
Reprinted from: ADVANCES IN INFORMATION SYSTEMS SCIENCE, Vol. 2
(Plenum Press, 1969)

SEMANTICS OF PROGRAMMING
LANGUAGES

J. W. de Bakker
Mathematical Center
Amsterdam, the Netherlands

1. INTRODUCTION

Chapter 3

This chapter is a survey of the research on the semantics of programming
languages. We feel that it is neither feasible nor desirable for our aim here
to make an attempt at a rigorous definition of the term "semantics." This
would require discus.sion both of the various proposals in the literature
for such a definition, and of the relation of the semantics of programming
languages to semantics as studied in linguistics, mathematical logic, and
philosophy. Therefore we restrict ourselves to a description, mainly of
allusive nature, of the sort of problems which are considered in semantics.

Semantics is concerned with meaning. To be more specific: Semantics
of programming languages is concerned with the study of the meaning of
the constituent concepts of these languages, of their mutual relationships,
and of their applications in individual programs.

We add a few comments on this description:

1. If formal methods are used in these studies, one might prefer to
speak of formal semantics. Since all investigations considered in this paper
employ some kind of formalism, we omit this qualification.

2. Our survey is almost exclusively devoted to research on machine­
independent, general-purpose languages such as FORTRAN, ALGOL 60, or
PL/I. No separate attention is paid to special-purpose languages, e.g., for
simulation, list processing, real-time processes, etc., nor to languages for
on-line communication with computers. Only those concepts of assembly
languages are considered which are also present in machine-independent
languages (e.g., iteration).

173

l'ilbi.,on-:ieeK. MATHEMATISCH

AMSTERDAM
CENTRUM

174 Semantics of Programming Languages [Chapter 3

3. An alternative to the phrase "the meaning of the constituent con­
cepts" is "the relation between the meaning and the symbolic representation
of the constituent concepts." This alternative is rejected, since it suggests
more involvement with syntactic problems than is actually present in a
considerable part of the work to be discussed.

4. An alternative to "meaning" is "effect upon some processor (either
a human, an abstract machine, or a real computer)." This would exclude
various approaches to semantics which are not of a constructive type, e.g.,
axiomatic methods, and is therefore also rejected.

5. Occasionally, in programming literature a distinction is made be­
tween "algorithm" and "program" (see, e.g., Knuth (73)). Algorithm is then
a more general term, referring to an effective process for obtaining the
solution of a certain problem, whereas a program is the precise descrip­
tion of such a process in terms of some programming language. The present
paper does not adhere to this terminology; in our opinion, an attempt at
consistent use would raise more problems than it would solve.

The theory of programming languages is concerned with, in addition
to semantics, syntax and pragmatics. It may be useful to add a short de­
scription of these two other fields:

I. Syntax is concerned with the study of formal systems to be used
for the definition of grammars of programming languages. A grammar is a
set of rules prescribing which sequences of symbols over a given alphabet
constitute a program in the language concerned. It should define the struc­
ture of a program in such a way that efficient translation is possible.

2. In pragmatics one studies the relation between the language and its
interpreter. If the interpreter is a human being, say, a programmer, one
investigates the applications of the various concepts in the language to the
problem he has to solve. One may also think of interpretation by a machine,
which leads to the "mechanical pragmatics" of Gorn (61). A general discus­
sion of pragmatics and its relation to syntax and semantics is given by
Zemanek (140).

By far the largest part of the research in the theory of programming
languages deals with syntactic problems. Formal systems for syntax defi­
nition are considered from an abstract point of view in the rapidly growing
theory of context-free languages and their generalizations (Ginsburg (59),

Aho and Ullman (2)); the practical application of these systems to the
construction of compilers is discussed in the extensive survey of Feldman
and Gries (55).

Sec. 1] Introduction 175

Compared with syntax, semantics is a somewhat neglected subject.
This is probably due to the fact that it has as yet no direct applications
to practical problems in programming which are of the same importance
as those of syntax for compiler building. However, there are a number of
important long-range goals for a semantic theory:

1. It should provide a framework in which properties of individual
programs can be investigated and proofs about these properties can be
obtained, the ultimate goal being the proof that a given program solves a
certain problem.

2. It should lead to methods for the complete formal definition of
languages, to be used as a reference by compiler writer and programmer,
and for standardization purposes.

3. It should provide a theoretical framework for the design and com­
parison of languages.

4. In combination with formal studies of machine languages, it should
be applied to the construction of compilers. Investigations of the meaning
of the language concepts may be of use in comparing alternative meaning­
preserving implementations. The relation between optimization of source
programs and object programs should be studied. The final goal is again
to prove the correctness of compilers.

Some further remarks on proofs about programs and on motivations
for formal definition are made in the introductions of Sections 2 and 3,
respectively.

We have divided our survey of the research on semantics into two parts.
The first (Section 2) is devoted primarily to the discussion of investigations
concerning one or more basic concepts in programming, whereas in the
second part (Section 3) the emphasis is on research dealing with complete
languages. Generally speaking, in Section 2 programming concepts are
considered as mathematical objects, without paying much attention to their
symbolic representation, i.e., to syntactic problems. In Section 3 the relation
between syntax and semantics often plays an important role.

Section 2 begins with some general remarks on the research on basic
programming concepts; moreover, the relevance of computability theory
for semantics is discussed briefly. In Section 2.2 we treat the important
results on program schemata of Yanov and of Luckham, Park, and Pa­
terson. Section 2.3 deals with axiomatic characterizations of assignment,
conditions, and goto statements. It is based largely on the work of Igarashi.
A discussion of some aspects of McCarthy's theory of computation follows

blb!.AOIHl::E.K MATH'.:MATISC'-l CENTRUM

AMSTEP.D·AM

176 Semantics of Programming Languages [Chapter 3

in Section 2.4. In Section 2.5 we have collected various investigations dealing
with flow diagrams.

The majority of the research reviewed in Section 3 deals with methods
for the formal definition of programming languages. After a discussion of
the motivations for formal language definition, we give a survey of the
methods which have been used or proposed for this purpose, viz., the
methods of van Wijngaarden and Caracciolo, based on extended Markov
algorithms, the state vector approach of McCarthy and its applications to
proofs about compilers, the Vienna method developed for the formal de­
finition of PL/I, and the A-calculus approach of Landin, Strachey, and others.
A brief discussion is given of some other methods, viz., the system used for
the definition of ALGOL 68, the proposal of Hoare for an axiomatic method,
compiler-oriented methods, and the semantics of context-free languages of
Knuth.

The preceding summary was intended to give an impression of the
scope of the present chapter. Clearly, semantics has many relations with
other fields in programming and mathematics. We mention only: the theory
of syntax, techniques for compiler construction, automata theory, mathe­
matical models of computers and various abstract machines, mathematical
logic, in particular computability theory, graph theory, mathematical lin­
guistics, etc. Many instances of the relation of semantics to these fields can
be found in the literature to be reviewed. However, a systematic treatment of
them would be a formidable task, exceeding by far the scope of this survey.

Some topics which might be considered to belong to semantics, but
which are not discussed separately below, are mentioned in Section 2.1.
Finally, we have, apart from a few exceptions, omitted discussion of the
rather extensive Russian literature on semantics. For this we refer to the
survey paper of Ershov and Lyapunov (53).

2. BASIC CONCEPTS

2.1. Introduction

2.1.1. General Remarks
Section 2 is devoted to investigations concerning one or more basic

concepts in programming languages.
Which concepts one considers as fundamental is to some extent a

matter of taste. It will depend heavily on his experience in using or designing
languages, and on the type of problems one has to solve. The following
list is a first approximation. It has no pretense of completeness, but is

Sec. 1] Introduction 177

intended as a minimal set, to which other elements may be added if required.
In addition, not all concepts listed are independent of each other. No special
meaning should be attached to the order of the list.

1. Real and integer arithmetic; operations on other simple types, Boolean,
string, or character; constants.

2. Expressions; evaluation in relation to the value, type, and scope of
their variables; name-value relation.

3. Data structures: simple types, vectors, arrays, trees, structures, re­
cords, files, lists, rings; pointers and references; relation to storage
allocation.

4. Conditional constructions; generalization to selection from n-tuples.
5. Sequencing, labels, goto statements and repetitive clauses, iteration

versus recursion.
6. Parallel computation.
7. Assignment.
8. Procedures and functions, parameter mechanisms, side effects, recursion.
9. Blocks, locality.

10. Declarations, relation to locality, introduction of new data structures
or operators, initialization.

11. Input/output.

In order to keep the size of this chapter within reasonable bounds, it
was necessary to make a selection from the concepts in this list. As a first
criterion, we chose the distinction between imperative and descriptional
features of languages, and decided to give preference to discussion of the
former. Consequently we have omitted separate treatment of the large
number of investigations dealing with various data structures. (It should
be noted that this does not imply that we pay no attention whatever to
data structures. A great variety of them occur in the languages to be treated
in Section 3, and a substantial part of the literature reviewed there is con­
cerned with these structures. What we do omit is discussion of papers which
are exclusively devoted to theni.) The same criterion applies largely to
input/output, which is therefore also not considered in Section 2.

Parallel computation, though an imperative feature, is not treated for
another reason. It has only fairly recently appeared as a concept in pro­
gramming languages. As a result of this, it has been investigated mainly
from a pragmatic point of view, i.e., by discussion of examples of the sort
of problems in which it can be applied. However, such pragmatic con­
siderations are outside the scope of our chapter.

178 Semantics of Programming Languages [Chapter 3

Occasionally, we have departed from our rule on the division of the
material between Sections 2 and 3. For instance, a number of articles
dealing with concepts as indicated in the first two entries of the list, are
included in Section 3.5, since their treatment could be combined there
with that of a particular technique for formal language definition.

We now make some general remarks on the results to be reported in
this section. It may be of interest to note that the systems to be discussed
are almost entirely "processor-independent," i.e., direct use of (abstract)
machines is avoided. This in contrast to the methods of Section 3, the
majority of which makes extensive use of such machines.

It will appear that many different approaches are used; there is no
general framework in which all results can be stated in a unified and system­
atic manner. A complete synthesis may be a long way off. However, many
of the results are closely related to each other, and in several cases clarifica­
tion of their relation seems quite a promising subject for further research.

There is one common feature shared by most of the systems, however
great their differences be otherwise, viz., use of various notions of equival­
ence between (parts of) programs. The results in this direction may be
considered as first steps toward a solution of the problem of reducing a
program to an equivalent one which is simpler according to some standard.
Which standard is to be applied depends on the circumstances. There are
the usual requirements on minimizing execution time or storage space.
However, we feel that another criterion will become increasingly important
in the future, viz., whether the program is in a form which is suited for
obtaining proofs about it. These may either show that the program satifies
certain conditions, e.g., termination for given input, or, more ambitiously,
that it solves a given problem. It should be added that only very little is
known as yet on general techniques for proving the correctness of programs.
When one considers the tremendous amount of time and effort spent on
debugging programs, it is surprising how relatively little attention has been
paid in programming research to the development of such techniques.

For a more extensive discussion of proofs about programs and of
motivations and goals for a theory of semantics in general, the reader should
first of all consult McCarthy (98 •99). Cooper (39) is a more recent survey
paper on proofs about programs (see also Section 2.4).

2.1.2. Semantics and Computability Theory

Computability theory, i.e., the theory of Turing machines, recursive
functions, etc. (Davis (43)), has yielded a number of results which determine

Sec. 2] Program Schemata 179

the essential limits imposed upon the theory of semantics. Apart from this,
however, its relevance for semantics is rather limited. Most of the basic
concepts of programming languages, as listed above, have no direct counter­
parts in one of the various systems of computability theory. Therefore it
does not provide much help in investigating the properties of these con­
cepts. Those features of programming which do have some counterpart in
computability theory, such as sequencing, have, generally speaking, not
been studied independently in it. Moreover, computability theory is con­
cerned with (undecidability theorems on) "mass problems," rather than
with the study of individual algorithms; again, these results are not very
useful for the sort of problems one considers in programming theory.

However, some qualifications are in order with respect to our rather
negative judgment on the applicability of computability theory to pro­
gramming. A link between the two theories may result from the growing
interest in the quantitative aspects of Turing machines, e.g., investigations
on bounds for the number of operations needed for a certain calculation
(for references see, e.g., Aho and Ullman (2). Though most of this work is
still outside the scope of this paper, there are a number of related investi­
gations which are no doubt of importance for programming. We mention
Meyer and Ritchie (104 ,105). They are interested in the derivation of bounds
for the running time of loop programs, i.e., sequences of, possibly nested,
repetitive clauses and simple assignment statements of the form x : = 0,
x := x + 1, and x := y. The functions defined by loop programs are shown
to coincide with primitive recursive functions. A bounding function for
the running time of a loop program is given, depending only on the number
of its instructions and on the depth of nesting of its loops.

Concepts from programming and computability theory are also related
to each other, though on a highly abstract level, by Eilenberg and Elgot (47),

who use iteration to give an algebraic characterization of recursive functions.
Applications of (extended) Markov algorithms and of the A-calculus

can be found in the literature reviewed in Sections 3.2 and 3.5, respectively.
Post's canonical systems are applied by Donovan and Ledgard (45).

2.2. Program Schemata

2.2.1. Introduction

In this section we discuss two papers which are of fundamental impor­
tance for the semantics of basic programming concepts, that of Yanov (137)

(a short summary was given by Yanov (135 •136)), which is essentially an
investigation of the sequencing concept in its relation to the values of the

180 Semantics of Programming Languages [Chapter 3

conditions which determine the flow of control, and that of Luckham
et al. (91), who have extended Yanov's work in the sense that they also
take into account the notion of assignment.

Both papers may be viewed as studies of properties of flow diagrams,
and might therefore have been discussed in Section 2.5. However, since
we want to give a somewhat more detailed explanation of them, we have
introduced a separate section for this purpose. Even this will not allow us
to give more than a first impression of the principal ideas and results of
the two papers. For a more comprehensive account of the first part of
Yanov's paper (137) we refer to Fels (56) (the reader should be warned that
this contains some errors in its comments on Yanov's main theorem).
Some further references are noted at the end of Section 2.2.2.

2.2.2. Yanov's Program Schemata
Yanov's starting point is the following observation: The application

of an algorithm to one of its arguments determines uniquely a sequence of
elementary actions. In general, different arguments result in different se­
quences. However, it is always possible to find a finite set of predicates,
representing properties of the arguments, such that the sequence of ele­
mentary actions to be performed for a given argument may be considered as
a function of the values of these predicates for that argument. As a tool for
investigating this idea, Y anov introduces the notion of a program schema.

Let A= {A1 , A 2 , •• • , Am} be a finite set of symbols denoting the
elementary actions. Elements of A are called operators.

Let P = {Pi, p2 , ••• , Pn} be a finite set of propositional variables,
from which predicates can be formed by means of the logical operators
""-7, /\, and V. The identically true (false) predicate is denoted by 1 (0).

We do not give the formal rules for the construction of program
schemata from A and P, but illustrate this process by two examples in an
ALGOL-like notation.

Example 1:
L1 : A1 ; if Pi then goto L1 •

Example 2:
if ""-7 Pi I\ p2 then goto L1 ;

L2: Ai;
if ""-7 p2 then goto L2 ;

if l then goto L3 ;

L1: A2;
La:

Sec. 2] Program Schemata 181

It appears that program schemata look somewhat like ALGOL 60 programs.
Their constituents are operators (all operators in a schema are required
to be different) and conditional goto statements, the conditions of which
are predicates over P; both of these may be labeled. Would some inter­
pretation be provided for the operators, e.g., as assignment statements,
then ordinary ALGOL 60 programs would result. However, such interpreta­
tion -is omitted on purpose. Consequently, a program schema cannot be
executed in the usual way, since it is not known how the values of the
conditions-assuming that for a given argument initial values are given­
change during the execution of the schema. Now Yanov's central idea is
to give these changing values of the conditions in advance. A program
schema is then considered as a function of the sequence of values of its
constituent conditions. A more precise explanation follows.

Let Pi , p2 , ••• , Pk be the propositional variables occurring in a given
schema. An evaluation of these variables is defined as an ordered k-tuple
of zeros and ones (corresponding to the values "false" and "true"). An
evaluation sequence is a sequence of such k-tuples. A program schema as
function of an evaluation sequence is executed as follows: The first element
of the evaluation sequence is considered, the corresponding elements of
this k-tuple are assigned to the propositional variables of the schema, and
from this the values of its conditions are determined. One then starts to
execute the schema in the ordinary ALGOL way. However, as soon as an
operator is met the next element of the evaluation sequence is considered,
the propositional variables are assigned the corresponding elements of this
second k-tuple, the new values of the conditions are determined, and the
execution is continued until another operator is met, after which the third
k-tuple is considered, etc. The execution terminates, if ever, with the execu­
tion of the last "statement" of the schema. (The transition to the next ele­
ment of the evaluation sequence each time an operator is met reflects the
possible change in the properties of the argument being transformed as a
result of the execution of this operator.) We have not yet said what is
meant by the value of a program schema when applied in this way to an
evaluation sequence. It is defined to be the sequence of operators as en­
countered successively during the execution of the schema.

We illustrate these definitions by means of example 2 above. The
number of propositional variables in this schema is two; hence evaluation
sequences for it are sequences of pairs. Application of the schema to the
sequence (1, 1), (1, 0), (1, 1), ... yields the value A1A1 ; application to
the sequence (0, 1), (0, 1), . . . yields the value A2 •

Next we define what is meant by the equivalence of two schemata:

182 Semantics of Programming Languages [Chapter 3

Two program schemata over A and P are equivalent if and only if they
have the same value for each evaluation sequence.

Note that this is a very strong notion of equivalence. The correspond­
ing definition for programs would not only require that the final values of
their variables be identical, but in addition that these values have been
obtained by performing the same elementary actions in the same order.

The equivalence problem for program schemata is shown to be decidable.
An effective procedure is given which reduces each program schema to a
canonical form, and it is proved that two schemata are equivalent if and
only if their canonical forms satisfy a certain effectively verifiable condition.

Yanov also gives an axiomatic characterization of equivalence. He
introduces a set of axioms and rules of inference, and proves that if two
schemes S1 and S2 are equivalent by the definition given above, then S1 ,..._, S2

can be derived in this system. We give two examples of his axioms:

if Pi I\ P2 then goto L1 ,..._,

if -, Pi then goto L 2 ; if p 2 then goto L 1 ; L 2 :

and

(Here S1 and S2 stand for arbitrary program schemata. For the second axiom
also see Section 2.4.3.)

Finally, Yanov introduces a matrix notation for program schemata and
studies its relation to the linear notation.

Rutledge (116) has given a simplified proof of Yanov's main result, viz.,
the decidability of the equivalence problem. Moreover, it is shown that the
same problem for an extended notion of program schema-in which the
requirement that all operators of the schema be different is omitted-is
just the equivalence problem for finite automata. The relation between
program schemata and finite automata was also noted by Igarashi (64).

Yanov's work has been extended in several directions in the Russian
research on semantics; we mention Ershov (52) and Yanov (138). Further
references are given by Ershov and Lyapunov (53).

2.2.3. The Formalized Computer Programs of Luckham et
al. (91)

In a paper by Luckham et al. (91) a natural extension of Yanov's
program schemata is considered which amounts to the introduction of

Sec. 2] Program Schemata 183

variables arn;i assignment. The elementary actions of a schema are no longer
left completely unspecified, but are assumed to be of the form xi : = ft
(x1 , x2 , ••• , Xn), and conditions are of the form Pk(xi). An example of
such a schema is

L1: x1 := f/(x1);
if Pi (x1) then goto La;

L2: X1 := f/(x1);
if Pi (x1) then goto L1 ;

if l then goto L2 ;

La: X2 := /?(x1);

X1 : = /"_/(X1)

An interpretation I of a program schema (from now on taken in the
extended sense) is established as follows:

l. A domain D is selected.
2. To each variable xi occurring in the schema there is assigned an

element of D (to be considered as its initial value).
3. To each ft there is assigned an n-ary function nn---+ D.

4. To each Pi there is assigned a function D---+ {O, l }.

An interpreted program schema Pr can be executed in the usual way.
If the execution terminates, the value of Pr, denoted by val(Pr), is defined
to be the vector of the final values of the variables occurring in P.

The following notions of equivalence are introduced:

l. P == P' if and only if for all interpretations I, val(Pr) = val(P/),
whenever either value is defined.

2. P = FP' if and only if for all interpretations I on finite domains,
val(Pr) = val(P/), whenever either value is defined. (An example is given
to show that P - FP' does not imply P - P'.)

3. P '.:::'. P' if and only if for all interpretations I, val(Pr) = val(P/),
whenever both values are defined.

4. A relation ,...._, between program schemata is called "reasonable" if
for all schemata P and P' the following two conditions are satisfied: (a) P - P'
implies P ,...._, P', (b) P ,...._, P' implies P '.:::'. P'.

Whereas the equivalence problem of the previous section was decidable,
this is no longer the case for the various notions of equivalence introduced
here. A number of undecidability results on multihead automata are derived

184 Semantics of Programming Languages [Chapter 3

-ultimately based on the undecidability of the halting problem for Turing
machines-which are then applied, by simulating automata by schemata,
to the equivalence problems for schemata. (Incidentally, this provides one
of the very few examples of the application of automata theory to semantics.)
The main results are the following: Let P0 be the schema L: goto L; let P1

be x1 :=f?(x3); x 2 :=f?(x3); and let P2 be the example given above.
Then the following relations are not partially decidable (i.e., not recursively
enumerable) for arbitrary P:

l. P -Po.
2. P = FPo.
3. P=FP1.
4.P:::::'.P1 •

5. P ¢. P1 .

6. P ,..._, P 2 , for each reasonable ,..._,.

These results imply that all hope for a general simplification algorithm
for programs which use at least the three concepts of assignment, conditions,
and goto statements, is in vain.

In the last section of the paper by Luckham et al. (91) some subclasses
of program schemata are considered for which the equivalence problem
(with respect to =) is decidable. For instance, the following result is men­
tioned (a proof is given by Paterson (110

)): Let a schema be called monadic
if all functions occurring in it are functions of one variable only. The
equivalence problem for monadic schemata with nonintersecting loops is
decidable.

2.3. The Axiomatic Approach

2.3.1. Introduction

The main representative of the axiomatic approach to semantics is
Igarashi (66) (for an introduction see Igarashi (67)). Since this paper is not
easily accessible, it will be treated in somewhat greater detail. Igarashi's
axiom systems for assignment, conditions, and goto statements are discussed
in Sections 2.3.2, 2.3.3, and 2.3.4 respectively. Igarashi's paper (66) contains
also a sketch for an axiomatic treatment of input/output and of arrays,
and some further applications. Another paper of Igarashi (65), is partly
preparatory to the later paper (66) and partly concerned with an axiomatic
approach to syntactic problems.

Some general reflections on the advantages of an axiomatic treatment
of concepts in programming, with the emphasis on its application to the

Sec. 2] The Axiomatic Approach 185

formal definition of languages, can be found in Hoare (63) (also see Sec­
tion 3.6).

We shall not enter here into a discussion of the respective merits of
the axiomatic method versus various other systems, in particular those of a
constructive nature. However, we feel that it is fair to say that it deserves
more attention than has been paid to it up to now.

2.3.2. Axioms for Assignment

We cannot treat Igarashi's axiom system for assignment in full, but
shall concentrate on its essential features. Therefore some definitions will
be given only somewhat loosely.

Let V = {x, y, z, ... } be a set of variables. (Only simple variables-in
the sense of ALGOL 60-are considered.)

Let F = {f, g, ... } be a set of functions. Specification of the nature
of Fis omitted here. When we want to indicate that/ depends on the variable
x, we write f(x); f(g) then denotes the result of substituting g for all oc­
currences of x inf (with the usual precautions).

An assignment statement has the form x := f, for some x E V and
f E F. It is convenient to consider the dummy statement, denoted by 0,
also as an assignment statement.

A, B, C, . . . denote arbitrary .sequences of assignment statements,
separated by semicolons, and A(A) is the set of all variables constituting
the left-hand sides of the statements in A; e(A) is the set of all variables
occurring as arguments of the functions in the right-hand sides of the
statements in A, and -r(A) = A(A) u e(A). We use A(x) and A(g) similarly
to f(x) and f(g), and <P denotes the empty set.

Well-formed formulas of the axiomatic theory are expressions of the
form A ,..._, B, with X c V. Such a formula may be understood intuitively

X

as: The sequences A and B have the same effect upon the variables from
the set X. A ,..._, B is abbreviated to A ,..._, B.

V

We can now formulate the axiom system. It consists of six axioms and
four rules of inference.

Axioms:

/a1 : x:=x ,..._,0_

/a2 : A;0 ,..._, A,
0;A ,..._,A.

la3 : If X n A(A) = <P, then A ,..._,0.
X

186 Semantics of Programming Languages [Chapter 3

la4 : If A(A(x)) n -r(x:=/) = <I>, then

x:---f; A(x); x:=g(x) ,.._, A(f); x:=g(f).

la5 : If x-::/=- y, A(A(x)) n -r(x: f) = <I>, and x $ -r(f), then

x:-f; A(x); y:=g(x) ,.._, x:-f; A(f); y:=g(f).

las: If f= g, then x:=f ,.._,x:=g.

Rules of inference:

la7 : If A ,.._, B, and C ,.._, D, then A;C ,.._, B;D.
e<Olue<DIUX X X

la8 : If A ,.._, B and A ,.._, B, then A ,.._, B.
X Y XuY

la9 : If A,.._, B, then A ,.._,B.
XuY X

la10 : Symmetry and transitivity of ,.._,.
X

Remarks: (1) f = g in las means that the equality off and g can be
established in some suitable underlying system, depending on further speci­
fication of F. (2) The system {la1 , la2 , •• • , la10 } is called :7a.

As an example of the application of :7 a, we consider the following
two sequences:

A is s:=nxs; n:=n-1; s:=n!xs; n:=0, and

Bis s:=n! xs; n:=0.

The equivalence of A and B for n > 0 was used in an example of McCar­
thy (99) (see also Section 2.4.4). We derive A,.._, B from :7a:

(1) n:=n-1; s:=n! xs; n:=0 ,.._,
s:=(n-1)! xs; n:=0

(2) A ,.._,s:=nxs; s:=(n-I)!xs; n:=0

(3) s:=nxs; s:=(n-I)!xs,.._,s:=(n-I)!xnxs, ,la4 ,

(4) A,.._, s:=n! xs; n:=0

Hence A ,.._,B.

,(2),(3),Ia7 , definition
of n!

Igarashi's main result on the system :7 a is the proof of its completeness.
A formal definition of the effect of a sequence of assignment statements
upon a variable is given which describes the usual meaning of assignment.
(For a special case of this definition see below.) The completeness theorem
asserts that two sequences A and B have the same effect upon the variables
from X if and only if A ,.._, B is a theorem of :7 a.

X

Sec. 2] The Axiomatic Approach 187

A further analysis of the axiomatics of a simple type of assignment
statement is given in de Bakker (10). Statements are considered the right­
hand sides of which consist only of variables, such as x :=y, z := t, etc.
We abbreviate these to xy, zt, etc. The following axiom system is introduced
(A, B, ... , now stand for such simple sequences):

Axioms:

Ba1 : xy;yx ,,__, xy.

Ba2 : xy ;xz ,,__, xz, provided that x -=I= z.

Ba3 : xy;zx ,,__, xy;zy.

Ba4 : xy;zy ,,__, zy;xy.

Rules of inference:

Ba5 : If there exist x, y, z, t (x -=I= y) such that A ;xz ,,__, B;xz and
A;yt ,,__, B;yt, then A,,__, B.

Ba6 : If A,,__, B, then A;C ,,__, B;C and C;A ,,__, C;B.

Ba7 : Symmetry and transitivity of ,,__,_

The system { Ba1 , Ba2 , ••• , Ba7 } is denoted by .~ a. It was developed
with the view to a more detailed investigation of the relations between the
various axioms. Some results de Bakker (10) are:

I. The axioms of §ga are independent.

2. The effect of A upon x is described by the function E(x,A), de­
fined recursively by (a) E(x,xz) = z, and E(x,yz) = x, (b) E(x,A;B) =
E(E(x,B),A). The completeness theorem can then be formulated as:
A,,__, B if and only if for all x E V: E(x,A) = E(x,B). (Our proof differs
somewhat from Igarashi's.)

3. It is investigated to see whether it is possible to replace the four
axioms of .§g a by a smaller set, such that the resulting system remains
equipollent with §ga (i.e., the same equivalences can be derived from it).
A typical theorem is the following: ((A)n denotes the sequence A ;A; ... ;A
(n times A, n > 1)). Let 'ie'a~J be defined by:

i = 1, 2

Call;l = (xy;zx;yzr ,,__, zy;xy, and Ca~)= (xy;zx;yzr ,,__, zy;xz. Then the
following hold: (a) For each n > l, 'ie'all;l is equipollent with.§ga. (b) 'ie'a12>

is equipollent with.§ga. (c) 'ie'a~~ (m > 1) is not equipollent with.§ga. The
equipollence of 'ie'a~~+1 (m > 1) with §ga is an open problem.

188 Semantics of Programming Languages [Chapter 3

A third axiomatic characterization of assignment is studied by Ka­
plan (71). It is based upon the properties of state vector functions associated
with assignment introduced by McCarthy (99). A discussion of these ideas
is given in Section 2.4.3.

2.3.3. Axioms for Conditional Expressions

Axiom systems for conditional expressions have been given by McCar­
thy (98) and Igarashi (66). We shall present both systems; it will turn out
that they are equipollent: McCarthy's axioms can be derived from Igarashi's
system and vice versa.

Let P = {p, q, r, ... } be a set of propositional variables; P* the set
of propositions which can be constructed from P by means of the operators
--,, /\, and V; and 1 (0) the identically true (false) proposition.

Let X be an arbitrary set.
The set C(P, X) of conditional expressions over P and Xis defined by:

(a) X c C(P, X),

(b) If n E C(P, P*), a E C(P, X), and /J E C(P, X), then (n-+ a, {J)
E C(P, X).

An expression (.n -+ a, {J) can be interpreted as the ALGOL 60 expression
if n then a else {J; i.e., if .n has the value 1 (0) then the value of the expression
is the value of a ({J). Two conditional expressions are called equivalent if
and only if they have the same values for all values of the propositional
variables occurring in them. (We omit discussion of the case-considered
in detail by McCarthy (98)-that the value of a propositional variable is
undefined.)

An axiomatic characterization of equivalence for conditional expres­
sions is now introduced. First we give McCarthy's system. Let C1 (P, X) be
defined as C(P, X), except that in clause (b) above we replace .n E C(P, P*)
by .n E C(P, P). Well-formed formulas of the theory are of the form a,...._, {J,
with a and /J E C1(P, X).

The axioms are:

M1 : (p -+ a,a) ,...._, a,

M2: (I-+ a,{J) ,...._, a,

M 3 : (0-+ a,{J) ,...._, {J,

M4 : (p-+ (p-. a,{J),(p-+ y,b)) ,...._, (p-+ a,b),

M 5 : ((p-+ q,r)-. a,{J) ,...._, (p-+ (q-. a,{J),(r-+ a,{J)),

M 6 : (p-+ (q-. a,{J),(q-+ y,b)),....., (q-. (p-+ a,y),(p-. {J,b)).

Sec. 2] The Axiomatic Approach 189

The rules of inference are stated here only informally. They assert that
equivalence is preserved by the systematic substitution of an element of
C1(P, P) for a propositional variable, and also by replacement of an occur­
rence of a subexpression by an equivalent subexpression.

The system {M1 , M 2 , ••• , M 6 } is called J/1 • It provides a complete
characterization of conditional expressions: Two expressions a and fJ from
C1(P, X) are equivalent by the above given definition if and only if a,..._, fJ
is a theorem of J/1 • This is proved by reducing each a E C1(P, X) to a
canonical form a' ,..._, a, and by showing that a and /J are equivalent if and
only if a' = fJ'.

Next we treat Igarashi's system. Let ClP, X) be defined as C(P, X),
except that in clause (b) above we replace :n, E C(P, P*) by :n, E P*. Well­
formed formulas are of the form a ,..._, {J, with a and fJ E C2(P, X).

The axioms are:

le1 : (p-+ a,a) ,..._, a,

le2 : (1 -+ a,{J) ,..._, a,

le3 : (p-+ a,{J) ,..._, (~p-+ {J,a),

le4 : (p-+ (q-+ a,{J),y) ,..._, (p I\ q-+ a, (p I\ ~q-+ {J,y)),

lc5 : (p-+ a, (q-+ {J,y)) ,..._, (p-+ a, (~p I\ q-+ {J,y)).

Statement of the rules of inference is omitted. It is assumed that the
usual rules for ~, /\, and V hold. (Note that this was not necessary in
J/1 .) The system {le1 , le2 , ••• , lc5 } is called ..7e1 . It is a complete axiom
system for ClP, X). This is also proved via the introduction of a canonical
form, which differs, however, from McCarthy's.

The systems J/1 and ..7e1 cannot be compared directly, since they
refer to the different sets C1 (P, X) and ClP, X). In order to clarify the
relation between the two systems, it is necessary to extend both. Let
JI= J/1 U {M7 , Ma, M 9 , M10}, where

M7 : (p-+ 1,0) ,..._, p,

Ma: (p-+0,1) ,..._,~P,

M9 : (p-+q,O) ,..._,p I\ q,

M10: (p-+ l,q) ,..._, p V q,

and ..7e = ..7e1 u {le6 }, where

lc6 : (p-+ q,r) ,..._, (p I\ q) V (~p I\ r).

190 Semantics of Programming Languages [Chapter 3

Then the following theorem holds: The systems~ and :7c are equi­
pollent axiom systems, and both provide a complete characterization of
C(P, X). That ~ can be derived from :7c was shown by Igarashi (66).

For a proof of the reverse result we refer to de Bakker (11).

In order to deal with the relation between conditional expressions and
functions, both authors have introduced the following axiom:

M 11 :f((p---+ a,{J)) "'(p---+ f(a),f(/J)).

Another rule of both systems is:

M12 : Suppose that the equivalence of a and fJ can be shown under
the assumption that p is true. Then (p ---+ a,y) "' (p ---+ {J,y).

Igarashi also considers a combination of conditions and assignment.
He gives a complete axiom system :7 ac for sequences of possibly conditional
assignment statements, consisting essentially of :7 a and :7 c, to which are
added:

Iac1 : x:=f; (p(x)---+ A,B)"' (p(f)---+ x: f;A, x:-----..f;B)

Iac2 : (p---+ A,B); C"' (p---+ A;C, B;C).

This concludes our discussion of McCarthy's and Igarashi's work on
conditions. We add a few remarks on other papers on this subject.

The axiom lc6 defines the meaning of (p---+ q,r) in Boolean algebras.
De Bakker (9) investigates a related function (p---+ q,r)* in the setting of
distributive, relatively complemented lattices. The function (p ---+ q,r)* is
the relative complement of p in the interval (p I\ q, p V r). It satisfies
M 1 , M 4 , M5 , and M 6 ; moreover, it can be used in the definition of such
lattices. Related results (on distributive, relatively complemented lattices
with zero) are given by Dicker (44).

Rennie (114) gives an elaboration of McCarthy's system. The imperative
features of conditional statements are considered and a normal form is
sketched for sequences of such statements which seems similar to the form
given by Igarashi.

Caracciolo (23 •25) extends some of McCarthy's axioms, viz., M1 , M 4 ,

and M 6 , to constructions which select from n objects (cf. the case con­
struction of ALGOL 68). This suggests relations with n-valued logic and set­
theoretic notions. A beginning is made of a study of these ideas.

Some aspects of the relation between conditions and assignment are
treated by Munteanu (106).

Sec. 2] The Axiomatic Approach 191

Finally, we mention Wittman and Ingerman (130), who introduce the
notion of threshold selection and prove its equivalence to Boolean selection,
i.e., to conditional expressions.

2.3.4. Axioms for goto Statements

Yanov's axiom system, mentioned in Section 2.2.2, provides the first
example of an axiomatic treatment of goto statements in relation to con­
ditional expressions.

Igarashi's axioms for goto statements are added to the system .'7ac
described above. Let us call the resulting system .'7acg. As might be expect­
ed, it no longer has the general completeness property of .'7a, .'7c, or .'7ac.
What remains is essentially the following: .'7acg is complete for the equiva­
lence of two programs of which it is known in advance that they have a
common supremum for the number of elementary operations (unspecified
here) to be performed during their execution. (Note that the problem of
finding such a supremum is in general undecidable.)

We shall not present the entire system .'7acg, but restrict ourselves to
an example of an equivalence which can be derived from it. Consider the
following programs P1 and P2 (this time we write the conditions in the usual
ALGOL 60 notation):

P1 is

i:=0; L:i:=i+ 1; A; if i < n then goto L; i:=i+ 1

i:=1; L:A; i:=i+l; if i < n then goto L

A is an arbitrary sequence of (conditional) assignment and goto statements,
provided that it contains no jumps to L. For the proof of P1 ,..._, P2 three
rules of .'7 acg are needed:

1. An axiom of .'7acg, here loosely formulated as

... L: B; M: ... ; goto L; ... ,..._,

... L: B; M: ... ; B'; goto M; ...

(B is an arbitrary sequence; B' is derived from it by suitably renaming its
labels in order to avoid "clash of labels.")

2. An equivalence which can easily be derived from .'7acg:

if p then begin ... ; goto L end else . . . ,..._,

if p then begin ... ; goto L end; ...

192 Semantics of Programming Languages [Chapter 3

3. A rule which allows the introduction of superfluous labels and
systematic renaming of labels.

Then:

P1 ,....._,i:=O; L:i:=i+l; M:A; if i<n then goto L; i:=i+l

,....._, i:=O; L:i:=i+ 1; M:A; if i < n then begin i:=i+ 1; goto

M end;i:=i+l

by rule 3 and rule 1, and

P2 ,....._, i:=0; i:=i+ 1; L:A; i:=i+ 1; if i < n then goto L

,....._,i:=O; i:=i+l; L:A; i:=i+l; if i<n then gotoLelse0

,....._,i:=O; i:=i+l; L:A; if i+ 1 <n then

begin i:=i+ 1; goto L end else begin i:=i+ 1; 0 end

,....._,i:=O; i:=i+l; L:A; if i<n then

begin i:=i+l; goto Lend; i:=i+l

by la4 , rule 2, /ac1 , and rule 2, respectively. (Remember that 0 denotes
the empty statement.) P1 ,....._, P2 now follows from rule 3.

The connection between goto statements and conditions is also studied,
though not from an axiomatic point of view, by Engeler (50). In particular,
he investigates the relation between termination properties of programs
and the provability of formulas in an infinitary language, viz., a language
allowing countably long disjunctions.

2.4. McCarthy's Theory of Computation

2.4.1. Introduction

Of central importance for the theory of semantics are the papers of
McCarthy (97- 101), in particular the papers published in 1963 (98 •99). They
contain a rich variety of ideas on possible approaches to the mathemat­
ical investigation of basic programming concepts, and detailed studies
of a number of the proposed methods. We can discuss only a selection from
McCarthy's work; reasons of space prohibit a more comprehensive treat­
ment.

The present section is based on the 1963 pagers (98 •99), and deals with:
recursive functions; the proof technique of recursion induction; state vectors
and state vector functions-in particular, in relation to assignment state­
ments; and recursion induction on state vector functions. Part of McCarthy's
formal system for conditional expressions was treated in Section 2.3.3.

Sec. 2] McCarthy's Theory of Computation 193

Discussion of his ideas on the formal definition of languages and appli­
cations to proofs about compilers is deferred to Section 3.3.

The list of topics which are considered in more or less detail in McCar­
thy's papers (98 •99) but which are not discussed here includes some general
reflections on motivations and goals for a theory of computation, computable
functionals and the A-and label mechanism, recursive definitions of sets,
relations to other formalisms and to mathematical logic, and computer­
checked proofs of programs (cf. also McCarthy (97)).

2.4.2. Recursion Induction
The formalism for conditional expressions (Section 2.3.3) can be used

for the definition of functions; e.g., the function abs(x) can be defined by

abs(x) = if x > 0 then x else -x.

If the function being defined occurs on the right-hand side of such an
equation, e.g., in the definition of the factorial function

f(n) = if n-" 0 then 1 else n Xf(n - I) (1)

then the definition and corresponding function are called recursive. (Note
that this use of the term recursive, though current in the field of program­
ming, does not coincide with that in recursive function theory as studied
in mathematical logic.)

A problem which presents itself immediately with such definitions is
that of convergence. In Eq. (1) it can be seen that the process of determ­
ining f(n) terminates only for n > 0. However, a formal theory of con­
vergence is not available. Therefore we shall assume below that the functions
considered are convergent for the relevant arguments.

The general form of the equation for the recursive definition of a
function is

(2)

where the right-hand side is a conditional expression in which f occurs.
Suppose that we can show that two functions g and h both satisfy Eq. (2)
for appropriate arguments. Then we say that the equivalence of g and h
(for these arguments) has been proved by recursion induction.

This technique was introduced by McCarthy (98) and illustrated by
several examples, both of numerical and nonnumerical (involving LISP
functions) type. McCarthy (99) also applies it to state vector functions (see
Sections 2.4.3 and 2.4.4). Further applications are contained in the papers

194 Semantics of Programming Languages [Chapter 3

on proofs about the correctness of compilers by McCarthy and Painter (102),

Painter (109), and Kaplan (70) (Section 3.3).
Recursion induction has also been studied by Cooper (38 •39). In the

first paper (38) he considers three definitions of the factorial function, which
are generalized by abstracting from the special properties of the functions
involved in the definitions (such as multiplication). The three definitions
are proved equivalent, and a particular case of the generalized function is
shown to be a function which reverses the order of symbols of a list. Next
he proves the equivalence of two functions for evaluating an approximation
to an integral. Examination of the strategies used in these proofs has led to
the discovery of a new proof rule which can be applied in situations where
no proofs by recursion induction have been found. The other paper by
Cooper (39) is a survey of research on proofs about programs. It contains
some general reflections on the principles of such proofs. In addition, the
work done at the Carnegie Institute of Technology on proofs about com­
pilers (London (85 •86), Earley (46), and Evans (54)), Cooper's previous pa­
per (38), and some plans for future work are discussed.

As an illustration of the nature of a proof by recursion induction, and
of the application of some of the axioms of Section 2.3.3, we give an example
of such a proof, taken from Cooper (39).

Let f(n) be defined by Eq. (I), and let g(n) = h(n, 0, I), with

h(n, m, a)= if n=m then a else h(n, m+I, (m+I)xa) (3)

We prove that f(n) = g(n). Two auxiliary functions are introduced. Let
h' (n, m, a) be defined by

h'(n, m, a)= if n=m then a else n xh'(n- I, m, a) (4)

It is clear that h' (n, 0, I), regarded as function of n, satisfies Eq. (I); hence
f(n) = h'(n, 0, I). Let h"(n, m, a) be defined by

h"(n, m, a)= if n=m then a else h'(n, m+I, (m+I)xa) (5)

Using Eqs. (5) and (4), M 12 (Section 2.3.3), M11 , and Eq. (5), we obtain
h"(n, m, a)= if n=m then a else

if n=m+I then (m+I)xa else nxh'(n-I,m+I,(m+I)xa)
= if n=m then a else

if n=m+I then nxa else nxh'(n-I, m+I, (m+I)xa)
= if n=m then a else

nx(if n-I=m then a else h'(n-I,m+I, (m+I)xa))
= if n=m then a else nxh"(n-1,m,a)

Sec. 2] McCarthy's Theory of Computation 195

It follows that h"(n, m, a) satisfies Eq. (4); hence, by recursion induction,
h"(n, m, a)= h'(n, m, a). Replacing h" by h' in Eq. (5), we see that h'
satisfies Eq. (3); thus, again by recursion induction, h'(n, m, a)= h(n, m, a).
Since f(n) = h'(n, 0, 1) = h(n, 0, 1) = g(n), the required result follows.

2.4.3. Recursive Functions of State Vectors

In this section we discuss McCarthy's method for investigating prop­
erties of programs by associating them with recursive functions.

In general, a program manipulates a number of variables. The current
values of these variables constitute the so-called state vector, which will
be denoted by r In order to obtain a functional representation of a pro­
gram, one associates it with a function <1, such that f = aa) is the state
vector resulting after execution of the program for the initial state vector t

We first give an explanation of some of the basic properties of state
vector functions by means of examples of programs in a simple language,
viz., consisting of sequences of (possibly labeled) assignment and conditional
goto statements. Let S1 and S2 be two such sequences, with the restriction
that they have only one entrance and exit, i.e., they neither contain labels
which are referred to from "outside," nor goto statements referring to
labels outside. Suppose that already associated with S1 and S2 are the
functions <11(~) and aifl. Then

1. With S1 ;S2 is associated a(fl = <12(<11(fl).

2. With if p then goto L; S1 ; L: S2 is associated
a(fl = if p(~) then a2(fl else <1i<11(fl).

3. With L: S1 ; if p then goto L is associated
a(fl = if p(~) then <1(<11(~)) else <11(;).

From the third example it follows that the state vector function is recursive
in the case that the program contains a loop.

The rules given in these examples are not intended as a general scheme
for the construction of state vector functions. Because of the restrictions on
S1 and S2 , they are by no means sufficient to treat all sequencing structures.
In the general case the construction of the state vector function <1 correspond­
ing to a given program leads to a set of mutually-dependent recursive
functions with <1 as one of its elements. Some specific examples of such
constructions are given by McCarthy (99). The general problem is considered
by de Bakker (11), Bohm (16), Luckham et al. (91), and Strachey (123). An
alternative approach, adopted by McCarthy (101), Kaplan (70), and Paint­
er (109), is to extend the state vector with a statement counter, the current

196 Semantics of Programming Languages [Chapter 3

value of which is the number of the statement to be executed. This technique
has proved useful when state vector functions are applied in the formal
definition of languages (Section 3.3). However, the first solution should
presumably be preferred in applications concerning proofs about individual
programs.

As a further illustration of the state vector concept, we show that a
special case of one of Yanov's axioms (Section 2.2.2) can be derived from
rules 1 and 2 and from the axioms for conditional expressions.

Let P1 be the program

if p then goto L1; S1; L1: if p then goto L2; S2; L2:

and let P2 be

if p then goto L1; S1; if p then goto L2; S2; L2: L1:

Yanov's axiom asserts that P1 and P2 are equivalent. We prove this for the
special case that S1 and S2 satisfy the above-mentioned restrictions, by
showing that P1 and P2 have equivalent state vector functions a' and a".

By rule 2, to the program if p then goto Li; Si; Li: (i = 1, 2) cor­
responds if p(fl then ; else ai(;). Composition of these two yields for the
function a' of P1 :

<1'(;) = if p(if p(fl then ; else <11(;))
then if p(;) then ; else <11(;)

else alif p(;) then ; else <11(;))

Application of M11 gives

a'(;) = if if p(;) then p(;) else p(<11(fl)
then if p(;) then ; else <11 (fl else if p(fl then al;) else <12(<11(;))

By M 4 , M5 , and M 6 this can be reduced to

By rules 1 and 2, to the program S1 ; if p then goto L2 ; S2 ; L2 : there
corresponds

Hence

a"(fl = if p(fl then ; else a(;)
= if p(;) then ; else if p(a1(;)) then <11(fl else <12(<11(;))

We conclude that a' = <1".

Sec. 2] McCarthy's Theory of Computation 197

A systematic investigation of the relation between the properties of
conditions and state vector functions, and of Yanov's axioms, is given by
de Bakker (11).

We have not yet discussed how assignment statements are treated. For
this purpose McCarthy has introduced two functions, a and y. Here a(x,
f, fl reflects the effect of the assignment statement x := f executed at the
moment that the current state vector is g. It delivers a new state vector
which is equal to g except for its x component, which has now become the
value of the function f The function y(x, fl delivers the current value of
the variable x in the state vector r The relations between the functions a
and y are characterized by the following rules:

1. y(x, a(y,f, g)) = if x=y then f else y(x, g).

2. a(x, y(x, g), g) = g.
3. a(x,f, a(y, g, fl) = if x=y then a(x,f, fl else a(y, g, a(x,f, g)).

As an example of the application of these rules, we consider the equivalence
x:=y; y:=x ,..._, x:=y (axiom Ba1 of Section 2.3.2). With x:=y is associated
a(x, y(y, g), g). By the given rules this is equivalent to a(y, y(x, a(x, y(y,
g), fl), a(x, y(y, g), g)), i.e., to the function associated with x:=y; y:=x.

The three rules are studied in detail by Kaplan (71). An axiomatic
theory is developed with these rules as axioms, to which some rules of
inference are added. A formalism is introduced for interpreting the well­
formed formulas of the theory; moreover, it is defined what it means for a
formula to be true in a given interpretation. Then the following complete­
ness theorem is proved: A formula is a theorem of the axiomatic theory if
and only if it is true in all interpretations.

2.4.4. Recursion Induction on State Vector Functions
As a final example of McCarthy's work, we discuss an application

of the combination of the ideas from the two previous sections. Consider
the following two programs P1 and P2 , with corresponding functions cr1

and cr2 :

P1 is
L 1 : if n=O then goto L 2 ; s:=nxs; n:=n-1; goto L 1 ; L2 :

P2 is

Let ii be the function corresponding to s:=nxs; n:=n-1. (Note that ii

198 Semantics of Programming Languages [Chapter 3

can be expressed in terms of a and y.) Then for a 1 we have

(6)

From the properties of a and y, and the definition of the factorial, it follows
that if y(n, ,;) = 0, then ai,;) = ,;, and if y(n, ,;) ,f:= 0, then P2 is equivalent
to

(For this equivalence see also an example of Section 2.3.2.) We conclude
that

ai,;) = if n=0 then ,; else crio'(,;)) (7)

Comparison of Eqs. (6) and (7) yields, by recursion induction, that cr1 = cr2 •

McCarthy has also introduced a method for directly applying recursion
induction to programs, i.e., omitting the intermediate use of state vector
functions. He in fact applied it to obtain the equivalence given above of
P1 and P2 (99). Since we have not discussed this method, we had to use state
vector functions in the derivation of P1 ,....., P2 •

2.5. Flow Diagrams

2.5.1. General Properties

Ever since the first years of computing, flow diagrams have been used
for the representation of programs (their use goes back to Goldstine and
von Neumann (60)). As is well known, they are especially suitable for
providing an overall picture of the global properties of a program-in
particular, with respect to its sequencing structure.

Although flow diagrams have been used for practical purposes for a
long time, theoretical investigation of their properties has started only
relatively late. The first treatment which might be called abstract of flow
diagrams seems to be due to Kaluzhnin (69) (see also Fels (56)). Kaluzhnin
introduces the notion of a graph schema, defined as follows:

Let there be given a set A = { A1 , A 2 , ••• , An}, the elements of which
are called operators, and a set F = {F1 , F2 , ••• , Fm}, the elements of which
are called discriminators.

A finite, labeled, directed graph (Berge (14)) is called an A-F-graph
schema if it satisfies the following conditions:

1. There is precisely one node, called the entrance, to which no arrow
leads and away from which exactly one arrow leads.

Sec. 2] Flow Diagrams 199

2. There is precisely one node, called the exit, away from which no
arrow leads.

3. With the exception of the entrance and exit nodes, from each node
of the graph there leads either one or two arrows. In the first case it is called
an operator node, and is labeled by an element of A. In the second case
it is called a discriminator node, and is labeled by an element of F. The
arrows leading away from a discriminator node are marked, e.g., by O and I.

An interpretation of an A-F-graph schema is defined by the selection
of a domain D, and by interpreting the elements of A as functions from D
to D and the elements of Fas functions from D to {O, I}. An interpreted
graph schema defines a partial function from D to D in the usual way:
Starting with the entrance node a path is followed through the graph in
the arrow direction. When an operator is met the function corresponding
to it in the given interpretation is evaluated for the argument considered
(the result becomes the argument for the next function) and the arrow
leaving this node is followed. A discriminator node determines a choice
from the two arrows leading from it. It selects the arrow marked O (I) if the
value of the corresponding function for the argument considered is O (I).
The evaluation of the function determined by the graph schema terminates,
if ever, when the exit node is reached. (A more formal description of the
evaluation of the function determined by an interpreted graph schema may
be found in the paper by Kaluzhnin (69) and in most of the papers to be
discussed presently c1a,s1,101,126).

After the definition of graph schemata some of their properties are
studied. A rule is given for obtaining, for each Markov algorithm, an inter­
preted schema which defines the same function. The graph-schema for­
malism provides a convenient means of defining substitution or composition
operations-this in contrast, e.g., with Markov algorithms. The substitution
of a given graph schema for an operator node Ai in another schema is
defined as follows: Replace each occurrence of A; in the second schema by
the graph which results after deleting the entrance and exit nodes of the
first schema. Note, however, that substitution cannot be defined in the same
way for discriminator nodes.

We have given a rather detailed account of the main ideas of Kaluzh­
nin (69) because they return in some form in many of the other papers on
properties of flow charts, with the discussion of which we now proceed.

As already mentioned, an important application of flow charts is their
use in the study of the sequencing concept. It should be clear, however,
that there is no essential difference between the representation of the se-

200 Semantics of Programming Languages [Chapter 3

quencing structure of a program by means of a flow diagram, or a linear
notation based on goto statements. (On the other hand, the repetitive effect
of the recursive use of procedures is in general not directly representable
by means of a flow diagram. This question is discussed by Cooper (38

) and
McCarthy (99).) Which of the two approaches-sometimes characterized as
geometric versus algebraic-is preferred is mainly a matter of convenience.
For the investigation of the global properties of a sequencing structure a
flow-chart representation may be more appropriate, whereas local aspects
-e.g., considered in the axiom systems of Yanov and Igarashi-are more
concisely representable in terms of a linear notation.

The close connection between properties of flow charts and of goto
statements implies that a number of investigations treated in the previous
sections may just as well be viewed as dealing with flow charts. This holds,
e.g., for Yanov's work, the equivalence results of which are immediately
applicable to graph schemata, or for the results on the formalized computer
programs of Luckham et al. (91), the operator nodes of which must be
interpreted as assignment statements. In addition, flow charts were in fact
used by McCarthy (99) in his explanation of the association of state vector
functions with programs.

There is a fairly extensive literature dealing with flow charts, with
varying degrees of relevance for the semantics of programming languages.
No attempt at completeness will be made in our discussion of them, but
we shall indicate briefly the various directions which may be distinguished
in these investigations, and give some representative references.

First we mention some papers which are concerned with the relation
between graph schemata and notions from logic-in particular, computability
theory. Peter (111 •112) gives the first proof of the equivalence of the class
of functions defined by means of graph schemata and that of partial recursive
functions. Asser (6) proves the equivalence of graph schemata with his
function-algorithms (7). Kunze (76) studies a certain extension of graph
schemata which allows operations on only a part of the object being trans­
formed. Another proof of the equivalence of graph schemata with partial
recursive functions is given by Ershov (51). The same equivalence result is
again proved by Basu (13), who also gives an algorithm for the transforma­
tion of flow diagrams to a linear notation. Thiele (126) considers (extended)
graph schemata, the operator and discriminator nodes of which are inter­
preted by functions and predicates as studied in the first-order predicate
calculus, and investigates to what extent the results of the predicate calculus
can be extended to these structures. Our judgment on the relevance of the
sort of results meant here is twofold. On the one hand, they are not as yet

Sec. 2] Flow Diagrams 201

directly applicable to semantics; the remarks of the first part of Section
2.1.2 are largely pertinent here. However, graph schemata are much more
suitable for the representation of properties of programs than, e.g., Turing
machines. Hence it may well be that further development of the logical
investigations of graph schemata will lead to results which are indeed inter­
pretable as results on programming concepts. Clearly, major progress in
semantics would be achieved, if, e.g., the work of Thiele were extended in
such a way that theorems of the predicate calculus could be interpreted in
some manner as theorems on properties of programs.

In a second group of papers properties of graph schemata are investigat­
ed by means of graph theory. Examples are Karp (72), who uses graph
theory to determine redundancies in programs (detection of nodes which
cannot be reached from the entrance node, or from which the exit node
cannot be reached), and Schurmann (117- 119), who gives algorithms to de­
termine the number of certain cycles in graphs, which cycles correspond to
loop structures in programs. Use is made in these papers of the connection
matrices of the graphs considered. This is also done by Krider (75) and Hain
and Hain (62), who are mainly concerned with the actual drawing of flow
charts.

In our opinion, the purely graph-theoretic approach to flow-chart in­
vestigation is useful only for a limited class of problems. In order to obtain
deeper results, the graph structure must be investigated together with the
properties of the predicates associated with its discriminator nodes, and
with the effects of the operators upon these predicates, which effects de­
termine the flow of control. For most purposes the graph structure alone
is too poor a model of the flow diagram.

Probability aspects of graph models of computations are studied in a num­
ber of papers, e.g., (93- 95 •113). These investigations are only remotely related
to programming concepts (an exception is, of course, the notion of parallel­
ism, which is, however, not considered in the present chapter), especially
since many of them pertain also to operating systems, e.g., in a time­
sharing environment. Discussion of them is therefore omitted.

Narasimhan (107) is more directly concerned with programming lan­
guages. An extensive formalism is introduced with flow diagrams as basic
components. Rules are given for the substitution of a flow diagram for
nodes in another diagram. These substitutions may be considered as sub­
routine calls. Compared with other work, an extension is introduced which
amounts to the treatment of subroutines with parameters. The formalism
also allows parameters referring to other flow diagrams. For such nested
calls of subroutines, the term hierarchical computation is used. The system

202 Semantics of Programming Languages [Chapter 3

is envisaged as a general framework in which properties of languages and
computers can be phrased. In fact, the paper even purports to develop "a
unified meta theory of programming languages and computers." This highly
ambitious goal has certainly not been achieved. All that can be said is that
the proposed formalism may be of some use for the investigation of the
transfer of information between different flow diagrams, although this will
have to be borne out by further elaboration.

A more interesting paper is that by Bohm and Jacopini (18). The
problem is considered whether it is possible to decompose each flow dia­
gram into a finite number of base diagrams. By means of a counterexample
it is shown that this is not the case. It is necessary to introduce an extension
of the flow-chart formalism which amounts to the following: Whenever an
argument is subjected to a test by one of the discriminator nodes of the flow
chart it is supplied with an indication of the result of this test. A mechanism
for inspecting or deleting these indications is also introduced. It is then
shown how, in the extended formalism, each flow diagram can be decompos­
ed using either three or two base diagrams. Related is the work of Cooper(40).

Meaning-preserving transformations of graphs are introduced, and necessary
and sufficient conditions are given which must be satisfied by a graph to
allow reduction to some normal form by means of these transformations.
A comment by Cooper on the relation of his work to that of Bohm and
Jacopini is given in (41). In order to clarify the relation between the results
of Bohm and Jacopini (18), Cooper (40) and various approaches discussed in
the previous sections (e.g., is it possible to express these results as properties
of the functions associated, in McCarthy's sense, with programs?) we expect
that the method of Floyd (58), to be treated in the next section, will be useful.

2.5.2. Floyd's Method
Flow diagrams are used as a tool for assigning meaning to programs

in an important paper by Floyd (58).

Consider a flow diagram with commands associated with its nodes.
(The distinction of the previous section between operator and discriminator
nodes is not made here; commands include both cases.) With each con­
stituent arrow of the flow diagram a proposition is associated which states
the condition to be satisfied by the variables manipulated by the program
(i.e., the state vector) in order that the flow of control take the arrow
concerned (similar to these propositions are the "general snapshots"
proposed independently by Naur (108)). A verification condition for a
command is a relation which holds between the propositions associated
with the incoming and outgoing arrows of the command, respectively.

Sec. 2] Concluding Remarks 203

This relation is to be defined such that if it is satisfied, and if the proposition
associated with the arrow along which the command is entered is true, then
the proposition associated with the arrow from which the exit, after exe­
cution of the command, is taken, is also true.

An axiomatic treatment is given of the general requirements which
must be met by the verification conditions in order to obtain a complete
and consistent theory. These requirements are illustrated by the definition
of the verification conditions for the statements of a particular flow-chart
language. It is shown for instance that for the assignment statement x : = f(x,
Yi, ... , Yn) the condition must have the following form:

· Let P(x, Yi, ... , Yn) and Q(x, Yi, ... , Yn) be the propositions associated
with the incoming and outgoing arrows of this statement, respectively. Then
the verification condition is: If there exists x0 such that P(x0 , Yi, ... , Yn)
holds and such that x = f(x0 , Yi, ... , Yn), then Q(x, Yi, ... , Yn) holds.

Next, verification conditions for some typical ALGOL-like commands,
such as conditional, goto and for statements, are derived, and the locality
aspect of declarations is treated. A method for dealing with assignment
statements inside expressions is given-which amounts to the introduction
of a processor with a pushdown stack-as an illustration of the side-effect
feature of procedures.

As a final application, a technique for proofs about termination of
programs is proposed: Associate with each arrow of the flow chart-besides
the already-mentioned propositions-also a state vector function with values
in a well-ordered set. Then show that for each command the value of the
function associated with the incoming arrow is greater than the value of
the function associated with the outgoing arrow, where the two arrows are
such that their associated propositions satisfy the verification condition for
this command.

2.6. Concluding Remarks

In this section we make a few concluding remarks on the research on
basic programming concepts discussed in the preceding sections. For this
purpose we consider again the list of Section 2.1.1. It appears that the
majority of the investigations concentrates upon concepts 4, 5, and 7, i.e.,
conditional constructions, sequencing, and assignment. A rearrangement
of the references dealing with one more of these concepts may be useful:
assignment (10•21 •71); conditions (9 •23 •25 •44 •114 •130); assignment and condi­
tions (106); conditions and sequencing (11,16-18,38-40,47,so,52,53,64,116,135-138);

and assignment, conditions, and sequencing (20,58,63,65-67,77-81,91,98,99,104,105,

204 Semantics of Programming Languages [Chapter 3

108,123 •125) (a few references have been included in this scheme which were
not yet mentioned, but are to be treated in Section 3).

If one bears in mind that, apart from a few exceptions, all these papers
use different methods and formalisms, one will appreciate the remark of
Section 2.1 concerning the difficulty of incorporating the various approaches
into one unified system, allowing a systematic exposition of the interrelation­
ships of the proposed methods and the results obtained. It seems likely
that decisive progress will be achieved only if a number of unifying notions
will have been found, having the same effect on semantics as, e.g., the theory
of phrase-structure grammars has had on syntax. However, although we
feel that a complete synthesis is not within direct reach, there are a number
of less ambitious goals for future research which may contribute towards
unification, and which seem not too difficult. Possible candidates for such
investigations are:

1. A study of the relation between the various axiomatic characteriza­
tions of assignment.

2. An analysis of the relation between the functional approach to
sequencing (via systems of recursive functions), and the imperative approach
(via goto statements).

3. An analysis of the relation between the algebraic properties of se­
quencing (axioms of Yanov and lgarashi), and the various methods based
on flow charts.

4. More abstractly (and more difficult), an investigation of the dif­
ferent notions of equivalence between programs and the corresponding
equivalence-preserving transformations.

3. FORMAL DEFINITION OF PROGRAMMING
LANGUAGES*

3.1. Introduction

After having given in Section 2 a survey of the investigations of basic
concepts in programming, we devote Section 3 to a discussion of the research
which has been done on complete programming languages. Most of this
research is concerned with the formal definition of (syntax and) semantics
of programming languages.

* Section 3 owes much to our participation in the discussions of the IFIP Working
Group 2.2 on formal language description languages. However, all opinions expressed
in this section are our own and do not necessarily reflect the opinions of the Group.

Sec. 3] Introduction 205

The work reported in the previous section was inspired mainly by the
wish to investigate the mathematical properties of concepts in programming
and to obtain proofs about these properties. On the other hand, research
in methods for formally defining languages is motivated primarily by other
reasons of a more practical nature. Of these we mention the following:

I. First of all, the wish to provide the compiler writer with a complete,
precise, and unambiguous definition of the language for which he must
construct a compiler. Such a definition should, for instance, make it clear
which parts of the language are not fully specified, so that the implementor
knows where he may choose his own interpretation. As an example of an
implementation-dependent feature of most programming languages, take
real arithmetic, the implementation of which will differ with the various
machines for which it is intended. However, the formal description may well
state some basic requirements which must be satisfied by all implementations.

2. A formal description method for languages can also be of use in
their design. It should lead to a vocabulary for discussions about concepts
in the language. One might expect of it the detection of incompatible, con­
tradictory, or ambiguous constructions, or it might be used as a source of
inspiration for new concepts which would not have originated directly from
practical considerations. These applications of a formal description method
will in particular arise when a new language is designed on the base of an
already existing method. For instance, the design of ALGOL 68 has been
influenced by the previously developed method for its syntactic description
(cf. Section 3.6); in addition, there has been much interaction between the
design of CPL and the theoretical investigations of semantics by Landin,
Strachey, and others (Section 3.5).

3. People who want to write or understand programs may want to
consult the formal definition of the language in those cases where their
usual reference document does not provide a sufficiently clear answer to
their problem. Experience has shown that such situations, where the manual
which describes the language does not give satisfactory information, often
occur.

4. A formal definition of a language may be used for standardizing
this language. A need for the availability of a formal definition method has
been expressed several times by people who are concerned with the standardi­
zation of programming languages, e.g., by Steel (122).

5. Comparison of different languages may be facilitated when they
have been described formally using the same method. It should then be
possible to establish which concepts in the languages are essentially the

206 Semantics of Programming Languages [Chapter 3

same, and for the remaining ones what relationships, if any, they have with
each other.

6. Finally, one might expect of a formal definition of a language that
it can be used to give proofs about properties of the language; one may
distinguish here among proofs about general concepts in the language,
about individual programs, and about compilers for it. This application is
usually considered to be of less importance than the ones mentioned above,
since it is recognized that more or less complete descriptions of full languages
are too complicated to be used as a tool for giving proofs. However, some
systems for formally describing languages have indeed been used for proofs,
e.g., on the correctness of a small compiler (Section 3.3).

After these introductory remarks on possible reasons for formal lan­
guage definition we shall devote the remainder of this chapter to a survey
of the several systems which have been used up to now. The book edited
by Steel (121), which contains the proceedings of a conference on formal
language description languages held in 1964, may serve as a further in­
troduction to the field of language definition. The principles of many of
the systems currently in use are presented in this book (an important
exception is the Vienna work on the definition of PL/I). It also contains,
especially in the discussions, a great deal of information on how the various
authors motivate their approaches.

3.2. The Markov-Algorithm Approach

Markov algorithms have become well known in programming. They
were introduced by Markov (92) (for an introductory exposition see Men­
delson (103)) for the investigation of problems in computability theory,
mainly leading to theorems on undecidability, and may be compared from
this point of view, for instance, with Turing machines. However, the trans­
formation scheme as present in Markov algorithms has found several ap­
plications in practical programming, the first of which seems to be due to
Y ngve in his design of COMIT (139). Most of these applications are in the
field of languages for symbol manipulation, for which we refer to Bo­
brow (15) (see also Christensen (35) and Itturiaga (68)).

Obviously, Markov algorithms need extensions with other concepts in
order to be useful for practical purposes. For instance, in many cases some
goto mechanism is added. Other extensions will appear presently in our
discussion of the use of Markov algorithms for formally defining languages.

The starting points for the use of Markov algorithms for language
definition are the papers of van Wijngaarden (131 •132), Caracciolo (26), and

Sec. 3] The Markov-Algorithm Approach 207

Caracciolo and Wolkenstein (34). It was noticed only afterward that these
papers had in common the introduction of an essentially similar extension
to the Markov-algorithm concept, which may be summarized as follows: In
the ordinary Markov algorithm one has transformation rules, the left- and
right-hand sides of which are sequences of symbols over some given al­
phabet. In order to establish whether a rule is applicable to a given sequence,
the sequence is scanned for the occurrence of a sub-sequence which is
identical to the left-hand side of the transformation rule. If such a sub­
sequence does occur, then its first occurrence is replaced by the right-hand
side of the rule concerned. In the extended version the transformation rules
consist in general not only of symbols from the given alphabet (to be called
terminal symbols), but also of metalinguistic variables, for instance, in
Backus notation. An example of such an extended rule is

(unsigned integer) 0 + (digit) ----+ (unsigned integer) (digit) (8)

The corresponding extension of the concept of applicability, and of the
transformation determined by an applicable rule, is then: Consider a trans­
formation rule and a terminal sequence. The rule is applicable to the se­
quence considered if its left-hand side satisfies the following condition:
There exist productions of the metavariables occurring in it such that the
sequence which results after substituting these productions for these meta­
variables is identical with a sub-sequence of the considered terminal sequence
(In case there is more than one possibility for such productions, the first one
in a suitably defined:order is chosen.) This sub-sequence is then replaced by
the sequence which results from the right-hand side when the same substitu­
tions of productions for metavariables have been performed there as in the
left-hand side.

Example: Rule (8) is applicable to the sequence 210 + 5, provided
that the usual definitions of (unsigned integer) and (digit) are available,
and it transforms this sequence to 215.

In this description of the proposed extension of the Markov algo­
rithms (26 ,34 •131 ,132) (essentially the same system was proposed subsequently
by Cohen and W egstein (37)) some modifications have been introduced in
order to bring out the common features. We now treat some other ideas
of these papers.

Caracciolo (26) and Caracciolo and Wolkenstein (34), instead of using
metalinguistic variables in the transformation rules, used in fact a some­
what more general approach: The rules may contain names of arbitrary
sets, provided that it is effectively decidable for each given sequence of

208 Semantics of Programming Languages [Chapter 3

symbols whether it belongs to this set or not. Moreover, a further extension
was considered in which the right-hand side of a transformation rule does
not simply determine a replacement-in case of applicability of the rule to
a given sequence-but in general the application of some recursive function
to this sequence. (Essentially the same extension of Markov algorithms was
studied previously by Asser and Vuckovic (7).)

In order to establish whether a transformation rule is applicable to some
sequence, it may be necessary to determine whether some part of this
sequence is a production of a metavariable occurring in the left-hand side
of the rule. In Caracciolo's system a separate set of formulas is supposed
to be given for this purpose. On the other hand, in van Wijngaarden's
work (131 •132) these questions are settled by consulting the same list of trans­
formation rules, i.e., these rules contain all relevant "syntactic" information.
Details of the precise way in which this is done are omitted here.

We now consider some applications of the systems of van Wijngaarden
and Caracciolo to language design and definition.

Van Wijngaarden (131) was concerned both with the design of a language
called generalized ALGOL and with its formal description. Some ideas on
this generalization of ALGOL were taken up by Wirth (128) and Wirth and
Weber (129), although in the latter a completely different method for formal
definition was used. In van Wijngaarden (132) the emphasis was laid on the
formal definition of ALGOL 60. The ideas of this paper were used as the base
for our de Bakker's (8), where an almost complete definition of ALGOL 60
was given (the only feature not treated being real arithmetic), consisting
of about 800 transformation rules. The meaning of an ALGOL 60 program
is determined by the way in which it is transformed by these rules. Here
another extension of the Markov-algorithm scheme not yet discussed is of
importance, viz., the possibility of having a dynamically growing list of
rules. The execution of a particular ALGOL 60 program will lead to the
extension of the list of language-defining rules with rules which reflect the
meaning of this specific program. For instance, the occurrence of the
assignment statement a : = 3 in a program causes the creation of a new
rule a -+ 3 (omitting some details on locality), which will be applied each
time the value of a is needed subsequently in the execution of the program.
De Bakker (8) also gives a precise definition of the formal system used,
illustrated by several examples, and an implementation of an abstract
machine for interpreting it.

The system of Caracciolo has been applied to a large class of problems.
However, many of these have been described only in reports as yet un­
published. The list of applications includes:

Sec. 3] McCarthy's Ideas on Formal Definition 209

I. The design of a language for symbol manipulation, called PANON
I B (27,33,34).

2. The definition of a storage allocation mechanism for FORTRAN,
concerning the notions of COMMON, DIMENSION, and EQUIV AL­
EN CE, by Aguzzi and Pinzani (1).

3. The formal definition of a machine tool language by Caracciolo
and Camera (29) (also see Caracciolo (24)).

4. The definition of the record and file manipulation in COBOL (84).

5. The definition of ALGOL 60 (31). The main difference between this
and de Bakker (8) is that Caracciolo's system does not include the idea of
a growing list of rules. The relevant information originating during the
execution of the program, i.e., the sequence being transformed, is kept
available by including it in some way in this sequence. Moreover, the
treatment of goto statements and locality is simpler than that in de Bakker's
system (8).

6. The definition of SIMULA (32).

7. The definition of the de Bakker's formal system (8) and some prin­
ciples of the system which has been used for the formal definition of PL/I,
(Section 3.4) by Caracciolo (28) and Caracciolo and Carlucci (30).

3.3. McCarthy's Ideas on Formal Definition

McCarthy's main paper on the formal definition of languages was given
at the 1964 IFIP Working Conference (101) (the basic ideas were already
described in the last part of a paper to the the 1962 IFIP Congress (99);

some comments were added in a paper to the 1965 IFIP Congress (100).

The first important concept of McCarthy's system is that of abstract
syntax, as opposed to the usual notion of concrete syntax. The concrete
syntax of a language, e.g., given by a context-free grammar in Backus
notation, prescribes which sequences of symbols constitute valid construc­
tions in the language. The abstract syntax, on the other hand, makes no
commitments about the way in which such constructions are represented
by sequences of symbols, but for each type of construction names of a
predicate and of functions are given, where the predicate is such that it is
true precisely for a construction of the given type, and the functions are
used for decomposing the construction in its relevant parts. For instance,
in an abstract syntax one is not interested in whether an infix or prefix
notation is used in binary arithmetic expressions; it is only necessary to be
able to recognize it as an arithmetic expression and to have functions for
obtaining its operator and its first and second operands.

210 Semantics of Programming Languages [Chapter 3

Abstract syntax is especially useful in combination with McCarthy's
proposal for defining the semantics of a programming language: This is
done by means of a state vector function (Section 2.4.3), called "lang,"
say, such that f = lang(n, ~) gives the state f which results from applying
the program n to the state ~- The crucial point here is to decide what in­
formation should be included in the state vector. In Section 2.4.3 it was
taken to be the set of current values of the variables occurring in the pro­
gram. In McCarthy (101) and in the papers to be discussed presently it also
includes a statement counter, the current value of which is the number of
the statement to be executed. These components are sufficient for the
definition of languages containing only some simple concepts such as arith­
metic and Boolean expressions, assignment and goto statements. For the
treatment of richer languages, which also include concepts as locality,
procedures, declarations, etc., many more components must be introduced,
as was done, e.g., in the system for the formal definition of PL/I (Section 3.4).

As an illustration of the use of state vector functions for formal de­
finition, we consider the treatment of the assignment statement. Let the
predicate assignment(s), and the functions left(s) and right(s) be available
in the abstract syntax, and let sn be the name of the statement counter,
with the current value n. Furthermore, we assume that a function value
(t, fl has already been defined, delivering the value of the expression t for
the state ~- The meaning of an assignment statement, using the function a
of Section 2.4.3, is then described by:

.. . if assignment(s) then

a(sn, n + I, a(left(s), value(right(s), e), fl) ...

The formalism sketched above, though not yet elaborate enough for
the definition of complete languages, has found interesting applications in
proofs about compilers, e.g., by McCarthy and Painter (102), Painter (109),

and Kaplan (7°). The former paper (102) can be considered as preparatory
to the latter two (70 ,109), where a proof is given of the correctness of a
compiler for a language including arithmetic and Boolean expressions,
assignment, conditional, and goto statements, and some 1/0. The notion
of a correct compiler is defined as follows: First the semantics of the source
language and the object language (of an idealized machine with a small set
of instructions resembling actual assembly operations) is given by the
method described. In order to construct the object program produced by
the compiler, it is necessary to also provide a synthetic (abstract) syntax of
the machine language, i.e., a set of rules for composing a program, as

Sec. 3] The Vienna Method 211

opposed to the analytic abstract syntax which gives a means for taking a
program apart. The connection between the analytic and synthetic syntax
of a language is defined by certain "regularity conditions." Next a function
is postulated which establishes a 1 : 1 mapping of the variables of the source
program onto a set ofregisters used in the object program. Then the compiler
is correct if for each source program, the corresponding object program
produced by it satisfies the following requirement:

Let the variables of the source program and the registers corresponding
to them by the postulated function be assigned the same initial values. Then
the final values of the variables in the source program and the registers of
the object program are the same, these values being obtained by application
of the semantic function of the source language and object language,
respectively.

The main tool in the proofs is recursion induction or some of its
variants. The proofs by both Painter (109) and Kaplan (7°) are long and
complicated. In our opinion, they provide a good illustration of the need
for some fundamental theorems in the theory of semantics which would
make it unnecessary to start from scratch, as it were, every time one wants
to give a proof in this field.

3.4. The Vienna Method

One of the major achievements in the area of language definition is
the formal definition of PL/I, as given by the PL/I definition group of the
IBM Laboratory in Vienna.

The method used, although developed with view to PL/I, consists in
fact of a number of concepts quite generally applicable. Hence it can also
be used with other languages; this has been illustrated by employing it
for the definition of ALGOL 60.

The principles of the method are explained by Lucas et al. (90). It is
based on the definition of an abstract machine which is characterized by
the set of its states and its state transition function (cf. Elgot (48

) and Elgot
and Robinson (49)). A given program defines an initial state of the machine;
the subsequent behavior of the machine is said to define the interpretation
of the program. To be more precise, let A be the state transition function
and ~o the initial state. Then the behavior of the machine is the sequence
~ 0 , ~ 1 , ••• , ~i, ~i+1, .•• , with ~i+1 = A(~i). The sequence terminates, if
ever, if an element of a given set of final states is reached.

The interpreting machine is used in this way to attach a meaning to
programs and their constituent expressions. However, it proved to be in-

212 Semantics of Programming Languages [Chapter 3

convenient to have the machine operate directly upon the sequences of
symbols which constitute these expressions, as prescribed by the syntax.
To circumvent this difficulty, an intermediate stage has been introduced.
McCarthy's abstract syntax is used to define programs as abstract objects,
and these abstract objects are the entities manipulated by the interpreting
machine. Hence, before the machine can be applied to a given program
text, i.e., a sequence of symbols produced by the concrete syntax, the text
must first be translated into the corresponding abstract object. For PL/I
this translation is described by Alber and Oliva (3); a general discussion
of the relation between abstract and concrete syntax can be found in the
paper by Lucas et al. (90).

Next we explain some features of the formalism used for the description
of the operations of the interpreting machine. A general class of objects is
introduced, of which both the abstract objects representing programs and
the states of the machine are subclasses. These objects may be considered
as tree-structured entities: An object is either elementary or it is composed
of a finite number of immediate components, each of which is again an
object. The immediate components of an object are named by means of
selectors. The application of a selector to a nonelementary object yields
the immediate component with this selector as its name. To a nonelementary
immediate component again a selector can be applied, etc. In this way, by
successive application of selectors, all components of a given object can be
obtained.

Several operations on objects and their selectors are defined. The most
important of these is the so called µ-operator. Given an object A and a
composite selector (i.e., the functional product of a number of selectors)
and an object B, application ofµ results in a new object, viz., A, where the
component to which the composite selector points has been replaced by B.

Some general schemes for the definitions of subclasses of the class of
objects are introduced, e.g., for the definition of objects, the immediate
components of which satisfy certain predicates. These schemes can be used,
e.g., in the definition of the abstract syntax of a language.

The formalism for dealing with general objects is then applied in the
description of the properties of the interpreting machine. It was already
mentioned that the states of the machine are special cases of these objects.
Each state has a so-called control part as one of its immediate components.
The control part of a given state is used by the machine to determine the
operations to be executed in order to obtain the successor state of this
state, i.e., it contains the relevant information for the state transition func­
tion. (During the execution of a program the situation may arise that one

Sec. 3] The A-Calculus Approach 213

has to perform a set of actions in unspecified order-e.g., the order of
evaluation of primaries in an expression is not defined in ALGOL 60; in order
to be able to describe such cases, the state transition function has been
extended in that it does not, in general, define one successor state, but a
set of successor states; hence, we have in fact a nondeterministic machine.)

The interpreting machine is illustrated by Lucas et al. (90) by applying
it to the definition of a simple language with some arithmetic, conditions,
assignment, procedures, and blocks. In addition to the control part, several
other state components are necessary to deal with these concepts. We
mention: The environment component, which is used to associate identifiers
with unique names (this is necessary to treat the scope problem), and the
dump component, which has a stacklike structure and is used to represent
the dynamic nesting of blocks, procedure, and function activations.

The short explanation given above of the general principles of the
Vienna method must suffice here; for further information we refer to the
paper by Lucas et al. (90).

As already noted, the most important application of the method is the
definition of PL/I. This is described in a number of reports. The main
document is by Walk et al. (127), and gives the abstract syntax and inter­
pretation of PL/I. The translation of concrete PL/I programs into abstract
programs is described by Alber an.d Oliva (3) (for the concrete syntax of
PL/I see Alber et al. (4)). The PL/I compile time facilities are not considered
by Walk et al. (127) but are treated separately by Fleck and Neuhold (57).

An informal explanation of the paper of Walk et al. (127) is given by Lucas
et al. (89).

The Vienna group has also started to exploit the formal definition of
PL/I in investigations on properties of the language, especially concerning
problems of implementation. Lucas (87) considers two interpretations of
the PL/I block concept, one based on the environment mechanism of Walk
et al. (127) and the other based on a chaining mechanism (5), and proves
the equivalence of these two interpretations. A further study in this area
has resulted in the detection of a deeply hidden error in a PL/I compiler (88).

Finally, we mention reports (82 •83) in which the Vienna method is
applied to the formal definition of ALGOL 60.

3.5. The A-Calculus Approach

Several authors have based their investigations on Church's A-calcu­
lus (36). Its introduction into programming is due to McCarthy (96), who
did not, however, further pursue its use in his theory of computation.

214 Semantics of Programming languages [Chapter 3

Semantic theories in which the A-calculus does play a central role have been
developed by Landin (77- 81) and Strachey (123•125). Related is the work of
Bohm (16) and Bohm and Gross (17), who use both the combinatory logic
of Curry (Curry and Feys (42) or Rosenbloom (115)) and the A-calculus in
the system CUCH. We shall now give a short explanation of some of the
main ideas of these authors.

In the first paper cited (77) Landin uses the A-calculus for modeling
expressions (as opposed to statements) occurring in programming languages.
To be more precise, he observes that an expression is usually constructed
from its components in three ways: by forming A-expressions (e.g., in the
case that the expression contains bound variables, or when an auxiliary
function is used in its definition), by forming an operator/operand com­
bination, or by forming a list of expressions. In order to investigate this
general structure of expressions, the notion of "applicative expression" is
introduced, and an abstract machine is described for evaluating applicative
expressions in a given environment. Similar problems are considered by
Burge {19).

In the next paper cited (78) (to which Landin's paper (80) at the 1964
IFIP Working Conference is an introduction) Landin also takes the impera­
tive features of languages into account. Jumps are taken care of by treating
them-apart from one important difference-as procedure calls. To deal
with assignment, both the notion of applicative expression and the structure
of the evaluating machine are extended. The system is applied to a definition
of ALGOL 60 semantics, essentially by exhibiting how to model constructs of
ALGOL 60 by means of extended applicative expressions. A formal description
of the correspondence is also given; "abstract ALGOL" is introduced as an
intermediate step, and a set of formulas is given to translate this both into
concrete ALGOL. 60, i.e., sequences of symbols, and into extended applicative
expressions. Landin applies his formal system in a discussion of alternatives
to various ALGOL 60 concepts, e.g., regarding its parameter mechanisms
(call by name or value versus call by reference) and some variations on the
own concept.

Strachey's work on semantics (123 •125) has been developed in parallel
with the design of the programming language CPL (12 •22 •124). The main
difference with Landin's system is that he does not propose any extension
of the A-calculus, but an (as yet only informally described) method for
mapping the constructs of the language into pure A-notation. Central con­
cepts in Strachey's system are the "left-hand value" and "right-hand value"
of an expression. These terms correspond to the values of the left part (i.e.,
the address) and right part of an assignment statement, but they are general-

Sec. 3] Other Methods 215

ized and also used in other situations, such as for the specification of param­
eters. An abstract store is used, which is a function from left-hand values
to right-hand values. A method is then described of associating (composi­
tions of) functions with (sequences of) commands. In the general case, when
a loop structure is present in a sequence of commands, the association will
lead to a set of mutually-dependent recursive functions.

Some extensions of Strachey's (123) work have been investigated by
Burstall (20), who has also made a detailed study of assignment (21), partly
based on Landins work (81).

Finally, we add a few remarks on the cucH system. Bohm and Gross (17)

give an explanation of its principles, whereas Bohm (16) is more concerned
with applying it to the description of concepts in programming. CucH is
introduced as a language, the expressions of which allow different inter­
pretations, with the provision, however, that the same interpretation be
given to expressions which are convertible into each other (in the sense of
the A-calculus). Some possible interpretations of CUCH expressions are then
proposed, partly dealing with notions which are often taken for granted in
other systems, such as integer arithmetic (in this respect CUCH may be con­
sidered to be complementary to, e.g., the work of Landin), but also with
more advanced concepts, such as the representation of flow diagrams by
systems of functions.

3.6. Other Methods

In this section we deal with some other methods which have been used
(or proposed) for formal definition.

First of all we consider the definition of ALGOL 68 (134). Clearly, the
method applied here is not as completely formal as those discussed in the
previous sections, since use is made in it of the English language. However,
it is also clear that the definition is considerably closer to a completely
formal definition than, e.g., that of ALGOL 60. As to the syntactic part of
the description, the formal system used is much more powerful than Backus
notation; thus, less English is needed here (and much richer structures can
be defined). To be more precise, whereas in Chomsky's classification Backus
notation corresponds to grammars of type 2, the system used for the de­
finition of the syntax of ALGOL 68, viz., the van Wijngaarden grammars, is
of type O (120), i.e., it has the same power as Turing machines or their
equivalents. (From this it follows that all use of English in the definition
of the syntax, as present, e.g., in the definition of the class of "proper
programs" by means of the context conditions, might have been avoided.

216 Semantics of Programming Languages [Chapter 3

However, this possibility is only of theoretical interest; a fully formalized
syntax would be very large and difficult to read.)

In the definition of the semantics of ALGOL 68 no (explicit) formal
system, but only English, has been used. A hypothetical computer is in­
troduced, and the meaning of the various constructions of the language is
defined by stating which actions it performs in their "elaboration." Since
English is used in these definitions in a very precise and rigorous way, they
may to some extent be viewed to be of a formal, though not symbolized,
nature. However, in order to be able to apply this "formal" system to other
languages, it is necessary to determine first which of its features are inde­
pendent of the specific properties of ALGOL 68. This separation of concepts
of the describing formalism from concepts of the language described must
be awaited before the method can be considered as a candidate for the
formal description of other languages.

An axiomatic approach to formal definition has been proposed by
Hoare (63). He first gives some general arguments in favor of such an
approach, and then illustrates it by an axiomatic definition of several basic
features of programming languages, such as integer and real arithmetic
(cf. van Wijngaarden (133)), expressions, procedures, assignment, and jumps.
Of this general arguments we mention the following: The definition of
constructs in a language by means of a set of axioms may be considered
as an implicit one, stating only their essential properties. This is precisely
what is needed for standardization of the language, since it provides the
compiler writer on the one hand with a set of conditions to be satisfied
by his implementation (which can be viewed as one of the possible con­
structive models of the axiom system), whereas on the other hand it leaves
him sufficient freedom to adopt the implementation to a particular machine.
Several other arguments, e.g., on the advantages of the axiomatic method
in the design and comparison of languages, are also given. Although we
are not always convinced that these only hold for the axiomatic approach,
as opposed to formal methods in general (e.g., in the (constructive) Vienna
method there is also a very careful distinction between the rules to be
satisfied by each implementation and those which leave open a choice to
the implementor), it may well be true that by means of a set of axioms a
more concise and elegant definition can be given than by a constructive
method. The examples of Hoare have indeed a simple structure; however,
he has not yet applied his method to the definition of a complete language.
We think that this should be done first before a fair comparison with other
systems can be made.

A number of methods for the specification of semantics have resulted

Sec. 3] Other Methods 217

from the research on the automatic construction of compilers. There exists
a fairly general agreement that these methods, however large their practical
use may be, do not provide a solution to the problem of formal definition.
First of all, they are of course heavily influenced by present-day compiler
techniques, and it is felt that these should be kept apart from the definition
of the meaning of a language, since they are in a sense extraneous to it.
One should first provide a compiler-independent definition of the semantics
of a language, and then one or more compilers can be constructed which
satisfy this definition. A second argument is the following: Compiler-orient­
ed specification of semantics is usually directed toward a (possibly some­
what abstracted) real machine; hence one might argue that the definition
of a language by means of a compiler is not complete unless some formal
description of the machine is given as well. However, the construction of
such a description, if feasible at all, is an independent problem, and the
definition of the language should not be burdened by it. (It should be re­
marked that the distinction between the compiler-oriented methods and
other formal techniques is not always as clear-cut as suggested here. For
instance, in the method of Wirth and Weber (129) a very simple machine
is used, the operations of which may well be considered as self-explanatory.)

Because of the arguments mentioned above we feel that a discussion
of the compiler-oriented methods is outside the scope of this chapter; they
are reviewed in great detail by Feldman and Gries (55).

A particular aspect of some compiler-oriented methods, in which the
meaning of a program is specified in parallel with the construction of its
parsing tree, is abstracted and generalized by Knuth (74). Consider a lan­
guage, the syntax of which is defined by means of a context-free grammar.
To the elements of the vocabulary (terminals and nonterminals) of the
grammar are assigned "attributes," and with each production rule there are
associated functions of the attributes. The attributes are of two types, either
"synthesized" or "inherited." Consider a derivation tree of a word in the
language and an element of the vocabulary labeling a node in the tree. If an
attribute of this element is defined-by means of the associated functions­
in terms of the attributes of its descendants only, it is called synthesized;
if it depends only on the attributes of its ancestors, it is called "inherited."
In general, a combination of synthesized and inherited attributes may lead
to circular definitions. An algorithm is given yielding a necessary and suf­
ficient condition for detecting circularities. The system is illustrated by
means of a simple language describing the operations of Turing machines.
(In our opinion, the semantic definition in this example is not quite suffi­
cient: It yields essentially a translation of a Turing machine program into

218 Semantics of Programming Languages [Chapter 3

another program resembling the conventional scheme with states and a state
transition function. However, the definition does not include a direct formal
description of the way in which the machine operates upon the tape.)

Again, a judgment on the merits of Knuth's method must be reserved
until it has been applied to a complete programming language.

3. 7. Summary

The various language-definition methods of the previous sections may
be briefly summarized as follows:

In the Markov-algorithm method programs are interpreted by means
of an abstract machine supplied with a list of transformation rules; the
machine operates directly upon sequences of symbols.

In McCarthy's method programs are considered as abstract objects
to which a meaning is attached by means of state vector functions.

In the Vienna method program texts are translated into abstract
objects which are interpreted by an abstract machine characterized by its
states and state transition function.

In Landin's method programs are translated via an intermediate stage
of abstract objects into extended A-expressions, and these expressions are
evaluated by an abstract machine.

In Strachey's method programs are translated into pure A-expressions.
In the ALGOL 68 method the meaning of a program, i.e., a sequence of

symbols produced by the syntax, is defined by the actions which are per­
formed in its elaboration by a hypothetical computer.

In the axiomatic method the meaning of a program is derived from a
list of axioms which characterize implicitly the properties of the construc­
tions in the language concerned.

In the compiler-oriented methods programs are translated into assembly
language programs for machines which more or less resemble present-day
computers.

In Knuth's method meaning is attached to a program by associating
semantic functions with the nodes in its derivation tree.

There is apparently a great variety in these systems. In our opinion, it
is not yet possible to determine which one of the methods should be pre­
ferred, or to predict which method, if any, will prevail in the future. First
a set of criteria must be developed for comparing the different systems.
However, there has as yet been no systematic research in this area leading
to a general framework in which the respective merits of the various methods

Sec. 3] Summary 219

can be assessed. Therefore we restrict ourselves to a few tentative remarks
on a number of points which should be taken into account in the judgement
of a formal definition method; no attempt will be made at a systematic
evaluation of the methods reviewed by means of these criteria.

1. A first criterion is the scope of the description method. Is it applicable
to all programming languages or only to a certain subclass of them? The
relevance of this question is limited by the lack of a suitable definition of
the notion of programming language; this renders "the class of all pro­
gramming languages" a rather vague entity. In principle, the answer is
easy: As soon as the formalism can describe Turing machines, it has enough
descriptive power. In practice, one may have some confidence that a system
which has proved capable of defining a language of the size of ALGOL 60,
say, will also be applicable to the definition of a reasonably large class of
other languages (see, e.g., the definition of a machine tool language by the
Markov algorithm method (29)). However, for the definition of the more
esoteric special-purpose languages corresponding special methods may well
be preferable.

2. A general criterion of great importance concerns the (inevitably
vague) notions of readability, transparency, conciseness, and elegance of
the description. One should distinguish here between the method and its
applications to specific languages. A very simple method will lead to a very
complicated definition. (No one has ever tried to use Turing machines for
language definition.) On the other hand, one requires the method to be
substantially simpler than the language to be described. Clearly, a compro­
mise must be found between these two extremes. Another way of putting
this is as follows: When one uses a metalanguage for the definition of a
language, one expects it to be unnecessary to introduce a metametalanguage
for the definition of the metalanguage, etc. Concerning these problems,
one should compare the remarks of Landin and Bohm on the self-defining
capabilities of their systems. The method of de Bakker (8), used on the one
hand for the definition of ALGOL 60, is also defined by means of an ALGOL 60
program. For a discussion of the apparent circularities in this approach we
refer to de Bakker (8).

A number of criteria can be derived directly from the various possible
uses of a formal definition, as listed in Section 3.1.

3. Some properties of a definition method which are of interest to the
compiler writer are: Is it possible to leave the definition of certain parts of
the language either completely open, or to give only a partial definition of
them, i.e., a definition which states some basic properties of the concept

220 Semantics of Programming Languages [Chapter 3

concerned, but does not give a full specification? Does the definition provide
information on the division of the actions to be performed at compile time
or at run time? (This is related to the question of where the borderline is
drawn between syntax and semantics in the method under discussion.)
What are the properties of the method with respect to the problem of es­
tablishing whether the constructions used in the implementation satisfy
the definition?

4. Questions related to language design are, e.g.: How much insight
is gained into the properties of the language concepts by formally describing
them? Is it possible to reflect independent concepts by more or less inde­
pendent parts of the description? Are small changes in language concepts
expressible by small changes in the description? Does the formal description
help in the clarification of the interactions between the constituent concepts
of the language, e.g., with respect to the detection of concepts which are
overlapping, incompatible, or which lead to ambiguous constructions?

5. For the people who want to write or understand programs, the main
criterion will be the readability, etc., of the definition. To the use of a formal
description in the comparison of languages, the criteria mentioned under (4)
are applicable. In order to qualify as a language standard, a description
must find the right balance between complete and partial definition.

6. Generally applicable criteria concerning the possibility of obtaining
proofs about or in a certain description method cannot be given. One might
give some preference to methods which rely on functions and functional
composition, since these often provide a convenient means for the phrasing
of mathematical arguments. Ultimately, however, only on the base of
experience can it be decided whether a system is useful for the derivation
of proofs.

Programming languages are highly complex structures, and it is only
to be expected that this is reflected in their formal definition. However, we
feel that there exists a fairly general agreement that the present methods are
not yet satisfactory with respect to these criteria (in particular criterion 2)
and that future research should continue in trying to improve them.

Conclusions

The theory of semantics of programming languages is only in its initial
stage. Before the goals mentioned in Section 1 will be attained much work
needs to be done, on deeper investigation of the foundations of program­
ming concepts, on further development of language definition techniques,
and on the application of semantics to language design and translation.

Chapter 3] References 221

We hope that this chapter has given an impression of what has already
been achieved in semantic research, and in this way may have contrib­
uted a little to its advancement.

REFERENCES

1. G. Aguzzi and R. Pinzani, On a Formalization of a Storage Allocation Mechanism
for FORTRAN, lnstituto di Elaborazione dell'Informazione, Report II-70, Pisa
(June 1968).

2. A. V. Aho and J. D. Ullman, The Theory of Languages, Math. Systems Theory
2, 97-125 (1968).

3. K. Alber and P. Oliva, Translation of PL/I into Abstract Syntax, Technical Report
TR 25.086, IBM Laboratory, Vienna (June 1968).

4. K. Alber, P. Oliva, and G. Urschler, Concrete Syntax of PL/I, Technical Report
TR 25.084, IBM Laboratory, Vienna (June 1968).

5. C. D. Allen, D. Beech, J. E. Nicholls, and R. Rowe, An Abstract Interpreter of
PL/I, Tech. Note 3004, IBM Hursley Laboratories (November 1966).

6. G. Asser, Funktionen-Algorithmen und Graphschemata, Z. Math. Logik Grund!.
Math. 1, 20---27 (1961).

7. G. Asser and V. Vuckovic, Funktionen-Algorithmen, Z. Math. Logik Grund!.
Math. 1 1-8 (1961).

8. J. W. de Bakker, "Formal Definition of Programming Languages," Mathematical
Center Tracts, Vol. 16, Mathematisch Centrum, Amsterdam (1967).

9. J. W. de Bakker, On Convex Sublattices of Distributive Lattices, Report ZW 1967-
003, Mathematisch Centrum, Amsterdam (May 1967).

10. J. W. de Bakker, Axiomatics of Simple Assignment Statements, Report MR 94,
Mathematisch Centrum, Amsterdam (June 1968).

11. J. W. de Bakker, Some Remarks on McCarthy's Theory of Computation, in pre­
paration.

12. D. W. Barron, J. N. Buxton, D. F. Harthley, E. Nixon, and C. Strachey, The Main
Features of CPL, Comp. J. 6, 134-143 (1963).

13. S. K. Basu, On Computation in Programming Languages, ICC Bulletin 6, 1-26 (1966).
14. C. Berge, "The Theory of Graphs and Its Applications," John Wiley and Co.,

New York (1962).
15. D. G. Bobrow (ed.), "Symbol Manipulation Languages and Techniques," Proc.

IFIP Working Conference 1966, North-Holland Publishing Co., Amsterdam (1968).
16. C. Bohm, CucH As a Formal and Description Language, in "Formal Language

Description Languages for Computer Programming," Proc. IFIP Working Con­
ference 1964 (T. B. Steel, Jr., ed.), pp. 179-197, North-Holland Publishing Co.,
Amsterdam (1966).

17. C. Bohm and W. Gross, Introduction to the CucH, in "Automata Theory" (E. R.
Caianiello, ed.), pp. 35-65, Academic Press, New York and London (1966).

18. C. Bohm and G. Jacopini, Flow Diagrams, Turing Machines, and Languages with
Only Two Formation Rules, Comm. Assoc. Computing Machinery 9, 366-372 (1966).

19. W. H. Burge, The Evaluation, Classification, and Interpretation of Expressions,
in "Proceedings of the Association for Computing Machinery 19th National Con­
ference," pp. Al.4.l-Al.4.22, Assoc. Computing Machinery, New York (1964).

222 Semantics of Programming Languages [Chapter 3

20. R. M. Burstall, Some Aspects of CPL Semantics, Experimental Programming Reports
No. 3, University of Edinburgh (April 1965).

21. R. M. Burstall, Semantics of Assignment, in "Machine Intelligence" (E. Dale and
D. Michie, eds.), Vol. 2, pp. 3-20, Oliver and Boyd, Edinburgh (1967).

22. J. N. Buxton, J. C. Gray, and D. Park, CPL Elementary Programming Manual,
Edition II, Technical Report, Cambridge (1966).

23. A. Caracciolo di Forino, N-ary Selection Functions and Formal Selective Systems,
Calcolo 1, 49-81 (1964).

24. A. Caracciolo di Forino, Linguaggi Programmativi Speciali, Calcolo 2, Supplement
No. 2 (1965).

25. A. Caracciolo di Forino, M-Valued Logics and m-ary Selection Functions, in
"Automata Theory" (E. R. Caianiello, ed.), pp. 107-114, Academic Press, New
York and London (1966).

26. A. Caracciolo di Forino, Generalized Markov Algorithms and Automata, in "Auto­
mata Theory" (E. R. Caianiello, ed.), pp. 115-130, Academic Press, New York and
London (1966).

27. A. Caracciolo di Forino, String Processing Languages and Generalized Markov
Algorithms, in "Symbol Manipulation Languages and Techniques," Proc. IFIP
Working Conference 1966 (D. G. Bobrow, ed.), pp. 191-206, North-Holland
Publishing Co., Amsterdam (1968).

28. A. Caracciolo di Forino, A Comparison between Generalized Markov Algorithms
and de Bakker Algorithms, unpublished report.

29. A. Caracciolo di Forino and A. Camera, On a Formal Definition of Direct Machine
Tool Languages, Instituto di Elaborazione dell'lnformazione, Interim Scientific
Report No. 1, Pisa (July 1968).

30. A. Caracciolo di Forino and L. Carlucci, On an Algorithmic Interpretation of the
Formal Definition of PL/I, unpublished report.

31. A. Caracciolo di Forino and G. Leoni, On the Formal Description of ALGOL 60
Semantics by Means of a Generalized Markov Algorithm, unpublished report.

32. A. Caracciolo di Forino and R. Rebaudo, On a Formal Definition of SIMULA by
Means of an Extended Markov Algorithm, unpublished report.

33. A. Caracciolo di Forino, L. Spanedda, and N. Wolkenstein, PANON-lB: A Pro­
gramming Language for Symbol Manipulation, Calcolo 3, 245-255 (1966).

34. A. Caracciolo di Forino and N. Wolkenstein, On a Class of Programming Lan­
guages for Symbol Manipulation Based on Extended Markov Algorithms, Centro
Studi Calcolatrici Elettroniche, Report No. 21, Pisa (1963).

35. C. Christensen, Examples of Symbol Manipulation in the AMBIT Programming
Language, in "Proceedings of the Association for Computing Machinery 20th Na­
tional Conference," pp. 247-261, Assoc. Computing Machinery, New York (1965).

36. A. Church, "The Calculi of Lambda-Conversion," Annals of Math. Studies, No. 6,
Princeton Univ. Press, Princeton, New Jersey (1951).

37. K. Cohen and J. H. Wegstein, AXLE, an Axiomatic Language for String Transfor­
mation, Comm. Assoc. Computing Machinery 8, 657-661 (1965).

38. D. C. Cooper, On the Equivalence of Certain Computations, Comp. J. 9, pp. 45-52
(1966).

39. D. C. Cooper, Mathematical Proofs about Computer Programs, in "Machine In­
telligence" (N. L. Collins and D. Michie, eds.), Vol. 1, pp. 17-28, Oliver and Boyd,
Edinburgh (1966).

Chapter 3] References 223

40. D. C. Cooper, Some Transformations and Standard Forms of Graphs, with Ap­
plications to Computer Programs, in "Machine Intelligence" (E. Dale and D. Mi­
chie, eds.), Vol. 2, pp. 21-32, Oliver and Boyd, Edinburgh {1967).

41. D. C. Cooper, Bohm and Jacopini's Reduction of Flow Charts (A Letter to the
Editor), Comm. Assoc. Computing Machinery 10, 463 (1967).

42. H. B. Curry and R. Feys, "Combinatory Logic," North-Holland Publishing Co.,
Amsterdam (1958).

43. M. Davis, "Computability and Unsolvability," McGraw-Hill Book Co., New York
(1958).

44. R. M. Dicker, A Set of Independent Postulates for Boolean Algebra, Proc. London
Math. Soc. 3 (3), 20-30 (1963).

45. J. J. Donovan and H. F. Ledgard, Canonic Systems and Their Applications to
Programming Languages, Mem. Mac-M-347, Project MAC, MIT, Cambridge, Mass.
(April 1967).

46. J. Earley, Generating a Recognizer for a BNF Grammar, Carnegie Institute of
Technology (June 1965).

47. S. Eilenberg and C. C. Elgot, Iteration and Recursion, IBM Research Report RC
2148 (July 1968).

48. C. C. Elgot, Machine Species and Their Computation Languages, in "Formal
Language Description Languages for Computer Programming," Proc. IFIP Work­
ing Conference 1964 (T. B. Steel, Jr., ed.), pp. 160-179, North-Holland, Publishing
Co., Amsterdam (1966).

49. C. C. Elgot and A. Robinson, Random Access, Stored Program Machines, an
Approach to Programming Languages, J. Assoc. Computing Machinery 11, 365-
399 (1964).

50. E. Engeler, Algorithmic Properties of Structures, Math. Systems Theory 1, 183-195
(1967).

51. A. P. Ershov, Operator Algorithms I, in "Problems of Cybernetics," Vol. 3, pp. 697-
763, Pergamon Press, New York (1962).

52. A. P. Ershov, On Yanov's Operator Schemes, Problemy Kibernetiki 20, Nauka,
Moscow (1967).

53. A. P. Ershov and A. A. Lyapunov, On the Formalization of the Notion of Program,
Kibernetika (Kiev) 5 (10), 40-57 (1967).

54. A. Evans, Syntax Analysis by a Production Language, PhD Thesis, Carnegie In­
stitute of Technology (1965).

55. J. Feldman and D. Gries, Translator Writing Systems, Comm. Assoc. Computing
Machinery 11, 77-113 (1968).

56. E. M. Fels, Kaluzhnin Graphs and Yanov Writs, in "Logik und Logikkalktil"
(M. Kasbauer and F. von Kutschera, eds.), pp. 159-178, Verlag Karl Alber, Frei­
burg/Mi.inchen (1962).

57. M. Fleck and E. Neuhold, Formal Definition of the PL/I Compile Time Facilities,
Technical Report TR25.080, IBM Laboratory, Vienna (June 1968).

58. R. W. Floyd, Assigning Meanings to Programs, in "Mathematical Aspects of
Computer Science," Proc. of Symposia in Applied Mathematics, Vol. 19 (J. T.
Schwartz, ed.), pp. 19-32, American Mathematical Society, Providence, Rhode
Island (1967).

59. S. Ginsburg, "The Mathematical Theory of Context Free Languages," McGraw­
Hill Book Co., New York (1966).

224 Semantics of Programming Languages [Chapter 3

60. H. H. Goldstine and J. von Neumann, "Planning and Coding of Problems for an
Electronic Computing Instrument," Institute for Advanced Study, Princeton, New
Jersey (1947).

61. S. Gorn, Mechanical Pragmatics: a Time Motion Study of a Miniature Mechanical
Linguistic System, Comm. Assoc. Computing Machinery 5, 576-589 (1962).

62. G. Hain and K. Hain, Automatic Flow Chart Design, in "Proceedings of the As­
sociation for Computing Machinery 20th National Conference," pp. 513-523,
Ass. Computing Machinery, New York (1965).

63. C. A. R. Hoare, The Axiomatic Method, The National Computing Centre, Man­
chester, England (1968).

64. S. lgarashi, On the Logical Schemes of Algorithms, Information Processing in Japan
3, 12-18 (1963).

65. S. lgarashi, A Formalization of the Description of Languages and the Related
Problems in a Gentzen-type Formal System, Research Notes of the Research As­
sociation of Applied Geometry, Third Series, No. 80 (1964).

66. S. lgarashi, An Axiomatic Approach to the Equivalence Problems of Algorithms
with Applications, PhD Thesis, University of Tokyo (1964); reprinted in Report
of the Computer Center University of Tokyo l, 1-101 (1968).

67. S. lgarashi, On the Equivalence of Programs Represented by ALGOL-Like State­
ments, Report of the Computer Center University of Tokyo l, 103-118 (1968).

68. R. Itturiaga, Contributions to Mechanical Mathematics, PhD Thesis, Carnegie­
Mellon University (May 1967).

69. L. A. Kaluzhnin, Algorithmization of Mathematical Problems, in "Problems of
Cybernetics," Vol. 2, pp. 371-391, Pergamon Press, New York (1961).

70. D. M. Kaplan, Correctness of a Compiler for ALGOL-Like Programs, Artificial
Intelligence Memo No. 48, Stanford University (July 1967).

71. D. M. Kaplan, Some Completeness Results in the Mathematical Theory of Com­
putation, J. Assoc. Computing Machinery 15, 124--134 (1968).

72. R. M. Karp, A Note on the Application of Graph Theory to Digital Computer
Programming, Information and Control 3, 179-189 (1960).

73. D. E. Knuth, Algorithm and Program, Information and Data (A Letter to the
Editor), Comm. Assoc. Computing Machinery 9, 654 (1966).

74. D. E. Knuth, Semantics of Context Free Languages, Math. Systems Theory 2, 127-
145 (1968).

75. L. Krider, A Flow Analysis Algorithm, J. Assoc. Computing Machinery 11, 429-
436 (1964).

76. J. Kunze, Selektive Graphschemata, Z. Math. Logik Grund/. Math. 13, 101-122
(1967).

77. P. J. Landin, The Mechanical Evaluation of Expressions, Comp. J. 6, 308-320 (1964).
78. P. J. Landin, A Correspondence between ALGOL 60 and Church's Lambda Notation,

Comm. Assoc. Computing Machinery 8, 89-101, 158-165 (1965).
79. P. J. Landin, A A-Calculus Approach, in "Advances in Programming and Non­

Numerical Computation" (L. Fox, ed.), pp. 97-141, Pergamon Press, New York
(1966).

80. P. J. Landin, A Formal Description of ALGOL 60, in "Formal Language Description
Languages for Computer Programming," Proc. IFIP Working Conference 1964
(T. B. Steel, Jr., ed.), pp. 266-294, North-Holland Publishing Co., Amsterdam
(1966).

Chapter 3] References 225

81. P. J. Landin, The Next 700 Programming Languages, Comm. Assoc. Computing
Machinery 9, 157-166 (1966).

82. P. Lauer, Abstract Syntax and Interpretation of ALGOL 60 Programs, Laboratory
Report LR 25.6.001, IBM Laboratory, Vienna (April 1968).

83. P. Lauer, Concrete Representation of Abstract ALGOL 60 Programs, Laboratory
Report LR 25.6.002, IBM Laboratory, Vienna (May 1968).

84. G. Leoni, On Formal Definition of CoBoL Semantics, unpublished report.
85. R. L. London, A Computer Program for Discovering and Proving Sequential Re­

cognition Rules for Well-Formed Formulas Defined by a Backus Normal Form
Grammar, PhD Thesis, Carnegie Institute of Technology (May 1964).

86. R. L. London, A Computer Program for Discovering and Proving Recognition
Rules for Backus Normal Form Grammars, in "Proceedings of the Association for
Computing Machinery 19th National Conference," pp. Al.3.l-Al.3.7, Assoc. Com­
puting Machinery, New York (1964).

87. P. Lucas, Two Constructive Realizations of the Block Concept and Their Equival­
ence, Technical Report 25.085, IBM Laboratory, Vienna (June 1968).

88. P. Lucas, to appear.
89. P. Lucas, K. Alber, K. Bandat, H. Bekic, P. Oliva, K. Walk, and G. Zeise!, Informal

Introduction to the Abstract Syntax and Interpretation of PL/I, Technical Report
TR 25.083, IBM Laboratory, Vienna (June 1968).

90. P. Lucas, P. Lauer, and H. Stigleitner, Method and Notation for the Formal Defi­
nition of Programming Languages, Technical Report TR 25.087, IBM Laboratory,
Vienna (June 1968).

91. D. C. Luckham, D. M. R. Park, and M. S. Paterson, On Formalized Computer
Programs, to appear.

92. A. A. Markov, "The Theory of Algorithms," Office of Technical Services, US
Dept. of Commerce, Washington, D.C. (1962).

93. D. Martin and G. Estrin, Models of Computations and Systems-Evaluation of
Vertex Probabilities in Graph Models of Computations, J. Assoc. Computing Ma­
chinery 14, 281-299 (1967).

94. D. Martin and G. Estrin, Experiments on Models of Computations and Systems,
IEEE Trans. Electronic Computers EC-16, 59-69 (1967).

95. D. Martin and G. Estrin, Models of Computational Systems-Cyclic to Acyclic
Graph Transformations, IEEE Trans. Electronic Computers EC-16, 70-79 (1967).

96. J. McCarthy, LISP 1.5 Programmer's Manual, Computation Center and Research
Laboratory of Electronics, MIT, Cambridge, Mass. (August 1962).

97. J. McCarthy, Computer Programs for Checking Mathematical Proofs, in "Recursive
Function Theory," Proc. of Symposia in Pure Mathematics, Vol. 5, pp. 219-227,
American Mathematical Society, Providence, Rhode Island (1962).

98. J. McCarthy, A Basis for a Mathematical Theory of Computation, in "Computer
Programming and Formal Systems" (P. Braffort and D. Hirschberg, eds.), pp. 33-
69, North-Holland Publishing Co., Amsterdam (1963).

99. J. McCarthy, Towards a Mathematical Science of Computation, in "Information
Processing 1962," Proc. IFIP Congress 1962 (C. M. Popplewell, ed.), pp. 21-28,
North-Holland Publishing Co., Amsterdam (1963).

100. J. McCarthy, Problems in the Theory of Computation, in "Information Processing
1965," Proc. IFIP Congress 1965 (W. A. Kalenich, ed.), Vol. I, pp. 219-222, Spartan
Books, Washington, D.C. (1965).

226 Semantics of Programming Languages [Chapter 3

101. J. McCarthy, A Formal Description of a Subset of ALGOL, in "Formal Language
Description Languages for Computer Programming," Proc. IFIP Working Con­
ference 1964 (T. B. Steel, Jr., ed.), pp. 1-12, North-Holland Publishing Co., Amster­
dam (1966).

102. J. McCarthy and J. Painter, Correctness of a Compiler for Arithmetic Expressions,
in "Mathematical Aspects of Computer Science," Proc. of Symposia in Applied
Mathematics, Vol. 19 (J. T. Schwartz, ed.), pp. 33--41, American Mathematical
Society, Providence, Rhode Island (1967).

103. E. Mendelson, "Introduction to Mathematical Logic," D. van Nostrand Co.,
Princeton, New Jersey (1964).

104. A. R. Meyer and D. M. Ritchie, Computational Complexity and Program Structure,
IBM Research Report, RC-1817.

105. A. R. Meyer and D. M. Ritchie, The Complexity of Loop Programs, in "Proc.
ACM 22nd National Conference," pp. 465--469 (1967).

106. E. Munteanu, Analyse Logique des Algorithmes, I, Mathematica 9, 111-128 (1967).
107. R. Narasimhan, Programming Languages and Computers: A Unified Metatheory,

in "Advances in Computers" (F. L. Alt and M. Rubinoff, eds.), Vol. 8, pp. 189-
244, Academic Press, New York and London (1967).

108. P. Naur, Proof of Algorithms by General Snapshots, BIT 6, 310-317 (1966).
109. J. Painter, Semantic Correctness of a Compiler for an ALGOL-Like Language, Arti­

ficial Intelligence Memo No. 44, Stanford University (March 1967).
110. M. S. Paterson, Equivalence Problems in a Model of Computation, Doctoral

Dissertation, Cambridge University (1967).
111. R. Peter, Graphschemata und Rekursive Funktionen, Dialectica 12, 373-393 (1958).
112. R. Peter, Uber die Partiell-rekursivitiit der durch Graphschemata definierten zahlen­

theoretischen Funktionen, Anna/es Universitatis Scientiarum Budapestinensis de Ro­
lando Eotvos nominatae Sectio mathematica 2, 41--48 (1959).

113. C. V. Ramamoorthy, Discrete Markov Analysis of Computer Programs, in "Pro­
ceedings of the Association for Computing Machinery 20th National Conference,"
pp. 386-391, Assoc. Computing Machinery, New York, (1965).

114. M. V. Rennie, Theory of Procedures, I, Simple Conditionals (Abstract), J. Symbolic
Logic 32, 577 (1967).

115. P. C. Rosenbloom, "The Elements of Mathematical Logic," Dover Publications,
New York (1950).

116. J. D. Rutledge, On Ianov's Program Schemata, J. Assoc. Computing Machinery
11, 1-9 (1964).

117. A. Schurmann, The Application of Graphs to the Analysis of Distribution of Loops
in a Program, Information and Control 7, 275-282 (1964).

118. A. Schurmann, On the Application of Graph Theory to Determine the Number of
Multisection Loops in a Program, Algorythmy II (3), 73-81 (1964).

119. A. Schurmann, The Distribution of Cycles in a Finite Graph and the Application
of Graphs to Computer Programming, Algorythmy II (4), 85-100 (1965); (in Polish).

120. M. Sintzoff, Existence of a van Wijngaarden Syntax for Every Recursively Enumer­
able Set, Anna/es de la Societe Scientifique de Bruxelles, 81 (II), 115-118 (1967).

121. T. B. Steel, Jr. (ed.), "Formal Language Description Languages for Computer
Programming," Proc. IFIP Working Conference 1964, North-Holland Publishing
Co., Amsterdam (1966).

122. T. B. Steel, Jr., Standards for Computers and Information Processing, in "Advances

Chapter 3] References 227

in Computers" (F. L. Alt and M. Rubinoff, eds.), Vol. 8, pp. 103-152, Academic
Press, New York and London (1967).

123. C. Strachey, Towards a Formal Semantics, in "Formal Language Description
Languages for Computer Programming," Proc. IFIP Working Conference 1964
(T. B. Steel, Jr., ed.), pp. 198-220, North-Holland Publishing Co., Amsterdam
(1966).

124. C. Strachey (ed.), CPL Working Papers, University of London Institute of Computer
Science (1966).

125. C. Strachey, Fundamental Concepts in Programming Languages, to appear in the
Proceedings of the 1967 NATO Summer School, Copenhagen.

126. H. Thiele, "Wissenschaftstheoretische Untersuchungen in Algorithmische Sprachen
I," VEB Deutscher Verlag der Wissenschaften, Berlin (1966).

127. K. Walk, K. Alber, K. Bandat, H. Bekic, G. Chroust, V. Kudielka, P. Oliva, and
G. Zeise!, Abstract Syntax and Interpretation of PL/I, Technical Report TR 25.082,
IBM Laboratory, Vienna (June 1968).

128. N. Wirth, A Generalization of ALGOL, Comm. ACM 6, 547-554 (1963).
129. N. Wirth and H. Weber, EULER, A Generalization of ALGOL, and Its Formal De­

finition, Comm. Assoc. Computing Machinery 9, pp. 13-23, 89-99 (1966).
130. B. A. Wittman and P. Z. Ingerman, A Threshold Selection Language, in "Proceed­

ings of the Association for Computing Machinery 22nd National Conference,"
pp. 311-316, Assoc. Computing Machinery, New York (1967).

131. A. van Wijngaarden, Generalized ALGOL, in "Symbolic Languages in Data Pro­
cessing," Proc. ICC Symp. Rome 1962, pp. 409-419, Gordon and Breach, New
York (1962); also in "Annual Review in Automatic Programming" (R. Goodman,
ed.), Vol. 3, pp. 17-26, Pergamon Press, New York (1963).

132. A. van Wijngaarden, Recursive Definition of Syntax and Semantics, in "Formal
Language Description Languages for Computer Programming," Proc. IFIP Work­
ing Conference 1964 (T. B. Steel, Jr., ed.), pp. 13-24, North-Holland Publishing Co.,
Amsterdam (1966).

133. A. van Wijngaarden, Numerical Analysis as an Independent Science, BIT 6, 66-81
(1966).

134. A. van Wijngaarden (ed.), B. J. Mailloux, J. E. L. Peck, and C. H. A. Koster,
Report on the Algorithmic Language ALGOL 68, Report MR 101, Mathematisch
Centrum, Amsterdam (1968).

135. Y. I. Yanov, On the Equivalence and Transformation of Program Schemes, Comm.
Assoc. Computing Machinery 1 (10), 8-12 (1958).

136. Y. I. Yanov, On Matrix Program Schemes, Comm. Assoc. Computing Machinery
1 (12), 3-6 (1958).

137. Y. I. Yanov, The Logical Schemes of Algorithms, in "Problems of Cybernetics,"
Vol. 1, pp. 82-140, Pergamon Press, New York (1960).

138. Y. I. Yanov, On Local Transformation of Algorithm Schemes, Problemy Kibernetiki
20, Nauka, Moscow (1967); (in Russian).

139. V. H. Yngve, An Introduction to CoMIT Programming, The Research Laboratory
of Electronics and the Computation Center, MIT, Cambridge, Mass. (November
1961).

140. H. Zemanek, Semiotics and Programming Languages, Comm. Assoc. Computing
Machinery 9, 139-143 (1966).

