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0. SUMMARY

Classification methods for quantitative data have received more
attention than those for qualitative data. Excess-entropy, which may
be interpreted as a measure of complexity, enables us to formulate
existing methods for normally distributed data in such a way as to be

applicable also to qualitative data.

After an introductory section 1, section 2 defines excess=entropy and
provides some information-theoretical background. It then treats the
qualitative case by methods analogous to principal components and
clustering respectively. The first of these is much like the existing

technique of Association Analysis.

Section 3 is concerned with the multivariable normal distribution. The
well-known method of principal components is given a simple interpretation
in terms of entropy. Furthermore, excess—entropy is shown to be iden=-
tical with the log likelihood ratio statistic applicable when testing

for dependence between sets of random variables.

In section 4 it is shown that in Markov chains excess—entropy provides
a measure of clustering. In order to be able to do so, an operation

on a Markov chain has to be defined: that of "fusing" two states.
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1. THE ANALYSIS OF COMPLEX SYSTEMS.

We may think of a "system" as a set of varisbles influencing each other.
Complexity may arise in two weys: the presence of a large . number of

variables and the fact that most of these influence many others.

There exist situations where the simultaneous treatment of all variables
presents a computational problem that is tdo large by any-standard.'Yét
in such a situation it is sometimes possible to decompose .the whole
system into a few subsystems with relatively weak interactions between
them. At this level we have g system of maﬁageable cbmplexity where the
subsystems are treated as "black boxes".

In their turn, each of these subsystems may be subjected to the same
treatment, and so on. This process is just a particular case of the
well~known principle: "divide and rule"; or, as we shall encounter it

as & recurrent theme: "hierarchical decomposition of complexity".

In this study we want to see what can be done by viewing the interaction
between subsystems as "information transfer". The decomposition of
complexity then corresponds to the decomposition of the total amount

of information transfer.

1.1. EXAMPLE: A SET OF LINEAR ALGEBRAIC EQUATIONS.

Let

(1)... Ax=1b
represent & set of n linear algebraic equations in n unknowns. A is
ann xn -~ matrix and 2 = (£1, ey E,n), bl = (81, ches Bn) are
n—-component vectors.

A11 A

Consider a paftition( 1e)lof A, where A11 is a k x k = matrix.
Ay By |
With (x?, xg), (b?, bg) as the corresponding partitions in X0 and bT,

we can write (1) as:

e (M1 1))
_ A A X,

21 02" % 2

&
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Suppose that variables Egs vons £ are but "weakly" represented in the
last n - k equations, i.e. the elements of A21 are small compared to
those of A,, or A22. In such a situation it may be advantageous to

11
use the following iterative scheme for solving (1):
(3)... Start with: xg = b2/A22 (In this notation we denote the

. 0
solution vector of: A22 x2 = b2),

For k=0, 1, 2, ... do:

k+1 _ k .
(k)... X, 1= (’b1 Ay X, )/A11 3
k+1 _ k+1 ]
1 2
- X X
The sequence of : 1 » 1 » +++ 18 regarded as a sequence
1 2
X, X

2 2
of approximations to the solution of (1).

If A,, consists of zeroes only, the solution is obtained after (3) and

a single execution of (4). It seems reasonable to suppose that this

scheme converges faster when the elements of A_.. are smaller. In general,

21
the solution is not obtained after a finite number of steps because a

change in x, is transmitted to x, via A,, in step (4), and then the change

2 1 12
in x, is transmitted to X, via A, in (5), and so on. Viewed in this
way, A12 and A21 represent the interactions between the subsystems A11
and A22.

It is desirable to find a quantitative description of this interaction.
In a similar situation (see next example). an "information transfer"

may be defined between subsystems.

In section 3.4 and L4.2. we exhibit special systems of linear equations
where we can express the interaction between subsystems as a quantity of

information in the usual interpretation of this concept (see 2.2).

1.2 EXAMPLE: A MODEL OF THE DESIGN PROCESS.

Let us consider the following abstraction of a complicated design
problem: a designer has to construct a "form" which has to satisfy a

large number of conditions.
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For example, we might think of the design of a human Settlement where

the number of conditions may run in the hundreds, many of which are
conflicting. Here again complexity may arise in tworways: the numbef

of varisbles is large and there occur many interactions between them.

In general there may not exist a form which satisfies all conditions

to the required extent, so the designer should aim at maximizing
goodness-of-fit with respect to all conditions simultaneously.

The designer cannot keep in mind all of the conditions at once; suppose
he finds an iterative design process by first concentrating on some subset
A,. of the conditions, finding a provisional form that maximizes goodness-

11

of-fit locally and then proceeding with another subset A22. Interaction

between condition i and condition J arises in the following way: In
adapting the form to condition i, it may be modified in such a way
that goodness—of~fit with respect to condition j decreases.

We see that the iterative design process sketched gbove is analogous
to the iterative method of solving a system of equations. Suppose that

conditions are partitioned into subsets A., and A 03 then the designer

11 2
. When there is no interaction between

11° that,

while concentrating on A22, he has undone some of the good properties

his provisional form had with respect to A11 and he will start a follow-

ing cycle of the iterative process. Even when there is some interaction

between A11 and A22,

form after an acceptable number of cycles.

Alexander [I] has studied the problem of finding subsets in the set

first 1gnores A22 and then A11

the two, he is done. In genersal he finds on returning to A

this process may succeed in yielding a satisfactory

of all conditions in such a weay that the amount of interaction between
is small compared to interaction within subsets. He quantified "inter-
action" by regarding it as "information transfer". To this end he con-
structed a model consisting of a set of random variasbles corresponding
to conditions. He was then able to define "information transfer"

as a difference between entropies. He reports the existence of computer
programs for the hierarchicsl decomposition of the set of conditions,

where their interactions are specified pair by pair.
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2. ENTROPY AND OBJECT-PREDICATE TABLES.

2.1 THE OBJECT-PREDICATE TABLE.

Suppose we have a certain set of "objects" and each of these may be
described by stating whether it does or does not have any of a fixed
(same for all objects) set of "predicates". In this way each object

is identified with a certain subset of the predicates; when two objects
have an identical subset there is, in this context, no way to tell them
apart. ,

This situation may be represented by an "object-predicate table": a
rectangular array of noughts and crosses. The j-th cell of the i-th

row of this array shows whether the i-th object does (when it contains

a cross) or does not (when it contains a nought). possess the j—th

predicate.
j ——> predicates
i 1 2 3 L4 5 6
objects
1 0 0 p 4 0 0 0
2 0 x O 0 X X
AN OBJECT=-PREDICATE TABLE
310 x x x x O
L |x 0o 0 0 x O

The object-predicate table is a rather general scheme for exhibiting
relations between objects, either via (common) predicates or, directly,
by identifying the i-th predicate with the i-th object. Nought or cross
then indicates whether the one object is dependent on the other. An
example of a "system" would then be a set of objects related as specified

by their object—predicate table.

2.2 THE ENTROPY FUNCTIONAL

In order to provide a conceptual framework and a terminology for what
follows, we will first review some important properties of the entropy
functional H (Khinchin [3]).



_7_
Suppose there are two sets of descriptions of events

A= {a1, ceey am} and B = {b,, »s0, bn}.

1

A probability is assigned to each description:

p, =1, k=1, ..., m and

Pr{afk}

g
=3
—

fl

0

A\
(@]

ql =1, 1=1, ..., n.

Thus a,  and bl are sets of events having an identical description, i.e.
in this context events belonging to the same set cannot be distinguished.
In the sequel we will therefore denote such a set of events as "event".
The entropy functional H associated with {p1, cees pm} is defined as:

(1) ... H(a) = -12: P, log o -

H may be interpreted as a measure of uncertainty with respect to the out—-
come of an experiment A, which is the event 8, with probability Py ¢ The
following two properties of H justify such an interpretation:

H is never negative and vanishes if p[i] = 1 for some k = 1, ..., m.

In this case 8, is certain to occur; the uncertainty vanishes. The

other property is that H attains its maximum when all events are equally
probable, which corresponds to the situation of maximum uncertainty.

This property follows from the well—known inequality:

(2) ... f(yzg rED <Ay £l
where A, > 0, ) M = Vand fisa continuous and convex function of x.
k

We now choose A, = 1/m, f(x) = x logx and x = p.

-1 1 1 ;
f(g Akxk)—mlogmilz{ - b logp, =3

H(A) = - ) P, logp < log m.
k
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Let us also consider the Cartesian product set A x B of the two sets.
On A x B a two~dimensional array of probabilities is defined as:

Pr{ak and bl} =Ty The associated conditional probabilities are:

P by | &) =gy = Tk1/p "

(the probability that b, will occur under condition that & has occurred).

1

The two sets are said to be independent when r In that case

k1~ Px %
Gy T Y which means that the probability of the occurrence of bl is
independent of which ak, k=1, ..., m, has occurred. For the entropy
of the product scheme we have: '

H(A x B) = - k§ ., log T, .

In the case of independence this reduces to:

H(A x B) = = } P ql(log p, + log ql).
k1l
==Y q ) p logp ~-)p ) q logag
L% LB ! 1
(3) ... H(A x B) = H(A) + H(B).

In case A and B are dependent, this relation generalises to:

H(A x B)

-] 7, logr,,=-) p g, log p a
L ) k1T L P % k %1

==Y p g, logp =) P g, log q
L P %o kL Px % k1

H(A) + ) 1 Hk(B)
k
Hk(B) is regarded as the outcome of a random variable : The entropy

of the conditional scheme {gk1, } under condition that & has

'Il,q
kn
occurred. The second term is then the mathematical expectation of H(B) in

the scheme A, which we shall designate by HA(B):

(4) ... H(A x B)

H(A) + HA(B) and similarly

H(A x B)

HB(A) + H(B) .
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HA(B) never exceeds H(B) . This is a consequence of the inequality (2)

where this time we take A = p and f(x) = x log x.

= I p qq log aq < =(fp qq) loal(] n qy).
k k k

Summing both sides over 1 gives:

(5) ... Hy(B) < H(B) .

From (3) and (L4) we find that equality is attained in the case of in~
dependence.,

If we view the entropy functional as & measure of unceftainty this may
be interpreted as the fact that prior knowledge of the outcome of A

never increases the uncertainty in the outcome of B.

The inequality (5) is an important one: In a study on the interactions
of nucleons, S. Watanabe introduced in 1939 a measure of dependence
between random varigbles based on a difference between entropies. In
a later paper [ﬁ] this idea is elaborated.

From (4) we find that:

(6) ... H(A) + H(B) - H(A x B) = H(A) - HB(A)

H(B) - HA(B)

C(A,B) bij definition.

The quantity C defined in this way is never negative according to
(5) and it vanishes only when A and B are independent. Watanabe [5]
proposed to use C as a measure of dependence between A and B. In this

report the gquantity C will be called the "excess—entropy".

2.3 ENTROPY IN OBJECT-PREDICATE TABLES

2.3.1. Entropy and excess—entropy in partitions.

A k-partition of a set 8 is a set of k mutually disjoint subsets
(called "cells") whose union is S. Suppose the i-th cell has n,
elements and ) n, = n. We may associate with a k-partition the set

1
{n1/n, cees nfi/n} of non-negative numbers whose sum is 1.
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This analogy to the discrete probability scheme caused Rescigno and
Maccacaro [5] to define the entropy of a partition as:

n. n.
A i_ _1
(1) ... H= g == log ~==logn - - ; n, log n,

To every pair of partitions there corresponds a product partition
(which is again a partition): if a partition is defined on S, so also
it is on every subset of S and therefore also on each of the cells
of the other partition. Accordingly,. there corresponds an excess—

entropy to every pair of partitions A and B:
c(A,B) = H(A) + H(B) - H(A x B) .

Let us consider partitions of the set A generated by subjecting every
cell to a 2-partition. One of the subcells is denoted by putting a O,
the other by " putting a 1 behind the name of the cell. Starting from

the trivial partition {A} of A we get successively:

A/ \A
A/ O\A A/ 1\A

(2) ...

"

Now let the elements of A be partitions. We are going to study the
entropy-relations between the product partitions of the partitioﬂs
of a subset of A: H and C will denote entropy and excess—entropy
again, with indices to indicate to which subset of A they apply.
We found for the excess—entropy between the two product partitions

HAO and IIA1

¢(0,1) = HO + H1 - H.

It will be found useful to extend this definition to apply to more
than 2 partitions, for instance the b-partition of the lowest level
of (2):

def
¢(00,01,10,11) — Bo* 8y +H +H, -H
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This L-way excess—entropy can be expressed in 2-ways entropies as follows:

Hyg * Hyq = Hy + Hyg + Hyy = Hy o+ Hy + Hy = H

¢(00,01) + C(10,11) + Cc(0,1)

¢(00,01,10,11)

This can be represented in & hierarchical diagram:

/H\
= HO + /H1 - C(0,1) First level
// \
= H _+H_ _-c(00,01) =H1O+H11-C(10,11) Second level

00 701

Thus the multi-way excess—entropy of a certain level may be hierarchically
decomposed into two-way excess—entropies of all levels not below it.

We regard this as a method in compliance with the principle of dealing
with systems by hierarchical decomposition of complexity. The analogous

procedure for a set of random variables has been described by Watangbe

[5].

2.3.2 Data compression in an object—predicate table

Let us now study the object-predicate table as directly as possible
from the point of view of the information provided by the predicates
about the objects. This may be illustrated by a guessing game: One
person tekes an object in mind and has to answer yes or no to another
‘person's questions about it in the form: Does it have predicate pi?
The answers to questions concerning a subset of the predicates define
a partition in the set of objects. Following the classical definition
of Shannon's , a suitable definition for the information provided by
a set of predicates is the entropy of their product partition as de-
fined in the previous section. The set of n predicates defines a par-
tition of 2" cells and the meximum entropy of such a partition is n
bits. When the actual entropy is less than this, we say there is

"redundancy" in the set of predicates.
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When we realise that there exists an object-predicate table with n
predicates and ot objects where every cell of the partition contains
exactly one object and which therefore does not contain any redundancy,
it is apparent that in tables with moderately large numbers (between,
say, 10 and 1000) of objects and predicates, enormous amounts of re-
dundancy are usual.

Thus we are led to the problems of "data compression" (see the articles
by Tou and Heydorn, Watanabe and others in [f]):

1. For given k < n find a subset {Pi’ cevs By } of the predicates such
1 k
that H(p1, cees pn) - H(pi1""’ Pik) is a minimum.

2, Por k = 1,2, ..., n find the k such that the data compression achieved

in 1. is, in some respect, optimum.

It will be interesting to encounter, in a later section, an analogous

problem for an n—dimensional normal probability distribution.

2.3.3 Hierarchical decomposition of excess—entropy:

Association Analysis

In plant ecological studies data may be obtained in the following way.

In the geographical area to be treated, a number of plots, called
"gquadrats", are staked off and of each of these it is noted which species
of plants are present. Williams and Lambert Bﬂ (the quotations

are from this paper) have proposed "Association Analysis" as a method

for sorting quadrats into groups.

Data of this origin may be presented as an object-predicate table where it
is immaterial whether species (quadrats) are identified with the objects.
(predicates)."The basic problem is to subdivide the population so that
all associations disapear ..." . Here "association" is to be used

in its "statistical sense". It seems desirable to give a more precise
interpretation of "association'.

In 2.3.1. we have defined the excess—entropy of a set of partitions. A
predicate effects a 2-partition in the set of objects (the objects that
do and those that do not have the predicate); a set of predicates there-

fore, corresponds to a set of partitions in the objects.
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Likewise, an object effects a 2-partition in the set of predicates

(those it does and those it does not have) and, by the previous sentence,
this object corresponds to two sets of partitions in the set of objects.
To these two sets of partitions there cofresponds an excess—entropy

and this we may call the "entropy loading" of that object.

Now the set of all predicates together define a product partition

in the set of objects and this has a "collective" entropy. Every
predicate on its own defines a 2-partition and the "individual" entropy
of this partition. The difference between the sum of individual entropies
and their collective entropy is the {(multi-way) excess—entropy defined
in 2.3.1. Its hierarchical decomposition may be used to analyse the
structure of the interrelations existing in the set.

Let us identify objects as species and predicates as guadrats. The
purpose of the rest of this section is to show that the excess—entropy
of a set of predicates has the properties that Williams and Lembert Ié]

expect the undefined concept of association to have.

a) Williams and Lambert [9] argue that "positive" as well as "negative"
associations are to be taken into account. From this we may infer
that, roughly speaking, if two species are positively (negatively)
associated, then the presence of the one makes occurrence of the
other more (less) likely. Therefore association without sign is
something that is expected to give a positive contribution in both
cases. This is just what excess—entropy does: it is never negative
and, independently of the sign of the interaction, indicates whether

species influence each other more or less strongly.

b) Apparently, association should not only be defined between a pair
of species, but somehow all associations present in a set of species
should be pooled. This is the reason why we have used the extension

from a pair to an arbitrarily large set of partitions.

c) The objective of association analysis is to subdivide the set of
quadrats so that all associations disappear. This is done by taking
a particular species and partitioning the set of quadrats into those

in which it did and those in which it did not occur.
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The species is chosen so that the pooled association in the subsets is
as small as possible. Stating it in terms of excess—entropy in the
object predicate table, we can say that we must find the object with
the highest entropy loading and repeat the process on each of the cells

of predicates.

If we therefore interpret association as excess—entropy, we find that
association analysis is the hierarchical decomposition of the total

excess—entropy in such a way that the largest component of excess—entropy

is produced first.

H(p1,p2,...,pn) lowest level of
< entropy (collective
+ C(A,A) entropy)
/a‘ls\
H(A) H(A)
+ €, (D,D) * + Cx(B,B) first level of
equals equals entropy
H(AD) + H(AD) + H(AB) + H(AB) second level of
entropy
H(p,)+H(p,) ... + ... H(p__,)+H(p ) highest level of
1 2 n-1 n . .
entropy (sum of in-
dividual entropies)
Diagram showing hierarchical subdivision of excess—entropy.
{p1,p2,...,pn} : set of all predicates.,
A is the set of predicates possessed by object "a".
A(B,D) is the complement of A(B,D)

2.3.4, Clustering .

In the first section we mentioned the possibility of a system of many
variables consisting of a few subsets of variables with interactions

between subsets weak relative to those within subsets.

&
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In such a case it is possible to study one aspect of the whole system
by regarding a simple system consisting of these subsets as "blaék
boxes".

It is of course necessary to describe in a more specific fashion the
interactions between varisbles. To a certain extent this is possible in
the object—-predicate table. We will define the situation in which the
table is considered to be "completely decomposed" into two subsets of
objects and predicates and we will show that in that case the excess-
entropy between the subsets is minimal. This gives a more flexible way
of describing a table, which is of practical importance because a table
"almost" decomposed is more likely to occur in practice than one complete-

ly decomposed.

¥y T2 P, B, RUP =P

Predicates
Object-predicate table (without actual entries) with examples (at right)

of partitions in the set of objects induced by subsets P1 and P2 of the

set P of all predicates.
If there are no crosses outside the shaded area, that is, when none

of the predicates of P, is possessed by any of the objects in,o,2 and

1
vice versa, we say that the table is completely decomposed. The par=-

tition P is the product partition of P, and P2. This product is of a

1

peculiar kind: P, subdivides only one cell of P2 and vice versa.

1
Let us consider a related special form of product partition: that of
hierarchical subdivision. Suppose that we have a partition A and that
partition B acts only on one cell of A; without loss of generality we

may suppose this one to be the first.



B
HA = ;'
1 k 1
Hy g =logn - E-{.Z n, log n; + .z nys log n1j}
1=2 ’ J=1
. K | 1
= logn - E'{izj n, log n; - (n1 log n, - jZ1 nys log n1j)}

By = 0y * T B

We use this formula to find the excess—entropy that exists between sets

of partitions P, and P2 completely decomposing the table. It seems

1 ;
convenient to derive the entropies of the partitions P1 and P2 by hier-

archical subdivision of the partition {m1,m2} that they have in common.

}
I i 1 H=logm-~- %(m1 log m, + m, log m2)

I 1 | Bl [i H

2
f : f T B oA dl Hy = H + g?.Hé
F—r ! T 71 1y H1x2=H+g-1—H1+£—gHé
Hy + By = Hyp = C(ByuFy) = H.
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Any additional subdivision in the left half of H, or in the right

1

helf of H, leaves the excess-entropy C(P1;P2) unchanged at H.

Any additional subdivision in the right half of H1 or in the left
half of H, makes the excess-entropy C(P1LP2) greater than H.

Therefore the excess—entropy of an object—predicate table completely
decomposed with respect to two mutually disjoint subsets of predigates

P1 and P2 of m, and m, elements respectively is minimal and equal to

= 1
H=1logmn m(m1 log m, + m, log m2).
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3. ENTROPY AND THE NORMAL PROBABILITY DISTRIBUTION.

3.1 Variance and entropy.

Let A be a positive definite symmetric matrix with propervalues

Ay 2y

Theorem (Bellmsn, [2], p. 117):

z_.;.;z_kn and corresponding propervectors x1,x2,...;xn.

If A is positive definite,

(2n)k/2 -1(z,Az) |
(1) ... iFT:T:T' =  max e &M% 4 Vk s Where
A R
k n Rk
n
A= 1 A., the product of the k smellest proper values and 4V
k i=p-k+1 = k

is tﬁe k-dimensional element of volume in Rk.

Taking k = n and noting that |A|n = |A|, the determinant of A, we
obtain the well=known equality:

(2n) " _ J o~3(z,h2)

an, which allows us to define as the
|A]

R
n
n-dimensional normal probability density:

;
2 -l
(3) ... £(x) = léi—jn e 2 (x,Ax) with x some n=dimensional vector and
(2m)®

A g positive definite symmetric matrix.

V = A_1 is the covariance matrix of the distribution.

The determinant of V is called the generalized'"variance'jhereafter we
will refer to it as the "variance". The motivation of this treatment
of the normal distribution is the fact that here, too, we may define
the entropy functional. The prattical use of the normal distribution
is limited by the fact that in many situations the assumption that
the data arise from a normal distribution is difficult to justify.
The object-predicate table is of wider applicability. In both cases
the entropy functional may be defined and this allows us to formulate

analogous problems .
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For the entropy of the normal distribution we find:

H=- [ f£(x)1n £f(x) a v,

n .
1
= - JAE _%(X’Ax), . . ‘

H é (zﬂ)n/E e {~ %-ln(Ew) + 3 In|Al- 3(x,Ax)}d Vn

n

; .
- z | 5
= =} 1n|a| + B 1n(om) + A J TN Lo
2 (2r)2" n
R

g‘ln(Qne) + 3 1n|V|. If we express entropy in bits, we get the

usual formula:

H= g-log(2we)v + 3 loglV] where thevlogarithms are to the base 2.

Thus we see that there is a relationship between variance and entropy.
Suppose now that R

1s spanned by xn,...,xn . Any vector x in Rn

k -k+1
may be decomposed into an x1é£ Rk and an X, J.Rk such that x = X, + X5
This implies that Ax = Ax, + Axg.
Because Rk and its orthogonal complement-R;" are spanned by proper vec-

tors (these are orthogonal because A is symmetric)

Ax1 1> Rk and Ax2 A Rk for all x, that is, Rk reduces A into a matrix
A, of order k and a matrix A2 of order n - k. A
A2 only within RRL
A consequence of this decomposition of A Dby Rk is the decomposition of

1 acts only within Rk’

the n-dimensional distribution f(see 3.1.1.3) into a k—dimensional

distribution
;
3

A, |

-3(x,,A.xq) and a(n-k)-dimensional
.e 171
)k/2

fo(x,) =
1V%9 (2n

distribution
.
3
18,

-%(x WA x, )
(2n)(n—k)/2 eree

f2(x2) = e
The decompostion of the density function f:

£(x) = f1(x1). f2(x2) results in similar decompositions for variance
and entropy:

V| ="|v,].|v,] end E=H +H,.
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3.2 Data compression.

In section 2.3.2 we discussed the possibility of a small subset of
predicates saying almost as much as the whole set. In such a case

we spoke of "data compression". An analogous problem may be posed for
the normal distribution:

Suppose we have a projection of x on an arbitrary k-dimensional subspace,
is it possible to choose this subspace so that the variance of this
projection is almost as much as that of x? Or, equivalently, that its
entropy is almost as much as that of x? In that case we have a redun-
dancy of dimensions and we achieve data compression by substituting

the projection for x itself.

Bellman's result (3.1.1) now becomes useful: it states that of all k-
dimensional subspaces the one containing the largest part of total
entropy is the one spanned by the proper vectors belonging to the k
largest proper values of V., Whether the largest part is actually large,
depends on the distribution of the proper values. The more nearly

they are equal, the less datas compression is possible.x1, the projection
of x on Rk’ is a linear combination of projections on the proper vectors
Koo wees X ag These were called by Hotelling the "principal compo-
nents": They decompose Rn in such a way that in the corresponding fact~
orization of |V| one factor is the largest and therefore the other the
smallest.

The fact, that the k-dimensional subspace containing the meximum pert
of the total entropy is the subspace spenned by the proper vectors
belonging to the k largest proper values of V, was derived in a paper
by J. Tou and R, Heydorn in [g]. They did not seem to be aware that
their problem and solution are only a restatement of Hotelling's well=-
known result on principal components.

A more general result has been obtained by Watanabe Ef] by showing
that the Karhunen—Logve expansion has a similar entropy—extremizing
property. The greater generality lies in the fact that this expansion

mey be used for samples as well as for distributions.
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3.3 Excess—entropy and likelihood ratio.

The "likelihood-ratio", an often used test statistic,may be interpreted
as an excess—entropy. Kullback ([E],'pp. 4k-5) gave an information-
theoretical interpretation of the likelihood-ratic. In this section we
will show that Kullback's I(0:1) is the same as an excess—entropy &s

we have introduced it before.

Let HO(H ) be the hypothesis that the random variable X is from the
population with probability density function fo(f1). From the definition

of conditional probability:

PriH,|x} = Pr{H, A x} =  Pr{x|H}.Pr{d,}
Prix} Prix /\ H, e Pr{x A H,}

Pr{Hilx} = fi(x). Pr{Hi}
fo(x).Pr{HO} + f1(x) Pr{H,}

for 1 = 0, 1.

Pr{H,|x} £,(x).Pr{H} s
PriH, [x] ~ T (x).Pr{d J -

£,(x) Pr{H, |x} Pr{H }
log f1(x) = log r{H [x} Log Pr{H,}

The last formuls says that the log likelihood-ratio is the difference
of log-ratios of "a posteriori" and "a priori" probabilities. This
is interpreted as the information present in the observation x in
favour of the null hypothesis H . When this quantity 1s averaged over

the distribution with density fo we have
£,(x)

1(0:1) = f f£o(x).1log ————7— dx .

Let us now consider the case where we have a set x of random variables
partitioned as x = {xo,x1}. f is supposed to be the probability density
function of x; g and h are the marginal probability density functions

of X, and X, respectively.

F:3
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Consider the null hypothesis H, that x  and x., are dependent and the

0 0 1

alternative hypothesis

H, : £f(x) = g(xo).h(x1) for all x. In this case:

1
1(0:1) _flx)
g(xo )h(x1 )

[ £(x). log dx
x

| £(x) log f£(x)ax - [ £(x) log g(xo)dx - [ £(x) iog h(x,)dx
X X X

- H(£) - [ [] f£(x)ax,] log glx,)ax,
X

%o 1

- [ [ f£x)ax,] 1og n(x,)ax,
X.' XO .

H(g) + H(h) - H(f)

1(0:1) = C(xo, x1). |

We find that the excess~entropy is equal to the average (under the
null hypothesis of dependence) information present in the observations
in favour of the null hypothesis. We may regard this as a measure of
dependence. This measure is used as a test statistic for the log

likelihood ratio test for independence.

3. Clustering.

Let f(X) be the normal density function of an n~dimensional random
vector X = (x1, cees xn). Let X be partitioned as (X1,X2) with

X, = (x1, cees xk) end X, = (xk+1, cens xn) andvlet the corresponding
partition of V be:

[v v

11 12
V=
Vo1 Voo
For the excess—entropy between X1 and X2 we find
c(x1,x2) = H(X1) +;H(X2) - H(X).
= 1 10g Vol -1V |

vl
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This quentity is defined for any nonsingular matrix V and any -partition

in it. When V is reduced into V., and V22(when there are only zero

11
elements in V21), it is zero. It may therefore be used to indicate

to what extent V is almost reduced as is in fact done when using the
likelihood ratio test for independence between X, and X,. In 1.1 we

1 2
savw that the fact that the blocks A and A 5 do not reduce the matrix

menifests itself as the transfer of1éhe errir in one partial approximation
to the other and vice versa. Especially in view of 1.2, we tentatively
described this phenomenon as "information transfer". In the special

case where the matrix is symmetric and positive definite we have shown
that this description is compatible with the mathematical definition

of information.

4, ENTROPY IN MARKOV CHAINS.

Let us consider a Markov chain M with a finite number n of .states s
and a discrete time parameter t; 8y = J means that M is in state

J at time t. For every value t of the time parameter there is a proba~
bility distribution over the states:

Pris, = j} = at.
J n

M must be in some state: zj v

_. @.=1 for all t.
=1 3

We will also use the matrix P of transition probabilities whose elements
are:
P5; = Pris, = j | Si.q = i}. These we will suppose to be independent

of time. P connects successive distribution vectors Az = (ag, ...,~a§)

in the following way:

t _ on £=1 . _ :
(1) ... a'j = Zi=1 pji a; for j =1, «.., n or A =PA__..
Colums of P add up to unity (if M is in any state i at time t~1, it is
certain to be in some state at time t), so we may define the conditional
entropy

H == Zn p.. log Pis under condition that M is in state i.
J=1

J1
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If we have any probability distribution Al = (31, cees an) over
the states of M we may consider its elements as weights to produce a

weighted average of the conditional entropies Hi:

Many interesting Markov chains have the property that lim At exists for

every probability distribution and is independent of T it. The
entropy (2) obtained by teking A = lim A is, in information theory,
defined to be the entropy of the’Ma%ﬁgv chain (see, for instance,

Khinchin [_31 ).

4.1 FUSING TWO STATES.

Suppose iﬁ can no 1onger be decided whether s, = j or whether Sy = k.,

t

butxonlyAwhether s, = j ors, = k. Then we say that states J and k

t t
are fused, say into j'. We see at once that:

eee 8., = 8, *+
(3) aJ, aJ 8y and

) vov Poys = p..s
(W) gy = gyt pyy
P;s is obtained from (1) as follows:

. = - o . » + ° i y ] s
8 z . Pypen + plan P8 for i# j,1#k
m#j k
If we put
(5) LR P-c'= P..&."‘p.a
1] 1) ik 'k , we get
a. + 8
J k
a, = .8 + Dp...8.,, &8 it should be.
5 r%#a' lem le' 3
Similarly for the case i = j or 1 = k:
a. = Z p..a + p..a. + p.
J o opdjx BB T 5%k
o 1 Pt Bt * ute
mE] .k +

%50 ds Pitfa * Pir%y t Ry
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If we put
cgey = Pag:8. t Py
PJ'J' PJ'JJ PJlkJ

aj + &y
by Pj'j'aj" as they should be.
To summarize, the effect of fusing two states, J and k, is to replace
aj by aj + 8y s the j=th row of P by the sum of the j=-th and k-th rows
and the j-th column of P by the weighted sum of the j-th and k-th

» the last two terms may be replaced

i i . . / .+ i . i
columns with weights aJ/(aJ ak) and ak/(aJ ak) respectively. Finally,
ay ,the k—=th row of P and the k~th column of P are deleted.

4.2 EXCESS-ENTROPY AS A MEASURE OF CLUSTERING.

Fusion of two states may ocecur in any chain having not less than that
number of states. The result is a chain again, where two states, if
available ,may be fused again. In short, as many states as are present
may be fused.

Consider the sets of states

X=1{1,2, ..., j} and ¥ = {j+1, ..., n}. Besides the original chain
M with states {X U Y} we also consider the chain M with states {X,y}
and the chains My with states {x,Y} where y(x) is the state resulting

from fusion of all states of Y(X) .

X Y
(e P U
Ppg oo Py Pp,541 0 Pig
X P . .
P, P.. Pi,j+1 Pjin M's matrix of
51 33 33 3

transition probgbilities

p. ® 00 pl - p. . Il"p.
J*r1,1 J+1,]  JH+1,3+1 J+l.n
Y : . . .

%ﬂ ©ee %ﬁ %hiﬂ tr %m



Mx's_matrix of transition

probabilities (states of Y

xn

J+l.n

11 0 Py Py
- * 0 i - . -po
Pj1 Bii Jy
py1 ’ py.i py’y fused into y)
M&'s matrix of trans-— o o o
ition probabilities XX X, 3+
(states of X fused into x). Psetyx Pyer,541 °F
Pox pn,j+1 P

nn

Applying formulae (3)-(6) for fusing states of X and also for states

of Y we find:

a_ = Z a. 3 8&_= Z a.
*¥ iex ¢ Y oiey *
8.
- . s = -
P.. = ) Pi: » 1€ X and p,_ =
i . i ix .
y jey ay
Let us now introduce the quantities:
T = - ) a. ) P.. log D. .
XX iex Txex ki ki
Tyx == 1 & L Pyi Log Pyi>

ieyY

keX

T
Xy

T
Jy

- 1

iey

According to (2) we then have for the entropy of M:

H=T + T + T + 7T .
xx Xy yx  yy

We will now obtain inequalities for the “cross terms" T

8,
X

T
Xy

)

key

)

Xiex

& P 108 Py

Application of 2.2.2 to the inner sum, where this time Ai

f(x) = x log x, yields:
(1) eoe T <= ) a_p
W key * ¥
T < - 1
I _ & by log

X~ xex

log Py and similarly

a

Tk

)

e Y

Py; 108 Pys»

Pr; 108 Pys-

and T .
yx

8.

i
—= and
a

™
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"H(X)" and "H(Y)" will be used to denote the entropies Mx and M.y

respectively. According to (2) we have:

H(X) =T - Z a p,__ logp - Z a. p.logp . =& P _logop
X e x YW ky fox TV yi ¥y W vy

Because of (7) it follows that H{X) > T + T
- XX yX

Similarly we find that H(Y) z-Tyy + Txy » Whence the main result:
(8) .. H < H(X) + H(Y) .

Again, as in the case of probability schemes and object—predicate

tables, we may regard the concomitent excesg—entropy:

(9) ... c(X,¥Y) = H(X) + H(Y) ~H >0

as 8 measure of dependence, this time between states of X and states
of Y.

A Markov chain may have a "clustering" structure in the sense that if
it is in a state of X(Y) at time t, it has a very small probability of
being in Y(X) at time t + 1. It is clear that this is the more so

as P, and Pyy are closer to 1. The excess—entropy defined in (9) is
one possible measure of such clustering. When we consider all Markov
chains with a partition {X,Y} of the set of n states, where Py < 1
and Pyy < 1, then the equality (9) is sharp, that is, O is the greatest
lower bound of C(X,Y). Thus we see that C(X,Y) may be used as a measure
of clustering, smaller values corresponding to stronger clustering.

If we are given the probability matrix P of some Markov chain, the
stationary probability distribution A may be obtained by solving the
system of linear equations

(P-1I)A=o0.

Suppose that we have a clustering structure in the above sense, namely
that Pyy and Pyy are near unity. Then the system may profitably be
solved by the iterative method mentioned in 1.1. Again, as in the case
of a positive definite matrix, we see that the cause of continuation
of iteration, which we tentatively called "information transfer",

may be explained in terms of entropy which is fundamental to the

mathematical definition of information.
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