10 01 11 11
111 111 011 110 010 010
0101 1010 0010 0100 1100 0011

D1 MD1 RD1 MRD1 R2D1 MR2D1

fig 2 Arrays of order 4 and of rank 6.

0 1 1 0 1 1
11 10 01 00 01 10
101 100 001 00O 001 100
1001 0111 1110 1111 0001 1000

2
D2 RD2 R D2 D3 RD3 R2D3

fig. 3 Arrays of order 4 and of rank 3.

0 0
0o 11
00O 101
000O 0110
D5 D6

fig. 5 Arrays of order 4 and of rank 1.

0 0 0 0 0 0
11 11 00 00 11 11
101 D2 101 000 D5 000 101 b6 101
1001 1001 0000 0000 0110 0110
10001 01110 00000 11111 11111 00100

fig. 6 Arrays of order 5 and of rank 1 or 3 formed by underlining those

of order 4 and of rank 1 or 3.



0 0 0 0]
11 11 11 11
1 01 1 01 010 010
1001 0110 060011 1100

fig. 7 Arrays of order 4 and of rank 1, 3 or 6 formed by underlining

arrays of order 3 and of rank 1 or 3.

/0 0 0\0 0/1 1 1\0
fig. 8 Arrays of order 5 and of rank 1 fcrmed by lining arrays of

order 2 and of rank 1

\0 1 1
Aok X X
0/0 1/0\1 1/1\0_ _0/1\1

cyo 0 0o/1 1\0 1/0 1\t 1/1 0\1

fig. 9 Arrays of order 4 and of rank 1 or 2 formed by lining arrays

of order 1 and of rank 1.

1/0 1 1 0 1\1 1/1 0 0 1 0\1

fig. 10 Arrays of order 7 and of rank 2 formed by lining arrays of

order 4 and of rank 2.
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