
STICHTING

MATHEMATISCH CENTRUM
2e BOERHAAVESTRAAT 49

AMSTERDAM

REKENAFDELING

MR 91

Problems in the theory of

.programming languages

by

J.W. de Bakker

Lecture given at the 1967 International Congress

for Logic, Methodology and Philosophy of Science

Amsterdam, August 29, 1967

t1l\">!.JOlf'if:f:K MATHEMATISCM
Ai•1ISTERDAM

The Mathematical Centre at Amsterdam, founded the 11th of February, 1946,

is a non-profit institution aiming at the promotion of pure mathematics and

its applications, and is sponsored by the Netherlands Government through the

Netherlands Organization for the Advancement of Pure Research (Z. W. O.) and

the Central Organization for Applied Scientific Research in the Netherlands

(T. N. O.), by the Municipality of Amsterdam and by several industries.

1. INTRODUCTION

The theory of programming languages is usually divided into three parts

(see e.g. Zemanek [46]) :
a. Syntax.

It is investigated which formal systems can be used for the definition

of grammars of programming languages. A grammar is a set of rules that

defines which sequences of symbols over a given alphabet form a pro

gram in the language concerned. Two important requirements which

should be fulfilled by such a system are: It should be powerful

enough to allow formal expression of all syntactical rules, and it

should define the structure of a program in such a way that efficient

translation is possible.

b. Semantics.

Problems are investigated which deal with the meaning of programs.

The ultimate goal is the development of a theory that leads to a

formal definition of the semantics of programming languages and that

can provide· an answer to questions such as: "Are two given programs

equivalent?", or "Is a compiler for a certain language correct?",

or "Does a given program solve a certain problem?".

c. Pragmatics.

Here the object of study is the relation between the language and

its user. Hence, the important question in this area is: "Which

concepts should be included in a language to allow the programmer

efficient, compact and elegant formulation of his problem?".

It is clear that for pra~tical purposes, pragmatic problems are the

most important. Consequently, most of the efforts in programming langua

ges have been spent in this field. However, as far as we know, no theory

of pragmatics has been developed as yet. Theoretical considerations

have up to now mainly been concerned with syntax. We mention only: the

theory of context free languages with their va.rious specializations and

generalizations, the production language of Floyd, and the syntax-direct

ed compilers. In our talk, we shall not deal with these investigations

but shall restrict ourselves to semantic problems and shall try to give

an impression of the work that has been done in this field.

2

2. SEMANTICS AND THE GENERAL,THEORY OF COMPUTATION

For the development of semantic theories about programming languages,

it is clearly desirable to have available a 11general theory of compu

tation" which can provide a background or framework to which semantics

can be related. However, such a general theory of computation is only

in a rudimentary stage. There are several ways of approaching such a

theory. A survey of the situation, as it existed several years ago,

has been given by McCarthy [26]. In our opinion, no decisive progress

has been made since then. We shall now discuss a few approaches in

somewhat more detail.

a. The theory of computability, i. e·. the theory of Turing machines,

recursive functions etc. It was already said by McCarthy that this

theory has as yet only resulted in the statement of the essential

limits which are imposed upon a theory of computation. Its relevance

for a theory of algorithmic processes, as they occur in the prac-

tical use of computers, is very limited. However, it should be

mentioned that in the past few years, research has started into

real-time aspects of Turing machines, i.e., investigations which

take into account the time factor, e.g. expressed by the number of

operations that are required for a certain calculation. This new

branch of the theory of Turing machines might eventually lead to

results which are of interest for the theory of computation.

Among the many formalisms that have been proposed for studies of

computability, and that have all been proved to be equivalent,

there is one system that we want to mention separately, namely the

theory of "graphschemata". It was proved by Rosza Peter [33] that

these graphschemata are equivalept to recursive functions. However,

it is probable that the formalism of graphschemata shows the closest

connection to the methods that are used in practice for the description

of computer algorithms. This follows from the fact that graphschemata

are nothing but flow diagrams obeying certain restrictions. Investiga

tions in this area have been reported by Kaluzhnin [18] and Thiele

[39]. Related is the work of Bohm and Jacopini [5], who exhibit a

number of components, from which, in a sense, each flow diagram can be

made up (they need some extra formalism, for which we refer to their

paper).

3

b. Automata theory. Here the situation is the same as above. Although

automata theory has led to many results of mathematical interest,

again no generally accepted system, directly useful for a theory of

computation, has come forward. We think that the following quotation

from Hao Wang [4o] is still valid:

"Although there are various elegant formulations of Turing machines,

they are still radically different from existing computers. To

approach the latter, we should use fixed word lengths, random access

a~dresses, accumulator, and permit internal modifications of the

programs. Alternatively, we could, for example, modify computers

to allow more flexibility in word lengths. Too much energy has been

spent on oversimplified models, so that a theory of machines and a

theory of computation which have extensive. practical applications

have not been born yet".

We shall give here a few examples of several automaton-like models

that have been proposed in the past few years. No attempt is made

at completeness, but we wish to give only an impression of the great

variety that exists in this field:

b1. One of the first proposals was made by Kaphengst in his paper:

"Eine Abstrakte Programmgesteuerte Rechenmachine" [19]. This

paper introduces concepts such as register, instruction and

instruction counter, etc., in an abstract machine which is then

proved to be equivalent to recursive functions.

b2. A paper by Raymond: "Etude generale des structures de calcula

trices a prefixes et a piles" [35]. Emphasis is laid here upon

a study of the memory of a computer.

b3. A paper by De Backer and Verbeek: "Study of Analog, Digital and

Hybrid C_omputers, using automata theory" [1]. In this article the

notion of error in a computation plays an important role.

b4. "A theory of computer instructions", by Maurer [24]. This paper

covers many aspects of existing computers: It treats the notions

of memory, registers, input/output, and instructions. It appears

to be an interesting contribution to a theory of computing that is

more concerned with hardware aspects.

4

b5. The stack automata, as introduced by Ginsburg, Greibach and

Harrison 04]. Here the purpose is to simulate techniques which

are used in the translation of programming languages.

b6. The theory of "Random Access, Stored Program Machines", as

introduced by Elgot and Robinson [9,10]. We shall return to this

later, since it has played a role in the formal definition of

PL/I.

c. McCarthy's mathematical theory of computation [25 ,26 ,27].

This theory is not directly related to either the theory of compu

tability or to automata theory. McCarthy's papers 11A basis for a

mathematical theory of- computation", "Towards a mathematical Theory

of computation", and "Problems in the theory of computation", have

become well known and have influenced work on the semantics of pro

gramming languages, as we shall see below.

d. Proofs about programs.

We shall make here some remarks on investigations, related.to

theories of computation, which are in some way concerned with proofs

about programs. First of all, it is obvious that a theory int·ended

to lead to proofs about programs, will be limited by unsolvability

results from logic. We mention only the classic example concerning

the impossibility of an algorithm which decides for each arbitrary

program whether it will get into an infinite loop. Another diffi

culty that arises when one wants to develop a theory that can prove

the correctness of a program, is the following:

Suppose that one wishes to prove that a given program P, written

in some programming language, gives a correct description of a

certain process Q. This problem only makes sense if Q can be precise

ly stated by means of some other formalism, e.g. some part of mathe

matics. Often, however, the only precise way of stating process Q is

by exhibiting some program that describes it. Clearly, in these cases

a proof of the correctness of this description will be very difficult

or even impossible.

We now mention a few investigations that deal with proofs about

programs:

5

d 1 • Well known is the work of Yanov [45], who int·roduced the "logical

schemes of algorithms" and derived several equivalence· results

about them.

d2. Less well known is the work that has been done by Igarashi, name

ly his papers "An axiomatic approach to the equivalence problems

of algorithms with applications" [16], and "A formalization of

languages and the related problems in a Gentzen-type formal

system" [17]. See also [15] •

d3. McCarthy [25] has used his technique of recursion induction for

some proofs on Algolic (i .• e. , written in a small subset of

ALGOL 60) programs. Later on, we shall mention another type of

proof due to him.

d4. Naur [31] has proposed a method to be used for the proof of

algorithms, by the technique of what he calls "general snapshots",

i.e., expressions of static conditions existing whenever the

execution of the algorithm reaches particular points.

d5. In his Ph.D. thesis [n], Evans has proved the correctness of

two translation algorithms. Some references to other work in

this area which we found in his paper, are: Cooper [7] and

London [23].

3. SEMANTIC DEFINITION OF PROGRAMMING LANGUAGES

After having tried to give an impression of the background which is

available for a theory of semantics, we shall now deal with one of the

main goals of a semantic theory, namely the development of a system

for the formal definition of programming languages. We first state

some reasons for such a formal definition:

a. First of all, the wish to provide the compiler-writer with a complete,

precise and unambiguous definition of the language which he has to

translate. Such a definition should e.g. make it clear which parts

of the language are not fully specified, so that the compiler-writer

knows where he has to give his own interpretation. Experience has

shown that it is almost impossible to avoid ambiguities in the defini

tion of a programming language by means of a natural language, such as

English.

6

b. One might require of a formal definition that it can be used as a

basis for the development of a compiler. The formal definition should

then be designed in such a way that it reflects in some sense the

structure of the compiler. It should be remarked that it is often

difficult to combine requirements a and b.

c. Recently, suggestions have been made for the introduction of pro

gramming languages which allow the programmer to include modifica

tions or extensions of the language in his p~ogram. It is clear that

it is necessary in such a situation to provide the programmer with a

formalism in which he can state these modifications to the language.

d. Finally, a formal definition of a programming language should provide

insight into theoretical properties of this language. It should lead

to a vocabulary which can be used for discussions about the language.

One might expect of such theoretical investigations e.g. the detec

tion of incompatible, contradictory of ambiguous concepts or con

structions in the language. It might also be used as a source of

inspiration for new useful concepts, which would not have originated

directly from practical considerations.

We shall now discuss some systems which have been proposed for the

formal definition of programming languages. In will appear that the

situation is the same as with the theory of computation; i.e., almost

every author has his own system; there is as yet no generally accepted

method, nor any indication of a convergence in opinion towards such a

method. In September 1964, a conference on "Formal Language Description

Languages" was held, organized by the technical committee on programming

languages of the International Federation for Information Processing.

The proceedings of this conference [36] show clearly how much the ideas

of the several authors diverge.

First of all we mention the methods that are based upon the A-calculus.

Landin [20,21,22] is the main representative of this group. Bohm [3,4]
uses both the A-calculus and the combinatory logic of Curry. He calls

his system CUCH, derived from CUrry and CHurch. The A-calculus also

plays an important role in the.work of Strachey [38]. It appears that

the A-ca~culus allows an elegant definition of the locality concept;

7

the definition of assignment statements and goto statements causes more

difficulties.

Well known is the state vector approach of McCarthy ~8]. In principle,

the components of the state vector are: the current values of the

variables that occur in the program, and the number of the statement

which is to be executed. The semantics of a program 1s defined by a

recursive function that describes how the state vector changes as a

result of the statements that occur in the program. McCarthy admits

that the structure of the state vector will have to become more com

plicated if recursion occurs in the program. Also, the meaning of e.g.

declarations and procedures cannot be defined directly in terms of

this state vector.

McCarthy has applied his formalism also to give a proof of the correct

ness of a simple compiler for arithmetic expression, [?9].
Again, however, he says that in order to apply the technique to proofs

concerning the correctness of translation of e.g. sequences of assign

ment statements or goto statements, "a complete revision of the formalism

will be required".

Wirth [42] lets the semantic description of a programming language run

parallel to its syntactic definition. Whenever a syntactic rule is

applied during the analysis of a program, a corresponding semantic rule
' is applied which changes the values of zero or more entities in a so-

called environment. The semantic rules are formalized in a language

which is said to correspond closely to the elementary operations of a

computer. It is assumed that the concepts of this elementary language

do not need further formal definition. He demonstrates his system by

means of a formal definition of the programming language EULER, based

upon a generalization of ALGOL 60.

Feldman [12] has introduced a "Formal Semantic Language", which he has

designed for the purpose of constructing compilers. For these practical

purposes, FSL has proven to be of much use. However, we feel that FSL

is too complicated a language to be considered a solution to the problem

of the formalization of semantics.

8

Finally, we mention some systems which give only some principles for

semantic description, from which it is not yet possible to form an

opinion as to their applicability to a complete formal definition of a

programming language: the papers of Steel [37], Garwick [! 3], and Ni vat

and Nolin [-32] •

Complete formal definitions have been given of PL/I {j4] and of ALGOL 60

[2j. We shall return to the definition of ALGOL 60 below. The definition

of PL/I is due to a group at the IBM Laboratory in Vienna. We quote from

the introduction to their report:

"The method adopted is based on the definition of an abstract machine

which is characterized by the set of its states and its state transition

function. A PL/I program defines an initial state of the machine, and

the subsequent behaviour of the machine is said to define the interpre

tation of the PL/I program •••

The basis for the development of the method are the publications. of

McCarthy, Landin and Elgot. Especially, the notions of instruction and

computation are similar to those given by Elgot. The notion of Abstract

syntax is due to McCarthy".

For completeness sake, we mention the announcement of a paper by

Christensen and Mitchell Q6J, which will give a partly formalized

definition of NICOL II, a version of PL/I.

4. A FORMAL DEFINITION OF ALGOL 60

In our thesis [2], we have investigated a method for the formal defini

tion of programming languages, and applied this method to a complete

formal definition of ALGOL 60. The system is based upon two papers by

van Wijngaarden [43,44]. We give here only a sketch of its principles;

for details we refer to our paper. The method consists essentially of

a combination of Markov algorithms and context free grammars. The

definition of a language is given by means of a list of rules, which

are either of syntactical nature, in which case they have the form of

a production rule of a context free grammar, or of semantical nature.

9

Then they have the structure of a substitution rule, as used in Markov

algorithms. In these substitution rules, use is made of the metalin

guistic variables, as defined in the syntactical rules.(A combination

of syntactical and semantical elements in one rule is also possible;

we shall not treat this feature here.)

As an example, we exhibit the definition of the greatest common divisor

of two integers, written in "unary" notation, by means of the Euclidean

algorithm.

<integer>::= 1 I <integer> 1

(<integer1>,<integer1>) ➔ <integer1>

(<integer1><integer2>,<integer1>) ➔ (<integer1>,<integer2>)

(<integer1>,<integer1><integer2>) ➔ (<integer1>,<integer2>)

Note the occurrence of so-called "indices" within the metalinguistic

variables. The function of these indices is the following: If, in a

certain rule, one of its possible productions is substituted for an

indexed metalinguistic variable, then the same substitutions must be

made in all places in this rule where this metalinguistic variable

occurs with the same index.

An abstract machine is introduced, called the processor, which applies

the rules described above, to an input sequence (in the example given

above, the processor might be asked to evaluate e.g. (111,11). When the

processor has to establish whether a substitution rule is applicable

to an input sequence, it uses a well-defined parsing scheme. Details

of the way parsing is performed are omitted here.

A further important property of the system is the following: Whenever

the value of a certain input sequence has been determined, this value

is added - in the form of a new substitution rule - to the already

existing list of rules. Consequently, the list of rules is continuously

growing, according as more input sequences are evaluated. This last

feature, i.e. the growing of the list of substitution rules, is essen

tial for the definition of a programming language such as ALGOL 60. The

definition of ALGOL 60, as given in [2], consists of a list of about

800 rules, of syntactical, semantical (or mixed) type. If the processor

evaluates an ALGOL 60 program, this is performed essentially by succes

siv~.evaluation of the declarations and statements that constitute the

10

program concerned. E.g. evaluation of the assignment statement a:= 3,

will lead to the extension of the already existing list of rules with

the substitution rule a ➔ 3. We cannot deal here with the way in which

declarations, procedures, goto statements etc. are treated. Their

treatment is explained extensively in our paper. We ~ow give a summary

of its contents: First a detailed description is given of the system

of which we have sketched some principles above.· Next we investigate

some theoretical properties of the system, namely its relation to the

theory of computability, and to a few aspects of the theory of phrase

structure languages. The processor is defined by means of an ALGOL 60

program, and this program is demonstrated by a large number of examples.

Then follows the definition of ALGOL 60, by means of about 800 rules,

and a commentary upon this definition.

Our system has proved capable of giving a complete formal definition of

ALGOL 60, from the definition of integer arithmetic to the definition of

e.g. the procedure concept. However, it cannot be used directly as a

basis for a compiler for the language.

5. CONCLUSIONS

From the research which has been performed up to now in the semantics

of programming languages, it can be concluded that, for the treatment

of the more difficult concepts, present-day mathematics is only of

limited use. It appears that concepts, as nowadays current in program

ming languages, often have no direct counterparts in mathematics. We

give a few examples: One would expect that a simple concept such as the

arithmetic expression, would be clear to everyone who knows some high

school algebra. However, ralready in this simple case anomalies are

caused by the possibility of side effects in a language such as ALGOL 60,

so that e.g. a+b is not necessarily equal to b+a. More difficult is the

concept of locality and the related problems of storage allocation.

Although the locality concept is related to the idea of bound variables,

this does not help much if one wants to investigate concepts like own

dynamic arrays. The name-value relation in its simplest form is known

in logic. However, the general reference structure, as present in the

11

proposal for ALGOL 67, is again, as far as we know, without a direct

counterpart. Simple data structures, such as vectors, matrices or

rectangular arrays in general, or trees, are well known. This does not

hold for more complicated structures, such as the records proposed by

Hoare [41]. Function designators are at first sight nothing but functions,

as known in mathematics. However, a mathematician will not be confronted

with the question: "What happens to the value of the function if a jump

to a point outside is performed?". We know of no concept in mathematics

that can be related to goto statements. We might remark here that a

complete formal definition of the meaning of goto statements, at least

in our system and in several others as well, is one of the most diffi

cult tasks. Some authors consider the goto statement as a relic from the

days of machine coding, and propose to abolish it (McKeeman [30]) or at

least to diminish its use (Dijkstra [8]). Finally we mention the notion

of parallel processing, which has hardly been investigated at all in

computability and automata theory.

McCarthy once expressed the hope that mathematical logic will be as

fruitful for the science of computation as analysis has been for physics.

We hope to have given an impression of t4e results which have been ob

tained in this direction and of the many open problems which still remain

to be studied.

REFERENCES

1 • W. de Backer and

L. Verbeek

2. J.W. de Bakker

3. C. Bobm

4. C. Bobm

5. C. Bobm and

G. Jacopini

6. C. Christensen and

R.W. Mitchell

7. D.C. Cooper

8. E.W. Dijkstra

9. C.C. Elgot

12

Study of Analog, Digital and Hybrid

Computers using Automata Theory.

I.C.C. Bulletin, 1966, vol. 5, pp.215-245.

Formal definition of programming lan

guages, with an application to the defi~

nition of ALGOL 60.

Mathematical Centre Tracts 16,

Amsterdam, Mathematisch Centrum, 1967.

The CUCH as a formal and description

language••·

[36], pp. 179-197°

Introduction to CUCH.

Automata Theory (Ed. E.R. Caianiello).

New York, Academic Press, 1966.

Flow Diagrams, Turing Machines and

Languages with only two Formation Rules.

Comm. ACM, vol, 9, 1966, pp. 366-372.

Reference Manual for the NICOL II pro

gramming language.

(to appear as a report of Computer Asso

ciates, Wakefield, U.S.A.).

The equivalence of certain computations.

Computation Center, Carnegie Institute

of Technology, 1965.

Programming considered as a human activity.

Proc. IFIP Congress 1965, vol. 1 (Ed. A.

Kalenich).

Washington, Spartan Books, 1965, pp. 213-219.

Machine species and their computation

languages.

[36], pp. 160-179.

10. C.C. Elgot and

A. Robinson

11. A. Evans, Jr.

12. J. Feldman

13. J.V. Garwick

13

Random-access, stored program machines,

an approach to programming languages.

J. ACM, 1964, vol. 11, pp. 365-399.

Syntax Analysis by a Production Language.

Ph.D. thesis, Carnegie Institute of

Technology, 1965.

A formal semantics for computer languages

and its application: in a compiler-compiler.

Connn. ACM, 1966, vol. 9, pp. 3-9.

The definition of programming languages

by their compilers.

[36], PP• 139-147.

14. S. Ginsburg, S.A. Greibach Stack Automata and Compiliµg.

and M.A. Harrison J. ACM, 1967, vol. 14, pp. 172-201.

15. S. Igarashi On the logical schemes of algorithms.

16 • · S. Igarashi

17. S. Igarashi

18. L.A. Kaluzhnin

19. H. Kaphengst

Information Processing 1n Japan, 1963,

vol. 3, pp. 12-18.

An axiomatic approach to the equivalence

problems of algorithms with applications.

Ph.D. thesis, University of Tokyo, 1964.

A formalization of the description of

languages and the related problems in a

Gentzen type formal system.

RAAG Research Notes, Third Series, no. 80,

1964.

Algorithmization of Mathematical Problems.

Problems of Cybernetics, 1961, vol. 2,

PP• 371-392.

Eine abstrakte prograrnmgesteuerte Rechen

machine.

Z. Math. Logik und Grundlagen der Mathema

tik, 1959, vol. 5, pp. 366-379.

20. P.J. Landin

21. P.J. Landin

22. P.J. Landin

23. R.L. London

24. W.D. Maurer

25. J. McCarthy"

26. J. McCarthy

27. J. McCarthy

14

The mechanical evaluation of expressions.

Comp. J., 1964, vol. 6, pp. 308-320.

A ~ormal description of ALGOL 60.

D6J , pp. 266-294.

A correspondence between ALGOL 60 and

Church's lambda notation.

Comm. ACM, 1965, vol. 8, pp. 89-101,

pp • 1 58-16 5.

A computer program for discovering and

proving sequential recognition rules

for well-formed formulas defined by a

Backus normal form grammar.

Ph.D. thesis, Carnegie Institute of

Technology, 1964.

A theory of computer instructions.

J. ACM, 1966, vol. 13, pp. 226-236.

Towards a mathematical theory of com

putation.

Proc. IFIP Congress 1962, (Ed. C.M.

Popplewell), Amsterdam, North-Holland,

1963, pp. 21-28.

A basis for a mathematical theory of

computation. Computer Programming

and Formal Systems (Ed. P. Braffort

and D. Hirschberg).

Amsterdam, North-Holland, 1963, pp.

33-69.

Problems in the theory of computation.

Proc. IFIP Congress 1965, vol. 1

(Ed. A. Kalenich),

Washington, Spartan Books, 1965, pp.

219-222.

28. J. McCarthy

29. J. McCarthy and

J. Painter

30. W.M. McKeeman

31. P. Naur

32. M. Nivat and

N. Nolin

33. R. Peter

34. PL/I Definition Group

of the Vienna Laboratory

35. F.H. Raymond

36. T.B. Steel, Jr. (Ed.)

37. T.B. Steel, Jr.

15

A formal description of a subset of

ALGOL.

[36] , pp • 1 - 1 2 •

Correctness of a compiler for arithmetic

expressions.

Technical Report CS 38, Computer Science

Dept., Stanford University, 1966.

An approach to computer language design.

Technical Report CS 48, Computer Science

Dept., Stanford University, 1966.

Proof of Algorithms by General Snap

shots.

B.I.T., 1966, vol. 6, pp. 310-317.

Contribution to the definition of

ALGOL semantics.

[36], pp. 148-159.

Graphschemata und rekursive Funktionen.

Dialectica, 1958, vol. 12, pp. 373-393.

Formal Definition of PL/I.

IBM Technical Report TR 25.071, 1966.

Etude generale des structures de calcu

latrices a prefixes et a piles, I.

Chiffres, 1966, vol. 9, pp. 235-277.

Formal Language Description Languages

for Computer Programming.

Proceedings IFIP Working Conference,

Vienna, 1964.

Amsterdam, North-Holland, 1966.

A formalization of semantics for pro

gramming language description.

[36}, pp. 25-36.

38. C. Strachey

39. H. Thiele

40. H. Wang

41. N. Wirth and

C.A.R. Hoare

42. N. Wirth and

H. Weber

43. A. van Wijngaarden

44. A. van Wijngaarden

45. Y.I. Yanov

46. H. Zemanek

Towards a formal semantics.

[36], pp. 198-220.

Wissenschaftstheoretischen Unter

suchungen in Algoritbmische Sprachen.

Berlin, VEB, 1966.

Machines, sets and the decision problem.

Formal Systems and Recursive Functions

(Ed. J.N. Crossley and M.A.E. Dummett).

Amsterdam, North-Holland, p. 306.

A contribution to the development of

ALGOL.

Comm. ACM, 1966, vol. 9, pp. 413-432.

EULER, a Generalization of ALGOL, and

its Formal Definition.

Comm. ACM, 1966, vol. 9, pp. 13-23,

PP· 89-99.

Generalized ALGOL.

Proc. ICC Symposium on Symbolic Languages

in Data Processing.

New York, Gordon and Breach, 1962, pp.

409-419.

Also in

Annual Review in Automatic Programming,

R. Goodman (Ed.), vol. 3, pp. 17-26.

New York, Pergamon Press, 1963.

Recursive definition of syntax and se

mantics.

[36], pp. 13-24.

The logical schemes of algoritbms.

Problems of Cybernetics, 1960, vol. 1,

pp. 82-140.

Semiotics and Programming Languages.

Comm. ACM, 1966, vol. 9, pp. 139-143.

