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Introduction 

In this paper we investigate difference schemes of the type 

1-\+ 1 = ( 1 + T DO) 1-\ i k = 0, 1 , 2, ••• , 

where n0 is a matrix operator not depending on k with purely imaginary 

eigenvalues and 1 is the time step, As an example of such a difference 

scheme we mention the scheme studied by Lauwerier and Damste (see 

reference [3]) for solving the North Sea Problem (without friction) 

numerically. It was proved that the scheme is unstable and that one had 

to introduce a relatively large coefficient of friction in the model 

in order to get a stable scheme with an acceptable step. For realistic 

values of the coefficient of friction, however., it turned out that the 

stability condition prescribes a time step which is too small for 

actual computations. In [2] it was shown that one may obtain stability 

for schemes of the type given above by introducing non-uniform complex 

time steps. This gave rise to the following problem: 

Given the class of polynomials Q (z) of degree n in z which are 
n 

of the type 

where s2 , ••• , Sn are real parameters. 

One is asked to determine that polynomial Q (z) in this class 
n 

which is less than or equal to 1 on an interval O, z, b where 

bis as large as possible. 

In [2] this problem was solved for n = 2. 3, and 4. 
Here, we solve this problem for odd values of n. For even values 

of n the problem appeared to be far more difficult. Nevertheless, we 

did succeed in constructing a polynomial with b(n - 1) , b(n) , b(n + 1). 

Further, we investigate the effect of introducing a linear friction term 

into the difference scheme. 
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1. The method of non-uniform complex time ~teEs 

Consider the difference scheme 

( 1. 1 ) 

where the functions~ are grid functions defined on a discrete set of 

points, Tis a positive parameter not depending on k and Dis a linear 

difference operator which also does not depend on k. When u0 is given 

one can construct the functions u
1

, u
2

, ••• with the recurrence 

relation (1.1). An important class of linear initial boundary value 

problems may be approximated by difference schemes of type (1.1) (see 

reference [2] , p. 27) , 

The parameter t~ which we shall call the time step of the 

difference scheme, is determined by imposing some stability condition 

upon the scheme. For instance, one may require that all eigenvalues 

of the operator 1 + tD are within or on the unit circle (compare [2], 
p. 30). Such a condition leads to the following upper bound for 1: 

Re 6. 
( 1. 2) T < - 2 Min ----1', 

6. I 6 .1 
J J 

where 6. are the eigenvalues of D. 
J 

Clearly, there is no stability when D has one or more purely 

imaginary eigenvalues. 

In this paper we shall mainly be interested in schemes of type (1.1) 

where D = D
0 

has imaginary eigenvalues, i.e. 

( 1.3) 6 . = iy. , -a ( D
0

) , y. ..; a ( D
0

) , 
J J - J -

cr(D
0

) being the spectral radius of n
0

• The problem is to modify (1.1) in 

such a way that the scheme becomes stable. 

In [2], p. 45 it was proposed to drop the condition that T is a constant 

positive time step, but to allow that T has non-uniform complex values, 

i.e. 

( 1. 4) ~+ 1 = ( 1 + T k DO ) ~, k = 0 , 1 , 2 , • • • • 
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This means that we have extended the analytical solution U(t) over 

complex values of the time t and that this solution is calculated not 

along the positive time axis but along some path in the complex time 

plane (see figure 1.1). Of course, this path has to be chosen in such 

a way that there are enough points tk on the positive t-axis in order 

to give information about the behaviour of the solution for real values 

oft. We shall return to this subject in section 6. 

Im t 

k-1 
Complex t-plane, tk = I 

j=O 
T. 
J 

fig. 1 • 1 

Let us fix some value of k, say k = n, and let us consider the 

expression 

n-1 
( 1 • 5) u = ( 1 + r 

1
n

0 
)u 

1 
= IT n n- n- j=O 

Pn(Do) J.S a polynomial of degree n in 

( 1.6) 

where 

T = TO + T 1 + • • • + T n-1 ' • • • ' 

( 1 + 

DO. 

TjD
0

)u0 = Pn(D0 )u0 • 

It can be written 

n 
T 

'n-1 

as 
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The coefficients s2 , ••• , Sn are dimensionless constants. 

We shall require that the total time step, and the coefficients 

••• , S are real numbers. 
n 

We now apply the stability criterion to (1.5): 

( 1. 7) IP (o.)I < 1 
n J -

for all 0,. 
J 

This condition can be formulated more explicitly, Introducing the 

variable z = , 2y
2 we obtain for IP (o.)I the expression 

n J 

( 1 • 8) 

( 1.9) 

Further, let us define the number b as the maximal number such that Q ( z) 
n 

is less than or equal to 1 for O ~ z ~ b. Then condition (1.7) reduces 

to an upper bound for the time step T ,. namely 

( 1. 7') 
v; 

' .::. er (b ) • 
0 

+ 
The value of bis a function of n and the vector S = (s2 , ••• , Sn), thus 

b = b(n,s). In actual computation we are interested in the maximal 

value of b for a given value of n. Thus we are looking for the value of 

( 1. 10) b(n) = M~x b(n,B) 
s 

+ 
and the vector S for which this maximum is reached. 

Finally, we remark that in order to compare the effectiveness of the 

difference schemes for different values of n we must introduce the 

effective time step 

(1.11) 
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2. Some direct results 

In [2] p. 46 ff. the cases n = 2, 3 and 4 were treated by a straight­

forward analysis. In table 2.1 the results of this analysis are collected. 

In addition, we have listed the trivial cases n = O, 1 and the limiting 

case n = 00 • The latter case needs some explanation. For n = 00 the poly­

nomials between brackets in the formula for Q (z) are infinite Taylor 
n 

expansions of arbitrary functions c(x) and s(x) satisfying the condition 

c(O) = s(O) = 1, i.e. 

Q (z) = c2(z) + zs 2(z), c(O) = s(O) = 1. 
00 

It is readily seen that c ( z) = cos Vz and s ( z) = sin Vz/ Vz make Q,,, ( z) 

identical to 1 while the condition c(O) = s(O) = 1 is satisfied. Hence 

b{ 00
) = 00 and the coefficients S

2
, •••• Sn follow from the Taylor 

expansions in Vz of cos vz and sin vz, i.e. S. = 1 /j?. 
J 

Table 2. 1 

n b(n) Q (z) 
n 'eff o(D) 

0 00 0 0 0 

0 0 0 0 + z 0 

2 0 0 - z ( 1 - z) .5 

3 4 1 /2 1/4 0 
2 - z (4 - z)/16 .67 

4 8 1 /2 1 /6 1 /24 - z3(8 - z)/576 .71 
... . . . . .. . .. 

00 00 s. 
J 

= 1 / j ! ? 
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3. An upperbound for b(n). 

Form> 5 the direct methods applied in [2] are too complicated to 

find b(n). In this section a more general approach is given which 

immediately yields an upperbound for b(n). 

First an explicit expression for b(n) is derived. Consider those 
• ➔ 

polynomials Q (z) for which b(n,S) > 0 and introduce the new variable 
n 

( 3. 1 ) 

Substituting z 

(3.2) 

where 

and 

z 
X =-~-

b(n,.S) 

➔ • 
= xb(n,S) into Q (z) we obtain 

n 

C (x) 1 
2 = - Cl.2X + Cl.4X - ... p 

S (x) 1 
2 

= - Cl.3X + Cl.5X - ... q_ 

n - 1 if n odd, p = q_ = is 2 

+ 

+ 

n 
p = 2, q_ = p - 1 if rt is even, 

(-)pa xp 
2p ~ 

(-)q_a.2q_+1x\ 

• ➔ + ➔ + 
Since the transformation S + a is a 1-1 mapping of the S space on the a 

➔ ➔ 

space we may consider b(n,S) as a function of n and a. When we have 

this function in mind we shall write b(n,;). 

From (3.2) and the condition Q (z) < 1 for O < z ~ b(nJ) or O '- x -.. 1 
n -

we find 

(3.3) 
➔ 

b(n,a) < 
➔ 

- B(ntx,a), 0 < x, 1. 



Hence 

(3.4) 

and 
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➔ ➔ 

b(n,a) = Min B(n,x,a) 

b(n) = 

O<x<..:1 

Max 
➔ 

a 
Min 

O<-x, 1 

➔ 

B(n,x,a). 

The problem of finding b(n) is reduced to what we may interpret as 

a minimax problem for a class of rational functions B(n,x,;). 

We now construct an upperbound for b{n) by majorizing the value 

of the function B(n,x,;) in x = 0. In the following section we shall 

show that for odd values of n there exists a function B(n,x,;) with 

b(n) equal to this upperbound. This proves the function to be optimal. 
➔ 

From the definition of B(n,x 3 a) it follows that 

(3.6) 

Combining this with (3.3) and (3.5) we see that 

b(n) < 2 Maximum a
2

• 

a
2
,c2 (x) <1 

p -

The condition c2(x) , 1 is equivalent to the assumption that all b(n,S) 
p 

are non-negative as was required above. 

Now -a2 is the derivative of Cp(x) in x = 0, thus we are led to the problem 

to construct a polynomial C (x) of degree pin x with C (0) = 1 which 
p p 

has a maximal slope in x = 0. In [2] p. 38 it was proved that the trans-

formed Chebyshev polynomial 

(3.8) T (1 - 2x) = cos(p arccos (1 - 2x)) 
p 

possesses this property. Further, it was shown that 

(3.9) rh T ( 1 - 2x)] 
G p x=O 

From (3.7) and (3.9) we obtain the result 

2 
2p • 
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2 if n 
2 

(n - 1) 1.S odd 
(3.10) b(n) .:.. 4p = 2 n if n is even 

By substituting this into ( 1. 7') and using ( 1. 11) it is seen that 

(3.11) 1 
T < -p • eff - OlDJ 

Hence the fourth degree polynomial operator P4 (D) has an effective time 

step which is already about 70% of the maximal expectable effective time 

step. Nevertheless it pays when we should be able to construct a poly­

nomial operator with Teff ~ 1/o(D). 
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4. !_he optimal polynomial for odd values of n 

The considerations in the preceding section suggest the function 

( 4. 1 ) C (x) = T (1 - 2x)~ p = n; 1 • 
p p 

From the properties of the Chebyshev polynomials it follows that the 

function 1 - c2(x) has p+1 zeroes in the interval O < x < (see figure 
p 

4. 1 ) • 

' / ' 

0 

\ 

\ 

\ 
I 

I 
\ 

\ 

fig. 4. 1 
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"\ 

\ 

\ 
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\ 
\ 

\ I 
\ I 
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In order to obtain a non-zero value for b(n,;) we have to select the 

polynomial S (x) = S (x) in such a way that xs
2

(x) has the same zeroes 
2 q p p 

as 1 - C (x), i.e. 
p 

S (x) = c(1 - x) C'(x) = c(1 - x) dd T (1 - 2x), p p X p 

where c is a constant determined by the condition C (0) = 1. From (3.9) 
2 p 

it follows that c - - 1/2p, so that 

(4.2) 1 xd ) 1-x 
S (x) = - ----, - T ( 1 - 2x = -- U ( 1 - 2x), 

p 2p2 dx p p p-1 

where U is the Chebyshev polynomial of the second kind ( see [1], p. p-1 
796). It may be remarked that the choice (4.2) is only possible for odd 

values of n, i.e. if p = q. For even values of n we have q = p - 1 so 

ths't S (x) has not enough zeroes to neutralize the zeroes of 1 c2 (x). 
q p 
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(4.3) 
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definition of U 1 it is easily verified that 
p-

u 
1

(1 _ 2x) = sin(p arccos(l - 2x)) • 
p- 2V x( 1 - x)' 

By substituting (3.8) and (4.3) into (4.1) and (4.2) we obtain for 
➔ 

B(n,x,a) the expression 

(4.4) 

Hence 

➔ 
B(n,x,a) 

and by virtue of (3.10) 

(4.5) 

4 2 (n - 1)
2 

= p =--------
1 - X 1 - X 

b(n) 

2 
= (n - 1) , 

2 
= (n - 1) • 

The effective time step becomes 

1 
(4.6) n 

1 eff = o(D) 

which can be made as close to its asymptotic value as one wishes. 

Further, the optimal polynomial Q (z) assumes the form n 

2 
Q (z) = 1 - 4 z (b(n) - z) U2 (1 - 2 bz(n)). 

n b3(n) n-3 
2 

Finally, the results for the cases n = 5, 7, 9 are listed in table 4.1. 

Table 4.1 

n b(n) 82 83 84 85 86 87 I 88 89 1 eff o(D) 

5 16 8/b 3/b 8/b2 
2/b

2 
~ O 

0 0 0 .800 

7 36 18/b 19/3b 48/b2 32/3b2 32/b3 16/3b3 0 0 .857 

9 64 32/b 11 /b 160/b2 34/b2 56/b3 40/b3 128/b4 16/b4 .889 



1 1 

5. Some remarks about the polynomial for even values of n 

Although from a practical point of view the solution of the problem 

for even values of n is not important, it is for reasons of completeness 

that we have investigated the even case. 

First, we observe that for even values of n 

( 5. 1 ) 
2 2 

(n - 2) .::_ b(n) .::_ n • 

This is readily seen from (3.10) and (405). 

Further, it is clear 

because the numerator 

neutralize the zeroes 

Let us start with the 

that we 
2 xS (x) 
g_ 

of 1 -

cannot choose C (x) according to (4.~ ), 

= xs
2 

1(x) in (~.3) has not enough zeroes to 
2 p-

c (x), the denumerator. 
p + 

expression B(n-1,x,a), where n is a given even 

number, as defined in the preceding section and let us multiply the 

polynomial Cn_
1

(x) in this expression by a linear factor 1 - ax to get 

2 
a polynomial C (x) = 

p 
C (x) of correct degree. Thus we have 

n 
2 

(5,3) 

+ 
In order to maximize B(n,x,a) for x ~ 0 we must choose a= 2. We then 

obtain 

(5.4) + 2 
b(n,a) = (n-2) Min 

O<x< 1 

[ 1 4 2 [n-2 Jj U-:-X + x cotg 2 arccos(1-2x) • 

2[1 In figure 5.1 the behaviour of the functions 1/1-x and x cotg 2 (n-2) 

arccos(1-2x)] is illustrated. 
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figo 5 • 1 

From this figure it is clear that the minimum of B(n,x,;) is reached 

in the interval [o,x
0

J, where x
0 

is the first positive zero of cotg [], 

i.e. 

X = _l ( 1 - COS _TT_) • 
0 2 n - 2 

Let us taken? 6, Then x
0 

is relatively small, so that we may approximate 

the function B(n,x,;) on the interval Lo ,x
0

] by 

(5.6) -+ 2 { 1 2 )· n B(n,x,a) ~ (n-2) -
1 
-- + 4x cotg (n-2 yxj. -x 

-+ 
The first derivative of B(n,x,a) is given by 

2 
~ B(n x ;) ~ (n-2 ) {sin2y + 4 cos2y - 4y cotg y}, dx ~, .2 

sin y 

where y = (n-2) R. 
-+ 

From this expression it can easily be derived that B(n,x,a) reaches its 

minimum for 

(5.8) y ~ 1 .36 or 1.85 
X ~ ------2' 

(n - 2) 
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so that 

➔ ➔ 
For instance, we have b(6,a) ~ 18.4 and b(8,a) ~ 38.1. These values lead 

to effective time steps which are considerably smaller than the effective 

time steps obtained for odd values of n. Therefore, the operator defined 

by (5.2) and (5.3) is not recommended in actual computation. 

Of course, one may look for more appropriate polynomials of even 

degree, for instance by employing numerical methods. However, it may 

be remarked, there are reasons to believe that such an approach will be 
➔ 

very difficult: Let us consider the function b(n,a) where n is odd. From 
➔ 

section 4 it may be concluded that the optimal point in the a-space, 

also is a singular point of the function b(n,~). Further, b(n,~) will 

have many local maxima separated from each other by lines of discontinuity. 

It is plausible to suppose that this will also be the case when n is even. 

Hence, such difficulties have to be overcome when using numerical methods. 
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6. Extens~on to non-imaginarl ei~envalues 

In this section we allow the operator D0 to also have eigenvalues 

in the negative halfplane of the complex a-plane. This extented operator 

will be denoted by D; the largest value of the moduli of the purely 

imaginary eigenvalues will still be denoted by cr(D0 ). 

Let us consider the operator P (D) for odd values of n as defined n 
in the preceding sections and let us determine the domain in the a-plane 

where the polynomial P (a) has values within or on the unit circle, i.e. 
n 

the points a which satisfy the inequality 

( 6. 1 ) 

We shall put 1 

Further, it is convenient to introduce the new variable 

(6.2) 

We then obtain 

(6.2 1 ) P (a) = P (d 
n n 

where the coefficients a2 , ••• , a and the polynomials C and S are 
n P P 

defined as in sections 3 and 4. 
In figure 6.1 the curves JPn(r;)J = 1 are given for n = 2, 3, 4, 5, 7, 9. 

fig. 6.1 

n=2 
----------

;! 
I/, 

t l' 

Contours JP (r;)J = n 

2 
0 

Re r; 
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Since IP (s)I = IP (f)j we have omitted the part of the contour for 
n n 

which Im s < O. 

For n -+ 00 the domain IP n ( s) I 2_ 1 converges to the segment [-i, i] of the 

imaginary axis. In connection with this it may be remarked that for 

n = 00 we have 

(6.3) I I I 1 22 1 mm I Poo(o) = 1 +TO+ 2! To + ••• + mf To + ••• 

= !exp Toi= exp(T Re o), 

so that for Reo _:-_ 0 IP (o)I < 1. Hence for n = 00 the eigenvalues o 
n -

are allowed to be in the whole negative half-plane. 

In practice, however, we use finite values for n and we have a finite 

domain in the 6-plane in which the eigenvalues of Dare admitted. For 

instance, of practical importance is the situation where a linear 

friction term is added to the difference scheme (1.4), i.e. 

(6.4) 

where A is a coefficient of friction. An example of such a scheme is 

given in [2] p. 65. The eigenvalues o of the operator 

D = D - A 
0 

are situated on the line-segment [- A - icr(DO), - A+ icr(DO)] of the 

o-plane or the line-segment [- A/cr(DO) - i, - A/cr(DO) + i] of the 

s-plane. 

In general, cr(D
O

) is large, hence the eigenvalues are situated on a line 

close to the imaginary axis. In table 6.1 the upper bounds for the 

coefficient of friction A are given for some values of n. 

Table 6. 1 

n 2 3 4 5 7 9 

A 1.00 cr(D
0

) .39 cr(D
0

) • 21 cr(D
0

) .OB cr(Do) .025 cr(D
0

) .01 cr(D
0

) 
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It is interesting that for a given value of n and A one obtains always 

a stable scheme by choosing a finer grid, i.e. by making cr(D0 ) larger. 
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