
HUGO BRANDT CORSTIUS

AUTOMATIC TRANSLATION BETWEEN

NUMBER NAMES*

1. INTRODUCTION

.;Y(i?103

_One of the problems in mechanical translation is the occurrence of com­
pounds without spaces in languages as German and Dutch; these cannot be
put in a dictionary as any language user can produce them without limit.
Little has been done on this problem. In the pioneer days of mechanical
translation, E. Reifler indicated [1] how the syntactic analysis of the German
compound can be done by computer. The semantic problems are almost
unsurpassable. These semantic problems are quite simple for one large class of
compound words: the number names. From a small number of components,
around thirty, most languages can construct millions of cardinal number
names. For five languages, Dutch, German, French, English and Chinese,
the rules governing the construction of number names were programmed.
The translation from the decimal representation into the word representation
is effected by the ALGOL procedure write number name (Section 2).

Conversely the procedure read number name gives the translation from
word form to digital form (Section 3). Combination of these procedures
then gives the mutual translation of number names (Section 4).

2. SYNTHESIS OF THE NUMBER NAME

Recently, a number of generative grammars, most of them context-free,
have been published for number names in different languages [2]. Whatever
the merits of these grammars, they all possess one shortcoming: the names
generated have no connection with their meaning. And this while the de­
termination of the meaning of number names is so simple. Except for extra
connotations of some smaller numbers the meaning of a number name is
fully given by the decimal representation of the number referred to. Therefore
we have adapted the generative grammars to make possible a translation
from decimal to word representation. Moreover, by treating Dutch, German,
French and English in one program, a comparative grammar of the number
names in these languages is found. The set of Chinese number names is
generated on its own.

* This is chapter 2 of the author's doctoral thesis Exercises in Computational Linguistics.

103

Brandt Corstius (ed.), Grammars for Number Names, 103-123. All rights reserved.

HUGO BRANDT CORSTIUS

In the four Western languages, the number is partitioned from the back
in groups of three digits. The procedure next three digits (i) (p. 115) gives
the word representation of one such group of three digits, followed by the
appropriate power of ten, and then calls itself with lowered value of i,
until the end of the number is reached. The procedure makes use of three
other procedures:

from I up to IOO(j, k)
hundredfold (j, k)
thousand to the power (k)

producing 10 x j + k
producing (10 xj+ k) x 100
producing 103k

(p. 116)
(p. 117)
(p. 117)

In some languages, it is possible under certain conditions to write a number
like 1200 in two ways: as 12 x 100 and as 1000+200. The program investi­
gates whether this situation is present, and, if so, gives both possibilities.
(Theoretically one could perhaps write a number like 1200001200 in these
languages in four ways. We have used the 'overlapping mode' or the 'non­
overlapping mode' consistently in the whole number name.) For many
special measures as e.g. the declension of the German powers of ten and the
French numbers between 70 and 99, we refer to the program. The French
word for 109 is given half of the time as billion, and the other half as milliard.
For English we follow the British system of naming 109 'milliard' and 1012

'billion'. In the American system these names are 'billion' and 'trillion'.
The morphemes used can be found in the first four columns of procedure m

(on p. 114). For each of the four languages, about 33 morphemes are provided,
of which some could be omitted, but at the cost of program complications.
The Chinese number name can be generated by a context-free grammar
but Brainerd has shown [3] that it is better to use a class of deletion transfor­
mations which delete one component in specified contexts. These deletion
transformations are readily programmable in ALGOL 60. The transfor­
mations in connection with the morpheme ling ('zero') are simply written
as procedure D (condition for context around ling, deletend), where, each
time the Boolean condition for context around ling is true, the component at
place deletend is deleted. For details we refer again to the ALGOL program
(pp. 118, 119, 120). Besides the seven obligatory transformations, there are
five optional transformations which give alternative forms. The necessary
component morphemes of the Chinese number names can be seen in the
last column of procedure m (on p. 114).

3. ANALYSIS OF THE NUMBER NAME

On the basis of the synthesis in the preceding section, an analysis could be
given. This method, however, is:

104

AUTOMATIC TRANSLATION BETWEEN NUMBER NAMES

(1) unnecessary, because many of the special measures in the procedure
write number name are taken to ensure a correct writing of the number name,
but have no informational value. In a situation where we want to read a
number name, a less detailed grammar is good enough.

(2) undesirable because we also want to read in alternative forms which
are not completely correct, as they often occur for larger numbers, which are
rarely written in word form. We can e.g. neglect spacing and capitalisation,
and accept rare forms like six-and-twenty.

A second method for analysis is the Reifler procedure which consists,
briefly, in taking the morpheme in the component dictionary which coincides
with the longest left end of the word to be dissected. If, in repeating this
strategy, no component can be found. at some stage, the last taken decision
is revoked and a shorter component chosen. This full analysis is not necessary
in our case because, only in two cases (one of which is caused by the acci­
dentally chosen transcription of the Chinese words) is a wrong analysis found
if we always choose the longest possible component fitting the left end of the
name to be analyzed. To simplify the program, components of only 1, 2, 3
or 4 letters are used. It appears that with some tricks, the first four letters
give enough discrimination between the components. Three numbers are
associated with each component. The first number indicates the language in
which the component occurs (as soon as the machine knows that it is in a
certain language, only the relevant part of the dictionary is searched for the
other components). The second number indicates the number of letters the
full component possesses (of which, as has been said, only four were used for
identification), and the third gives the meaning of the component. These
meanings are coded as follows:

code meaning example

0 meaningless et, ling, the sin sechs and cents
1 1 ein, i

= code numbers below 20
16 16 seize
20 10-fold suffix tig, zig, uante, ty
21 10 dix
22 20 twenty

(code-20) x 10 tenfolds
24 40 quarante
30 connective between en, und

tenfolds and units

105

HUGO BRANDT CORSTIUS

code meaning example

32 102 hundred
33 103 mille

lOcode-30 powers of ten
42 1012 trillion
51 even power of thousand on, oen

suffix
52 odd power of thousand ard

suffix
53 mil- mil/i, milj
54 bil- billi, bilj

For the analysis of the number names in five languages, a hundred com­
ponents are necessary, less than for synthesis. This is because words like
veertien and veertig are synthesized as a whole, but in analysis are broken
down further (for analysis veer is fully synonymous with vier, which it is
not in synthesis), and because some components occur in more than one
language (usually with the same meaning: acht, six. Exception: billion).
The procedure (pp. 108-112) reads the letters of the number name offered
into the array L, thereby discarding some information, which it also dis­
carded reading the list of component words. The four-, three-, two- and
one-letter combinations are, in that order, compared with the entries in the
component list. The meanings of the components found are stored in the
array M. In the meantime, the tenfolds, the numbers between 10 and 20, and
the powers of ten above 103 are combined. The notation used for Chinese
morphemes makes it necessary to discrimate between pa i 4 (8 x 104

) and
pai (100). The optional transformation 02 obliges us to see whether ling
has just been read. Also, we have to be careful not to read the English one
in the German Billionen. In the languages which put the units before the
tenfold (connected by and) for the numbers below 100, this order is reversed.
Except for the ambiguous billion, the series of meanings in M is now inde­
pendent of the input language. From back to front, the elements of M are
then converted into digits in the array N, which will contain the number in
decimal representation. To this end, a counter pos is kept, whose initial
value is 0. The powers of ten above 103 give pos a new absolute value, and
the lower powers of ten enlarge pos (additively). When we have reached the
first element of M, the digital representation is finished and number of digits
has acquired its value.

106

AUTOMATIC TRANSLATION BETWEEN NUMBER NAMES

The procedure read number name reads all words produced by the pro­
cedure write number name, plus many incorrect forms. Spaces, capitalization,
hyphens and apostrophes are neglected.

4. TRANSLATION OF NUMBER NAMES

It is clear how the two procedures write number name and read number name
make mutual translation in the five languages possible. In the case where
input language and output language are the same this translation can be
interpreted as: 'Give the correct version of the number name plus all its
alternative forms'.

The program reproduced here gives, for every number name read, its
translation in the five languages. In the output, the input is reproduced with
underlinings, including the component dictionary. The maximal number
processed is 1015 - 1 but extension is simple (for Dutch the synthesis up to
1066 -1 is done in [4]). In such an extension the difference between the
American and the English system of denominations above one million
becomes more pronounced.

In the case of number name translation between several languages, the
use of the decimal representation as an intermediate language seems obvious.
The use of an intermediate language for the mutual translation of several
languages in general may, however, very well be impossible or undesirable.

Apart from the actual application discussed, it is hoped that the published
program may convince linguists that general programming languages, such
as ALGOL 60, offer a means for concise, controllable description of complex
situations.

Mathematical Centre, Amsterdam

BIBLIOGRAPHY

[1] E. Reifler, 'Mechanical Determination of the Constituents of German Substantive
Compounds', MT2 (1955), 3-14.

[2] We refer in the first place to the articles in this volume. For French we refer to:
R.P.G. de Rijk, 'Une grammaire "context-free" pour la generation mecanique des
noms de nombres fran9ais', in: Braffort and F. van Schepen, Automation in language
translation etc., Euratom CID, Brussels, 1967. For Chinese we used [3].

[3] B. Brainerd, 'Two Grammars for Chinese Number Names', Canadian Journal of
Linguistics 12 (1966), 33-51.

[4] H. Brandt Corstius, 'Automatic Translation of Numbers into Dutch', Foundations of
Language l (1965), 59-62.

107

begin comment mutual translation of number names;
integer number of digits, fang, dutch, german, french, english, chinese;
Boolean overlap, possible overlap, o1,f, one;
integer array W[1: 108, 1:4], A[0:5, 0: 1], N [1: 16];
comment W contains the components with their meanings. A gives the
limits for each language in the list W. N stores the digits of the number
translated;

integer procedure letter;
comment This input procedure reads the next letter of the input word. It
neglects spaces, hyphens, apostrophes, capitalization and the letters q and
m. It recodes the letter into the code a= 1, ... z =26. On reading a question
mark the program is terminated. The input text is repeated, underlined, in
the output;
begin integer h;

h: =RESYM; if h# 119 then SYM (126); SYM (h); if h =122 then EXIT;
letter: =if h =93 v h =120 v h=65 v h=53 v h=26v h =49 v h =22 then
letter else if h = 4 then 22 else if h > 36 then h-36 else h - 9

end;

procedure read number name;
comment This procedure translates the number named by the input word
into the decimal representation. fang gets the value of the input language;
begin integer h,j, iL, iLmax, iM, iMmax, iN, w1, w2, w3, w4, m, b,pos, ling;

integer array L[I: 170], M [0:40];
comment L stores the letters of the input word, M the meanings of the
found components;

procedure search(n, m); value n; integer n, m;
comment The word n is looked up in W. If found m becomes equal to the
index of the corresponding morfeme, else m is made negative. The
language to which the found morfeme belongs is kept for future searches;

108

begin integer i W;
for iW: =A [fang, 0] step 1 until A [fang, 1], 1 step 1 until A [O, 0 J-1
do
begin if W[iW, l] =n then

begin if lang=O then fang:= W[iW, 2]; m:=iW; goto FOUND
end a component is found

end of search in relevant part of W;
m:=-1;

FOUND:
end search;

SL: for iL: =l step J until 167 do
begin h: =letter; if h =83 then

begin if iL = 1 then goto SL; iLmax: = iL-1; goto Lfilled
end the letters of the input word are now stored in L;
L[iL]:=h

end;
goto SL;

Lfilled: lang:=M[OJ:=ling:=0;
L [iLmax+ 1 J: =L [iLmax + 2]: =L [iLmax + 3]: =26; iL: = iM: = l;

SM: if iL>iLmax then goto Mfilled; wl:=L[iL];
w2:=wl x26+L[iL+l]; w3:=w2x26+L[iL+2];
w4:=w3 x26+L[iL+3]; search(w4, m); if m<O then
begin search (w3, m); if m<O then

begin search(w2, m); if m<O then
begin search(wl, m); if m<O then goto SL end

end
end the first 4, 3, 2 and I letters of the input word have been looked up in W;
iL:=iL+ W[m, 3]; b:= W[m, 4];
if lang=chinese then
begin if b=O then ling:=l else ling:=ling+l;

if b =32 AL [iL] =22 then
begin b: =8; iL: =iL-1 end pa i

end of special measures for Chinese;

109

if fang= english then
begin if b=l I\ (M[iM-1] =53v M[iM-1]=54) then

begin lang:=0; b:=51; iL:=iL-1 end
end of special measures for English;
if b =0 then goto SM; if b =20 then
begin~M[iM-J]:=M[iM-1]+20; goto SM
end forming of tenfolds;
if b=JO then
begin if fang = chinese then

begin if M[iM-l]<lOAiMi=l then
begin M[iM-l]:=20+M[iM-J]; goto SM end

else b:=21
end Chinese tenfolds;
if fang= french then
begin if M[iM-1]=26v M[iM-1] =28 then

begin M[iM-J]:=M[iM-1]+1; goto SM end
end French 70 and 90
else
begin if M[iM-1]<10 I\ M[iM-1]>2 then

begin M [iM -1]: =M [iM-1] + JO; goto SM end
end forming of numbers between JO and 20

end occurrence of 10;
if Zang= french then
begin if b>6Ab<l0 then

begin if M [iM-1] =10 then
begin M[iM-1]:=lO+b; goto SM end

end French 17, 18, 19;
if b=22 AM[iM-1]=4 then
begin M[iM-l]:=28; goto SM
end French 80

end of special measures for French;
if b=51 vb=52 then
begin if M [iM -1] =53 then

begin M [iM-l]:=30+ (if b =51 then 6 else 9); goto SM
end million and milliard;

110

if M[iM-1]=54 then
begin M[iM-J]:=41; goto SM
end The ambiguous billion is given meaning 41 until we know whether the
input language is French or not

end;
if lang=german then
begin if m =6 then goto SM
end special measure for German sieben;
M[iM]:=b; if iM=40 then goto SL; iM:=iM+l; goto SM;

Mfilled: iMmax:=iM-1; if iMmax=0 then goto SL;
if lang=chinese Aling=/:2 AM [iMmax] <10 I\ M [iMmax-1]¥=10
then
begin if M[iMmax-1]=32 then M[iMmax]:=20+M[iMmax] else if

M [iMmax-1] =33 v M [iMmax-1] =34 then
begin iMmax:=iMmax+l; M[iMmax]:=M[iMmax-2)-1 end

end The effect of optional transformation 02 is reversed;
if fang= dutch v fang= german v fang= english then
begin for iM: = 2 step J until iMmax -1 do

begin if M [iM] =30 then
begin if M[iM-l]<l0AM[iM +1]>21 AM[iM+l]<30 then

beginm:=M [iM-1]; M [iM-1]:=M[iM+l]; M [iM]:=m end
else M[iM]:=M[iM+l]; iMmax:=iMmax-1;
for j: = iM + 1 step 1 until iM max do M [j}: = M [j + 1 J

end
end

end numbers below JOO in languages where units precede tenfolds;
for iN:=l step 1 until 15 do N[iN]:=0; pos:=0;
for iM: = iMmax step- I until J do
begin m:=M[iMJ; if m>31 then

begin if m=41 then m:={if lang=french then 39 else 42);
if m>33 thenpos: =m-30 else if m =32 thenpos: =pos+
2 else pos: = pos + (if (pos + (if fang= chinese then 4
else 3)) x (if fang= chinese then 4 else 3) = pos then
3 else J); if iM =l v m =32 then N [15-pos]: =l

end power of ten gives new value to pos

111

else if m < 30 then
begin if m<lO then N[15-pos]:=m else if m<20 then

begin N[15-pos]:=m-(m+ 10) x 10; N[14-pos]:=1
end numbers below 20 are put in N
else N [14 - pos]: = N [14 - pos] + m - 20

end tenfolds are put in N
end of the translation from back to front of M into N;
for iN: = 1 step 1 until 15 do
begin if N [iN]-:/= 0 then

begin number of digits: = 16 - iN; goto Z end
end determination of number of digits; goto SL; Z:
for iN: = 1 step 1 until 15 do
begin if iN ~ 15 - number of digits then space else SY M (N [iN])
end output of the decimal representation;

end read number name;

procedure fill W;
comment reads in the list of components. To each component is assigned: its
language (O=any language), its number of letters, and its meaning. The
limits for each language are stored in A;
begin integer h, H, i, iW, iWmax;

iW:=1; H:=i:=0; iWmax:=108; A[5, J]:=iWmax;
lang:=0;

SW: h: =letter; if h =83 then
begin A[lang, 1]:=iW-1; lang:=lang+l; A[lang,O]:=iW;

goto SW
end;
if h-:/=90 then
begin i:=i+l; if i<5 then H:=Hx26+h; goto SW end;
W[iW, 1]: =H; W[iW, 2]:=lang; W[iW, 3]:=i; W[iW, 4]:=read;
ABSFIXT(3, 0, W[iW, 4]); ABSFIXP(3, 0, W[iW, 4]);
if i W-:/= iWmax then
begin iW:=iW+l; H:=i:=0; goto SW end;
A[O, O]:=A[l, OJ; A[O, 1]:=iWmax

end.fill W;

112

procedure write(s); strings;
comment This output procedure writes the string s;
beginPRINTTEXT(s); PUTEXT(s) end;

procedure write number name (N, lengthN, fang); array N,·
integer lengthN, fang;
comment The number in array N with length lengthN is written in the language
fang;
begin integer i;

if fang=/= I then NL;
for i: = I step I until (if fang= I then 3 else 18) do space;
if lang=chinese then CHINESE(N) else
begin possible overlap: =overlap: =false;

Next 3 digits ((lengthN - I) + 3); if possible overlap then
begin overlap:=true; NL; write('or with overlap: ');

Next 3 digits ((lengthN-1) + 3);
end overlapping case

end non chinese language
end write number name;

procedure m (j, k); value j, k; integer j, k;
comment The word in row 9 x j + k and the colum of the output language is
written;
begin switch morfemes:=ml, m2, m3, m4, m5, m6, m7, m8, m9, mll, ml2,

ml3, ml4, ml5, ml6, m17, ml8, ml9, mlO, m20, m30, m40, m50, m60,
m70, m80, m90, p2, p3, p6or4, p9or8, pl2, m0;
procedure P (du, ge,fr, en, ch); string du, ge,fr, en, ch;
begin if lang=dutch then write(du) else if lang=german then

write(ge) else if fang= french then write (fr) else if fang=
english then write(en) else write(ch); goto WRITTEN

endP;
procedure Q (du, ge,fr, en); string du, ge,fr, en;
P(du,ge,fr,en,' ');
procedure R (s); strings; P (s, s, s, s, s);
goto morfemes[9 xj+k];

113

comment Dutch German French English Chinese;
m 1:P ('een', 'ein', 'un', 'one', 'i');
m 2: if ol then begin ol:=false; R('liang') end else

P ('twee', 'zwei', 'deux', 'two', 'erh');
m 3:P ('drie', 'drei', 'trois', 'three', 'san');
m 4: P ('vier', 'vier', 'quatre', 'four', 'ssu');
m 5:P ('vijf',, 'fuenf', 'cinq', 'five', 'wu');
m 6:P ('zes', 'sechs', 'six', 'six', 'liu');
m 7: P ('zeven ', 'sieben', 'sept', 'seven', 'ch' i');
m 8:P { 'acht', 'acht', 'huit', 'eight', 'pa');
m 9:P ('negen', 'neun', 'neuf', 'nine', 'chiu');
mll:Q('elf', 'elf', 'onze', 'eleven');
m12:Q('twaalf', 'zwoelf ', 'douze', 'twelve');
m13:Q('dertien', 'dreizehn', 'treize', 'thirteen');
m14:Q('veertien ', 'vierzehn', 'quatorze', 'fourteen');
m15:Q('vijftien', 'fuenfzehn', 'quinze', 'fifteen');
ml6:Q('zestien', 'sechzehn ', 'seize', 'sixteen');
m17: Q ('zeventien', 'siebzehn', 'dix-sept', 'seventeen');
ml8:Q('achttien ', 'achtzehn ', 'dix-huit', 'eighteen');
ml9:Q('negentien', 'neunzehn', 'dix-neuf ', 'nineteen');
mlO:P('lien', 'zehn', 'dix', 'ten', 'shih');
m20:Q('twintig', 'zwanzig', 'vingt', 'twenty');
m30:Q ('dertig', 'dreissig', 'trente', 'thirty');
m40: Q ('veertig', 'vierzig', 'quarante', 'forty');
m50: Q ('vijftig', 'fuenfzig', 'cinquante', 'fifty');
m60:Q{ 'zestig', 'sechzig', 'soixante', 'sixty');
m70:Q('zeventig', 'siebzig', 'soixante', 'seventy');
m80:Q('tachtig', 'achtzig', 'quatre-vingt', 'eighty');
m90:Q ('negentig', 'neunzig', 'quatre-vingt', 'ninety');
p2 :P('honderd', 'hundert', 'cent', 'hundred', 'pai');
p3 :P('duizend', 'tausend', 'mi/le', 'thousand', · 'ch'ien');
p6or4:P ('miljoen', 'Million', 'million', 'million', 'wan');
p9or8:f· =7f; iff 1-.lang= french then R ('billion') else

P('miljard', 'Milliarde', 'milliard', 'milliard', 'i4');
pl2 :P('biljoen', 'Billion', 'trillion', 'billion', 'chao');
m0 :P('en', 'und', 'et', '' 'ling');

114

WRITTEN:
end m(j, k);

procedure and; m(0, 33);
procedure space; write(' ');
procedure hyphen; write('-');
procedure SYM(n); integer n;
comment If n is a digit, it is written by this output procedure;
beginPRSYM(n); PUSYM(n) end;
procedure NL; write ('

');

procedure Next 3 digits(i); integer i;
comment The i-th group from the back of three digits is produced, fallowed
by an appropriate power of thousand. It then calls itself with lowered i until
i becomes 1;
begin integer i3;

i3: =ix 3; if--ioverlap then
begin if--ipossible overlap then possible overlap: =i=l=0 AN [13-

i3] =0 AN [14-i3] =0 AN [15-i3]=1=0 A (lang=french -+­

N[15-i3] =1) AN[l6-i3]=!=0;
NON OVERLAP: hundredfold(0, N[J3-i3]);

if N[l3-i3]=1=0 then
begin if lang = french then

begin if N[14-i3] +N [15-i3] =0 AN[13-i3]=1=1 then
write ('s'); space

end cents
end.first of the 3 digits;
from 1 up to 100(N[14-i3], N[15-i3]);
if i=0 Alang=germanA N [14] =0 AN [15] =1 then write ('s');
one:= (N [13-i3] =0 AN[14-i3] =0 AN[l5-i3] =1);
if i=0 then goto MADE;
if N[l3-i3] +N [14-i3] +N [15-i3]=!=0 then
thousand to the power (i); Next 3 digits (i -1)

end of non overlapping case

115

else
begin if i=/0 A N[13-i3] =0 I\ N[14-i3] =0 I\ N [15-i3]=/0

I\ (lang=french---+ N[l5-i3]=1) AN[l6-i3]=/0 then
begin hundredfold (N [15-i3], N[J6-i3]);

if Zang= french then
begin if N [17-i3] +N [18-i3] =0 then write ('s'); space
end cents;
from I up to JO0(N[l7-i3], N[J8-i3]);
ifi=I AN[l4]=0AN[J5]=1 A!ang=germanthen write(
's'); one: =false; if i=I then goto MADE;
thousand to the power(i-1); Next 3 digits(i-2)

end overlapping case
else goto NON OVERLAP

end;
MADE:
end Next 3 digits(i);

procedure from I up to JOO (j, k); value j, k; integer j, k;
comment produces JO x j + k;
if k=/0 then
begin ifj<2 then m(j, k) else

begin if Zang= french v Zang= english then
begin m(2,j); if lang=english then

begin hyphen; m (0, k) end

116

else
begin ifj-:f: 7 Aj=/9 then

begin if k = I then
begin if j =I 8 then and end
else hyphen; m(0, k)

end
else
begin if k = I I\ j = 7 then and else hyphen;

from I up to 100(1, k)
end

end French up to JOO
end French and English
else
begin m(O, k); and; m(2,j) end Dutch and German

end above 20
end
else
begin if j =IO then

begin m(2,j); if lang=frenchAj>6 then
begin ifj=8 then write('s') else

begin hyphen; from 1 up to JOO (1, 0) end
end French 70, 80, 90

end tenfolds
end J up to 100;

procedure hundredfold (j, k); value j, k; integer j, k;
comment produces (10 x j + k) x 100;
begin ifj+k#lv lang=englishthenfrom 1 up to JOO(j, k);

if k#O then m(3, 1)
end hundredfold;

procedure thousand to the power(k); value k; integer k;
comment produces 1000 t k;
begin if k > 1 then

begin if one A fang= german then write ('e ') end;
m(3, k+l); if k>l then
begin if ~ one then

begin if fang= french then write ('s')
else if fang= german then
begin if k=/3 then write('e'); write('n') end

end;
if lang#dutch then space

end
end 1000 to the power(k);

117

procedure CHINESE (Number); array Number;
comment The Chinese name for the number in array Number is produced;
begin integer i, shih, pai, chien, wan, i4, chao, j, L, LL;

Boolean change;
integer array S[-1:36];
comment The string of Chinese morfemes with length L is stored in S,
numbers below JO in their natural code, power of ten as JO, 11, 12, 13, 14, 15
(chao);

procedure write chinese;
comment The string of Chinese morfemes in S is produced;
for j: = I step I until L do
begin if S [j} =0 then and else if S [j] < JO then m (0, S [j])

else if S [j] = JO then m (0, 19) else m (2, S [j] - I); space
end;

comment The 7 obligatory transformations:

procedure D (condition for context of ling, deletend);
Boolean condition for context of ling; integer de le tend;
for j: = I step I until L do
begin if ling (j) then

begin if condition for context of ling then delete (de le tend) end
end general deletion transformation around ling;

procedure delete(n); value n; integer n;
begin integer k;

L:=L-1;
for k:=n step I until L do S[k]:=S[k+I}; change:=true

end delete;

procedure DI; D (shih pai chien (j-1) A wan i4 chao (j + I), j);

procedure D2;
D((shih pai chien(j-1) v wan i4 chao (j-1))
Ashih pai chien (j+ I) ,j+ I);

118

procedure D3; D(ling(j+l),j+I);

procedure D4; D (chao i4 (j-1) Ai4 wan(j+ I), j+I);

procedure D5;
if ling (I) I\ L > 2 I\ (shih pai chien (2) v wan i4 chao (2)) then
begin delete (I); delete (I) end;

procedure D6; if ling(L) AL>I then delete(L);

procedure D7; if S[I] =ii\ S{2] =shih then delete(]);

comment The 5 optional transformations:

procedure option (n); integer n;
comment if the application of an optional transformation is possible the
alternative form is produced;
begin NL; write('or with option o'); SYM(n); write(':');

write chinese
end option;

procedure O I;
if S [I] = 2 I\ (wan i4 chao (2) v (shih pai chien (2) I\ S [2] =f, shih))
then
begin ol:=true; option(]) end;

procedure 02;
begin integer a, b, c;

a:=S[L-2]; b:=S[L-1]; c:=S[LJ;
if ((a=chien/\c=pai) v (a=pai/\c=shih) v (a=wan/\
c = chien)) I\ b > 0 I\ b < JO then
begin delete (L); option (2) end

end 02;

119

procedure 03;
for j: =2 step 1 until L-1 do
begin if S [j] =shih then

begin if S[j-1] =ii\ S[j+1]>0 I\ S[j+1] <10 then
begin delete{j-1); option(3); 03 end

end
end;

procedure 04;
begin change: =false;

D (S[j+1] <10 I\ S[j+2] =pai I\ ling(j+3) I\ S[j+4] <
10,j); if change then option(4)

end 04;

procedure 05;
begin integer jj;

change: =false;
for j:=2 step 1 until L-4 do
begin if chaoi4 (j) then

begin if ling (j + 1) then
begin for jj: = 2 step 1 until j-1 do

begin if chaoi4 (jj) v ling {jj) then goto OUT end;
for jj: = L step -1 until j + 3 do
begin if i4wan{jj) then goto OUT; if ling(jj) then

begin delete (j + 1); goto OUT end
end investigation of string to the right of ling

end chao i4 followed by ling
end occurrence of chao i4;

OUT:
end investigation of string;
if change then option (5)

end 05;

120

Boolean procedure ling(n); integer n; ling:=S[n]=0;
Boolean procedure shih pai chien(n); integer n;
shih pai chien: = S [n J ~ shih I\ S [n J ~ chien;
Boolean procedure wan i4 chao (n); integer n;
wan i4 chao:=S[n]~wan;
Boolean procedure chao i4 (n); integer n;
chao i4:=S[n]~i4;
Boolean procedure i4 wan (n); integer n;
i4 wan:=S[n]=i4vS[n]=wan;

i:=l; shih:=10; pai:=11; chien:=12; wan:=13; i4:=14; chao:=15;
for j:=-1, 0, 32, 33, 34, 35, 36 do S[j]:= -1; S[J]:=0;
for j:=3 step 2 until 31 do S[j]:=Number [j+ 2];
for j: = 2 step 8 until 26 do
begin S[j]:=chien; S[j+2]:=pai; S[j+4]:=shih end;
S[8]:=chao; S[l6}:=i4; S[24]:=wan; L:=31;

leading lings: change: =false; D5;
if change then goto leading lings;

TRANSFORM: change:=false; LL:=L; D(true, 32); if change then
begin L: =LL; change: =false; DJ; D2; D3; D4; D6;

if change then goto TRANSFORM
end obligational transformations in connection with ling;
D7; write chinese; 01; 02; 03; 04; 05;

end chinese number

With the above procedures translation programs of many kinds can be
written. One of them, reading in any language and translating into all five
languages, is:;
ol: = f: =false; fil!W; fang: =0;
dutch: =l; german: =2; french: =3; english: =4; chinese: =5;

START: NL; read number name;
for fang: =dutch, german, french, english, chinese do
write number name (N, number of digits, lang); goto ST ART

end

121

The input text is repeated, in italics, in the following output:

acht 8 ard 52 billi 54 e 0 elf 11 en 30 hundred 32 mi/Ii 53 on
51 s O six 6 vier 4

bilj 54 der 3 drie 3 duizend 33 een 1 honderd 32 milj 53 negen
9 oen 51 tachtig 28 tien 10 tig 20 twaalf 12 twee 2 twintig 22 veer
4 vijf 5 zes 6 zeven 7

drei 3 ein 1 fuenf 5 funf 5 neun 9 sech 6 sieb 7 ssig 20
tausend 33 und 30 zehn 10 zig 20 zwanzig 22 zwei 2 zwolf
12 zwoelf 12

cent 32 cinq 5 deux 2 dix 10 douze 12 et O huit 8 mille
33 neuf 9 onze 11 seize 16 sept 7 soixante 26 treize 13 trente
23 trillion 42 trois 3 quante 20 quatre 4 quatorze 14 quarante
24 quinze 15 un 1 vingt 22

and 30 eigh 8 eleven 11 fif 5 five 5 for 4 four 4 nine 9 one
1 seven 7 t O teen 10 ten 21 thir 3 thousand 33 three 3 twelve
12 twenty 22 two 2 ty 20

chao 42 ch' i 7 ch' ien 33 chiu 9 erh 2 i 1 i4 38 liang 2 ling
0 liu 6 pa 8 pai 32 san 3 shih 10 ssu 4 wan 34 wu · 5

eenmiljard tweehonderd miljoen zeshonderdduizend vijfhonderd
1200600500 eenmiljardtweehonderdmiljoenzeshonderdduizend

vijfhonderd
or with overlap: twaalfhonderdmiljoenzeshonderdduizendvijfhonderd

or with overlap:

or with overlap:

or with overlap:

eine Milliarde zweihundert Millionen
sechshunderttausendfuenfhundert
zwoelfhundert Millionen se<;hshunderttausendfuenf
hundert
un billion deux cents millions six cents mille cinq cents
douze cents millions six cents mille cinq cents
one milliard two hundred million six hundred
thousand five hundred
twelve hundred million six hundred thousand five
hundred
shih erh i4 ling liu shih wan ling wu pai

or with option o5: shih erh i4 liu shih wan ling wu pai
pa i4 ling i pai i shih pa

800000118 achthonderdmiljoenhonderdachttien
achthundert Millionen hundertachtzehn
huit cents millions cent dix-huit

122

eight hundred million one hundred eighteen
pa i4 ling i pai i shih pa

or with option o3: pa i4 ling i pai shih pa
seven billion

7000000000000 zevenbiljoen
sieben Billionen
sept trillions
seven billion
ch'i chao ·

sept billion
7000000000 zevenmiljard

sieben Milliarden
sept billions
seven milliard
ch'i shih i4

siebenhundertsiebenundsiebzig

pa pai chiu

777 zevenhonderdzevenenzeventig
siebenhundertsiebenundsiebzig
sept cent soixante-dix-sept
seven hundred seventy-seven
ch'i pai ch'i shih ch'i

890 achthonderdnegentig
achthundertneunzig
huit cent quatre-vingt-dix
eight hundred ninety
pa pai chiu shih

or with option o2:
five-and-twenty

pa pai chiu

?

25 vijfentwintig
fuenfundzwanzig
vingt-cinq
twenty-five
erh shih wu

This example was produced on the Electrologica X8 of the Mathematical
Centre in 5 seconds.

123

