
STICHTING

MATHEMATISCH CENTRUM
2e BOERHAA YESTRAAT 49

AMSTERDAM

REKENAFDELING

MR 86

TWO ALGORITHMS CONCERNING

CONTEXT FREE- GRAMMARS

J.W. de Bakker

March 1967

The Mathematical Centre at Amsterdam, founded the 11th of February, 1946,

is a non-profit institution aiming at the promotion of pure mathematics and

its applications, and is sponsored by the Netherlands Government through the

Netherlands Organization for the Advancement of Pure Research (Z. W. O.) and

the Central Organization for Applied Scientific Research in the Netherlands

(T .N.O.), by the Municipality of Amsterdam and by several industries.

1. Introduction

In this note we consider two problems concerning context free grammars.

The first problem is the following:

Let G = (lo/; E, P, cr) be a context free grammar (for definitions see

section 2), let AEIY- E, and let n be a non negative integer.

Let L(A, n) (L(A, .:::_ n), L(A, ..::_ n)) be the subset of L(G) consisting of

all those words_ of L(G), which have a derivation tree that contains

the variable A precisely n (at least n, at most n) times. Equivalently,

L(A, n) (L(A, .:::_ n) ,L(A, ..::_ n)) is the set of' those words of L(G) which

have a derivation using a production rule with A as its left hand side

precisely n (at least n, at most n) times.

The problem is whether L(A, n), L(A, .:::_ n) and L(A, ..::_ n) are context

free languages. We prove in section 3 that this is indeed the case, by

giving an algorithm for deriving context free grammars for these three

sets from the given grammar G.

Section 4 is devoted to the second problem:

Let G = (0', E, ".P, cr) be a context· free· grammar and let A, BE:. Cr - L

Find an algorithm for determining whether the subset of those words of L(G),

each derivation tree of which contains A, is equal to the set of words

from L(G), whose derivation trees all contain B.

In the case that G is unambiguous, this means that this algorithm

determines whether, L(A, > 1) equals (B, > 1).

2

2. Definitions

In this section we follow the definitions of Ginsburg [1].

An alphabet is a finite non empty set, the elements of which are called

* symbols. If A is an alphabet, A is the set of all finite sequences of

elements of A, including the empty sequence.

A context free grammar G is a four-tuple (\..Y, E, ~, a), where

a. \Y is an alphabet,

b. EClj'is an alphabet,

c. :j:) is a finite set of ordered pairs (u, v), with uE:0' - E, vE.1.Y,

d. crE.IY - E •

The elements of l...'.Y- E are called variables and the elements of E are

called terminals. Elements (u, v) of g:> are called productions and are

usually written u ➔ v.

Let w,

exist

.y>.

yE 0'*. We write w G y (or w => y if G is understood) , if there

* z 1, z2 , u, ve\Y such that w = z1uz2 , y = z1vz 2 and u ➔ v is in

We write w ~> y (or w ~> y if G is understood), if either w = y, or there

exist w0 = w, w1, w2 , •.• , wr = y, such that wi G> wi+ 1 for each i.

The sequence w0 , w1, ••• , wr is called a derivation and is denoted by

* If G = (tY, E,T, cr) is a context free grammar, then the subset of E ,

L(G) = {wE f"""Jcr ~ w} is called a context free language.

We impose the following restrictions on the grammars considered in this

note:

a. For each AE.\J- E, there exist * * u, vE,..Y such that (J -> uAv.

AE-.v - exists * * b. For each E there wEE such that A => w. ,

These two restrictions ensure that G contains no "superfluous" variables.

Since from each grammar containing superfluous variables a grammar can be

constructed without superfluous variables, but which generates the same

language [1], this is an inessential restriction, imposed only for con

venience.

3

* With each derivation A=> w a derivation tree can be associated in the

usual way.

A derivation tree with root A is denoted by T(A).

A node v
1

is called a direct extension of a node v
2

if there exists a

directed line from v
2

to v
1

•

A node v
1

is called an extension of a node \)2 if it is either a direct

extension of v
2

·or an extension of R direct extension of v
2

•

A node v, is called predecessor of a node v
2 if \)2 is a direct extension

of v 1•

A derivation tree is called recursive, if it contains a node which has

the same node name as one of its extensions. Otherwise, it is called

recursion free.

In this paper we consider only derivation trees with the property that

each variable occur.i:ing therein has at least one direct extension.

4

3. Algorithm 1

Theorem 1

Let G = (\.J, E, <?, a) be a context free grammar, let AE.\Y, and let n

be an, integer..::_ 0. Define

L(A, n) = {wEL(G) 13 a derivation tree of w which contains A precisely

n times},

L(A, ..::_ n) = V L(A, i),
i>n

L(A, ..:_ n) = M L(A, i).

Then L(A, n), L(A, ..::_ n) and L(A, ..:_ n) are context free languages.

Proof

1.1 First we construct a context free grammar for L(A, n). The basic

idea in this construction is the introduction of "indexed" variables,

e.g. P(j), (0 ..:_ j ..:_ n), such that each derivation tree with P(j)

as its root contains the variable A precisely j times.

We define the grammar G' = (\J', E' ,~', a') as follows:

a. E' = E,

b. 0' = EU LJ U {P(i)}, i.e. each variable PE:\Y-E leads to
PG: \J'-E 0<i<n

o (o)- (1) p(nt ' ... ,' n+1 variables P , P , ••• , = v

C
,...-1 = ,....(n)

o V V '

d.<y' = u u
P+cpe.'J-) 0..:_i..:_n

{P + <1>} (i), where the sets {P + <1>} (i) are

defined as follows:

a. P '# A.

If <I> is a terminal sequence, i.e. <PE r*, then {P + <1>} (O) =

{P(O) ~ <1>}, and {P ~ <P}(i) = ¢ 1), for i > 0. If <I> is not

* a terminal sequence, then there exist x
1

, x
2

, ••• , xm+
1

EE ,

Q1 , Q2 , • • • , ~ E \Y - E (m > 1) such that

<I>= x 1Q1x2Q2 , •• xm~xm+ 1• Then we define for each i > 0:

1) '
¢ denotes the empty set.

5

/3. p = A.

If~ is a terminal sequence, then {A+ ~}(1) = {A(1) +~},and

{A+ ~}(i) =¢,for ii 1. Otherwise, let

* ~ = y 1R1y2R2 ypRpyp+1, with y1, y2 , ••• , Yp+ 1EI, and

R1, R2 , ••• , RPEv-I. Then {A+ ~}(O) =¢and for i > 0:

Co) \ l (i) Ci 1) (i2) CiP)
{A+~} l = . 0 ___Jo . {A + y1R y2R ••• ypR Yp+1 }.

1,+12+ ••. +1p=1-1

i 1 ,i2 , ••.. ,ip..:..O

1.2 Example

Let G be ({cr, P, N, a,+, (,), O, 1}, {a,+,(,), O, 1},

{cr + cr + P,cr + P, P + N, P + (cr), P + a, N + O, N + 1,

N ➔ ON, N + 1N}, cr).

G is a grammar for a set of simple arithmetic expressions. A grammar

G' for the subset of this set, consisting of all expressions which

contain only two digits (i.e. L(N, 2)) is the following:

G' = (\)' , I' , S')' , cr') , where

lo/' = { cr (2) , cr (1) , cr (O) , P (2) , P (1) , P (O), N (2) , N (1) , N (O), a , + , (,) , 0 , 1 },

I I = {a,+, (,), o, 1},

g, = (2) + (2) + p(O) cr cr , cr(2) ➔ P(2), p(2) + (cr(2)), N(2) + ON(1)

(2) ➔ cr(1) p (1) cr(1) +P(1)' P(1) ➔ (cr(1)), N(2) + 1N(1) cr + ' '
(2) + cr(O) + p(2), cr(O) ➔ p(O), p(O) + (cr(O)), N(1) ➔ ON(O) cr

'
cr(1) + cr(1) + P(o), P(2) ➔ N(2), p(O)

+ a, N(1) ➔ 1N(O)

cr(1) ➔ cr(O) + p(1), p(1) + N(1), N(1) ➔ o,

cr
(0) + cr(O) + p(O), p(O) + N(O), N(1)

➔ 1'

Q" I •= (2) cr •

6

Two possible derivations are:

cr (2)
==>

==>

cr
(2) ==>

cr(2) + p(0)

N(1) + p(1)

==>

==>

0 + 1 + P(O) ==> 0 + 1 + a,

cr(2) + p(0) ==> p(2) + p(0) ==> N(2) + p(O)

ON(1) + P(O) ==> 01 + P(O) ==> 01 + a.

==>

1.3 Proof that L(G') = L(A, n)

1.3.1. First we show that L(G')CL(A, n).

Let
(1) cr(n) = w ==>- w ==:.- ••• ==> w = w 0 G' 1 G' G' r

(2)

be a derivation of wE L(G').

Clearly, deletion of all the indices from the variables occurring

in each w.(0 < i < r), gives a derivation
l .,....

cr ==> w
G '

hence wE:.L(G). In order to prove that the· derivation tree corre-

sponding to (2) contains A precisely n times, we introduce the

* "level",\ for each element of IJ' as follows:

a. ,\ (a) = o, for each a~ E',
b. .\(P(j)) = J' for each P (j \=: .. \J'1 - LI

c. .\(xy) = .\(x) + .\(y),
.....

for x, yE.-0' ·•

In (1) ' let Wo 1
= X p(j) y, Wo = xcj>y (0 < i .::_ r)'

l- l

* p (j) 7 cp E. 9' . where x, ye..v' '
From the construction of~, it follows that ,\ (w O) = ,\ (w o

1
)

. l l-

if and only if P # A, and .\(wo) = .\(wo
1

)-1 if and only
() l l-

if P =A.Since .\(cr n) = n, and .\(w) = 0, we conclude that the

derivation (2) uses a production from <Ji with A as its left hand

side precisely n times, which means that A occurs n times in the

derivation tree of w.

1.3.2 Proof that L(A, n)CL(G').

Let wE.L(G) have a derivation tree which contains A precisely n times.

The following process is executed:

7

{

Each node in this tree which is a variable, say P, is supplied with

(*) an in~e~, equal to the number of times A occurs in the subtree ,(P),

containing all extensions of P.

Then the tree which is thus constructed is a derivation tree of

win L(GI) •

For, consider

First suppos-e

There are two

a.

b.

\
\

Now suppose p

an arbitrary variable p(j) in this derivation tree.

pf: A.

possibilities for the subtree ,(P(j)):

/

= A.

The only direct extension of Pis a terminal

sequence; hence, j = 0. But P (O)-+ xE<J.)'

by the construction of ':P' •

From(*) it follows that

m+1

\

Again there are two cases:

a.

b

I \
I

I

By (*), J = 1 , and from the construction of

~' we see that A (1) + YE9'.

By(*), j = J1 + j2 +

(°) (j1)
hence A J + y R

' 1 1

{ '

This completes the proof that L(A, n)CL(G'). ,,

8

2. The grammar G" for L(A, > n) is constructed as follows:

G" = (l.]11
, t:", 9", cr"), where

l)"' = \J'v \j,
t:" = t:,

~" =P1v:Pu{A(1) 7 A}v u {P(O) ➔ P},
PE:. \o/-1:

cr" = CJ (n) •.

The proof that this grammar generates L(A, ~ n) is very similar to the

first proof and is therefore omitted.

3. Since L(A, .::_ n) = U L(A, i) and since a finite union of context
i=O

free languages is again a context free·language, the proof of theorem

1 is complete.

Remark:

Theorem 1 can easily be generalized to the following

Corollary:

Let {A1, A2 , ••• , Am} be a set of variables of a context free grammar

G, and let {n1, n2 , ••• , nm} be a set of non negative integers. Then:

The subset of L(G) consisting of all words which have a derivation tree

containing A1 precisely (at least, at most) n1 times, A2 precisely

(at least, at most) n2 times, ••• , Am precisely (at least, at most) nm

times, is a context free language. Here each choice of "precisely",

"at least", "at most" may be made independently of the others.

9

4. Algorithm 2.

Let A, B be two variables of a context free grammar G. In this section

we define an algorithm which determines whether each derivation tree of

a word-wEL(G) which contains A, also contains B. This algorithm is

given in definition 2. First, a special case is treated in definition 1.

There we define an algorithm which determine-s whether each derivation

tree with A as its·root contains B.

Although these problems are fairly simple, some care has to be taken

in view of recursive use of variables, in order to avoid· closed loops

in these· algorithms·. This- may- be illustrated by the following part of

the set of production rules of a context free grammar:

A ➔ C ••• ,

C ➔ D ••• ,

D-+ A ••• ,

Suppose one used the following scheme: Each derivation tree with A as

its root contains B if and only if each production rule with A as its

left hand side contains in its right hand side either B, or variable

C with the property that each derivation tree with C as its root

contains B. Verification of this property for C and next for D would

give the result that each derivation tree with A as its root contains

B if each derivation tree with A as its root contains B.

In order to avoid such loops it is clearly necessary to remember which

variables have already been considered in the course of the above

described scheme.

This explains the following definition:

Definition 1

Let G = (Li, I:, :P, cr) be a context free grammar, let A, B E- lY-I:, and let

wcv-I:. The predicate (A > B, i.,Y) is defined as follows:

(A> B, t,j) is true if and only if either

1. A = B, or (1)

2. F9r each rule A ➔ <PE. P which has A as its left hand side there exist

10

* l/1 1 , l/J2e.\i , PE"\.o/-~, such that <P = iµ 1 Piµ 2 , and either

2. 1. PE: t,,;, or

2.2. (P > B,W'u{P})

(2)

(3)

Example: (A > B, \Y-~) is true if and only if either A = B, or P contains

no rule A + cf>, with <P a terminal sequence.

Theorem 2

Let A, B be two variables of a context free grammar. Then (A> B, {A})

if and only if each derivation tree with A as its root contains B.

Proof

1. Suppose (A > B, {A}). We prove that each tree with A as its root

contains B.

First we consider a derivation tree T(A) which is recursion free

(section 2). Suppose that B ¢T(A) 1).

From the definition of (A > B, {A}) we conclude that there exists

in t(A) at least one direct extension of A which is a variable,

say P, such that (P > B, {A, P}); for, (1) does not apply since

B 4t(A), and (2) does not apply since ,(A) is recursion free.

By the same argument there exists a direct extension Q of P such that

(Q > B , { A , P , Q}) etc .

However, after a finite number of these steps we reach a variable R,

such that (R > B, { A, P, Q, ••• , R}), but such that the only exten

sion of Risa terminal sequence, say x.

This is a contradiction, since the occurence of a rule R ➔ x in :P
contradicts (R > B, {A, P, Q, ... , R}) •

Next we consider a tree t(A) which is reeursive. It is easy to see

that from such a tree, another derivation tree can be constructed

with the same root, which is recursion free and which contains only

nodes that occur also in the original tree. We can apply the above

argument to this recursion free·tree. If it contains B, then so does

the originally considered tree T (A).

1) BE. r(A) means: B occurs as one of the nodes in the tree T (A).

11

2. Suppose that each derivation tree·with A as its root contains B.

We prove that then (A> B, {A}).

Let 'lY - I = { P 1 , P 2 , ••• , P n} •

Let E(i), 1 2_ i 2_ n, be the following assertion:

\

If {P1, P2 , ••• , Pi} is a subset of v- I, if B, QE.\.Y-I, and if

(Q > B, {P
1

, P2 , ••• , Pi}) is false, then there exists a derivation

tree T(Q) which does not.contain B.

We shall show that:

a. E(n) holds,

b. E(i) implies E(i-1), for i = n, n - 1, ••• , 2.

Assuming a and b, we conclude·· that E{ 1) holds, which ·means that if

(A > B, {A}) is false, then there· exists a tree T (A), such that

B ¢:r(A).

Proof of E(n):

Suppose that (Q > B, {P1, P2 , ••• , Pn}) is false. From definition 1

we see that there exists at least one production rule Q ➔ ~with ~ a

terminal sequence. Hence· there· exists a derivation .. tree ·r(Q) which

does not contain B.

Proof of "E(i) implies E(i-1)".

Suppose that (Q > B, {P
1

, P2 , ••• , Pi_ 1}) is false, for some subset

{P 1 , P
2

, ••• , Pi_ 1} of V-L
Then, either

a. There exists a rule Q ➔ ~'with ~ a terminal sequence, which im

mediately gives a tree T(Q) without B, or

b. There exis~s a rule

Q ➔ x1R1 x2R2 • , • X R X 1 mm m+ (4)
such that for each R. (1 2- j < m):

J
Rj 4:, {P1' P2 , i!I •• ' pi-1} (5)

and

(Rj > B, {P1, P2 , ••• , Pi_ 1, Rj}) is false. (6)
We can now apply E (i) to (6), which means that there exist derivation

trees T(R.) withour B, for each j(1 2_ j 2_ m), Together with (4) this
J

yields a derivation·tree T(Q) which does not contain B.

This completes the proof of theorem 2.

12

Remark: In the sequel we abbreviate (A> B, {A}) to A> B.

Definition 2

Let A, B be two variables qf a context·free grammar G = (\}, E, P, cr)

and let we \.J-E. The predicate (A p B, Wj is defined as follows:

1. (cr p B, U-) = cr > B, and for each A# cr:

2. (A p B, LY) is true if and only if either

2. 1. A = B, or

2.2. For each rule P-+ <P, which·contains A in its right hand side

(Le. there exist w
1

, 1)J
2
E:.if, sucl). that cp = 1jJ

1
Aip

2
), either

2.2.1. <P contains a variable C (which may be A itself) for which

C > B holds or

2. 2. 2. PE: \,.J, or

2 • 2 • 3 • (P p B , W--U{ P})

Theorem 3

(8)

(9)
(10)

Let A, B be two variables of a context free grammar. Then (A p B, {A})

if and only if each derivation tree T(cr) which contains A, also

contains B.

Proof

1. Suppose (ApB, {A}). We prove that AE:.T(cr) implies BE.T(cr).

If A= cr then the proof follows from theorem 2.

If A# cr, we first consider a derivation tree T(cr) which is recursion

free. Suppose AE. T (cr), B E,i:T (cr). Let P be the predecessor of A in

T(cr). From the definition of the reiation (Ap B, {A}) it follows that

(Pp B, {A, P}); for, (7) or (8) does not apply since BEi:T(cr) and (9)

does not apply since dcr) is recursion free.

Again, for the predecessor of P, say Q, we find:

(Qp B, {A, P, Q}) etc. Finally we conclude that (crp B, {A, P, Q, ••• ,cr}),

which means that cr > B;· hence, BE:T(cr), which is a contradiction.

The general case for recursive trees follows directly.

13

2. Suppose that A E:.-r(cr) implies BE. T (cr), but that (A p B, {A}) is false.

For A= cr, this is clearly impossible. If A# cr, we conclude from

definition 2 that there exists a rule P +~'such that:

a. A occurs in~'

b. For no C occuring in~, C > B,

c. (Pp B, {A, P}) does not hold.

From a and b we see that there exist-s a tree T(P), with AE.T(P),

B ~T (P).

From cit-follows in the same way that-there exists a Q,

(# A, # P), and a derivation tree T(Q), such that A~T(Q), Be-T(Q)

and (QpB, {A, P, Q}) is false.

Eventually a tree T (cr) results, such that A E. T (cr) but B €f-T (cr) , which

is a contradiction.

This completes the proof of theorem 3.

Corollary

For unambiguous grammars there exists an algorithm which determines

whether L(A, .::_ 1) = L{B, > 1).

Proof

L(A, > 1) = L(B, > 1) if and only if (ApB, {A}) and (BpA, {B}).

Reference

S. Ginsburg The mathematical theory of context free languages.

New York, Mc Graw-Hill, 1966.

