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1. Introduction 

In recent years a large number of methods have been developed to 

improve the rate of convergence of iterative processes for solving 

elliptic difference equationso In order to analyse these iterative 

methods one usually takes the discrete analogue of the Dirichlet problem 

for Poison's equation on a square of side 1r, which serves as a "model 

problem" in elliptic difference equations. For the model problem one 

often may obtain an analytic expression for the rate of convergence 

so that one can learn about the properties of the iterative method. 

Until 1950, the rates of convergence of the known iterative procedures 
2 b . . h . were of order h, h eing the mesh size oft e grid used. Although 

Richardson had indicated as early as 1910 an iterative method with a 

potentially greater rate of convergence, he did not obtain a better 

method, because the parameters required for his method were not chosen 

optimally. 

In 1950 Young, and independently Frankel, proposed a very powerful method 

with potentially a rate of convergence of order h. This method is known 

as the "method of successive overrelaxation of Young" (SOR method) or as 

the "extrapolated Liebmann method" as it was called by Frankel. In the 

paper of Frankel another method of the second order was described which 

also has a rate of convergence of order h. We shall call it "Frankel's 

method". 

In 1953 Shortley applied Richardson's method with the optimal values 

of the required parameters. Asymptotically, the method has a rate of 

convergence of order h, however, for a large number of iterations the 

method turned out to be numerically unstable. 

In 1955 Sheldon combined Richardson's method and the SOR method to 

obtain a process, the "method of symmetric successive overrelaxation", 

which experimentally proved to be of order Vh for the model problem. 

We shall call the method the SSOR method. 

A new approach in accelerating iterative methods was given by Peaceman 

and Rachford in 1955 and by Douglas and Rachford in 1956. Asymptotically, 

their theories result in a still greater rate of convergence, namely of 

order 1/ln h-1• However, it was shown in 1959 by Birkhoff and Varga that 
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the theory only holds for the model problem, so that the actual value 

of the method is doubtful. 

In 1958 the disadvantage of Richardson's method, namely its instability, 

was overcome by Stiefel, who introduced a second order version of the 

me¼hod which can be proved to be stable. 

In the following years a large number of contributions to elliptic 

difference equations were made. The greater part of these are modifications 

or generalizations of the methods already mentioned. 

In this paper a method is described based on the second order 

Richardson method and the SOR method. We give a detailed analysis of 

the method for the model problem showing that the rate of convergence 

is of order \/"h: On a computer we got rates of convergence which agree 

with the theoretically predicted rates of convergence. 

The author acknowledges Mr. P. Beertema for writing the computer 

program by which the numerical results were obtained. 
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2. Mathematical ~reliminaries 

In this section we review Richardson's method of second degree for 

solving matrix equations of the type 

( 2. 1 ) Lu= f, 

where Lis a symmetric matrix with positive eigenvalues, f is a known 

vector and u is the unknown vector. The method is defined by the 

recurrence relations 

(2.2) 

1, 2, ••• , 

where uo is an initial guess for the solution u, Yo = (b + a)/(b - a), 

[a,b] is a positive interval containing all eigenvalues A of L, and 

Tk(y) is the Chebyshev polynomial of degree k. Tk(y) satisfies the 

recurrence relation 

(2.3) 

This iteration scheme was proposed by Stiefel [1958] and is called 

Richardson's method of second degree. A detailed discussion of Richard­

son's method and some accelerating procedures may be found in van der 

Houwen [1968], chapter IV. In the present investigation we are mainly 

interested in the average rate of convergence after K iterations of the 

iteration process for some operators L arising from the numerical solution 

of Poison's equation. The rate of convergence, denoted by R(K), is given 

by (cf. Forsythe and Wasow [1960], p. 231) 

(2.4) 1 
R(K) = K ln TK(yo). 
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If a<< bit can be derived from the properties of Tk(y) 

R(K) ~ 2./i -.!, ln 2. 

that 

(2.4 1 ) b K 

The quotient b/a is called the P-condition number of the matrix Land 

will be denoted by P(L). 

We now summarize the theory of the numerical solution of Poison's 

equation needed in the following sections. A detailed treatment of this 

theory may be found in van der Houwen [1967]. 

Consider Poison's equation 

LiU + F 

on a square of side n with boundary conditions of the first kind. 

Let X+ and Y+ represent translations±. h along the x- and y-axis 

respectively:' On a grid of square meshes of side h the following 

discrete analogue of (2.5) may be defined: 

(2.6) 

where 

D( y )u + f = 0, 

D(y) = 1 at the boundary points, 

D(y) = L1(X + X )(Y + Y) + L2 (X + X 
+ - + - + + Y+ + Y_) + 14 at the 

internal points, 

and where u and f represent grid functions defined at the grid points. 

When -f assumes the boundary values of U at the boundary points and f 

assumes the values of Fat the internal grid points, then it can be 

proved that the solution of the boundary value problem (2.5) and the 

solution of the discrete problem (2.6) differ by a term O(h2 ) (cf. Forsythe 

and Wasow [1960], section 23). Problem (2.6) will be called the model 

problem. 

The operator D(y) can be represented by a symmetric matrix operator. 

The eigenvalues of D ( y) appear to be negative so that we define 
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L(y) = -D(y). 

For y = 2 this operator was considered by Frank [1960] • It is easily 

verified that 

(2.8) 

so that 

(2.9) R(K) _ h ln 2 h _ o.69~. -7c'~ K 

For y = 1 it can be shown that (see van der Houwen [1967]) 

(2.10) R(K) ~ V2 h - 0.~93 • 

At this point we remark that the iteration scheme with y = 1 may be 

interpreted as the iteration scheme with y = 2 applied to a square 

which is rotated over 45° (see figure 2.1 and 2.2). 

y y 

X X 
1T 

x corresponds toy= 1, + corresponds toy= 2 

fig. 2.1 fig. 2.2 fig. 2.3 

Further, we observe that using the operator L(1) permits us to calculate 

~ only in those net points (j,l) of figure 2.3 which are denoted by 

either a dot or a cross. 

One point of departure in accelerating Richardson's method is to 

replace the matrix equation L(y)u = f by an equation 
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(2.11) L'{y)u = f' 

which has the same solution u, but in which L'(y) has a lower P-condition 

number than L(y). Such an approach was given in van der Houwen [1967] for 

the model problem mentioned above. The operator L'(y) and the vector f' 

were defined by 

(2.12) 

where 

(2.13) 

L'(y) 

n
1

(y) = 0 at the boundary points, 

D1(y) = p(L1(X+Y- + X_Y_) + L2(x_ + Y_)) at the 

internal points. 

For y = 1 and y = 2 it is possible to choose the parameter p such that 

the eigenvalues of L'(y) are real. The operator L'(2) then reduces to 

the operator occurring in Liebmann's method (compare Forsythe and Wasow 

[1960]). The P-condition number of this operator appears to be a of the 

value of P(L(2)): 

(2.14) 

Therefore, the asymptotic rate of convergence of Richardson's method 

with respect to L'(2) is twice as large as the asymptotic rate of 

convergence of the scheme used by Frank. However, operators of type (2.12) 

are not symmetric and, in fact, the eigenvalues of L'(1) and L'(2) are 

very ill-conditioned, so that an arbitrary initial approximation u0 will 

be a very poor approximation of the solution u. In Coolen and van der 

Houwen [1968] a method is given which eliminates the ill-conditioned 

eigenfunction components from the initial approximation. This precondition­

ing was found very successful, but the method explicitly uses the fact 

that the eigenvalues of the ill-conditioned components are known to be 

the greatest eigenvalues. In other cases, preconditioning may be less 

successful. Therefore, it is desirable to construct matrix representations 

with better conditioned eigenfunctions. 



7 

3. A symmetric matrix representation for the model problem 

In this section a symmetric matrix representation of the boundary 

value problem is given for which the P-condition number is of order h-1• 

Let us define the operator 

( 3. 1 ) 

where 

(3.2) 
D2(y) = 0 at the boundary points, 

D2 (y) = p(L1(X_Y+ + X+Y+) + L2(X+ + Y+)) at the 

internal points. 

This operator arises from averaging the operators which correspond to 

Gauss-Seidel's method starting from opposite corner points. We may 

expect that this averaging eliminates the ill-conditioning of the 

eigenfunctions. 

Theorem 3.1. 

Let y = 1 , then L 1 ( y) is symmetric with eigenfunctions 

(3.3) 

and eigenvalues 

(3.4) 

Here we have v 

Proof 

e(n,m) = sin njh sin mlh, n, m 

= cos nh, 1,.1 

, n, m = 1, 

= cos mh and Q 
-2 = 2ph . 

2' ••• ' 

It is easily verified that D(1) has the eigenfunctions e(n,m) 

defined above with eigenvalues 

From this it follows that 
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where 

By substituting (3.3) we find L9 (1)e(n,m) = l(n,m)e(n,m) where l(n,m) 

is given by (3.4). 
The eigenfunctions e(n,m) are orthogonal and the eigenvalues 

l(n,m) are real. Therefore, Lv(1) is a symmetric matrix representation 

of the boundary value problem. 

It may be remarked that for other values of y it appeared not 

possible to derive simple expressions for e(n,m) and k(n,m) as given 

above. 

We desire to determine the relaxation factor Q such that the 

P-condition number of L1 (1) is as small as possible. At first sight, 

one should choose Q according to the theory of Young, that is one 

minimizes the condition number of the operator L'(1) defined by (2.12). 

In Coolen and van der Houwen it was shown that the theory of Young 

yields 

(3.6) -1 ( . r--::,) n = 2y 1 - hV 2y-, , y = 1, 2. 

However, it will be shown here that for y = 1 an exact analysis of 

(3.4) yields a slightly better value for Q. Of course, when dealing 

with a more general problem than the model problem, one should take 

the value of Q prescribed by the Young theory. 

Let us suppose that Q is close to but less than 2 and, temporally, 

let us assume that v andµ are continuous variables. 

It is readily seen that the stationary points of l(n,m) satisfy the 

equations 

µ(2 + Q 2Qvµ) (4 2 2 4nvµ + Q v ) + 2Q(Qv 2µ) ( 1 vµ)(1 - Qvµ) = O, 

2 2 v(2 + Q - 2Qvµ)(4 - 4Qvµ + Q v ) - 4nv(1 - vµ)(1 - Qvµ) = O. 
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For v ~ 0 the stationary points of A(n,m) are situated on the line 

1 
µ = 4 Qv. 

Therefore, the extrema of A(n,m) are reached at points of the curve 

(3.7), the µ-axis, or at points of the boundary of the (v,µ)-domain, 

i.e. the line segments v =+cos h, - cos h ~µ<cos hand 

µ=+cos h, - cos h < v < cos h (see figure 3.1). 

µ 

cos h 

-cos h 

cos h 

fig. 3. 1 

1 Along the curveµ= 4 Qv A reaches a maximal value for v = 0 and 
. -2 along the µ-axis we have A= 2h • Therefore, we are only concerned 

with the values of A at the boundary. Thus, returning to integer values 

for n and m, we have to consider the values: 

(3.8) 

1T 
where n, m = 1, 2, ••• , h - 1. 

A(!. - 1 .!, - m) 
h 'h ' 

In figure 3.2 the behaviour of the functions A(n,1) and A(1,m) is 

illustrated for Q ~ 2. 
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n 

fig. 3. 2 

From this figure it may be concluded that the extrema of A(n,m) are 

bounded by the values of 

(3.9) 

where n = 1 - cos2h ~ h2 and£= 2 - Q. The P-condition number is 

approximated by 

(3.10) l + 4n 
P(Li(1 )) ~ 2n(£ + 2n) • 

This expression is minimized by£= 2Vn. Hence we find for Q the 

approximate value (compare formula (3.6) for y = 1) 

(3.11) Q ~ 2 - £ = 2 - 2Vn = 2 - 2 sin h ~ 2 - 2h. 

This value of Q yields the condition number 
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(3. 12) 

A slightly larger condition number is found for the SOR value of r.l 

defined by (3.6), namely 

(3.13) 

The average rates of convergence of Richardson's method correspond­

ing to (3.12) and (3.13) respectively, are 

(3.14) 

(3.15) 

In order to compare the new method with other iterative processes, 

for instance Young's method, one must bear in mind that the method 

described above is twice as laborious per iteration. Thus, comparing 

(3.14) with the rate of convergence of Youngvs SOR method, i.e. 

2V2h for large values of K (see Coolen and van der Houwen [1968] ), 

we may conclude that the new method becomes faster if 

or equivalently 

(3.16) 1 h < 1b = .0625 1 N > 50. 

Thus, only for rather small values of h the new method will be 

advantageous. 
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4. Numerical results for the model Eroblem 

In this section the results are given of a number of experiments 

with the model problem on the EL X8 computer at the Mathematical Centre 

at Amsterdam. 

In order to check the accuracy of the numerical solution we have 

chosen 

( 4. 1 ) F(x,y) = - 2 exp(x + y), 0 < x < n, 0 < y < n, 

(4.2) U(x,y) = exp(x + y)~ x = O,n i y = O,n. 

The inhomogeneous term (4.1) and the boundary function (4.2) give rise 

to the analytical solution 

(4.3) U{x,y) = exp(x + y), 

The iteration process was started by the following initial 

approximation: 

(4.4) 

This net function equals at each point the average of its boundary 

neighbours (see figure 4.1). 

l 
I 

3.;---,---··''I<'-· 
/ 

J 2 3 
fig. 4.1 
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The method was applied for N = 10, N = 20 and N = 40. The follow­

ing table contains the number of iterates K~ the estimates a and b for 

the least and greatest eigenvalue of L1 (1), the theoretical average 

rate of convergence R(K) defined by formula (3o14), the experimental 

* average rate of convergence R (K) defined by 

* 1 ['IL'(1){11] 
R (K) = - K ln I IV ( 1 }uJT , 

where u; is the numerical net function and l I I I denotes the maximum norm. 

Further we have listed the relative precision P (K) after K iterates, 
r 

defined by 

(4.6) 

and the asymptotic relative precision P (00 ). 
r 

TABLE 4. 1 

N a b K R(K) -Y<-, ' 
R (KJ 

10 3.9780 23,5009 3 06453 .8469 

6 07591 ,8828 

9 ,7976 .8757 
12 08169 .8645 

15 08284 ,8843 

20 7.1301 87 04078 3 ,3662 .5241 

6 c4722 .6196 

9 05105 .6 1 99 
12 v5298 .5877 
18 .5491 . 6011 

40 1307313 33700450 5 c2740 .4173 
10 .3400 .4164 

15 .3631 ,4226 
,, 20 .3746 .,4148 

I 

30 i . 3862 .4157 

p (KJ 
r 

p ( 00) 
r 

91 % 10.65% 

13 % 
10.3·1% 

10063% 

10c65% 

120 % 2.63% 
22 % 
5.4 % 
2.81% 

2.63% 

108 % .66% 

17 % 
3c2 % 

.78% 

.65% 
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In practice it is important to determine the value of K beforehand; 

one would desire that K is such that the errors due to discretization 

and iteration are comparable, i,eo 

11 u - u l I ·· II u - ~ I I . 

We can give a lower bound for K. According to Gerschgorin we have 

(4.8) llu - ul l 2 =ch, 

where c is a constant. Further we have 

(4.9) 

where O < e < 1. 

From (4o7), (408) and (4.9) it follows that 

. r;:: 1 1 20 I l u - u0 l I K~V~CJ_nh- + 2 1n( c )}. 

Thus, using (3, 12), we obtain 

(4.10) K > 1.41 
-1 

ln h 

'1h 

For very small values of h (ln h-1 
>> ~· ln(2ej ju - u0 1 lie)) the 

equality sign approximately holds. For instance, the case N = 40 

requires at least 14 iterations. 

From table 4,1 one may conclude that the numerical rates of 

convergence are inagreement with the theoretical rates of convergence 

predicted by the theory of the preceding sections. 

(i, 



5. References 

Coolen, T.M.T., 

Houwen, P.J. van der [1968] 

Forsythe, G.E., 

Wasow, W.R, [1960] 

Houwen, PoJo van der [1967a] 

Houwen, P.J. van der [1968] 

Stiefel, E.C. [1958] 

15 

On the acceleration of Richardson's 

method IV. A non-symmetrical case. 

Report TW 109i Math. Centre, Amsterdam. 

Finite difference methods for partial 

differential equations. 

John Wiley & Sons, Inc., New York. 

On the acceleration of Richardson's 

method III. Applications. 

Report TW 108, Math. Centre, Amsterdam. 

Finite difference methods for solving 

partial differential equations. 

MC Tract 20, Math. Centre, Amsterdam. 

Kernel polynomials in linear algebra 

and their numerical applications. 

National Bureau of Standards Applied 

Mathematics Series 49, "Further 

Contributions to the Solution of 

Simultaneous Linear Equations and the 

Determination of Eigenvalues", 

U.S. Government Printing Office, 

Washington, D.C. 


