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1. Introduction 

In this note we consider two problems concerning context free grammars. 

The first problem is the following: 

Let G = (lo/; E, P, cr) be a context free grammar (for definitions see 

section 2), let AEIY- E, and let n be a non negative integer. 

Let L(A, n) (L(A, .:::_ n), L(A, ..::_ n)) be the subset of L(G) consisting of 

all those words_ of L(G), which have a derivation tree that contains 

the variable A precisely n (at least n, at most n) times. Equivalently, 

L(A, n) (L(A, .:::_ n) ,L(A, ..::_ n)) is the set of' those words of L(G) which 

have a derivation using a production rule with A as its left hand side 

precisely n (at least n, at most n) times. 

The problem is whether L(A, n), L(A, .:::_ n) and L(A, ..::_ n) are context 

free languages. We prove in section 3 that this is indeed the case, by 

giving an algorithm for deriving context free grammars for these three 

sets from the given grammar G. 

Section 4 is devoted to the second problem: 

Let G = (0', E, ".P, cr) be a context· free· grammar and let A, BE:. Cr - L 

Find an algorithm for determining whether the subset of those words of L(G), 

each derivation tree of which contains A, is equal to the set of words 

from L(G), whose derivation trees all contain B. 

In the case that G is unambiguous, this means that this algorithm 

determines whether, L(A, > 1) equals (B, > 1). 
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2. Definitions 

In this section we follow the definitions of Ginsburg [1]. 

An alphabet is a finite non empty set, the elements of which are called 

* symbols. If A is an alphabet, A is the set of all finite sequences of 

elements of A, including the empty sequence. 

A context free grammar G is a four-tuple (\..Y, E, ~, a), where 

a. \Y is an alphabet, 

b. EClj'is an alphabet, 

c. :j:) is a finite set of ordered pairs (u, v), with uE:0' - E, vE.1.Y, 

d. crE.IY - E • 

The elements of l...'.Y- E are called variables and the elements of E are 

called terminals. Elements (u, v) of g:> are called productions and are 

usually written u ➔ v. 

Let w, 

exist 

.y>. 

yE 0'*. We write w G y ( or w => y if G is understood) , if there 

* z 1, z2 , u, ve\Y such that w = z1uz2 , y = z1vz 2 and u ➔ v is in 

We write w ~> y (or w ~> y if G is understood), if either w = y, or there 

exist w0 = w, w1, w2 , •.• , wr = y, such that wi G> wi+ 1 for each i. 

The sequence w0 , w1, ••• , wr is called a derivation and is denoted by 

* If G = (tY, E,T, cr) is a context free grammar, then the subset of E , 

L(G) = {wE f"""Jcr ~ w} is called a context free language. 

We impose the following restrictions on the grammars considered in this 

note: 

a. For each AE.\J- E, there exist * * u, vE,..Y such that (J -> uAv. 

AE-.v - exists * * b. For each E there wEE such that A => w. , 

These two restrictions ensure that G contains no "superfluous" variables. 

Since from each grammar containing superfluous variables a grammar can be 

constructed without superfluous variables, but which generates the same 

language [1], this is an inessential restriction, imposed only for con

venience. 
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* With each derivation A=> w a derivation tree can be associated in the 

usual way. 

A derivation tree with root A is denoted by T(A). 

A node v
1 

is called a direct extension of a node v
2 

if there exists a 

directed line from v
2 

to v
1

• 

A node v
1 

is called an extension of a node \)2 if it is either a direct 

extension of v
2

·or an extension of R direct extension of v
2

• 

A node v, is called predecessor of a node v
2 if \)2 is a direct extension 

of v 1• 

A derivation tree is called recursive, if it contains a node which has 

the same node name as one of its extensions. Otherwise, it is called 

recursion free. 

In this paper we consider only derivation trees with the property that 

each variable occur.i:ing therein has at least one direct extension. 
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3. Algorithm 1 

Theorem 1 

Let G = (\.J, E, <?, a) be a context free grammar, let AE.\Y, and let n 

be an, integer..::_ 0. Define 

L(A, n) = {wEL(G) 13 a derivation tree of w which contains A precisely 

n times}, 

L(A, ..::_ n) = V L(A, i), 
i>n 

L(A, ..:_ n) = M L(A, i). 

Then L(A, n), L(A, ..::_ n) and L(A, ..:_ n) are context free languages. 

Proof 

1.1 First we construct a context free grammar for L(A, n). The basic 

idea in this construction is the introduction of "indexed" variables, 

e.g. P(j), (0 ..:_ j ..:_ n), such that each derivation tree with P(j) 

as its root contains the variable A precisely j times. 

We define the grammar G' = (\J', E' ,~', a') as follows: 

a. E' = E, 

b. 0' = EU LJ U {P(i)}, i.e. each variable PE:\Y-E leads to 
PG: \J'-E 0<i<n 

o (o)- ( 1) p(nt ' ... ,' n+1 variables P , P , ••• , = v 

C 
,...-1 = ,....(n) 

o V V ' 

d.<y' = u u 
P+cpe.'J-) 0..:_i..:_n 

{P + <1>} (i), where the sets {P + <1>} (i) are 

defined as follows: 

a. P '# A. 

If <I> is a terminal sequence, i.e. <PE r*, then {P + <1>} (O) = 

{P(O) ~ <1>}, and {P ~ <P}(i) = ¢ 1), for i > 0. If <I> is not 

* a terminal sequence, then there exist x
1 

, x
2

, ••• , xm+
1 

EE , 

Q1 , Q2 , • • • , ~ E \Y - E (m > 1 ) such that 

<I>= x 1Q1x2Q2 , •• xm~xm+ 1• Then we define for each i > 0: 

1) ' 
¢ denotes the empty set. 
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/3. p = A. 

If~ is a terminal sequence, then {A+ ~}( 1) = {A( 1) +~},and 

{A+ ~}(i) =¢,for ii 1. Otherwise, let 

* ~ = y 1R1y2R2 ypRpyp+1, with y1, y2 , ••• , Yp+ 1EI, and 

R1, R2 , ••• , RPEv-I. Then {A+ ~}(O) =¢and for i > 0: 

Co) \ l (i) Ci 1) (i2 ) CiP) 
{A+~} l = . 0 \___Jo . {A + y1R y2R ••• ypR Yp+1 }. 

1,+12+ ••. +1p=1-1 

i 1 ,i2 , ••.. ,ip..:..O 

1.2 Example 

Let G be ({cr, P, N, a,+, (,), O, 1}, {a,+,(,), O, 1}, 

{cr + cr + P,cr + P, P + N, P + (cr), P + a, N + O, N + 1, 

N ➔ ON, N + 1N}, cr). 

G is a grammar for a set of simple arithmetic expressions. A grammar 

G' for the subset of this set, consisting of all expressions which 

contain only two digits (i.e. L(N, 2)) is the following: 

G' = (\)' , I' , S')' , cr' ) , where 

lo/' = { cr ( 2 ) , cr ( 1) , cr ( O ) , P ( 2 ) , P ( 1) , P ( O ), N ( 2 ) , N ( 1) , N ( O ), a , + , ( , ) , 0 , 1 }, 

I I = {a,+, (,), o, 1}, 

g, = (2) + (2) + p(O) cr cr , cr(2) ➔ P(2), p(2) + (cr(2)), N(2) + ON( 1 ) 

(2) ➔ cr(1) p ( 1 ) cr( 1) +P(1)' P(1) ➔ (cr(1)), N(2) + 1N( 1) cr + ' ' 
(2) + cr(O) + p(2), cr(O) ➔ p(O), p(O) + (cr(O)), N(1) ➔ ON(O) cr 

' 
cr(1) + cr(1) + P(o), P(2) ➔ N(2), p(O) 

+ a, N( 1) ➔ 1N(O) 

cr(1) ➔ cr(O) + p(1), p(1) + N(1), N(1) ➔ o, 

cr 
(0) + cr(O) + p(O), p(O) + N(O), N(1) 

➔ 1' 

Q" I •= (2) cr • 
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Two possible derivations are: 

cr (2) 
==> 

==> 

cr 
(2) ==> 

cr(2) + p(0) 

N(1) + p(1) 

==> 

==> 

0 + 1 + P(O) ==> 0 + 1 + a, 

cr(2) + p(0) ==> p(2) + p(0) ==> N(2) + p(O) 

ON( 1) + P(O) ==> 01 + P(O) ==> 01 + a. 

==> 

1.3 Proof that L(G') = L(A, n) 

1.3.1. First we show that L(G' )CL(A, n). 

Let 
( 1) cr(n) = w ==>- w ==:.- ••• ==> w = w 0 G' 1 G' G' r 

( 2) 

be a derivation of wE L( G'). 

Clearly, deletion of all the indices from the variables occurring 

in each w.(0 < i < r), gives a derivation 
l .,.... 

cr ==> w 
G ' 

hence wE:.L(G). In order to prove that the· derivation tree corre-

sponding to (2) contains A precisely n times, we introduce the 

* "level",\ for each element of IJ' as follows: 

a. ,\ (a) = o, for each a~ E', 
b. .\(P(j)) = J' for each P ( j \=: .. \J'1 - LI 

c. .\(xy) = .\(x) + .\(y), 
..... 

for x, yE.-0' ·• 

In ( 1 ) ' let Wo 1 
= X p(j) y, Wo = xcj>y (0 < i .::_ r)' 

l- l 

* p ( j ) 7 cp E. 9' . where x, ye..v' ' 
From the construction of~, it follows that ,\ ( w O ) = ,\ ( w o 

1 
) 

. l l-

if and only if P # A, and .\(wo) = .\(wo 
1

)-1 if and only 
( ) l l-

if P =A.Since .\(cr n) = n, and .\(w) = 0, we conclude that the 

derivation (2) uses a production from <Ji with A as its left hand 

side precisely n times, which means that A occurs n times in the 

derivation tree of w. 

1.3.2 Proof that L(A, n)CL(G'). 

Let wE.L(G) have a derivation tree which contains A precisely n times. 

The following process is executed: 
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{

Each node in this tree which is a variable, say P, is supplied with 

(*) an in~e~, equal to the number of times A occurs in the subtree ,(P), 

containing all extensions of P. 

Then the tree which is thus constructed is a derivation tree of 

win L( GI ) • 

For, consider 

First suppos-e 

There are two 

a. 

b. 

\ 
\ 

Now suppose p 

an arbitrary variable p(j) in this derivation tree. 

pf: A. 

possibilities for the subtree ,(P(j)): 

/ 

= A. 

The only direct extension of Pis a terminal 

sequence; hence, j = 0. But P ( O )-+ xE<J.)' 

by the construction of ':P' • 

From(*) it follows that 

m+1 

\ 

Again there are two cases: 

a. 

b 

I \ 
I 

I 

By ( *), J = 1 , and from the construction of 

~' we see that A ( 1) + YE9'. 

By(*), j = J1 + j2 + 

(°) (j1) 
hence A J + y R 

' 1 1 

{ ' 

This completes the proof that L(A, n)CL(G'). ,, 
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2. The grammar G" for L(A, > n) is constructed as follows: 

G" = (l.]11
, t:", 9", cr"), where 

l)"' = \J'v \j, 
t:" = t:, 

~" =P1v:Pu{A( 1) 7 A}v u {P(O) ➔ P}, 
PE:. \o/-1: 

cr" = CJ (n) •. 

The proof that this grammar generates L(A, ~ n) is very similar to the 

first proof and is therefore omitted. 

3. Since L(A, .::_ n) = U L(A, i) and since a finite union of context 
i=O 

free languages is again a context free·language, the proof of theorem 

1 is complete. 

Remark: 

Theorem 1 can easily be generalized to the following 

Corollary: 

Let {A1, A2 , ••• , Am} be a set of variables of a context free grammar 

G, and let {n1, n2 , ••• , nm} be a set of non negative integers. Then: 

The subset of L(G) consisting of all words which have a derivation tree 

containing A1 precisely (at least, at most) n1 times, A2 precisely 

(at least, at most) n2 times, ••• , Am precisely (at least, at most) nm 

times, is a context free language. Here each choice of "precisely", 

"at least", "at most" may be made independently of the others. 
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4. Algorithm 2. 

Let A, B be two variables of a context free grammar G. In this section 

we define an algorithm which determines whether each derivation tree of 

a word-wEL(G) which contains A, also contains B. This algorithm is 

given in definition 2. First, a special case is treated in definition 1. 

There we define an algorithm which determine-s whether each derivation 

tree with A as its·root contains B. 

Although these problems are fairly simple, some care has to be taken 

in view of recursive use of variables, in order to avoid· closed loops 

in these· algorithms·. This- may- be illustrated by the following part of 

the set of production rules of a context free grammar: 

A ➔ C ••• , 

C ➔ D ••• , 

D-+ A ••• , 

Suppose one used the following scheme: Each derivation tree with A as 

its root contains B if and only if each production rule with A as its 

left hand side contains in its right hand side either B, or variable 

C with the property that each derivation tree with C as its root 

contains B. Verification of this property for C and next for D would 

give the result that each derivation tree with A as its root contains 

B if each derivation tree with A as its root contains B. 

In order to avoid such loops it is clearly necessary to remember which 

variables have already been considered in the course of the above 

described scheme. 

This explains the following definition: 

Definition 1 

Let G = (Li, I:, :P, cr) be a context free grammar, let A, B E- lY-I:, and let 

wcv-I:. The predicate (A > B, i.,Y) is defined as follows: 

(A> B, t,j) is true if and only if either 

1. A = B, or ( 1 ) 

2. F9r each rule A ➔ <PE. P which has A as its left hand side there exist 
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* l/1 1 , l/J2e.\i , PE"\.o/-~, such that <P = iµ 1 Piµ 2 , and either 

2. 1. PE: t,,;, or 

2.2. (P > B,W'u{P}) 

(2) 

(3) 

Example: (A > B, \Y-~) is true if and only if either A = B, or P contains 

no rule A + cf>, with <P a terminal sequence. 

Theorem 2 

Let A, B be two variables of a context free grammar. Then (A> B, {A}) 

if and only if each derivation tree with A as its root contains B. 

Proof 

1. Suppose (A > B, {A}). We prove that each tree with A as its root 

contains B. 

First we consider a derivation tree T(A) which is recursion free 

(section 2). Suppose that B ¢T(A) 1). 

From the definition of (A > B, {A}) we conclude that there exists 

in t(A) at least one direct extension of A which is a variable, 

say P, such that (P > B, {A, P}); for, (1) does not apply since 

B 4t(A), and (2) does not apply since ,(A) is recursion free. 

By the same argument there exists a direct extension Q of P such that 

( Q > B , { A , P , Q} ) etc . 

However, after a finite number of these steps we reach a variable R, 

such that (R > B, { A, P, Q, ••• , R}), but such that the only exten

sion of Risa terminal sequence, say x. 

This is a contradiction, since the occurence of a rule R ➔ x in :P 
contradicts (R > B, {A, P, Q, ... , R}) • 

Next we consider a tree t(A) which is reeursive. It is easy to see 

that from such a tree, another derivation tree can be constructed 

with the same root, which is recursion free and which contains only 

nodes that occur also in the original tree. We can apply the above 

argument to this recursion free·tree. If it contains B, then so does 

the originally considered tree T (A). 

1) BE. r(A) means: B occurs as one of the nodes in the tree T (A). 
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2. Suppose that each derivation tree·with A as its root contains B. 

We prove that then (A> B, {A}). 

Let 'lY - I = { P 1 , P 2 , ••• , P n} • 

Let E(i), 1 2_ i 2_ n, be the following assertion: 

\

If {P1, P2 , ••• , Pi} is a subset of v- I, if B, QE.\.Y-I, and if 

(Q > B, {P
1

, P2 , ••• , Pi}) is false, then there exists a derivation 

tree T(Q) which does not.contain B. 

We shall show that: 

a. E(n) holds, 

b. E(i) implies E(i-1), for i = n, n - 1, ••• , 2. 

Assuming a and b, we conclude·· that E{ 1 ) holds, which ·means that if 

(A > B, {A}) is false, then there· exists a tree T (A), such that 

B ¢:r(A). 

Proof of E(n): 

Suppose that (Q > B, {P1, P2 , ••• , Pn}) is false. From definition 1 

we see that there exists at least one production rule Q ➔ ~with ~ a 

terminal sequence. Hence· there· exists a derivation .. tree ·r(Q) which 

does not contain B. 

Proof of "E(i) implies E(i-1)". 

Suppose that (Q > B, {P
1

, P2 , ••• , Pi_ 1}) is false, for some subset 

{P 1 , P
2

, ••• , Pi_ 1} of V-L 
Then, either 

a. There exists a rule Q ➔ ~'with ~ a terminal sequence, which im

mediately gives a tree T(Q) without B, or 

b. There exis~s a rule 

Q ➔ x1R1 x2R2 • , • X R X 1 mm m+ (4) 
such that for each R. ( 1 2- j < m): 

J 
Rj 4:, {P1' P2 , i!I •• ' pi-1} (5) 

and 

(Rj > B, {P1, P2 , ••• , Pi_ 1, Rj}) is false. (6) 
We can now apply E ( i) to ( 6), which means that there exist derivation 

trees T(R.) withour B, for each j(1 2_ j 2_ m), Together with (4) this 
J 

yields a derivation·tree T(Q) which does not contain B. 

This completes the proof of theorem 2. 
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Remark: In the sequel we abbreviate (A> B, {A}) to A> B. 

Definition 2 

Let A, B be two variables qf a context·free grammar G = (\}, E, P, cr) 

and let we \.J-E. The predicate (A p B, Wj is defined as follows: 

1. (cr p B, U-) = cr > B, and for each A# cr: 

2. (A p B, LY) is true if and only if either 

2. 1. A = B, or 

2.2. For each rule P-+ <P, which·contains A in its right hand side 

(Le. there exist w
1

, 1)J
2
E:.if, sucl). that cp = 1jJ

1 
Aip

2
), either 

2.2.1. <P contains a variable C (which may be A itself) for which 

C > B holds or 

2. 2. 2. PE: \,.J, or 

2 • 2 • 3 • ( P p B , W--U{ P} ) 

Theorem 3 

(8) 

(9) 
( 10) 

Let A, B be two variables of a context free grammar. Then (A p B, {A}) 

if and only if each derivation tree T(cr) which contains A, also 

contains B. 

Proof 

1. Suppose (ApB, {A}). We prove that AE:.T(cr) implies BE.T(cr). 

If A= cr then the proof follows from theorem 2. 

If A# cr, we first consider a derivation tree T(cr) which is recursion 

free. Suppose AE. T ( cr), B E,i:T ( cr). Let P be the predecessor of A in 

T(cr). From the definition of the reiation (Ap B, {A}) it follows that 

(Pp B, {A, P}); for, (7) or (8) does not apply since BEi:T(cr) and (9) 

does not apply since dcr) is recursion free. 

Again, for the predecessor of P, say Q, we find: 

(Qp B, {A, P, Q}) etc. Finally we conclude that (crp B, {A, P, Q, ••• ,cr}), 

which means that cr > B;· hence, BE:T(cr), which is a contradiction. 

The general case for recursive trees follows directly. 
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2. Suppose that A E:.-r( cr) implies BE. T ( cr), but that (A p B, {A}) is false. 

For A= cr, this is clearly impossible. If A# cr, we conclude from 

definition 2 that there exists a rule P +~'such that: 

a. A occurs in~' 

b. For no C occuring in~, C > B, 

c. (Pp B, {A, P}) does not hold. 

From a and b we see that there exist-s a tree T(P), with AE.T(P), 

B ~T (P). 

From cit-follows in the same way that-there exists a Q, 

(# A, # P), and a derivation tree T(Q), such that A~T(Q), Be-T(Q) 

and (QpB, {A, P, Q}) is false. 

Eventually a tree T ( cr) results, such that A E. T ( cr) but B €f-T ( cr) , which 

is a contradiction. 

This completes the proof of theorem 3. 

Corollary 

For unambiguous grammars there exists an algorithm which determines 

whether L(A, .::_ 1) = L{B, > 1). 

Proof 

L(A, > 1) = L(B, > 1) if and only if (ApB, {A}) and (BpA, {B}). 
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