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O. SUMMARY 

Classification methods for quantitative data have received more 

attention than those for qualitative data. Excess-e~tropy, which may 

be interpreted as a measure of complexity, enables us to formulate 

existing methods for normally distributed data in such a way as to be 

applicable also to qualitative data. 

After an introductory section 1, section 2 defines excess-entropy and 

provides some information-theoretical background. It then treats the 

qualitative case by methods analogous to principal components and 

clustering respectively. The first of these is much like the existing 

technique of Association Analysis. 

Section 3 is concerned with the multivariable normal distribution. The 

well-known method of principal components is given a simple interpretation 

in terms of entropy. Furthermore, excess-entropy is shown to be iden­

tical with the log likelihood ratio statistic applicable when testing 

for dependence between sets of random variables. 

In section 4 it is shown that in Markov chains excess-entropy provides 

a measure of clustering. In order to be able to do so, an operation 

on a Markov chain has to be defined: that of 11 fusing 11 two states. 



1 • THE ANALYSIS OF COMPLEX SYSTEMS.-

We may think of a "system" as a set of variables influencing each other. 

Complexity may arise in two ways: the presence of a large:. number of 

variables and the fact that most of these influence many others. 

There exist situations where the simultaneous treatment of all variables 

presents a computational problem that is too large by 8Z).y standard. Yet 

in such a situation it is sometimes possible to decompose-the whole 

system into a few subsystems with relatively weak interactions between 

them. At this level we have a system of manageable complexity where the 

subsystems are treated as "black boxes 11
• 

In their turn, each of these subsystems may be subjected to the same 

treatment, and so on. This process is just a particular case of the 

well-known principle: "divide and rule"; or, as we shall encounter it 

as a recurrent theme: "hierarchical decomposition of complexity". 

In this study we want to see what can be done by viewing the interaction 

between subsystems as "information transfer". The decomposition of 

complexity then corresponds to the decomposition of the total amount 

of information transfer. 

1.1. EXAMPLE: A SET OF LINEAR ALGEBRAIC EQUATIONS, 

Let 

( 1 ) ••• Ax = b 

represent a set of n linear algebraic equations inn unknowns. A is 
T T 

an n x n - matrix and x = (~ 1, ••• , ~n)' b = (8 1, ••• , Sn) are 

n-component vec_tors • 

A12) of A, where A11 is a k x k 

A22 

- matrix. 

T T the corresponding partitions in x and b, 
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Suppose that variables E;, 1 , ••. , E;,k are but "weakly" represented in the 

last n - k equations, i.e. the elements of A21 are small compared to 

those of A11 or A22 • In such a situation it may be advantageous to 

use the following iterative scheme for solving (1): 

(3) ••• Start with: x~ := b2/A22 (In this notation we denote the 

0 solution vector of: A22 x2 = b2 ); 

Fork= O, 1, 2, .•• do: 

( 4) ••• 

( 5) ••• 

The sequence of 

:= (b1-A12 x2k)/A11 ; 

k+1 
.- (b2-A21 x1 )/A22 ; 

' ... is regarded as a sequence 

of approximations to the solution of (1). 

If A21 consists of zeroes only, the solution is obtained after (3) and 

a single execution of (4). It seems reasonable to suppose that this 

scheme converges faster when the elements of A21 are smaller. In general, 

the solution is not obtained after a finite number of steps because a 

change in x2 is transmitted to x1 via A12 in step (4), and then the change 

in x1 is transmitted to x2 via A21 in (5), and so on. Viewed in this 

way, A12 and A21 represent the interactions between the subsystems A11 
and A22 • 

It is desirable to find a quantitative description of this interaction. 

In a similar situation (see next example),an "information transfer" 

may be defined between subsystems. 

In section 3,4 and 4.2. we exhibit special systems of linear equations 

where we can express the interaction between subsystems as a quantity of 

information in the usual interpretation of this concept (see 2.2). 

1.2 EXAMPLE: A MODEL OF THE DESIGN PROCESS. 

Let us consider the following abstraction of a complicated design 

problem: a designer has to construct a "form" which has to satisfy a ,, 
large number of conditions. 



For example, we might think of the design of a_ human __ settlement where 

the number of conditions may run in the hundreds, many of which are 

conflicting. Here again complexity may arise in two ways: the number 

of variables is large and there occur many interactions between them. 

In general there may not exist a form which satisfies all conditions 

to the required extent, so the designer should aim at maximizing 

goodness-of-fit with respect to all conditions simultaneously. 

The designer cannot keep in mind all of the conditions at once; suppose 

he finds an iterative design process by first concentrating on some subset 

A11 of the conditions, finding a provisional form that maximizes goodness­

of-fit locally and then proceeding with another subset A22 • Interaction 

between condition i and condition j arises in the following way: In 

adapting the form to condition i, it may be modified in such a way 

that goodness-of-fit with respect to condition j decreases. 

We see that the iterative design process sketched above is analogous 

to the iterative method of solving a system of equations. Suppose that 

conditions are partitioned into subsets A11 and A22 , then the designer 

first ignores A22 and then A11 • When there is no interaction between 

the two, he is done. In general he finds on returning to A11 , that, 

while concentrating on A22 , he has undone some of the good properties 

his provisional form had with respect to A11 and he will start a follow­

ing cycle of the iterative process. Even when there is some interaction 

between A
11 

and A22 , this process may succeed in yielding a satisfactory 

form after an acceptable number of cycles. 

Alexander [1] has studied the problem of finding subsets in the set 

of all conditions in such a way that the amount of interaction between 

is small compared to interaction within subsets. He quantified "inter­

action" by regarding it as "information transfer". To this end he con­

structed a model consisting of a set of random variables corresponding 

to conditions. He was then able to define "information transfer" 

as a difference between entropies. He reports the existence of computer 

programs for the hierarchical decomposition of the set of conditions, 

where their interactions are specified pair by pair. 
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2. ENTROPY AND OBJECT-PREDICATE -TABLES. 

2.1 THE OBJECT-PREDICATE TABLE. 

Suppose we have a certain set of "objects" and each of these may be 

described by stating whether it does or does not have any of a fixed 

(same for all objects) set of "predicates". In this way each object 

is identified with a certain subset of the predicates; when two objects 

have an identical subset there is, in this context, no way to tell them 

apart. 

This situation may be represented by an "object-predicate table": a 

rectangular array of noughts and crosses. The j-th cell of the i-th 

row of this array shows whether the i-th object does (when it contains 

a cross) or does not (when it contains a nought). possess the j-th 

predicate. 

~ predicates 

1 2 3 4 5 6 
objects 

t 1 0 0 X 0 0 0 

2 0 X 0 0 X X 

3 0 0 
AN OBJECT-PREDICATE TABLE 

X X X X 

4 X 0 0 0 X 0 

The object-predicate table is a rather general scheme for exhibiting 

relations between objects, either via (common) predicates or, directly, 

by identifying the i-th predicate with the i-th object. Nought or. cross 

then indicates whether the one object is dependent on the other. An 

example of a "system" would then be a set of objects related as specified 

by their object-predicate table. 

2.2 THE ENTROPY FUNCTIONAL 

In order to provide a conceptual framework and a terminology for ~hat 

follows, we will first review some important properties of the entropy 

functional H (Khinchin [3]). 



Suppose there are two sets of descriptions of events 

A probability is assigned to each description: 

Pr{~} = pk~ 0 , z: p = 1 , k = 1 , ... , m and 
k k 

Pr{bl} = q > o, z: q = 1 , 1 = 1 , ... , n, 
1-

1 
1 

Thus~ and b1 are sets of events having an identical description, i.e. 

in this context events belonging to the same set cannot be distinguished. 

In the sequel we will therefore denote such a set of events as "event". 

The entropy functional H associated with {p1 , ••• , pm} is defined as: 

(1) ••• H(A) = - }: pk log pk, 
k 

H may be interpreted as a measure of uncertainty with respect to the out­

come of an experiment A, which is the event~ with probability pk. The 

following two properties of H justify such an interpretation: 

H is never negative and vanishes if p [tj = 1 for some k = 1, ••• , m. 

In this case~ is certain ·to occur; the uncertainty vanishes. The 

other property is that H attains its maximum when all events are equally 

probable, which corresponds to the situation of maximum uncertainty. 

This property follows from the well-known inequality: 

We now choose 

l 11 = 1 
k k 

1 "k = /m, 

and f is a continuous and convex function of x. 

f(x) = x logx and x = p. 

, 1 1 , 1 
f( l "k x. ) = - log - < l - p logp k -K m m-k m k k 

H(A) = - l 
k 
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Let us also consider the Cartesian product set Ax B of the two sets. 

On Ax Ba two-dimensional array of probabilities is defined as: 

Pr{¾: and b1} = rk1 • The associated cond~tional probabilities are: 

Pr{bl I 8k_} = 4kl = rkl/pk· 

(the probability that b1 will occur under condition that 8k has occurred). 

The two sets are said to be independent when rkl = pk q1 . In that case 

qkl = q
1 

which means that the probability of the occurrence of b
1 

is 

independent of which~' k = 1, ••• , m, has occurred. For the entropy 

of the product scheme we have: 

H(A x B) = - l rkl log rkl" 
kl 

In the case of independence this reduces to: 

(3) ••• H(A x B) = H(A) + H(B). 

In case A and Bare dependent, this relation generalises to: 

H(A x B) = - l rkl log rkl 
kl 

= -

~(B) is regarded as the outcome of a random variable : The entropy 

of the conditional scheme {qk1, ••• , qkn} under condition that~ has 

occurred. The second term is then the mathematical expectation of H(B) in 

the scheme A, which we shall designate by HA(B): 

(4) H(A x B) = H(A) + HA(B) and similarly 

H(A x B) =~(A)+ H(B) 



HA(B) never exceeds H(B) . This is a consequence of the inequality (2) 

where this time we take A= p and f(x) = x log x. 

Summing both sides over 1 gives: 

(5) ••• HA(B) ..::_ H(B) 

From (3) and (4) we find that equality is attained in the case of in­

dependence. 

If we view the entropy functional as a measure of uncertainty this may 

be interpreted as the fact that prior knowledge of the outcome of A 

never increases the uncertainty in the outcome of B. 

The inequality (5) is an important one: In a study on the interactions 

of nucleons, S. Watanabe introduced in 1939 a measure of dependence 

between random variables based on a difference between entropies. In 

a later paper [6] this idea is elaborated. 

From (4) we find that: 

(6) ... H(A) + H(B) - H(A x B) = H(A) - HB(A) 

= H(B) - HA(B) 

= C(A,B) bij definition. 

The quantity C defined in this way is never negative according to 

(5) and it vanishes only when A and Bare independent. Watanabe [6] 
proposed to use Casa measure of dependence between A and B. In this 

report the quantity C will be called the "excess-entropy". 

2,3 ENTROPY IN OBJECT-PREDICATE TABLES 

2.3.1. Entropy and excess-entropy in partitions. 

A k-partition of a set Sis a set of k mutually disjoint subsets 

(called "cells") whose union is S. Suppose the i-th cell has n. 
1 

elements and l n. = n. We may associate with a k-partition the set 
. 1 

{n1/n, •.• , nR/n} of non-negative numbers whose sum is 1. 
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This analogy to the discrete probability scheme caused Rescigno and 

Maccacaro [5J to define the entropy of a partition as: 

( 1 ) ••• H = - I 
]. 

n.. n. 
.i l 1 1 - og - = og n n n 

1 
n l n. log n. . ]. ]. 

]. 

To every pair of partitions there corresponds a product partition 

(which is again a partition): if a partition is defined on S, so also 

it is on every subset of Sand therefore also on each of the cells 

of the other partition. Accordingly, .. there corresponds an excess­

entropy to every pair of partitions A and B: 

C(A,B) = H{A) + H{B) - H(A x B) . 

Let us consider partitions of the set A generated by subjecting every 

cell to a 2-partition. One of the subcells is denoted by putting a O, 

the other by ·. putting a 1 behind the name of the cell. Starting from 

the trivial partition {A} of A we get successively: 

( 2) ••• 

Now let the elements of A be partitions. We are going to study the 

entropy-relations between the product partitions of the partitions 

of a subset of A: Hand C will denote entropy and excess-entropy 

again, with indices to indicate to which subset of A they apply. 

We found for the excess-entropy between the two product partitions 

JIA
0 

and IIA
1 

C(0,1) = H0 + H1 - H. 

It will be found useful to extend this definition to apply to more 

than 2 partitions, for instance the 4-partition of the lowest level 

of (2): 

c(oo,01,10,11) def H
00 

+ H
01 

+ H
10 

+ H
11 

- H 
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This 4-way excess-entropy can be expressed in 2-ways entropies as follows: 

c(oo,01,10,11) =Hoo+ H01 - Ho+ H10 + H11 - H1 +Ho+ H1 - H 

= C(00,01) + C(10,11) + C(0,1) 

This can be represented in a hierarchical diagram: 

- C(0,1) First level 

Second level 

Thus the multi-way excess-entropy of a certain level may be hierarchically 

decomposed into two-way excess-entropies of all levels not below it. 

We regard this as a method in compliance with the principle of dealing 

with systems by hierarchical decomposition of complexity. The analogous 

procedure for a set of random variables has been described by Watanabe 

[5]. 

2,3.2 Data compression in an object-predicate table 

Let us now study the object-predicate table as directly as possible 

from the point of view of the information provided by the predicates 

about the objects. This may be illustrated by a guessing game: One 

person takes an object in mind and has to answer yes or no to another 

person's questions about it in the form: Does it have predicate p;? 
i 

The answers to questions concerning a subset of the predicates define 

a partition in the set of objects. Following the classical definition 

of Shannon's , a suitable definition for the information provided by 

a set of predicates is the entropy of their product partition as de­

fined in the previous section. The set of n predicates defines a par-
. . n . . . . 

tition of 2 cells and the maximum entropy of such a partition is n 

bits. When the actual entropy is less than this, we say there is 

"redundancy" in the set of predicates. 
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When we realise that there exists an object-predicate table with n 

predicates and 2n objects where every cell of the partition contains 

exactly one object and which therefore does not contain any redundancy, 

it is apparent that in tables with moderately large numbers (between, 

say, 10 and 1000) of objects and predicates, enormous amounts of re­

dundancy are usual. 

Thus we are led to the problems of "data compression" ( see the articles 

by Tou and Heydorn, Watanabe and others in [1] ) : 

1. For given k < n find a subset {p., ••. , p. } of the predicates such 
~1 1 k 

that H(p
1

, ••• , p) - H(p. , ••• , p. ) is a minimum. 
n 1 1 ik 

2. Fork= 1,2, .•• , n find the k such that the data compression achieved 

in 1. is, in some respect, optimum. 

It will be interesting to encounter, in a later section, an analogous 

problem for an n-dimensional normal probability distribution. 

2.3,3 Hierarchical decomposition of excess-entropy: 

Association Analysis 

In plant ecological studies data may be obtained in the following way. 

In the geographical area to be treated, a number of plots, called 

"quadrats", are staked off and of each of these it is noted which species 

of plants are present. Williams and Lambert [9] ( the quotations 

are from this paper) have proposed "Association Analysis" as a method 

for sorting quadrats into groups. 

Data of this origin may be presented as an object-predicate table where it 

is immaterial whether species (quadrats) are identified with the objects 

( ) 
II . 

predicates • The basic problem is to subdivide the population so that 

all associations disapear ••• " . Here "association" is to be used 

in its "statistical sense". It seems desirable to give a more precise 

interpretation of "association". 

In 2.3.1. we have defined the excess-entropy of a set of partitions. A 

predicate effects a 2-partition in the set of objects (the objects that 

do and those that do not have the predicate); a set of predicates there­

fore~corresponds to a set of partitions in the objects. 
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Likewise, an object effects a 2-partition in the set of predicates 

(those it does and those it does not have) and, by the previous sentence, 

this object corresponds to two sets of partitions in the set of objects. 

To these two sets of partitions there corresponds an excess-entropy 

and this we may call the "entropy loading" of that object. 

Now the set of all predicates together define a product partition 

in the set of objects and this has a "collective" entropy. Every 

predicate on its own defines a 2-partition and the ":i.ndividual" entropy 

of this partition. The difference between the sum of individual entropies 

and their collective entropy is the (multi-way) excess-entropy defined 

in 2.3.1. Its hierarchical decomposition may be used to analyse the 

structure of the interrelations existing in the set. 

Let us identify objects as species and predicates as quadrats. The 

purpose of the rest of this section is to show that the excess-entropy 

of a set of predicates has the properties that Williams and Lambert [9] 
expect the undefined concept of association to have. 

a) Williams and Lambert [9] argue that "positive" as well as "negative" 

associations are to be taken into account. From this we may infer 

that, roughly speaking, if two species are positively (negatively) 

associated, then the presence of the one makes occurrence of the 

other more (less) likely. Therefore association without sign is 

something that is expected to give a positive contribution in both 

cases. This is just what ex~ess-entropy does: it is never negative 

and, independently of the sign of the interaction, indicates whether 

species influence each other more or less strongly. 

b) 

c) 

Apparently, association should not only be defined between a pair 

of species, but somehow all associations present in a set of species 

should be pooled. This is the reason why we have used the extension 

from a pair to an arbitrarily large set of partitions. 

The objective of association analysis is to subdivide the set of 

quadrats so that all associations disappear. This is done by taking 

a particular species and partitioning the set of quadrats into those 

in which it did and those in which it did not occur. 
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The species is chosen so that the pooled association in the subsets is 

as small as possible. Stating it in terms of excess-entropy in the 

object predicate table, we can say that we must find the object with 

the highest entropy loading and repeat the process on each of the cells 

of predicates. 

If we therefore interpret association as excess-entropy, we find that 

association analysis is the hierarchical decomposition of the total 

excess-entropy in such a way that the largest component of excess-entropy 

is produced first. 
~------------------------------------- ···- ----, 

H(A) 

+ CA(D,D) 

equals 

A 
H(AD) + H(AD) 

H(p1 ,P2, ••• ,pn) 

+ C(A,A) 

+ + Cx(B,B) 

equals 

/ ~ 
+ H(AB) + 

+ 

H(AB) 

lowest level of 
entropy (collective 
ent,ropy) 

first level of 
entropy 

second level of 
entropy 

highest level of 
entropy (sum of in­
dividual entropies) 

Diagram showing hierarchical subdivision of excess-entro:py. 

{p1,P2 , •.. ,pn} : set of all predicates. 

A is the set of predicates possessed by object "a". 

A(B,D) is the complement of A(B,D) 

2.3.4. Clustering. 

In the first section we mentioned the possibility of a system of many 

variables consisting of a few subsets of variables with interactions 

between subsets weak relative to those within subsets. 
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In such a case it is possible to study one aspect of the whole system 

by regarding a simple system consisting of these subsets as "black 

boxes". 

It is of course necessary to describe in a more specific fashion the 

interactions between variables. To a certain extent this is possible in 

the object-predicate table. We will define the situation in which the 

table is considered to be "completely decomposed" into two subsets of 

objects and predicates and we will show that in that case the excess­

entropy between the subsets is minimal. This gives a more flexible way 

of describing a table, which is of practical importance because a table 

"almost" decomposed is more likely to occur in practice than one complete­

ly decomposed. 

0 m1 1 
Objects 

m1__ 
m 

02 m2 
m 

p1 p p p p up = p 
2 1 2 1 2 

Predicates 
Object-predicate table (without actual entries) with examples (at right) 

of partitions in the set of objects induced by subsets P1 and P2 of the 

set P of all predicates. 

If there are no crosses outside the shaded area, that is, when none 

of the predicates of P1 is possessed by any of the objects in.o2 and 

vice versa, we say that the table is completely decomposed. The par­

tition Pis the product partition of P1 and P2 • This product is of a 

peculiar kind: P1 subdivides only one cell of P2 and vice versa. 

Let us consider a related special form of product partition: that of 

hierarchical subdivision. Suppose that we have a partition A and that 

partition B acts only on one cell of A; without loss of generality we 

may suppose this one to be the first. 



A 

B 

HA= log n _1 
n 

HAxB = log n 

k 

I 
i=1 

1 { 
n 

n. log n. ; ~ 1 1 

k 

I n. log n. + 
i=2 1 1 

= log n1 

1 

I n1j 
j=1 

k 

I 
i=1 

1 1 

I n1 j=1 

log n 1j} 

n. = n 
1 

n1j log n 1j 

1 
k 1 

= log n - - { l ni log ni - (n1 log n 1 - l n 1J. log n 1J.)} 
n i=1 j=1 

. , 

We use this formula to find the excess-entropy that exists between sets 

of partitions P1 and P2 completely decomposing the table. It seems 

convenient to derive the entropies of the partitions P1 and P2 by hier­

archical subdivision of the partition {m1,m2} that they have in comm.on. 

+ = m 

1-----.--..-----;,------1 

iii I I 

1------------1-1 -~---.--... 11 .... ,-+ 

--~--------.-, .... 1-i__,.1~1 ·111 

H' 
1 

m 
H

2 
= H + _g_ H1 

m 2 

m
1 

, m 
=H+-H +_g_H, 

m 1 m 2 
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Any additional subdivision in the left half of H
1 

or in the right 

half of H
2 

leaves the excess-entropy C(P1 ,P2
) unchanged at H • 

.Any additional subdivision in the right half of H
1 

or in the left 

half of H2 makes the excess-entropy C(P1 ~P2 ) greater than H. 

Therefore the excess-entropy of an object-predicate table completely 

decomposed with respect to two mutually disjoint subsets of predicates 

P1 and P2 of m1 and m2 elements respectively is minimal and equal to 

1 H = log m - ;(m1 log m1 + m2 log m2 ). 
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3. ENTROPY AND THE NORMAL PROBABILITY DISTRIBUTION,: 

3.1 Variance and entropy, 

Let A be a positive definite symmetric matrix with propervalues 

A 
1 

> A
2 

> ••• > A 
- - - n 

Theorem (Bellman, ~], p. 117): 

If A is positive definite, 

( 1 ) ••• -Hz,Az) e : , where 

n 
IAlk= n 

i=n-k+1 
A. , the product 

J. 
of the k smallest proper values and dVk 

is the k-dimensional element of volume in~· 

Taking k = n and noting that !Al = !Al, the determinant of A, we n 
obtain the well-known equality: 

= I 
R n 

e-i(z,Az) dV, which allows us to define as the 
n 

n-dimensional normal probability density: 

1 

IAl2 (3) ••• f(x) = 1 
( 21T) 2n 

e-!(x,Ax) with x some n-dimensional vector and 

A a positive definite symmetric matrix. 

V = A- 1 is the covariance matrix of the distribution. 

The determinant of Vis called the generalized"variance";hereafter we 

will refer to it· as the "variance". The motivation of this treatment 

of the normal distribution is the fact that here,· too, we may define 

the entropy functional. The practical use of the normal distribution 

is limited by the fact that in many situations the assumption that 

the data arise from a normal distribution is difficult to justify. 

The object-predicate table is of wider applicability. In both cases 

the entropy functional may be defined and this allows us to formulate 

analogous problems • 
' 
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For the entropy of the normal distribution we find: 

H = - f 
R n 

f(x) ln f(x) d V 
n 

1 

H = - fl.&:. 
R (2'1T)n/2 

n 

-Hx,Ax) 
e {-} ln(2'1T) + ~ 

1 

n IAI 2 
lnlAI + 2 ln(2'1T) + ~ 

(2'1T)2n I 1 ( Ax) e-~(x,Ax)d V 2 x, n 
R 

n 

= ~ ln(2'1Te) + ~ lnlVI. If we express entropy in bits, we get the 

usual formula: 

H = ~ log(2'1Te) + ~ loglVI where the logarithms are to the base 2. 

Thus we see that there is a relationship between variance and entropy. 

Suppose now that Rk is 

may be decomposed into 

This implies that Ax = 

spanned by x , ... ,x k+ 1• Any vector x in R n n- n 
an x1 £- Rk and an x2 J.. Rk such that x = x 1 + 

Ax1 + Ax2. 
..L 

Because Rk and its orthogonal complement Rk are spanned by proper vec-

tors (these are orthogonal because A is symmetric) 

Ax1 e:. Rk and Ax2 .L Rk for all x, that is, Rk reduces A into a matrix 

A1 of order k and a matrix A2 of order n - k. A1 acts only within Rk, 

A2 only within Rk.l-

A consequence of this decomposition of A by~ is the decomposition of 

then-dimensional distribution f(see 3,1.1.3) into a k-dimensional 

distribution 

and a(n-k)-dimensional 

distribution 

The decompostion of the density function f: 

f(x) = f 1(x1). f 2(x2 ) results in similar decompositions for variance 

and entropy: 

IV I =' IV 1 I • IV 2 1 and H = H1 + H2 • 
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3.2 Data compression. 

In section 2.3.2 we discussed the possibility of a small subset of 

predicates saying almost as much as the whole set. In such a case 

we spoke of "data compression" • .An analogous problem may be posed for 

the normal distribution: 

Suppose we have a projection of x on an arbitrary k-dimensional subspace, 

is it possible to choose this subspace so that the variance of this 

projection is almost as much as that of x? Or, equivalently, that its 

entropy is almost as much as that of x? In that case we have a redun­

dancy of dimensions and we achieve data compression by substituting 

the projection for x itself. 

Bellman's result (3. 1.1) now becomes useful: it states that of -all k­

dimensional subspaces the one containing the largest part of total 

entropy is the one spanned by the proper vectors belonging to the k 

largest proper values of V. Whether the largest part is actually large, 

depends on the distribution of the proper values. The more nearly 

they are equal, the less data compression is possible.x1, the projection 

of x on~' is a linear combination of projections on the proper vectors 

xn, •.. , xn-k+1. These were called by Hotelling the "principal compo­

nents": They decompose R in such a way that in the corresponding fact-
n 

orization of jvj one factor is the largest and therefore the other the 

smallest. 

The fact, that the k-dimensional subspace containing the maximum part 

of the total entropy is the subspace spanned by the proper vectors 

belonging to the k largest proper values of V, was derived in a paper 

by J. Tou and R. Heydorn in [8] . They did not seem to be aware that 

their problem and solution are only a restatement of Hotelling's well­

known result on principal components. 

A more general result has been obtained by Watanabe [7] by showing 

that the Karhunen-Loeveexpansion has a similar entropy-extremizing 

property. The greater generality lies in the fact that this expansion 

may be used for samples as well as for distributions. 
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3,3 Excess-entropy and likelihood ratio. 

The "likelihood-ratio", an often used test statistic, may be interpreted 

as an excess-entropy. Kullback ( [4 J , pp. 4-5) gave an information­

theoretical interpretation of the likelihood-ratio. In this section we 

will show that Kullback's I(0:1) is the same as an excess-entropy as 

we have i~troduced it before. 

Let H0(H1) be the hypothesis that the random variable Xis from the 

population with probability density function f 0(f1). From the definition 

of conditional probability: 

Pr{Hilx} = 

Pr{H0 jx} 

Pr{H
1

!x} 

pr{H. /\ x} = , l. 

Pr{x} 

P;t:{x!Hi}.Pr{Hi} 

Pr{x I\ H0} · + Pr{x /\ H
1

} 

f.(x). Pr{H.} 
l. . l. 

r
0

(x).Pr{H
0

} + f 1(x) P~{H1} 

f
0

(x) .Pr{H
0

} 

= f
1

(x).P!'.{H
1

} 

Pr{H0 !x} 
= log Pr{H

1
1x} -

Pr{H
0

} 

log Pr{H1} 

for i = O, 1. 

The last formula says that the log likelihood-ratio is the difference 

of log-ratios of "a posteriori" and "a priori" probabilities. This 

is interpreted as the information present in the observation x in 

favour of the null hypothesis H0 • When this q'4-antity is averaged over 

the distribution with density f 0 we have 

· f
0 

(x) 
I(0:1) = { f 0(x).log f

1
(x) • dx • 

Let us now consider the case where we have a set x of random variables 

partitioned as x = {x
0

,x
1
}. f is supposed to be the probability density 

function of x; g and hare the marginal probabQlity density functions 

of x0 and x1 respectively. 
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Consider the null hypothesis H0 that x0 and x1 are dependent and the 

alternative hypothesis 

H1 : f(x) = g(x0 ).h(x1) for all x. In this case: 

I(0:1) = J f(x). log f(x) dx 
x g(x0)h(x1) 

= J f(x) log f(x)dx - J f(x) log g(x0 )dx - J f(x) log h(x1)dx 
X X X 

= - H( f) - J [ J f(x)dxJ log g(x0 )dx0 
XO X1 

= H(g) + H(h) - H(f) 

I(0:1) = C(x0 , x1). 

We find that the excess-entropy is equal to the average (under the 

null hypothesis of dependence) information present in the observations 

in favour of the null hypothesis. We may regard this as a measure of 

dependence. This measure is used as a test statistic for the log 

likelihood ratio test for independence. 

3. Clustering. 

Let f(X) be the normal density function of an n-dimensional random 

vector X = (x1 , ••• , xn). Let X be partitioned as (X1,x2 ) with 

x1 = (x1, ••• ,~)and x2 = (~+1, ••• , xn) and let the corresponding 

partition of V be: 

r, v
12

) V = 

v21 v22 

For the excess-entropy between x1 and x2 we find 

C(X1,x2) = H(x,) +,H(X2) - H(X). 

=~log lv11I • lv22 I ,, 
!vi 
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This quantity is defined for any nonsingular matrix V and any,partition 

in it. When Vis reduced into v11 and v22 (when there are only zero 

elements in v21 ), it is zero. It may therefore be used to indicate 

to what extent Vis almost reduced as is in fact done when using the 

likelihood ratio test for independence between x1 and x2 • In 1.1 we 

saw that the fact that the.blocks A11 and A22 do not reduce the matrix 

manifests itself as the transfer of the error in one partial approximation 

to the other and vice versa. Especially in view of 1.2, we tentatively 

described this phenomenon as "information transfer". In the special 

case where the matrix is symmetric and positive definite we have shown 

that this description is compatible with the mathematical definition 

of information. 

4. ENTROPY IN MARKOV CHAINS. 

Let us consider a Markov chain M with a finite number n of,states s 

and a discrete time parameter t; st= j means that Mis in state 

j at time t. For every value t of the time parameter there is a proba~ 

bility distribution over the states: 

Pr{s = J
0

} = .. t 
t 

a .• 
J n 

M must be in some state: f lj=1 
t a.= 1 for all t. 
J 

We will also use the matrix P of transition probabilities whose elements 

are: 

Pji = Pr{st = j I st_ 1 = i}. These we will suppose to be independent 
T ( t t of time. P connects successive distribution vectors At = a 1, •.• , an)_ 

in the following way: 

t n 
a. = I . p .. 

J i=1 Ji 
( 1 ) ••• 

t-1 
a. 

1 
for j = 1, •.. ,nor At= PAt_ 1. 

Columns of P add up to unity (if Mis in any state i at.time t-1, it is 

certain to be in some. state at time t), so we may define the conditional 
entropy 
H. = - ln p .. log p .. under condition that Mis in state i. 

1 j=1 J1 J1 
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If we have any probability distribution AT= (a
1

, ••• , an) over 

the states of M we may consider its elements as weights to produce a 

weighted average of the conditional entropies H.: 
1 

n 
(2) ••• H = l 

i=1 
a.H . . 

1 1 

Many interesting Markov chains have the property that lim At exists for 

every probability distribution and is independent of t-+oo it. The 

entropy ( 2) obtained by taking A = lim At is , in in format ion theory, 

defined to be the entropy of the Ma~k;v chain (see, for instance, 

Khinchin [3] ) . 

4.1 FUSING TWO STATES. 

Suppose it can no longer be decided whether st= j or whether st= k, 

but only whether st= j or st= k. Then we say that states j and k 

are fused, say into j'. We see at once that: 

( 3) and 

(4) pj'i = pji,+ pki 

p .. , is obtained from (1) as follows: 
1J 

a.= 
1 

l p. a + ·p .. a. + p.ka. 
.1. • k ·im m 1J J 1 .K m,-J, 

If we put 

(5) .•• p .. ' = 
1J 

p .. a. + p.kak 
1,] .] 1 

for i ~ j, 1 ~ k. 

, we get 

a. = r p. a + p .. I a . ' , as it should be • 
1 .1. • , irn m 1J J 

mrJ 

Similarly for the case i = j or i = k: 

a.= l p. a + p .. a. + pJ.ka. 
J m~j,k Jm m JJ J .K 

+ 
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If we put 

p., ., = P·, .a.+ p.,ka. 
J J J J J J J the last two terms may be replaced 

a.j + ~ 

by p . , . 1 a. 1 , as they should be. 
J J J 

To summarize, the effect of fusing two states, j and k, is to replace 

a. by a.+ ak, the j-th row of P by the sum of the j-th and k-th rows 
J J 

and the j-th column of P by the weighted sum of the j-th and k-th 

columns with weights aj/(aj+8}._) and 8}._i(aj+~) respectively. Finally, 

~ ,the k-th row of P and the k-th column of Pare deleted. 

4.2 EXCESS-ENTROPY AS A MEASURE OF CLUSTERING. 

Fusion of two states may occur in any chain having not less than that 

number of states. The result is a chain again, where two states, if 

available,may be fused again. In short, as many states as are present 

may be fused. 

Consider the sets of states 

X = { 1 ,2, ••• , j} and Y = {j+1, ..• , n}. Besides the original chain 

M with states {X lJ Y} we also consider the chain M with states {X~y} 
X 

and the chains M with states {x,Y} where y(x) is the state resulting 
y 

from fusion of all states of Y(X) • 

X 

pj 1 P .. Pj ,j+1 Pjn M's matrix of 
JJ transition probabilities 

P. P. . P. . ·P 
J+1, 1 J+1,J J+1 ,J+1 j+1 ,n 

y 

pn1 p . p . 1 p 
nJ n,J+ nn 
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P11 p1j p1y 

p .. M's matrix of transition 
X pj 1 JJ pjy 

probabilities (states of Y 
py1 

M's matrix of trans­
y 

iti6n probabilities 

p. 
YJ 

(states of X fused into x). 

p 
fused into y) yy 

p j+1 ;-:x: Pj+1 ,j+1 •. p j+1 ,n . . . 
pnx p . 1 n,J+ 

p 
nn 

Applying formulae (3)-(6) for fusing states of X and also for states 

of Y we find: 

a = l a. ; a = l a. 
X i£X 1 y iey J. 

a. a. 
p .. = l ....sl... i G.. X and Pix= l ....sl.. p .. a;y pij , iy . j E..X ax 1J J ~y 

Let us now introduce the quantities: 

T = - l a. l pk. log pk., T = - l xx i<==X 1 k'==X i i xy i e:.. X 

T = - l a. l pk. log pk., T = - I yx i e Y 1 k e-X 1 i yy i~ y 

According to (2) we then have for the entropy of M: 

H=T +T +T +T • xx xy yx yy 

, i 6 Y. 

a. l pk. log pki' 1 k e.. y i 

a. l pk. log pki. 1 k e.Y 1 

We will now obtain inequalities for the "cross terms" T 
a. xy 

and T • yx 

T 
xy l a l i Pk1· log Pk1· 

k eY xi e,.x ax 

Application of 2.2.2 to the inner sum, where this time A. 
1 

f(x) = x log x, yields: 

(7) ••• T < -
xy - I 

ke. y 
a p log p and similarly 

X XX XX 

T < -yx -

and 
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"H(X)" and "H(Y)" will be used to denote the entropies M and M 
X y 

respectively. According to (2) we have: 

H(X) = T - l a p log p -
xx k~~X y ky ky 

l a. p. log p. - a p log p 
i €- X J. yi yi y yy yy 

Because of (7) it follows that H(X) > T + T 
- xx yx 

Similarly we find that H(Y) > T + T , whence 
- yy xy 

the main result: 

(8) ... H .::_H(X) + H(Y) 

Again, as in the case of probability schemes and object-predicate 

tables, we may regard the concomitant excess-entropy: 

(9) ... C(X,Y) = H(X) + H(Y) - H .::_ 0 

as a measure of dependence, this time between states of X and states 

of Y. 

A Markov chain may have a "clustering" structure in the sense that if 

it is in a state of X(Y) at time t, it has a very small probability of 

being in Y(X) at time t + 1. It is clear that this is the more so 

asp and p are closer to 1. The excess-entropy defined in (9) is xx yy 
one possible measure of such clustering. When we consider all Markov 

chains with a partition {X,Y} of the set of n states, where p < 1 
xx 

and p < 1, then the equality (9) is sharp, that is, 0 is the greatest yy 
lower bound of C(X,Y). Thus we see that C(X,Y) may be used as a measure 

of clustering, smaller values corresponding to stronger clustering. 

If we are given the probability matrix P of some Markov chain, the 

stationary probability distribution A may be obtained by solving the 

system of linear equations 

(P - I)A = O. 

Suppose that we have a clustering structure in the above sense, namely 

that p and p are near unity. Then the system may profitably be xx yy 
solved by the iterative method mentioned in 1.1. Again, as in the case 

of a positive definite matrix, we see that the cause of continuation 

of iteration, which we tentatively called "information transfer", 

may be explained in terms of entropy which is fundamental to the 

mathematical definition of information. 
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