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Introduction

In this paper we investigate difference schemes of the type
Weq = (1 + TDO)ukﬁ k=0, 1, 2, vouy

where DO is a matrix operator not depending on k with purely imaginary
eigenvalues and 1 i1s the time step. As an example of such a difference
scheme we mention the scheme studied by Lauwerier and Damsté (see
reference [3]) for solving the North Sea Problem (without friction)
numerically. It was proved that the scheme is unstable and that one had
to introduce a relatively large coefficient of friction in the model

in order to get a stable scheme with an acceptable step. For realistie
values of the coefficient of friction, however, it turned out that the
stability condition prescribes a time step which is too small for
actual computations. In [él it was shown that one may obtain stability

for schemes of the type given above by introducing non-uniform complex

time steps. This gave rise to the following problem:

Given the class of polynomials Qn(z) of degree n in z which are
of the type

2
)

7z + B 22 - ase

_ 2 2
Q(z) = (1 = Bz + 82" = ...)% + 2(1 - B 5

n ]

where 82, ceoy Bn are real parameters.
One is asked to determine that poclynomial Qn(z) in this class
which is less than or equal to 1 on an interval 0 < z < b where

b is as large as possible.

In [2] this problem was solved for n = 2, 3, and k.
Here, we solve this problem for odd values of n. For even values
of n the problem appeared to be far more difficult. Nevertheless, we
did succeed in constructing a polynomial with b(n - 1) < b{n) « b(n + 1),
Further, we investigate the effect of introducing a linear friction term

into the difference scheme.



1. The method of non-uniform complex time steps

Consider the difference scheme

(1.1) W, = (1 + 1 D)uk,_k =0, 13 2, eou,

where the functions u, are grid functions defined on & discrete set of
points, 7 is a positive parameter not depending on k and D is a linear

difference operator which also does not depend on k. When u, is given

one can construct the functions Wiy Upy oo with the recurrgnce
relation (1.1). An important class of linear initial boundary value
problems may be approximated by difference schemes of type (1.1) (see
reference [2], p. 27).

The parameter 1, which we shall call the time step of the
difference scheme, is determined by imposing some stability condition
upon the scheme. For instance, one may require that all eigenvalues
of the operator 1 + 1D are within or on the unit circle (compare [é],

p. 30). Such a condition leads to the following upper bound for t:

Re §.

(1.2) T < = 2 Min |2 R

§. |6,
J

where Gj are the eigenvalues of D.
Clearly, there is no stability when D has one or more purely
imaginary eigenvalues.
In this paper we shall mainly be interested in schemes of type (1.1)

where D = DO has imaginary eigenvalues, 1.e.

(1.3) 85 = iy; » -a(Dy) LYy o(Dy) s

c(DO) being the spectral radius of D.. The problem is to modify (1.1) in

0
such a way that the scheme becomes stable.

In Bﬂ, p. U5 it was proposed to drop the condition that T is a constant
positive time step, but to allow that t has non-uniform complex values,

i.e.

(1.4) We,q = (1 + T Do)uk, k=0,1,2, «cs .



This means that we have extended the analytical solution U(t) over
complex values of the time t and that this solution is calculated not
along the positive time axis but along some path in the complex time
plane (see figure 1.1). Of course, this path has to be chosen in such

a way that there are enough points t. on the positive t-axis in order

k
to give information about the behaviour of the solution for real values

of t. We shall return to this subject in section 6.

Im t
/

Complex t-plane, tk = .Z T,

fig. 1.1

Let us fix some value of k, say k = n, and let us consider the

expression
n~1

(1.5)  u =0+ Du . = jgo (1 + TjDo)uo = P (Dy)ug.
Pn(DO) is a polynomial of degree n in DO' It can be written as

v 2.2 n.n
(1.6) Pn(DO) =1 + TDO + 621 D0 F oees + Bnr DO,
where

T T, eea T
T = 7. 4+ T. 4 600 + T ,...,B=01 n_1.



The coefficients 82, censy Bn are dimensionless constants.
We shall require that the total time step T and the coefficients
62, eeey Bn are real numbers.

We now apply the stability criteriom to (1.5):

(1.7) IPn(aj)l <1 forall ..

This condition can be formulated more explicitly. Introducing the

variable z = T2y2 we obtain for IPn(G.)l the expression

(1.8) 'P (8. )| v’Q (z ) =1, 2, «u.

(1.9) q () = (1 - B,z + Buzg N N Bz + 8522 -5

Further, let us define the number b as the maximal number such that Qn(z)
is less than or equal to 1 for O < z < b. Then condition (1.7) reduces

to an upper bound for the time step 1, namely

(1.7") T:g(*-\/ﬁ—iy.
0

The value of b is a function of n and the vector E = (62, vees Bn), thus
b= b(n,g).' In actuasl computation we are interested in the maximal

value of b for a given value of n. Thus we are looking for the value of

(1.10) b(n) = Max b(n,)
B
and the vector § for which this maximum is reached.
Finally, we remark that in order to compare the effectiveness of the
difference schemes for different values of n we must introduce the

effective time step

o
[a]

I
8-
1K
o]
a
ﬂ
o

1. = —
(t.11) Teff



2. Some direct results

In [2] p. 46 f£f. the cases n = 2, 3 and 4 were treated by a straight-
forward analysis. In table 2.1 the results of this analysis are collected.
In addition, we have listed the trivial cases n = 0, 1 and the limiting
case n = =, The latter case needs some explanation. For n = ® the poly-
nomlals between brackets in the formula for Qn(z) are infinite Taylor
expansions of arbitrary functions c(x) and s(x) satisfying the condition
c(0) =s(0) =1, i.e.

Q (z) = c2(z) + zse(z), e(0) = s(0) = 1.

sinvf;/vr;‘make Q,(z)

1 1s satisfied. Hence

I

It is readily seen that c(z) = cosV 2z and s(z)

identical to 1 while the condition c(0) = s(0)

b(®) = » and the coefficients 82, coey Bn follow from the Taylor
expansions in V z of cos Vz and sinVz, i.e. Bj =1/,

Table 2.1

n |b(n) B, 63 B), Qn(Z) Topp a(D)
0 w 0 0 1
1 0 0 0 1+ 2 ' 0
2 1 1 0 0 1 = 2(1 = 2) .5
3 b 1/21 1/b {0 1 - z2(h - 2)/16 .67
L 1721 176 | 1724 | = 23(8 - 2)/576 .71
0 P o= 1731 1 ?

BJ /3



3. An upperbound for b(n)

For m > 5 the direct methods applied in [2] are too complicated to
find b(n). In this section a more general approach is given which
immediately yields an upperbound for b(n).

First an explicit expression for b(n) is derived. Consider those

polynomials Qn(z) for which b(n,g) > 0 and introduce the new variable

(3.1) % = B

Substituting z = xb(n,g) into Qn(z) we obtain

I > 2
(3.2) Q,(z) = Cp(x) + b(n,B) x Sq(x),
where
C(x)=1=oa.x+ ocvx2 - e + ()P XP
el 2 k 2p” °
S(x)=1=-oax+a x2 - e+ (=) x2
q 3 5 2q+17 °®
n - R .
P=4q="73 1f n 1s odd,
n e
P=3%,a=p-~ 1 1f n 1s even,
and
- Jin 2 - I By i o=
ags = ngb (n,B), Oy = 625+1b (n,B)y 3 =1, 2, ves o

Since the transformation E > a is a 1= mapping of the 8 space on the a
space we may consider b(n,g) as a function of n and . When we have
this function in mind we shall write b(n,g).

From (3.2) and the condition Q (z) < 1 for 0 ¢ z < b(n,B) or 0 < x < 1

we find
L1 -ct) N
(3.3) b(n,a) & =% = Bn,x,a), 0 < x + 1.
X Sq(x)



Hence
(3.4) b(n,a) = Min B(n,x,a)
0<x<1
and
(3.5) b(n) = Mgx Min B(n,x,g).
a  0<x<1

The problem of finding b(n) is reduced to what we may interpret as
a minimax problem for a class of rational functions B(n,x,a).

We now construct an upperbound for b(n) by majorizing the value
of the function B(n,x,g) in x = 0. In the following section we shall
show that for odd values of n there exists a function B(n,x,&) with
b(n) equal to this upperbound. This proves the function to be optimal.
From the definition of B(n,xgg) it follows that
(3.6) B(n,0,a) = 20,
Combining this with (3.3) and (3.5) we see that

(3.7) b(n) < 2 Maximum a,.
2
a2,Cp(x)§j
The condition Ci(x) < 1 is equivalent to the assumption that all b(n,g)
are non-negative as was required above.

Now ~0, is the derivative of Cp(x) in x = 0, thus we are led to the problem

2
to construct a polynomial Cp(x) of degree p in x with CP(O) = 1 which

has a maximal slope in x = 0. In [2] p. 38 it was proved that the trans-

formed Chebyshev polynomial

(3.8) Tp(1 - 2x) = cos(p arccos (1 = 2x))
possesses this property. Further, it was shown that

(3.9) E1~ Tp(1 - 2x)} = - 2p2.

x=0

From (3.7) and (3.9) we obtain the result



o (n - 1)2 if n is odd

(3.10) b{n) < hp” = N , .
n if n is even

By substituting this into (1.7') and using (1.11) it is seen that

1
(3.11) Teffim'
Hence the fourth degree polynomial operator Ph(D) has an effective time
step which is already about T70% of the maximal expectable effective time
step. Nevertheless it pays when we should be able to construct a poly-

~ 1/a(D).

nomial operator with L



4. The optimal polynomial for odd values of n

The considerations in the preceding section suggest the function

n =1
5 R

(4.1) cp(x) = Tp(1 -2x), p =

From the properties of the Chebyshev polynomials it follows that the

function 1 - Ci(x) has p+1 zeroes in the interval 0 < x < 1 (see figure

h,1).

In order to obtain a non-zero value for b(n,a) we have to select the
polynomial Sq(x) = Sp(x) in such a way that xsi(x) has the same zeroes

as 1 - C;(x), i.e.
v = ) i—
Sp(x) =c(1 = x) Cp(x) = c(1 - x) I= Tp(1 - 2x),

where ¢ is a constant determined by the condition Cp(O) = 1. From (3.9)

- 1/2p2, so that

it follows that c

1 - x d ( ___l"x
2p2 dx Tp\1 - 2.X) = D UP=1(1 - 2X),

where Up- is the Chebyshev polynomial of the second kind (see [j], p.

1
796). It may be remarked that the choice (L4.2) is only possible for odd

(L.2) Sp(x)

values of n, i.e. if p = g. For even values of n we have ¢ = p - 1 s0

thst Sq(x) has not enough zeroes to neutralize the zeroes of 1 - Ci(x).



From the definition of Up__1

(4.3)

By substituting (3.8) and (4.3) into (h.1) and (4.2) we obtain for

p—1(1 - 2x) =

> .
B(n,x,0) the expression

(b.1)

Hence

B(n,x,a)

and by virtue of (3.10)

(k.5)

1

0

sin(p arccos(1 = 2x))

2V x(1 - x)

hpg

_(n-1)°

1 - x

b(n,a) =

b(n)

The effective time step becomes

(4.6)

which can be made as close to its asymptotic value as one wishes,

1 - x

i
n

(1'1—1),

.

2

(n - 1)2.

Further, the optimal polynomial Q (z) assumes the form
n .

(b.7)

Qn(Z)

(n) = z) 2

gy
13 (n)

9]

n=3
>

Z
(1 - 2:5‘(5')-).

it is easily verified that

Finally, the results for the cases n =5, T, 9 are listed in table L.1.

Table 4.1
n|b(n) | 8, By B, B B 8 Bg Bg | Tapp 0D
16 | 8/ | 3/b 1 82| 2/p°1 0 0 0 0 .800
71 36 118/b |19/3b} 48/p° |32/3b9 32/0° |16/305] 0© 0 .857
9l 64 |32/p |11/ |160/v2 |34/02 56/b3 {hoswd hosw* | 16/ | .889
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5. Some remarks about the polynomial for even values of n

Although from a practical point of view the solution of the problem
for even values of n is not important, it is for reasons of completeness
that we have investigated the even case.

First, we observe that for even values of n

(5.1) (n - 2)% < bn) < n°.

This is readily seen from (3.10) and (4.5).

Further, it is clear that we cannot choose C_(x) according to (L4.%),
because the numerator xsi(x) =2xS§_](x) in (3.3) has not enough zeroes to
neutralize the zeroes of 1 - Cp(x), the denumerator.

Let us start with the expression B(n—T,x,g), where n is a given even

number, as defined in the preceding section and let us multiply the

polynomial Cn_1(x) in this expression by a linear factor 1 - ax to get
2
a polynomial Cp(x) = Cn(x)rof correct degree. Thus we have
2
= =1

(5.2) Cp(x) = (1 = ax)Tp_1(1 2x), p 5
(5.3) s (x) =—=%u (1 - 2x) = p-1

? q q q_1 s 4 b °

.. >
In order to maximize B(n,x,a) for x ~ 0 we must choose a = 2. We then

obtain

(5.4) b(n,a) = (n-2)° Min [} LA cotg2[£—g arccos(1-2x)]J.
O<x<1 - X 2

. . . -1
In figure 5.1 the behaviour of the functions 1/1-x and x cothhE (n=2)

arccos(1-2x)] is illustrated.
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(n-2)%

fig. 5.1

From this figure it is clear that the minimum of B(n,x,a) is reached

in the interval [b,xow, where x. is the first positive zero of cotg [ ],

0
di.€,

=4 -
(5.5) Xy =% (1 = cos — 2).

Let us take n - 6. Then X is relatively small, so that we may approximate

the function B(n,x,a) on the interval LQ,XO] by

(5.6) B(n,x,0) ~ (n-2)% [== + kx cotg®(n-2)\/x}.

="

The first derivative of B(n,x,g) is given by

2

a -+ - . 2
(5.7) 3z Bln,x,a) ~ £¥~§l- {51n2y + 4 cosy - by cotg vy},
sin“ y

where y = (n-2) Vx.
From this expression it can easily be derived that B(n,x,g) reaches its

minimum for

(5.8) ' y~ 1,36 or x-~

&
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so that

(n-2)h
(n=2)° - 1.85

(5.9) b(n,a) ~ + .296.
For instance, we have b(6,;) ~ 18.4 and b(8,g) ~ 38.1. These values lead
to effective time steps which are considerably smaller than the effective
time steps obtained for odd values of n. Therefore, the operator defined
by (5.2) and (5.3) is not recommended in actual computation.

Of course, one may look for more appropriate polynomials of even
degree, for instance by employing numerical methods. However, it may
be remarked, there are reasons to believe that such an approach will be
very difficult: Let us consider the function b(n,a) where n is odd. From
section 4 it may be concluded that the optimal point in the g—spaee,
also is a singular point of the function b(n,g). Further, b(n,g) will
have many local maxima separated from each other by lines of discontinuity.
It is plausible to suppose that this will also be the case when n is even.

Hence, such difficulties have to be overcome when using numerical methods.
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6. Extension to non-imaginary eigenvalues

In this section we allow the operator D, to also have eigenvalues

in the negative halfplane of the complex 6-pgane. This extented operator
will be denoted by D; the largest value of the moduli of the purely
imaginary eigenvalues will still be denoted by O(DO).

Let us consider the operator Pn(D) for odd values of n as defined
in the preceding sections and let us determine the domain in the S§-plane
where the polynomial Pn(d) has values within or on the unit circle, i.e.

the points & which satisfy the inequality

2

_ 2 nn .
(6.1) |2 (8)] = |1+ <6 + Bt 8”4 s v B TS| < 1.

We shall put 1 = VIWO(DO) = (n-l)/o(DO).

Further, it is convenient to introduce the new variable

(6.2) r = 3%3—7 )

0
We then obtain

(n-1)z3 + ahg4 "

(6.27) P(8) =B (£) =1+ (n-T)g + a2;2 + o

3
+ oe.. *+ an(n-1)cn E'Cp(-cz) + (n-1)csp(-c2),

where the coefficients a,, ««., o, and the polynomials Cp and SP are

29
defined as in sections 3 and &,

In figure 6.1 the curves Iﬁn(c)l = 1 are given for n =2, 3, 4, 5, 7, 9.

A |

-8 .652.50-.42 Re ¢

0

fig. 6.1 Contours ]Pn(c)[ = 1
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Since ]?n(;)| = lﬁn(27] we have omitted the part of the contour for
which Im ¢z < O.

For n » * the domain !ﬁn(ﬁ)l < 1 converges to the segment [-i,i] of the
imaginary axis. In connection with this it may be remarked that for

n = *° we have

|1 4+ 16 + o 196 4+ oo+ B 4 L,

(6.3) IPW(G)I 51 m!

il

|exp 18| = exp(t Re §),

so that for Red < O |Pn(6)| < 1, Hence for n = ® the eigenvalues §
are allowed to be in the whole negative half-plane.

In practice, however, we use finite values for n and we have a finite
domain in the S-~plane in which the eigenvalues of D are admitted. For
instance, of practical importance is the situation where a linear

friction term is added to the difference scheme (1.k4), i.e.

(6.14) Wi = (1 + TkDO - er)uk,

where A is a coefficient of friction. An example of such a scheme is

given in [2] p. 65. The eigenvalues § of the operator

(6.5) D=D, -\

are situated on the line-segment [- A - ic(Do), - X+ io(DO)] of the
§-plane or the line-segment [- Aa(Dy) = i, = A/o(Dy) + i] of the
g-plane.

In general, G(DO) is large, hence the eigenvalues are situated on a line
close to the imaginary axis. In table 6.1 the upper bounds for the

coefficient of friction A are given for some values of n.

Table 6.1
n 2 3 h 5 T 9
A 1,00 c(DO) .39 c(DO) .21 o(DO) .08 O(DO) .025 G(DO) .01 o(DO)
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It is interesting that for a given value of n and A one obtains always

a stable scheme by choosing a finer grid, i.e. by making U(Do) larger.
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