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ABSTRACT

This paper is a written version of a ralk delivered by the
author before the Nederlands Rekenmachine Genootschap
(Dutch Association for Computing Machinery) on May
28, 1968, at Amstrerdam.

A survey is given of the most popular and successful
numerical methods for calculating the eigenvalues and
eigenvectors of full real matrices. Attention is focused on
methods for general matrices; methods for symmetric
matrices are freated only as special cases. The successive
topics are: an introduction with an outline of the theory;
reducing similarity transformations, in particular, Wil-
kinson's and Householder’s transformarion to Hessen-
berg form; methods ro calculate eigenvalues of Hessen-
berg matrices, viz. the QR method and nondeflating
methods using Hyman's formula; methods to calculate
eigenvectors of Hessenberg matrices, viz. inverse intera-
tion and the QR method; Osborne’s equilibration; Eber-
lein’s generalized Jacobi process.

1  INTRODUCTION

During the last decade, the art of computing eigenvalues
and eigenvectors of square matrices has made consider-
able progress. Numerical methods nowadays are
available which work satisfactorily for most matrices
occurring in practice. For real symmetric (and complex
Hermitian) matrices in particular, we have quite stable
numerical processes whose convergence can be guaran-
teed. :

We shall try to give a survey of the most popular and
successful methods for calculating eigenvalues and
_elgenvectors, restricting ourselves to methods for full
(1.e., nonsparse) real square matrices. We shall pay atten-
tion mainly to the general problem in which the matrix is
not assumed to be symmetric, and deal with methods for
symmetric matrices only as special cases of the general
methods.

To define the problem and some related notions, let M
be a matrix of the order n. The ,,eigenvalues” of M are
those real or complex numbers A for which the linear
system Mx = AX has a nonnull solution vector x,
called ,,eigenvector” of M corresponding to A. The

eigenvalues of M are the zeros of det (M-AI), whichisa
polynomial of degree n in A, the ,,characteristic polyno-

mial” of M. Hence, M has at most n distinct eigenvalues,
and at least one eigenvector corresponds to each eigen-
value. A ,,similarity transformation’” is a transformation
which, to each nth order matrix M, associates the matrix
S-IMS, where S is any nonsingular nth order matrix.
The matrices M and S-'MS are called ,,similar”.
Similarity transformations are important, because they
~leave the eigenvalues invariant, and transform the eigen-
vectors in the following simple way: if x is an eigenvector
of S-IMS corresponding to the eigenvalue 2, then Sx is
an eigenvector of M corresponding to A

‘Matrix M is called ,,diagonalizable”, if it is similar to a

- diagonal matrix: M = XAX-}, The eigenvalues of M~

are the diagonal eiements of thc simxlar dxagonal matrxx
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GENVALUES AND EIGENVECTORS

A, the columns of the transforming matrix X are the
corresponding eigenvectors of M, and the rows of X!
are the corresponding eigenvectors of the transposed
matrix MT. If M is diagonalizable and has multiple
eigenvalues, then the eigenvectors of M and MT are not
unique, but may always be chosen (and are preferably
chosen) such that the matrix of eigenvectors of M and
MT are each other’s inverse. (The eigenvectors of M and
MT then form a ,,biorthogonal™ system.) If M has only
simple eigenvalues, then it is diagonalizable, and its
eigenvectors are unique up to a scalar factor.

Computing eigenvalues and eigenvectors is considerably
simpler for real symmetric' (and complex Hermitian)
matrices than for other ones, because a real symmetric

' - (complex Hermman matrix) has the following nice

properties:

1  all eigenvalues are real;

2  the matrix is diagonalizable;

3  the eigenvectors can be chosen such that the matrix

of eigenvectors is real orthogonal; (3": complex
unitary).

Nearly as easy to handle are the normal matrices, which
are characterized by properties (2) and (3°); in other
words, a matrix is normal if it can be written in the
form UAU-L, where A is diagonal and U unitary.

The eigenvalues of normal matrices are well conditioned;
1.e., small changes in the elements of a normal matrix
cause small changes in the eigenvalues. Eigenvectors are
11l conditioned if they correspond to closely clustered
eigenvalues. If two eigenvalues coincide, then any linear
combination of two (linearly) independent corresponding
eigenvectors 1S again an eigenvector, this explains why
two eigenvectors corresponding to close eigenvalues are
very sensitive to perturbations of the elements of the
matrix.

The computation of eigenvalues and eigenvectors of

nonnormal matrices may be complicated for the follow-
Ing two reasons.

1  If the matrix bas multiple eigenvalues, then it may
be nondiagonalizable. A nondiagonalizable nth
order matrix does not have n linearly independent
eigenvectors, (its eigensystemn is ,,defective’). The
notion ,,eigenvector’’ may be generalized to ,,prin-
cipal vector” corresponding to an eigenvalue 2,
1.e., a nonnull vector, X, satisfying

(M“ll)jx ==
where the mteger ], the ,,grade™ of x, is chosen as
small as possible. If M is diagonalizable, then all its
principal vectors are of grade 1, i.e., are ordinary
- eigenvectors. The computation of principal vectors
of grade > 1 is a nearly unexplored area (see, how-

“ever, J. M. Varah [14]), and will not be discussed
here,

2 The eigenvalues of a matrix may be i1l conditioned, .

even if the matrix i1s diagonalizable., Let M =
XAX"*, where A is diagonal Let [ Xl denote the

’ 4
spectral norm” of X, i.e. the uare root of the
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largest eigenvalue of X x. Then we have the follow-

ing:

Theorem (Bauer and Fike [4] {1, p. 87])

If X is any cigenvalue of the perturbed matrix M +

8M, then there is an eigenvalue M of M such that
=A< XX ML

In other words, the minimum, g, of [[X-1j IIX}
for all permissible eigenvector matrices X of M is a
measure for the sensitivity of the ecigenvalues to
perturbations of the elements of M. If M is normal,
then u = | and the eigenvalues are well conditioned.
On the other hand, if M is far from normal (es-
pecially if M is rather close to a nondiagonalizable
matrix), then p 1s considerably larger than 1, and
the eigenvalues (or at least some of them) are ill
conditioned. More specifically, a measure for the
sensitivity of a (simple) eigenvalue A of M is the
quantity

[DAIREY! ’
»
Yy TX]
where X 1s a corresponding eigenvector of M and y

of MT, and where |ix|| denotes the Euclidean vector
norm.

Besides the spectral norm mentioned above, one uses
the following matrix norms, which are much easier to
ca%culate.

the Euclidean matrix norm

3

iMlile = X |[Myl?
i, ] = 1

and the infinity norm

In particular, we use matrix norms to define realistic
tolerances for the various stages of calculating eigen-
vaiues and eigenvectors. These tolerances have the
form: matrix norm times some specified dimensionless
parameter (e.g., the machine precision).

The theory of matrices and methods to compute eigen-
vaiues and eigenvectors are extensively treated in J. H.
Wiikinson [1}, A. S. Householder [2] and D. K. Faddeev
and V. N. Faddeeva [3]. In particular, {1] deals with
various numerical methods from a practical standpoint,
including error analyses and assessments of the methods
based on the practical experience of the author. From
this book, we have taken a great deal of the material
presented here. Our survey is certainly not complete.
The research on this subject is very active, and there are
several intcmsting developments which we shall not
discuss, in pamcumr the calculation of boxmds far a
computed ttgensystcm [14], and methods to improve
approximate eigensystems [l, p. 637-646]

2 REDUCING SIMILARITY "TRANSFORMA-
TIONS

Many mth@ds for cmcuiatmg th@ m

more, matrix L might be ill conditioned

A matrix, H, is
trian gu lar’ if the clements be
zero; .., Hy = Oforz > ] + 1. A matrix, T 1S ,,tmha-
gonai " 1f all nents outside the mair N

A mmx iS ) Fl' Q0K lf it 15 the w sum of e.emen
1us matrices, which are o! the form

B i . *
*

The characteristic polynomial of F is

- br_llrﬂl ¢« * mbl)b — b@;

therefore F is also called the ,,companion matrix” of
this polynomial.

2.1 Reduction to Hessenberg Form
For reducing a general matrix to a similar upper-
Hessenberg matrix, there exist completely satisfactory,
stable transformations. We discuss two of them which
are most commonly used, viz. Wilkinson's and House-
holder’s transformation.

Wilkinson’s transformation [I, p. 357-368] 1s a
triangular transformation with stabilizing interchanges.
The transforming matrix is the product of a permutation
matrix, P, and a unit lower-triangular matrix, L (,,unit”
means that the diagonal elements are 1). Thus, if M 1s
the given matrix and H the resulting upper-Hessenberg
matrix, then we have

H = L-1P-'MPL.

The interchanges are chosen such that {Ly| < 1 for all
1 and j. Moreover, one can choose the elements L,
t > 2 arbitrarily; in practice, one chooses them equal
to 0. The process resembles the triangular decomposition
used to solve linear systems. The transformation is more
accurate if the scalar products involved are calculated in
extra precision. The number of operations (each
operation consisting of a muitiplication and an addition)
roughly equals § n® for large r
In exceptional cases, the transformation might lead to
growing of the pivots (i.e., the elements chosen in each

step which are going to be the subdiagonal elements of

the resulting Hessenberg matrix) by a factor up to
2=-2 (in a similar way as might occur in triangular de- ,
composition with partial pivoting {1, p-.. 21 2}),. Further-




calcu m tions m\m% VeSs
mMore accuracy
@Q %ﬁﬁ % §' ﬂ €Xt =:,} yred ye 9 :

for large n, so House h@%—dﬁr S tra msf ormation is a f %mw
two slower than Wilkinson’s. On the other ha
Householder’s transformation is completely stable.

For a symmetric matrix Householder’s transformati

amount cf wmk IS cansxéer%biy reduced the number ef

operations roughly being equai to § n?® for large n.
The resuhmg similar m%mx 1s tridiagonal, since it is
symmetric and Hessenberg,

2.2 Further Reductions

After reducing the given matrix to a similar upper-
Hessenberg matrix, one may perform a further reduc-
tion to tridiagonal or Frobenius form.

A tridiagonal matrix similar to an upper-Hessenberg
matrix may be obtained by means of the transposed
Wilkinson process without interchanges; i.e., the trans-
formin

g matrix is a unit upper-triangular matrix, U,
and the resulting matrix has lower-Hessenberg form.
Moreover, the upper-Hessenberg form turns out to be
preserved, so that the resuiting similar matrix is tridiago-
nal. Alas, stabilizing interchanges cannot be used,
because they would destroy the upper-Hessenberg form.
Using no interchanges, however, the process may be
unstable, and, in fact, breaks down if a zero pivot occurs.
One may try to avoid this by choosing another first
column of U. No satisfactory process seems to be known.
In practice, it is often advisable to use double (or multi-
ple) precision in the reduction to tridiagonal form. We
shall go further into this [1, p. 395-404].

il not

The reduction of an Hessenberg matrix to Frobenius

form amounts to calculating the coefficients of the
characteristic polynomial. This method is often very
unstable as the eigenvalues may be much more sensitive
to errors in the coefficients of the characteristic poly-
nomial than to errors in the elements of the giver
Hessenberg matrix. In general, the reduction to Frobe
nius form is much less satisfactory than the reducti
to tridiagonal form {1, p. 405-411].

3 EIGENVALUES OF HESSENBERG
MATRICES

There exist two main types of methods for caiculmmg

eigenvalues, viz deﬂating and nondeflating
}n & deﬁmmg method, the order @f me matr
lecreased as soon as an eigenv. '
nend&ﬂatmg J
emains constdnt.

. moreover, it is obvious that, if H is upper-Hesse

o Kol

N
Qi = Qu/Ry, i =1,...,n.
From these formulas it easily follows that the de-
composition (3.1.1) is always possible, and, if H is non-
singular and one imposes the extra condition that the
diagonal clements of R be positive, then also unique;

then also Q.
After calculating the decompwtm (3.1.1), we sub-
sequently form the product

(3.1.3) Hix+l) = R(X)QtX),

Thus, Ht*x+1} is obtained from H(*} by an orthogonal
similarity transformation:

(3.1.4) Hx+D) = (QUe))-1H )}Qtx),

MOFCOVCT, if H(x) is UPW-H pSsSe bcr‘g, then also
Htx+1) since R(*) is upper-triangular and Q') upper-
Hessenberg.

The sequence thus obtained satisfies the following:

Theorem (Francis [6])

If H® is a nonsingular matrix having eigenvalues of
distinct modulus, then the sequence of matrices H(®
converges to an upper-triangular matrix.

From now on, we assume that H(® is upper-Hessenberg.
If H®) can be diagonalized and its subdiagonal elements

(0 i
Hyjyp 1

multiple eigenvalu

= |, ... n-l, are nonzero, then H®! has no
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(3.1.6) si%) = H

or preferably
(3.1.7) st¥) = ppik)
value of th

l.e., the eigen > lower rig

submatrix of Hf ?

{ & .
st to H ; . (Francis proposes to

perform the first iteration steps with shift s(*) = O, and
to start using the shift stx) == p(k) when p“" has be-
come invariant within one binary di git precision; this
str@tey makes it more iikeiy that the cigenvalues will be
fmmd in order of increasing modulus. )
hese shift stre tcglﬁs y:eid a process which, if it is
ees nearly always quadratically for
. matrices (or cubically for symmetric
The choice s'*) = p(ki mentioned above may
turn out to be nonreal. In that case the shift strategy may
be modified in one of the three following ways:
for real matrices having only real eigenvalues (in
particular real symmetric matrices), one may choose
stk) == reai part of p.“‘?*
2 for complex (or real) matrices, one my chcmsc
g{kR) == }1”‘}, and use mmp}gx arithme
wecessary [6] [7].

This ,,single’ QR iteration process

12n2 real multiplications per step.

3 for real matrices having complex eigenvaiues the
previous strategy is possible, but expensive. A much

faster process is obtained by choosing
$(K) == (k) gtk +1) = Fik),

requires roughly

This ,,double™ QR iteration process [6] [8] [14] has the
advantage that, from a real iterate H'%), one obtains a

cal iterate H'* + 2 which can be calculated in real
arithmetic requiring only 5n? real multiplications per
double step.

As soon as, for some i, |H..”|| has become small enough

(e.g., < some norm of H®!times the machir
this element can be neglected
cquals

(3.1.8)

»

rht hand two-by-two

‘2 Deflation reduces the problem to probiem:

where H; is of the order i, Ha of the order n -1, O is the
n ~ 1 by i null matrix and M an i by n - 1 matrix. The
igenvalues of this matrix are equal to those of Hi and
Hz. Thus, the problem of finding the cigenvalues of H®)
is reduced to two problems involving smaller matrices.

In particular, if H'™ Ca- IOFH 1 ag IS neghgtbi@, then Ha

rder 1 or 2, and its eigenvalues can be calculated
darecﬂy, thus, the pmb%em s -»wv to finding the
of Hy of order n - l or n — 2. The process

oy ry bt ond cessive reductions have prgd 1ced
{ order | or 2 only.

described above aspecmily (3.1.7) and the modifications,
the OCESS in the great majonty of cases, but,

LA R

(3.1.9)

& ae

0 .. 0

i$ invariant under the QR transformation with
rero shift; moreover, according to either shift strategy
mentioned above, the shift equals 0; so obviously no
convergence occurs. One might choose a shift st®) =

mek) L o HM , Where « is suitably chosen [I, p. 511]

[8]. Using this shift strategy, the process is convergent
for matrix (3.1.9) and, probably for the great majority of
matrices, but presumably for any constant a there are
other matrzcs for which this shift strategy will fail.

For symmetrzc tndzagonal matrices, the iterates H“‘}
remain symmetric tridiagonal, since each step
orthogonal similarity transformation (3.1.4); moreover,

the shift strategies (3.1.6) and (3.1.7) both
convergent process {91_

I As the QR step is an orthogonal similarity trans-
formation (3.1.4), the condition number u (see
page 119) of the eigenvalues of the matrix remains
invariant. This property makes the process numeri-
cally very stable.

invol-

ving matrices of lower order. Moreover, after de-

flation, the matrix H; involved is usually closer to
the limit than an arbitrary upper-Hessenberg matrix

of the same order

wvergence seldom occurs. Accordmg to
Ikinson [1, p 538] thc dmxbl@ QR iterat:

" f}. p - 7 .f : * ks .. . .- .,_-_'&'.. "; i | .. . - ' ;: B r re
- 1 JFi 1 - _. zf‘ & b 5 g 1. * 1
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((Hu-dxi + = Hipxi) IT(-Hipo.

jo= 2 j==Q

If some of the subdiagonal elements Hu-: are 0 or
negligible, we may either partition the matrix as above
(3.1 8) ﬁnd handle Hi and Hse separately, or replace these
2eligible elements b Dy some threshold (e. g., Some norm
of H times the machine precision).

Thus, we may assume that the subdiagcna! elements are
nonzero, and, since we are searching for zeros of the
cmractensm polynomzal we may dxsrcgard the nonzero
factor

I1{-Hj;-1).

j=2

Therefore we replace (3.2.2) by

3.2.3) f(3) = (H;1-2)x; + = Hyxg,
jo=2

and search for the zeros of f(), or rather, after finding
the eigenvalues 4, . . ., Ai-;, we search for a zero of
i—1 ]

= () LT (A=2).

j=1

(3& 2*4) fl()‘)

The zeros of f(}) or fi(A) may be calculated by means of
any standard iteration process [1, p. 435-461)}. If all
eigenvalues are real, then one may use linear inter-
polation, Newton or Laguerre. To find complex
eigenvalues, one may use quadratic interpolation (for-
mula of Muller {1, p. 435] or Traub (1, p. 484]), Bairstow
(adapted to polynomials in the form (3.2.3) [1, p. 449
451]) and Laguerre [11] [12].

The derivatives needed for Newton and Laguerre

iteration are obtained by differentiating (3.2.1) and

(3.2.3); the resulting formulas are rather simiiar,_ and
the number of operations for calculating ' (3) or {f” (3)
is nearly the same as for calculating f(3).

In the whole process, the original matrix H is used
so that we may expect to obtain more &mumte
eigenvalues than in the hod, especially i
latter requires many iterations.

2 Since no deﬂﬂﬁﬂﬂ ilS ! 1. clusters of .
values cause tro merator and denom
in (3.2.4) OO 1 INav DHe

changes

(4.1.2) xten) =

not, so ﬂwt one cannot pmpcr y
genvalues into pairs of complex
pate eigen values and real ones.
3 NG ;tez‘mmn Process is known which converges
seems o b@ L@gwerre S

L v

mn$tderab%y siower QR iterations; e.g.,
guerre’s formuia turns cmt

XS) than tm QR memad

Symmetric Matrices
Symmetric tridiagonal matrices
clements are nonzero posses:

3 the m:}portam pmperty
that the determinants of the principal minors (the ith
principal minor being the submatrix consisting of the
first 1 rows and columns) form a Sturm sequ

~signs of these determinants completely determine the

number of eigenvalues smalller (or larger) than the
argument at which these determinants were eva

Using this property one can calculate the eigenvalu
means of bisection, preferably combined with linea:
interpolation (or one of the other processes mentioned
above) (1, p. 299-315] [8]. These methods for symmetric
matrices certainly do not have the disadvantages men-
tioned above for the general case, but, in fact, are com-
petitive with QR iteration.

4 EIGENVECTORS OF HESSENBERG
MATRICES

Eigenvectors may be calculated by means of inverse

iteration or, if the QR method is used for calculating the

eigenvalues, by means of a direct method using the

results of the QR iteration. After calculating the eigen

vectors of a Hessenberg matrix H, one obtains the

- eigenvalues of the similar matrix M = SHS-! by means

of back transformation: if x is an eigenvector of H,
then Sx 1s the corresponding eigenvector of M.

4.1 Inverse Iteration

Let H be a given (not necessarily Hessenberg) matrix of
the order n, A an approximate eigenvalue of H, and
x!® an n-vectr. For k = 0,1,2, ..., we calculate y'*)
by solving the linear system

(4.1.1) (H-XDyt*) = xtx)
(by means of Gaussian elimination with row inter-
), and obtain x{x*!) by normalizing y(*):




So, if 11 is well separated from the other eigenvalues

is a mmnabie appmxnmmmn to A, and «1 does not
anish, then the sequence of vectors xtk)

rges (ra pad!y) to the eagenvwor X1. In practice,

one of two iteration steps nearly always suffice. If His a

iagonalizable mat rix having multiple (or closel y

lustered) eigenvalues, and one wants to find linearly
indepe dent corresponding eigenvectors, then one,
abw ously, cannot use the same numerical approxima-
tion X twice in the inverse iteration. Wilkinson remarked
{1, p 328] that, in this case, the inverse iteration is very
o small changes in 2, so that replacmg A by
another nearby value and performing another inverse
itera one finds an approxxmatc c:genvector which
is not almost linearly dependent from the previously
Caicu Eat ed Gﬂe( 5)

f His s ';.-:»fmtrlc then one obtains a set of orthogonal
sipenvectors by calculating the component orthogonal
to the eigenvesctors already found (here one needs to
consider only those eigenvectors which belong to close
eigenvalues). This orthogonal component is calculated in
each inverse iteration step and used as starting vector
x{¥) for the next step [8]. If H 1s not syrnmctnc one can
similarly obtain a biorthogonal set of eigenvectors of H
and HY,

If H is real and A complex nonreal, then we have the

following four possible strategies [1, p. 629-630].

1 We may use complex arithmetic where necessar)
This strategy is implemented in [8].

2 We may work entirely with real arithmetic as
follows.
We write A = § + 17, x(X) = p(x} 4 iqt®)
yix) = utk! 4 iv(*) and equate real and i tmagmary
parts in (4.1.1). This gives

(4.1.3) (H-EDut® 4 qv(x) = pti,

(4.1.4) —nut® 4 (H-EDvtx) = qio,

After solving this real system of the order 2n, we
normalize u(®) 4 jv(¥) and obtain ptx+1) 4 jqlk+1),
This strategy requires about twice as much space
and time, and is therefore not acceptable.

3 From (4.1.3) and (4.1.4) we can easily derive the

@.1.5) (H-ZD? + n*Tuto

4.1.6) (H-ED? +

= (H-EDp*? — nq'x),
nz.I)fV(k) e QP“” -+ (H.._.H)q(k).

Wilkinson remarks {1, p. 630] that using these
formulas in the inverse iteration step, one does not
~ obtain a good approximation to an eigenvector.

4 One may calculate u(x) by solving (4.1.5), and v(¥}
from (4.1.3), and then normalize to produce p{x+1
and q%*). This strategy requires more space (viz.
for storing the matrix HZ?) but slightly less time than
strategy (1), and is implemented by rah in
{13} [14].

wherﬁ Q is the product of tt
rotations t ns&)frmmg the two-

obvmusiy, QT is a matri
etgenth ors of U ma

Uppﬁf wtrmngular an
obtam

Ty = L UnTyy J/(Up-Un), i < j.

kemi+d

almost hneariy dependem

T‘his process 1Is imp—ke- nented in [8] and tums out to be
ompetitive with inverse iteration as to p» ecision obtai

ed and ttme mquued for some matrices, the e

the QR ltemttcm IS, of

» 2
matrix X of eiger mtors of H SHTIDIY eq

mta H (1..& H = S*lMS), »Q is the matrix o
eigenvectors of M. Starting from S, mtm &Q can
be built up dwrmg the QR iteration by multiplying S by
the matrix Q* k) In eiaﬁh st@ Thws back transforma
tion is needed afterwar 1d memory space aved

(15] {8].

5 OSBORNE'S EQUILI BRATION
A matrix is called ,,athbn ed -
eigwpmb@em, if each row has the sa

proved that xf M . meduclble, i.e., if

where 0 is a null matrix, then there exists a nonst
diagonal matrix D, such that D“lMD is equilibrated
An eqmlxbrated matrix has the property that, in tm ~lass

f matrices which are s:mﬁarto it by a u— gonal simtlar

turns mxt t.hat for calcu]atmg ergerwalf 1es ipen
V&tOI‘S, it is Of Hmn : portance tq Wk Wﬂh a
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[19] seems 1o be very promising. This method is a * D
generalization of Jacobt’s method; by means of succes-
sive similarity transformations, the given matrix, M, is
transformed into a matrix whose Euclidean norm is
minimal. The mecthod may start with Osborne’s equili-
bration, which uses only diagopal transformations to
minimize the Euclidean norm. In subsequent steps of
Eberlein’s process, plane transformations (i.e., transfor-
mations affecting only two rows and columns of the
matrix) are performed.
In each step, the Euclidean norm decreases, and hence
also the ,,departure from normality™ (i.e., the squared
Euclidean norm minus the sum of the squared moduli of
the eigenvalues), which vanishes for normal matrices.
The process first converges to a normal matrix; sub-
sequently, plane (complex) rotations (i.e., plane unitary
transformations) are performed. The process converges
to a block diagonal matrix whose blocks are nearly
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always one-by-one or two-by-two, so that the eigen-
- values and eigenvectors are then obtained immediately.
For symmetric matrices (and essentially also for normal
matrices), Eberlein’s process reduces to Jacobi’s process,
in which only plane (complex) rotations are performed.
Advantages of Eberlein’s method are:

1 Convergence of the (matl can be
proved.

2 The accuracy of the results is accep
"bleto QR).

3 It 1s more economical in
inverse itﬁmtgﬂﬂ, and as econo
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- sociologie, tonecl, enz.
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Colorado, Kansas en North Carolina. De redactie
wordt ter zijde gestaan door adviseurs voor anthropolo-
gie, archeologie, kunst, klassicken, opvoeding, folklo
historie, i ng istiek, htmtuu -, wiskunde, uzi
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