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1. INTRODUCTION 

Chapter 3 

This chapter is a survey of the research on the semantics of programming 
languages. We feel that it is neither feasible nor desirable for our aim here 
to make an attempt at a rigorous definition of the term "semantics." This 
would require discus.sion both of the various proposals in the literature 
for such a definition, and of the relation of the semantics of programming 
languages to semantics as studied in linguistics, mathematical logic, and 
philosophy. Therefore we restrict ourselves to a description, mainly of 
allusive nature, of the sort of problems which are considered in semantics. 

Semantics is concerned with meaning. To be more specific: Semantics 
of programming languages is concerned with the study of the meaning of 
the constituent concepts of these languages, of their mutual relationships, 
and of their applications in individual programs. 

We add a few comments on this description: 

1. If formal methods are used in these studies, one might prefer to 
speak of formal semantics. Since all investigations considered in this paper 
employ some kind of formalism, we omit this qualification. 

2. Our survey is almost exclusively devoted to research on machine­
independent, general-purpose languages such as FORTRAN, ALGOL 60, or 
PL/I. No separate attention is paid to special-purpose languages, e.g., for 
simulation, list processing, real-time processes, etc., nor to languages for 
on-line communication with computers. Only those concepts of assembly 
languages are considered which are also present in machine-independent 
languages (e.g., iteration). 
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3. An alternative to the phrase "the meaning of the constituent con­
cepts" is "the relation between the meaning and the symbolic representation 
of the constituent concepts." This alternative is rejected, since it suggests 
more involvement with syntactic problems than is actually present in a 
considerable part of the work to be discussed. 

4. An alternative to "meaning" is "effect upon some processor ( either 
a human, an abstract machine, or a real computer)." This would exclude 
various approaches to semantics which are not of a constructive type, e.g., 
axiomatic methods, and is therefore also rejected. 

5. Occasionally, in programming literature a distinction is made be­
tween "algorithm" and "program" (see, e.g., Knuth (73)). Algorithm is then 
a more general term, referring to an effective process for obtaining the 
solution of a certain problem, whereas a program is the precise descrip­
tion of such a process in terms of some programming language. The present 
paper does not adhere to this terminology; in our opinion, an attempt at 
consistent use would raise more problems than it would solve. 

The theory of programming languages is concerned with, in addition 
to semantics, syntax and pragmatics. It may be useful to add a short de­
scription of these two other fields: 

I. Syntax is concerned with the study of formal systems to be used 
for the definition of grammars of programming languages. A grammar is a 
set of rules prescribing which sequences of symbols over a given alphabet 
constitute a program in the language concerned. It should define the struc­
ture of a program in such a way that efficient translation is possible. 

2. In pragmatics one studies the relation between the language and its 
interpreter. If the interpreter is a human being, say, a programmer, one 
investigates the applications of the various concepts in the language to the 
problem he has to solve. One may also think of interpretation by a machine, 
which leads to the "mechanical pragmatics" of Gorn (61). A general discus­
sion of pragmatics and its relation to syntax and semantics is given by 
Zemanek (140). 

By far the largest part of the research in the theory of programming 
languages deals with syntactic problems. Formal systems for syntax defi­
nition are considered from an abstract point of view in the rapidly growing 
theory of context-free languages and their generalizations (Ginsburg (59), 

Aho and Ullman (2)); the practical application of these systems to the 
construction of compilers is discussed in the extensive survey of Feldman 
and Gries (55). 
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Compared with syntax, semantics is a somewhat neglected subject. 
This is probably due to the fact that it has as yet no direct applications 
to practical problems in programming which are of the same importance 
as those of syntax for compiler building. However, there are a number of 
important long-range goals for a semantic theory: 

1. It should provide a framework in which properties of individual 
programs can be investigated and proofs about these properties can be 
obtained, the ultimate goal being the proof that a given program solves a 
certain problem. 

2. It should lead to methods for the complete formal definition of 
languages, to be used as a reference by compiler writer and programmer, 
and for standardization purposes. 

3. It should provide a theoretical framework for the design and com­
parison of languages. 

4. In combination with formal studies of machine languages, it should 
be applied to the construction of compilers. Investigations of the meaning 
of the language concepts may be of use in comparing alternative meaning­
preserving implementations. The relation between optimization of source 
programs and object programs should be studied. The final goal is again 
to prove the correctness of compilers. 

Some further remarks on proofs about programs and on motivations 
for formal definition are made in the introductions of Sections 2 and 3, 
respectively. 

We have divided our survey of the research on semantics into two parts. 
The first (Section 2) is devoted primarily to the discussion of investigations 
concerning one or more basic concepts in programming, whereas in the 
second part (Section 3) the emphasis is on research dealing with complete 
languages. Generally speaking, in Section 2 programming concepts are 
considered as mathematical objects, without paying much attention to their 
symbolic representation, i.e., to syntactic problems. In Section 3 the relation 
between syntax and semantics often plays an important role. 

Section 2 begins with some general remarks on the research on basic 
programming concepts; moreover, the relevance of computability theory 
for semantics is discussed briefly. In Section 2.2 we treat the important 
results on program schemata of Yanov and of Luckham, Park, and Pa­
terson. Section 2.3 deals with axiomatic characterizations of assignment, 
conditions, and goto statements. It is based largely on the work of Igarashi. 
A discussion of some aspects of McCarthy's theory of computation follows 
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in Section 2.4. In Section 2.5 we have collected various investigations dealing 
with flow diagrams. 

The majority of the research reviewed in Section 3 deals with methods 
for the formal definition of programming languages. After a discussion of 
the motivations for formal language definition, we give a survey of the 
methods which have been used or proposed for this purpose, viz., the 
methods of van Wijngaarden and Caracciolo, based on extended Markov 
algorithms, the state vector approach of McCarthy and its applications to 
proofs about compilers, the Vienna method developed for the formal de­
finition of PL/I, and the A-calculus approach of Landin, Strachey, and others. 
A brief discussion is given of some other methods, viz., the system used for 
the definition of ALGOL 68, the proposal of Hoare for an axiomatic method, 
compiler-oriented methods, and the semantics of context-free languages of 
Knuth. 

The preceding summary was intended to give an impression of the 
scope of the present chapter. Clearly, semantics has many relations with 
other fields in programming and mathematics. We mention only: the theory 
of syntax, techniques for compiler construction, automata theory, mathe­
matical models of computers and various abstract machines, mathematical 
logic, in particular computability theory, graph theory, mathematical lin­
guistics, etc. Many instances of the relation of semantics to these fields can 
be found in the literature to be reviewed. However, a systematic treatment of 
them would be a formidable task, exceeding by far the scope of this survey. 

Some topics which might be considered to belong to semantics, but 
which are not discussed separately below, are mentioned in Section 2.1. 
Finally, we have, apart from a few exceptions, omitted discussion of the 
rather extensive Russian literature on semantics. For this we refer to the 
survey paper of Ershov and Lyapunov (53). 

2. BASIC CONCEPTS 

2.1. Introduction 

2.1.1. General Remarks 
Section 2 is devoted to investigations concerning one or more basic 

concepts in programming languages. 
Which concepts one considers as fundamental is to some extent a 

matter of taste. It will depend heavily on his experience in using or designing 
languages, and on the type of problems one has to solve. The following 
list is a first approximation. It has no pretense of completeness, but is 
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intended as a minimal set, to which other elements may be added if required. 
In addition, not all concepts listed are independent of each other. No special 
meaning should be attached to the order of the list. 

1. Real and integer arithmetic; operations on other simple types, Boolean, 
string, or character; constants. 

2. Expressions; evaluation in relation to the value, type, and scope of 
their variables; name-value relation. 

3. Data structures: simple types, vectors, arrays, trees, structures, re­
cords, files, lists, rings; pointers and references; relation to storage 
allocation. 

4. Conditional constructions; generalization to selection from n-tuples. 
5. Sequencing, labels, goto statements and repetitive clauses, iteration 

versus recursion. 
6. Parallel computation. 
7. Assignment. 
8. Procedures and functions, parameter mechanisms, side effects, recursion. 
9. Blocks, locality. 

10. Declarations, relation to locality, introduction of new data structures 
or operators, initialization. 

11. Input/output. 

In order to keep the size of this chapter within reasonable bounds, it 
was necessary to make a selection from the concepts in this list. As a first 
criterion, we chose the distinction between imperative and descriptional 
features of languages, and decided to give preference to discussion of the 
former. Consequently we have omitted separate treatment of the large 
number of investigations dealing with various data structures. (It should 
be noted that this does not imply that we pay no attention whatever to 
data structures. A great variety of them occur in the languages to be treated 
in Section 3, and a substantial part of the literature reviewed there is con­
cerned with these structures. What we do omit is discussion of papers which 
are exclusively devoted to theni.) The same criterion applies largely to 
input/output, which is therefore also not considered in Section 2. 

Parallel computation, though an imperative feature, is not treated for 
another reason. It has only fairly recently appeared as a concept in pro­
gramming languages. As a result of this, it has been investigated mainly 
from a pragmatic point of view, i.e., by discussion of examples of the sort 
of problems in which it can be applied. However, such pragmatic con­
siderations are outside the scope of our chapter. 
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Occasionally, we have departed from our rule on the division of the 
material between Sections 2 and 3. For instance, a number of articles 
dealing with concepts as indicated in the first two entries of the list, are 
included in Section 3.5, since their treatment could be combined there 
with that of a particular technique for formal language definition. 

We now make some general remarks on the results to be reported in 
this section. It may be of interest to note that the systems to be discussed 
are almost entirely "processor-independent," i.e., direct use of (abstract) 
machines is avoided. This in contrast to the methods of Section 3, the 
majority of which makes extensive use of such machines. 

It will appear that many different approaches are used; there is no 
general framework in which all results can be stated in a unified and system­
atic manner. A complete synthesis may be a long way off. However, many 
of the results are closely related to each other, and in several cases clarifica­
tion of their relation seems quite a promising subject for further research. 

There is one common feature shared by most of the systems, however 
great their differences be otherwise, viz., use of various notions of equival­
ence between (parts of) programs. The results in this direction may be 
considered as first steps toward a solution of the problem of reducing a 
program to an equivalent one which is simpler according to some standard. 
Which standard is to be applied depends on the circumstances. There are 
the usual requirements on minimizing execution time or storage space. 
However, we feel that another criterion will become increasingly important 
in the future, viz., whether the program is in a form which is suited for 
obtaining proofs about it. These may either show that the program satifies 
certain conditions, e.g., termination for given input, or, more ambitiously, 
that it solves a given problem. It should be added that only very little is 
known as yet on general techniques for proving the correctness of programs. 
When one considers the tremendous amount of time and effort spent on 
debugging programs, it is surprising how relatively little attention has been 
paid in programming research to the development of such techniques. 

For a more extensive discussion of proofs about programs and of 
motivations and goals for a theory of semantics in general, the reader should 
first of all consult McCarthy (98 •99). Cooper (39) is a more recent survey 
paper on proofs about programs (see also Section 2.4). 

2.1.2. Semantics and Computability Theory 

Computability theory, i.e., the theory of Turing machines, recursive 
functions, etc. (Davis (43)), has yielded a number of results which determine 



Sec. 2] Program Schemata 179 

the essential limits imposed upon the theory of semantics. Apart from this, 
however, its relevance for semantics is rather limited. Most of the basic 
concepts of programming languages, as listed above, have no direct counter­
parts in one of the various systems of computability theory. Therefore it 
does not provide much help in investigating the properties of these con­
cepts. Those features of programming which do have some counterpart in 
computability theory, such as sequencing, have, generally speaking, not 
been studied independently in it. Moreover, computability theory is con­
cerned with (undecidability theorems on) "mass problems," rather than 
with the study of individual algorithms; again, these results are not very 
useful for the sort of problems one considers in programming theory. 

However, some qualifications are in order with respect to our rather 
negative judgment on the applicability of computability theory to pro­
gramming. A link between the two theories may result from the growing 
interest in the quantitative aspects of Turing machines, e.g., investigations 
on bounds for the number of operations needed for a certain calculation 
(for references see, e.g., Aho and Ullman (2). Though most of this work is 
still outside the scope of this paper, there are a number of related investi­
gations which are no doubt of importance for programming. We mention 
Meyer and Ritchie (104 ,105). They are interested in the derivation of bounds 
for the running time of loop programs, i.e., sequences of, possibly nested, 
repetitive clauses and simple assignment statements of the form x : = 0, 
x := x + 1, and x := y. The functions defined by loop programs are shown 
to coincide with primitive recursive functions. A bounding function for 
the running time of a loop program is given, depending only on the number 
of its instructions and on the depth of nesting of its loops. 

Concepts from programming and computability theory are also related 
to each other, though on a highly abstract level, by Eilenberg and Elgot (47), 

who use iteration to give an algebraic characterization of recursive functions. 
Applications of (extended) Markov algorithms and of the A-calculus 

can be found in the literature reviewed in Sections 3.2 and 3.5, respectively. 
Post's canonical systems are applied by Donovan and Ledgard (45). 

2.2. Program Schemata 

2.2.1. Introduction 

In this section we discuss two papers which are of fundamental impor­
tance for the semantics of basic programming concepts, that of Yanov (137) 

(a short summary was given by Yanov (135 •136)), which is essentially an 
investigation of the sequencing concept in its relation to the values of the 
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conditions which determine the flow of control, and that of Luckham 
et al. (91), who have extended Yanov's work in the sense that they also 
take into account the notion of assignment. 

Both papers may be viewed as studies of properties of flow diagrams, 
and might therefore have been discussed in Section 2.5. However, since 
we want to give a somewhat more detailed explanation of them, we have 
introduced a separate section for this purpose. Even this will not allow us 
to give more than a first impression of the principal ideas and results of 
the two papers. For a more comprehensive account of the first part of 
Yanov's paper (137) we refer to Fels (56) (the reader should be warned that 
this contains some errors in its comments on Yanov's main theorem). 
Some further references are noted at the end of Section 2.2.2. 

2.2.2. Yanov's Program Schemata 
Yanov's starting point is the following observation: The application 

of an algorithm to one of its arguments determines uniquely a sequence of 
elementary actions. In general, different arguments result in different se­
quences. However, it is always possible to find a finite set of predicates, 
representing properties of the arguments, such that the sequence of ele­
mentary actions to be performed for a given argument may be considered as 
a function of the values of these predicates for that argument. As a tool for 
investigating this idea, Y anov introduces the notion of a program schema. 

Let A= {A1 , A 2 , •• • , Am} be a finite set of symbols denoting the 
elementary actions. Elements of A are called operators. 

Let P = {Pi, p2 , ••• , Pn} be a finite set of propositional variables, 
from which predicates can be formed by means of the logical operators 
""-7, /\, and V. The identically true (false) predicate is denoted by 1 (0). 

We do not give the formal rules for the construction of program 
schemata from A and P, but illustrate this process by two examples in an 
ALGOL-like notation. 

Example 1: 
L1 : A1 ; if Pi then goto L1 • 

Example 2: 
if ""-7 Pi I\ p2 then goto L1 ; 

L2: Ai; 
if ""-7 p2 then goto L2 ; 

if l then goto L3 ; 

L1: A2; 
La: 
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It appears that program schemata look somewhat like ALGOL 60 programs. 
Their constituents are operators (all operators in a schema are required 
to be different) and conditional goto statements, the conditions of which 
are predicates over P; both of these may be labeled. Would some inter­
pretation be provided for the operators, e.g., as assignment statements, 
then ordinary ALGOL 60 programs would result. However, such interpreta­
tion -is omitted on purpose. Consequently, a program schema cannot be 
executed in the usual way, since it is not known how the values of the 
conditions-assuming that for a given argument initial values are given­
change during the execution of the schema. Now Yanov's central idea is 
to give these changing values of the conditions in advance. A program 
schema is then considered as a function of the sequence of values of its 
constituent conditions. A more precise explanation follows. 

Let Pi , p2 , ••• , Pk be the propositional variables occurring in a given 
schema. An evaluation of these variables is defined as an ordered k-tuple 
of zeros and ones (corresponding to the values "false" and "true"). An 
evaluation sequence is a sequence of such k-tuples. A program schema as 
function of an evaluation sequence is executed as follows: The first element 
of the evaluation sequence is considered, the corresponding elements of 
this k-tuple are assigned to the propositional variables of the schema, and 
from this the values of its conditions are determined. One then starts to 
execute the schema in the ordinary ALGOL way. However, as soon as an 
operator is met the next element of the evaluation sequence is considered, 
the propositional variables are assigned the corresponding elements of this 
second k-tuple, the new values of the conditions are determined, and the 
execution is continued until another operator is met, after which the third 
k-tuple is considered, etc. The execution terminates, if ever, with the execu­
tion of the last "statement" of the schema. (The transition to the next ele­
ment of the evaluation sequence each time an operator is met reflects the 
possible change in the properties of the argument being transformed as a 
result of the execution of this operator.) We have not yet said what is 
meant by the value of a program schema when applied in this way to an 
evaluation sequence. It is defined to be the sequence of operators as en­
countered successively during the execution of the schema. 

We illustrate these definitions by means of example 2 above. The 
number of propositional variables in this schema is two; hence evaluation 
sequences for it are sequences of pairs. Application of the schema to the 
sequence (1, 1), (1, 0), (1, 1), ... yields the value A1A1 ; application to 
the sequence (0, 1 ), (0, 1 ), . . . yields the value A2 • 

Next we define what is meant by the equivalence of two schemata: 
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Two program schemata over A and P are equivalent if and only if they 
have the same value for each evaluation sequence. 

Note that this is a very strong notion of equivalence. The correspond­
ing definition for programs would not only require that the final values of 
their variables be identical, but in addition that these values have been 
obtained by performing the same elementary actions in the same order. 

The equivalence problem for program schemata is shown to be decidable. 
An effective procedure is given which reduces each program schema to a 
canonical form, and it is proved that two schemata are equivalent if and 
only if their canonical forms satisfy a certain effectively verifiable condition. 

Yanov also gives an axiomatic characterization of equivalence. He 
introduces a set of axioms and rules of inference, and proves that if two 
schemes S1 and S2 are equivalent by the definition given above, then S1 ,..._, S2 

can be derived in this system. We give two examples of his axioms: 

if Pi I\ P2 then goto L1 ,..._, 

if -, Pi then goto L 2 ; if p 2 then goto L 1 ; L 2 : 

and 

(Here S1 and S2 stand for arbitrary program schemata. For the second axiom 
also see Section 2.4.3.) 

Finally, Yanov introduces a matrix notation for program schemata and 
studies its relation to the linear notation. 

Rutledge (116) has given a simplified proof of Yanov's main result, viz., 
the decidability of the equivalence problem. Moreover, it is shown that the 
same problem for an extended notion of program schema-in which the 
requirement that all operators of the schema be different is omitted-is 
just the equivalence problem for finite automata. The relation between 
program schemata and finite automata was also noted by Igarashi (64). 

Yanov's work has been extended in several directions in the Russian 
research on semantics; we mention Ershov (52) and Yanov (138). Further 
references are given by Ershov and Lyapunov (53). 

2.2.3. The Formalized Computer Programs of Luckham et 
al. (91) 

In a paper by Luckham et al. (91) a natural extension of Yanov's 
program schemata is considered which amounts to the introduction of 



Sec. 2] Program Schemata 183 

variables arn;i assignment. The elementary actions of a schema are no longer 
left completely unspecified, but are assumed to be of the form xi : = ft 
(x1 , x2 , ••• , Xn), and conditions are of the form Pk(xi). An example of 
such a schema is 

L1: x1 := f/(x1); 
if Pi (x1) then goto La; 

L2: X1 := f/(x1); 
if Pi (x1) then goto L1 ; 

if l then goto L2 ; 

La: X2 := /?(x1); 

X1 : = /"_/(X1) 

An interpretation I of a program schema (from now on taken in the 
extended sense) is established as follows: 

l. A domain D is selected. 
2. To each variable xi occurring in the schema there is assigned an 

element of D (to be considered as its initial value). 
3. To each ft there is assigned an n-ary function nn---+ D. 

4. To each Pi there is assigned a function D---+ {O, l }. 

An interpreted program schema Pr can be executed in the usual way. 
If the execution terminates, the value of Pr, denoted by val(Pr), is defined 
to be the vector of the final values of the variables occurring in P. 

The following notions of equivalence are introduced: 

l. P == P' if and only if for all interpretations I, val(Pr) = val(P/), 
whenever either value is defined. 

2. P = FP' if and only if for all interpretations I on finite domains, 
val(Pr) = val(P/), whenever either value is defined. (An example is given 
to show that P - FP' does not imply P - P'.) 

3. P '.:::'. P' if and only if for all interpretations I, val(Pr) = val(P/), 
whenever both values are defined. 

4. A relation ,...._, between program schemata is called "reasonable" if 
for all schemata P and P' the following two conditions are satisfied: (a) P - P' 
implies P ,...._, P', (b) P ,...._, P' implies P '.:::'. P'. 

Whereas the equivalence problem of the previous section was decidable, 
this is no longer the case for the various notions of equivalence introduced 
here. A number of undecidability results on multihead automata are derived 
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-ultimately based on the undecidability of the halting problem for Turing 
machines-which are then applied, by simulating automata by schemata, 
to the equivalence problems for schemata. (Incidentally, this provides one 
of the very few examples of the application of automata theory to semantics.) 
The main results are the following: Let P0 be the schema L: goto L; let P1 

be x1 :=f?(x3 ); x 2 :=f?(x3 ); and let P2 be the example given above. 
Then the following relations are not partially decidable (i.e., not recursively 
enumerable) for arbitrary P: 

l. P -Po. 
2. P = FPo. 
3. P=FP1. 
4.P:::::'.P1 • 

5. P ¢. P1 . 

6. P ,..._, P 2 , for each reasonable ,..._,. 

These results imply that all hope for a general simplification algorithm 
for programs which use at least the three concepts of assignment, conditions, 
and goto statements, is in vain. 

In the last section of the paper by Luckham et al. (91) some subclasses 
of program schemata are considered for which the equivalence problem 
(with respect to =) is decidable. For instance, the following result is men­
tioned (a proof is given by Paterson (110

)): Let a schema be called monadic 
if all functions occurring in it are functions of one variable only. The 
equivalence problem for monadic schemata with nonintersecting loops is 
decidable. 

2.3. The Axiomatic Approach 

2.3.1. Introduction 

The main representative of the axiomatic approach to semantics is 
Igarashi (66) (for an introduction see Igarashi (67)). Since this paper is not 
easily accessible, it will be treated in somewhat greater detail. Igarashi's 
axiom systems for assignment, conditions, and goto statements are discussed 
in Sections 2.3.2, 2.3.3, and 2.3.4 respectively. Igarashi's paper (66) contains 
also a sketch for an axiomatic treatment of input/output and of arrays, 
and some further applications. Another paper of Igarashi (65), is partly 
preparatory to the later paper (66) and partly concerned with an axiomatic 
approach to syntactic problems. 

Some general reflections on the advantages of an axiomatic treatment 
of concepts in programming, with the emphasis on its application to the 
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formal definition of languages, can be found in Hoare (63) (also see Sec­
tion 3.6). 

We shall not enter here into a discussion of the respective merits of 
the axiomatic method versus various other systems, in particular those of a 
constructive nature. However, we feel that it is fair to say that it deserves 
more attention than has been paid to it up to now. 

2.3.2. Axioms for Assignment 

We cannot treat Igarashi's axiom system for assignment in full, but 
shall concentrate on its essential features. Therefore some definitions will 
be given only somewhat loosely. 

Let V = {x, y, z, ... } be a set of variables. (Only simple variables-in 
the sense of ALGOL 60-are considered.) 

Let F = {f, g, ... } be a set of functions. Specification of the nature 
of Fis omitted here. When we want to indicate that/ depends on the variable 
x, we write f(x); f(g) then denotes the result of substituting g for all oc­
currences of x inf (with the usual precautions). 

An assignment statement has the form x := f, for some x E V and 
f E F. It is convenient to consider the dummy statement, denoted by 0, 
also as an assignment statement. 

A, B, C, . . . denote arbitrary .sequences of assignment statements, 
separated by semicolons, and A(A) is the set of all variables constituting 
the left-hand sides of the statements in A; e(A) is the set of all variables 
occurring as arguments of the functions in the right-hand sides of the 
statements in A, and -r(A) = A(A) u e(A). We use A(x) and A(g) similarly 
to f(x) and f(g ), and <P denotes the empty set. 

Well-formed formulas of the axiomatic theory are expressions of the 
form A ,..._, B, with X c V. Such a formula may be understood intuitively 

X 

as: The sequences A and B have the same effect upon the variables from 
the set X. A ,..._, B is abbreviated to A ,..._, B. 

V 

We can now formulate the axiom system. It consists of six axioms and 
four rules of inference. 

Axioms: 

/a1 : x:=x ,..._,0_ 

/a2 : A;0 ,..._, A, 
0;A ,..._,A. 

la3 : If X n A(A) = <P, then A ,..._,0. 
X 
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la4 : If A(A(x)) n -r(x:=/) = <I>, then 

x:---f; A(x); x:=g(x) ,.._, A(f); x:=g(f). 

la5 : If x-::/=- y, A(A(x)) n -r(x: f) = <I>, and x $ -r(f), then 

x:-f; A(x); y:=g(x) ,.._, x:-f; A(f); y:=g(f). 

las: If f= g, then x:=f ,.._,x:=g. 

Rules of inference: 

la7 : If A ,.._, B, and C ,.._, D, then A;C ,.._, B;D. 
e<Olue<DIUX X X 

la8 : If A ,.._, B and A ,.._, B, then A ,.._, B. 
X Y XuY 

la9 : If A,.._, B, then A ,.._,B. 
XuY X 

la10 : Symmetry and transitivity of ,.._,. 
X 

Remarks: (1) f = g in las means that the equality off and g can be 
established in some suitable underlying system, depending on further speci­
fication of F. (2) The system {la1 , la2 , •• • , la10 } is called :7a. 

As an example of the application of :7 a, we consider the following 
two sequences: 

A is s:=nxs; n:=n-1; s:=n!xs; n:=0, and 

Bis s:=n! xs; n:=0. 

The equivalence of A and B for n > 0 was used in an example of McCar­
thy (99) (see also Section 2.4.4). We derive A,.._, B from :7a: 

(1) n:=n-1; s:=n! xs; n:=0 ,.._, 
s:=(n-1)! xs; n:=0 

(2) A ,.._,s:=nxs; s:=(n-I)!xs; n:=0 

(3) s:=nxs; s:=(n-I)!xs,.._,s:=(n-I)!xnxs, ,la4 , 

(4) A,.._, s:=n! xs; n:=0 

Hence A ,.._,B. 

,(2),(3),Ia7 , definition 
of n! 

Igarashi's main result on the system :7 a is the proof of its completeness. 
A formal definition of the effect of a sequence of assignment statements 
upon a variable is given which describes the usual meaning of assignment. 
(For a special case of this definition see below.) The completeness theorem 
asserts that two sequences A and B have the same effect upon the variables 
from X if and only if A ,.._, B is a theorem of :7 a. 

X 
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A further analysis of the axiomatics of a simple type of assignment 
statement is given in de Bakker (10). Statements are considered the right­
hand sides of which consist only of variables, such as x :=y, z := t, etc. 
We abbreviate these to xy, zt, etc. The following axiom system is introduced 
(A, B, ... , now stand for such simple sequences): 

Axioms: 

Ba1 : xy;yx ,,__, xy. 

Ba2 : xy ;xz ,,__, xz, provided that x -=I= z. 

Ba3 : xy;zx ,,__, xy;zy. 

Ba4 : xy;zy ,,__, zy;xy. 

Rules of inference: 

Ba5 : If there exist x, y, z, t (x -=I= y) such that A ;xz ,,__, B;xz and 
A;yt ,,__, B;yt, then A,,__, B. 

Ba6 : If A,,__, B, then A;C ,,__, B;C and C;A ,,__, C;B. 

Ba7 : Symmetry and transitivity of ,,__,_ 

The system { Ba1 , Ba2 , ••• , Ba7 } is denoted by .~ a. It was developed 
with the view to a more detailed investigation of the relations between the 
various axioms. Some results de Bakker (10) are: 

I. The axioms of §ga are independent. 

2. The effect of A upon x is described by the function E(x,A), de­
fined recursively by (a) E(x,xz) = z, and E(x,yz) = x, (b) E(x,A;B) = 
E(E(x,B),A). The completeness theorem can then be formulated as: 
A,,__, B if and only if for all x E V: E(x,A) = E(x,B). (Our proof differs 
somewhat from Igarashi's.) 

3. It is investigated to see whether it is possible to replace the four 
axioms of .§g a by a smaller set, such that the resulting system remains 
equipollent with §ga (i.e., the same equivalences can be derived from it). 
A typical theorem is the following: ((A)n denotes the sequence A ;A; ... ;A 
(n times A, n > 1)). Let 'ie'a~J be defined by: 

i = 1, 2 

Call;l = (xy;zx;yzr ,,__, zy;xy, and Ca~)= (xy;zx;yzr ,,__, zy;xz. Then the 
following hold: (a) For each n > l, 'ie'all;l is equipollent with.§ga. (b) 'ie'a12> 

is equipollent with.§ga. (c) 'ie'a~~ (m > 1) is not equipollent with.§ga. The 
equipollence of 'ie'a~~+1 (m > 1) with §ga is an open problem. 
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A third axiomatic characterization of assignment is studied by Ka­
plan (71). It is based upon the properties of state vector functions associated 
with assignment introduced by McCarthy (99). A discussion of these ideas 
is given in Section 2.4.3. 

2.3.3. Axioms for Conditional Expressions 

Axiom systems for conditional expressions have been given by McCar­
thy (98) and Igarashi (66). We shall present both systems; it will turn out 
that they are equipollent: McCarthy's axioms can be derived from Igarashi's 
system and vice versa. 

Let P = {p, q, r, ... } be a set of propositional variables; P* the set 
of propositions which can be constructed from P by means of the operators 
--,, /\, and V; and 1 (0) the identically true (false) proposition. 

Let X be an arbitrary set. 
The set C(P, X) of conditional expressions over P and Xis defined by: 

(a) X c C(P, X), 

(b) If n E C(P, P*), a E C(P, X), and /J E C(P, X), then (n-+ a, {J) 
E C(P, X). 

An expression (.n -+ a, {J) can be interpreted as the ALGOL 60 expression 
if n then a else {J; i.e., if .n has the value 1 (0) then the value of the expression 
is the value of a ({J). Two conditional expressions are called equivalent if 
and only if they have the same values for all values of the propositional 
variables occurring in them. (We omit discussion of the case-considered 
in detail by McCarthy (98)-that the value of a propositional variable is 
undefined.) 

An axiomatic characterization of equivalence for conditional expres­
sions is now introduced. First we give McCarthy's system. Let C1 (P, X) be 
defined as C(P, X), except that in clause (b) above we replace .n E C(P, P*) 
by .n E C(P, P). Well-formed formulas of the theory are of the form a,...._, {J, 
with a and /J E C1(P, X). 

The axioms are: 

M1 : (p -+ a,a) ,...._, a, 

M2: (I-+ a,{J) ,...._, a, 

M 3 : (0-+ a,{J) ,...._, {J, 

M4 : (p-+ (p-. a,{J),(p-+ y,b)) ,...._, (p-+ a,b), 

M 5 : ((p-+ q,r)-. a,{J) ,...._, (p-+ (q-. a,{J),(r-+ a,{J)), 

M 6 : (p-+ (q-. a,{J),(q-+ y,b)),....., (q-. (p-+ a,y),(p-. {J,b)). 
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The rules of inference are stated here only informally. They assert that 
equivalence is preserved by the systematic substitution of an element of 
C1(P, P) for a propositional variable, and also by replacement of an occur­
rence of a subexpression by an equivalent subexpression. 

The system {M1 , M 2 , ••• , M 6 } is called J/1 • It provides a complete 
characterization of conditional expressions: Two expressions a and fJ from 
C1(P, X) are equivalent by the above given definition if and only if a,..._, fJ 
is a theorem of J/1 • This is proved by reducing each a E C1(P, X) to a 
canonical form a' ,..._, a, and by showing that a and /J are equivalent if and 
only if a' = fJ'. 

Next we treat Igarashi's system. Let ClP, X) be defined as C(P, X), 
except that in clause (b) above we replace :n, E C(P, P*) by :n, E P*. Well­
formed formulas are of the form a ,..._, {J, with a and fJ E C2(P, X). 

The axioms are: 

le1 : (p-+ a,a) ,..._, a, 

le2 : (1 -+ a,{J) ,..._, a, 

le3 : (p-+ a,{J) ,..._, (~p-+ {J,a), 

le4 : (p-+ (q-+ a,{J),y) ,..._, (p I\ q-+ a, (p I\ ~q-+ {J,y)), 

lc5 : (p-+ a, (q-+ {J,y)) ,..._, (p-+ a, (~p I\ q-+ {J,y)). 

Statement of the rules of inference is omitted. It is assumed that the 
usual rules for ~, /\, and V hold. (Note that this was not necessary in 
J/1 .) The system {le1 , le2 , ••• , lc5 } is called ..7e1 . It is a complete axiom 
system for ClP, X). This is also proved via the introduction of a canonical 
form, which differs, however, from McCarthy's. 

The systems J/1 and ..7e1 cannot be compared directly, since they 
refer to the different sets C1 (P, X) and ClP, X). In order to clarify the 
relation between the two systems, it is necessary to extend both. Let 
JI= J/1 U {M7 , Ma, M 9 , M10}, where 

M7 : (p-+ 1,0) ,..._, p, 

Ma: (p-+0,1) ,..._,~P, 

M9 : (p-+q,O) ,..._,p I\ q, 

M10: (p-+ l,q) ,..._, p V q, 

and ..7e = ..7e1 u {le6 }, where 

lc6 : (p-+ q,r) ,..._, (p I\ q) V (~p I\ r). 
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Then the following theorem holds: The systems~ and :7c are equi­
pollent axiom systems, and both provide a complete characterization of 
C(P, X). That ~ can be derived from :7c was shown by Igarashi (66). 

For a proof of the reverse result we refer to de Bakker (11). 

In order to deal with the relation between conditional expressions and 
functions, both authors have introduced the following axiom: 

M 11 :f((p---+ a,{J)) "'(p---+ f(a),f(/J)). 

Another rule of both systems is: 

M12 : Suppose that the equivalence of a and fJ can be shown under 
the assumption that p is true. Then (p ---+ a,y) "' (p ---+ {J,y ). 

Igarashi also considers a combination of conditions and assignment. 
He gives a complete axiom system :7 ac for sequences of possibly conditional 
assignment statements, consisting essentially of :7 a and :7 c, to which are 
added: 

Iac1 : x:=f; (p(x)---+ A,B)"' (p(f)---+ x: f;A, x:-----..f;B) 

Iac2 : (p---+ A,B); C"' (p---+ A;C, B;C). 

This concludes our discussion of McCarthy's and Igarashi's work on 
conditions. We add a few remarks on other papers on this subject. 

The axiom lc6 defines the meaning of (p---+ q,r) in Boolean algebras. 
De Bakker (9) investigates a related function (p---+ q,r)* in the setting of 
distributive, relatively complemented lattices. The function (p ---+ q,r )* is 
the relative complement of p in the interval (p I\ q, p V r). It satisfies 
M 1 , M 4 , M5 , and M 6 ; moreover, it can be used in the definition of such 
lattices. Related results ( on distributive, relatively complemented lattices 
with zero) are given by Dicker (44). 

Rennie (114) gives an elaboration of McCarthy's system. The imperative 
features of conditional statements are considered and a normal form is 
sketched for sequences of such statements which seems similar to the form 
given by Igarashi. 

Caracciolo (23 •25 ) extends some of McCarthy's axioms, viz., M1 , M 4 , 

and M 6 , to constructions which select from n objects (cf. the case con­
struction of ALGOL 68). This suggests relations with n-valued logic and set­
theoretic notions. A beginning is made of a study of these ideas. 

Some aspects of the relation between conditions and assignment are 
treated by Munteanu (106). 
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Finally, we mention Wittman and Ingerman (130), who introduce the 
notion of threshold selection and prove its equivalence to Boolean selection, 
i.e., to conditional expressions. 

2.3.4. Axioms for goto Statements 

Yanov's axiom system, mentioned in Section 2.2.2, provides the first 
example of an axiomatic treatment of goto statements in relation to con­
ditional expressions. 

Igarashi's axioms for goto statements are added to the system .'7ac 
described above. Let us call the resulting system .'7acg. As might be expect­
ed, it no longer has the general completeness property of .'7a, .'7c, or .'7ac. 
What remains is essentially the following: .'7acg is complete for the equiva­
lence of two programs of which it is known in advance that they have a 
common supremum for the number of elementary operations (unspecified 
here) to be performed during their execution. (Note that the problem of 
finding such a supremum is in general undecidable.) 

We shall not present the entire system .'7acg, but restrict ourselves to 
an example of an equivalence which can be derived from it. Consider the 
following programs P1 and P2 (this time we write the conditions in the usual 
ALGOL 60 notation): 

P1 is 

i:=0; L:i:=i+ 1; A; if i < n then goto L; i:=i+ 1 

i:=1; L:A; i:=i+l; if i < n then goto L 

A is an arbitrary sequence of (conditional) assignment and goto statements, 
provided that it contains no jumps to L. For the proof of P1 ,..._, P2 three 
rules of .'7 acg are needed: 

1. An axiom of .'7acg, here loosely formulated as 

... L: B; M: ... ; goto L; ... ,..._, 

... L: B; M: ... ; B'; goto M; ... 

(B is an arbitrary sequence; B' is derived from it by suitably renaming its 
labels in order to avoid "clash of labels.") 

2. An equivalence which can easily be derived from .'7acg: 

if p then begin ... ; goto L end else . . . ,..._, 

if p then begin ... ; goto L end; ... 
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3. A rule which allows the introduction of superfluous labels and 
systematic renaming of labels. 

Then: 

P1 ,....._,i:=O; L:i:=i+l; M:A; if i<n then goto L; i:=i+l 

,....._, i:=O; L:i:=i+ 1; M:A; if i < n then begin i:=i+ 1; goto 

M end;i:=i+l 

by rule 3 and rule 1, and 

P2 ,....._, i:=0; i:=i+ 1; L:A; i:=i+ 1; if i < n then goto L 

,....._,i:=O; i:=i+l; L:A; i:=i+l; if i<n then gotoLelse0 

,....._,i:=O; i:=i+l; L:A; if i+ 1 <n then 

begin i:=i+ 1; goto L end else begin i:=i+ 1; 0 end 

,....._,i:=O; i:=i+l; L:A; if i<n then 

begin i:=i+l; goto Lend; i:=i+l 

by la4 , rule 2, /ac1 , and rule 2, respectively. (Remember that 0 denotes 
the empty statement.) P1 ,....._, P2 now follows from rule 3. 

The connection between goto statements and conditions is also studied, 
though not from an axiomatic point of view, by Engeler (50). In particular, 
he investigates the relation between termination properties of programs 
and the provability of formulas in an infinitary language, viz., a language 
allowing countably long disjunctions. 

2.4. McCarthy's Theory of Computation 

2.4.1. Introduction 

Of central importance for the theory of semantics are the papers of 
McCarthy (97- 101), in particular the papers published in 1963 (98 •99). They 
contain a rich variety of ideas on possible approaches to the mathemat­
ical investigation of basic programming concepts, and detailed studies 
of a number of the proposed methods. We can discuss only a selection from 
McCarthy's work; reasons of space prohibit a more comprehensive treat­
ment. 

The present section is based on the 1963 pagers (98 •99), and deals with: 
recursive functions; the proof technique of recursion induction; state vectors 
and state vector functions-in particular, in relation to assignment state­
ments; and recursion induction on state vector functions. Part of McCarthy's 
formal system for conditional expressions was treated in Section 2.3.3. 
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Discussion of his ideas on the formal definition of languages and appli­
cations to proofs about compilers is deferred to Section 3.3. 

The list of topics which are considered in more or less detail in McCar­
thy's papers (98 •99) but which are not discussed here includes some general 
reflections on motivations and goals for a theory of computation, computable 
functionals and the A-and label mechanism, recursive definitions of sets, 
relations to other formalisms and to mathematical logic, and computer­
checked proofs of programs ( cf. also McCarthy (97) ). 

2.4.2. Recursion Induction 
The formalism for conditional expressions (Section 2.3.3) can be used 

for the definition of functions; e.g., the function abs(x) can be defined by 

abs(x) = if x > 0 then x else -x. 

If the function being defined occurs on the right-hand side of such an 
equation, e.g., in the definition of the factorial function 

f(n) = if n-" 0 then 1 else n Xf(n - I) (1) 

then the definition and corresponding function are called recursive. (Note 
that this use of the term recursive, though current in the field of program­
ming, does not coincide with that in recursive function theory as studied 
in mathematical logic.) 

A problem which presents itself immediately with such definitions is 
that of convergence. In Eq. (1) it can be seen that the process of determ­
ining f(n) terminates only for n > 0. However, a formal theory of con­
vergence is not available. Therefore we shall assume below that the functions 
considered are convergent for the relevant arguments. 

The general form of the equation for the recursive definition of a 
function is 

(2) 

where the right-hand side is a conditional expression in which f occurs. 
Suppose that we can show that two functions g and h both satisfy Eq. (2) 
for appropriate arguments. Then we say that the equivalence of g and h 
(for these arguments) has been proved by recursion induction. 

This technique was introduced by McCarthy (98) and illustrated by 
several examples, both of numerical and nonnumerical (involving LISP 
functions) type. McCarthy (99) also applies it to state vector functions (see 
Sections 2.4.3 and 2.4.4). Further applications are contained in the papers 
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on proofs about the correctness of compilers by McCarthy and Painter (102), 

Painter (109), and Kaplan (70) (Section 3.3). 
Recursion induction has also been studied by Cooper (38 •39). In the 

first paper (38) he considers three definitions of the factorial function, which 
are generalized by abstracting from the special properties of the functions 
involved in the definitions (such as multiplication). The three definitions 
are proved equivalent, and a particular case of the generalized function is 
shown to be a function which reverses the order of symbols of a list. Next 
he proves the equivalence of two functions for evaluating an approximation 
to an integral. Examination of the strategies used in these proofs has led to 
the discovery of a new proof rule which can be applied in situations where 
no proofs by recursion induction have been found. The other paper by 
Cooper (39) is a survey of research on proofs about programs. It contains 
some general reflections on the principles of such proofs. In addition, the 
work done at the Carnegie Institute of Technology on proofs about com­
pilers (London (85 •86), Earley (46), and Evans (54)), Cooper's previous pa­
per (38), and some plans for future work are discussed. 

As an illustration of the nature of a proof by recursion induction, and 
of the application of some of the axioms of Section 2.3.3, we give an example 
of such a proof, taken from Cooper (39). 

Let f(n) be defined by Eq. (I), and let g(n) = h(n, 0, I), with 

h(n, m, a)= if n=m then a else h(n, m+I, (m+I)xa) (3) 

We prove that f(n) = g(n). Two auxiliary functions are introduced. Let 
h' (n, m, a) be defined by 

h'(n, m, a)= if n=m then a else n xh'(n- I, m, a) (4) 

It is clear that h' (n, 0, I), regarded as function of n, satisfies Eq. (I); hence 
f(n) = h'(n, 0, I). Let h"(n, m, a) be defined by 

h"(n, m, a)= if n=m then a else h'(n, m+I, (m+I)xa) (5) 

Using Eqs. (5) and (4), M 12 (Section 2.3.3), M11 , and Eq. (5), we obtain 
h"(n, m, a)= if n=m then a else 

if n=m+I then (m+I)xa else nxh'(n-I,m+I,(m+I)xa) 
= if n=m then a else 

if n=m+I then nxa else nxh'(n-I, m+I, (m+I)xa) 
= if n=m then a else 

nx(if n-I=m then a else h'(n-I,m+I, (m+I)xa)) 
= if n=m then a else nxh"(n-1,m,a) 
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It follows that h"(n, m, a) satisfies Eq. (4); hence, by recursion induction, 
h"(n, m, a)= h'(n, m, a). Replacing h" by h' in Eq. (5), we see that h' 
satisfies Eq. (3); thus, again by recursion induction, h'(n, m, a)= h(n, m, a). 
Since f(n) = h'(n, 0, 1) = h(n, 0, 1) = g(n), the required result follows. 

2.4.3. Recursive Functions of State Vectors 

In this section we discuss McCarthy's method for investigating prop­
erties of programs by associating them with recursive functions. 

In general, a program manipulates a number of variables. The current 
values of these variables constitute the so-called state vector, which will 
be denoted by r In order to obtain a functional representation of a pro­
gram, one associates it with a function <1, such that f = aa) is the state 
vector resulting after execution of the program for the initial state vector t 

We first give an explanation of some of the basic properties of state 
vector functions by means of examples of programs in a simple language, 
viz., consisting of sequences of (possibly labeled) assignment and conditional 
goto statements. Let S1 and S2 be two such sequences, with the restriction 
that they have only one entrance and exit, i.e., they neither contain labels 
which are referred to from "outside," nor goto statements referring to 
labels outside. Suppose that already associated with S1 and S2 are the 
functions <11(~) and aifl. Then 

1. With S1 ;S2 is associated a(fl = <12(<11(fl). 

2. With if p then goto L; S1 ; L: S2 is associated 
a(fl = if p(~) then a2(fl else <1i<11(fl). 

3. With L: S1 ; if p then goto L is associated 
a(fl = if p(~) then <1(<11(~)) else <11(;). 

From the third example it follows that the state vector function is recursive 
in the case that the program contains a loop. 

The rules given in these examples are not intended as a general scheme 
for the construction of state vector functions. Because of the restrictions on 
S1 and S2 , they are by no means sufficient to treat all sequencing structures. 
In the general case the construction of the state vector function <1 correspond­
ing to a given program leads to a set of mutually-dependent recursive 
functions with <1 as one of its elements. Some specific examples of such 
constructions are given by McCarthy (99). The general problem is considered 
by de Bakker (11), Bohm (16), Luckham et al. (91), and Strachey (123). An 
alternative approach, adopted by McCarthy (101), Kaplan (70), and Paint­
er (109), is to extend the state vector with a statement counter, the current 
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value of which is the number of the statement to be executed. This technique 
has proved useful when state vector functions are applied in the formal 
definition of languages (Section 3.3). However, the first solution should 
presumably be preferred in applications concerning proofs about individual 
programs. 

As a further illustration of the state vector concept, we show that a 
special case of one of Yanov's axioms (Section 2.2.2) can be derived from 
rules 1 and 2 and from the axioms for conditional expressions. 

Let P1 be the program 

if p then goto L1; S1; L1: if p then goto L2; S2; L2: 

and let P2 be 

if p then goto L1; S1; if p then goto L2; S2; L2: L1: 

Yanov's axiom asserts that P1 and P2 are equivalent. We prove this for the 
special case that S1 and S2 satisfy the above-mentioned restrictions, by 
showing that P1 and P2 have equivalent state vector functions a' and a". 

By rule 2, to the program if p then goto Li; Si; Li: (i = 1, 2) cor­
responds if p(fl then ; else ai(;). Composition of these two yields for the 
function a' of P1 : 

<1'(;) = if p(if p(fl then ; else <11(;)) 
then if p(;) then ; else <11(;) 

else alif p(;) then ; else <11(;)) 

Application of M11 gives 

a'(;) = if if p(;) then p(;) else p(<11(fl) 
then if p(;) then ; else <11 (fl else if p(fl then al;) else <12(<11(;)) 

By M 4 , M5 , and M 6 this can be reduced to 

By rules 1 and 2, to the program S1 ; if p then goto L2 ; S2 ; L2 : there 
corresponds 

Hence 

a"(fl = if p(fl then ; else a(;) 
= if p(;) then ; else if p(a1(;)) then <11(fl else <12(<11(;)) 

We conclude that a' = <1". 
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A systematic investigation of the relation between the properties of 
conditions and state vector functions, and of Yanov's axioms, is given by 
de Bakker (11 ). 

We have not yet discussed how assignment statements are treated. For 
this purpose McCarthy has introduced two functions, a and y. Here a(x, 
f, fl reflects the effect of the assignment statement x := f executed at the 
moment that the current state vector is g. It delivers a new state vector 
which is equal to g except for its x component, which has now become the 
value of the function f The function y(x, fl delivers the current value of 
the variable x in the state vector r The relations between the functions a 
and y are characterized by the following rules: 

1. y(x, a(y,f, g)) = if x=y then f else y(x, g). 

2. a(x, y(x, g), g) = g. 
3. a(x,f, a(y, g, fl) = if x=y then a(x,f, fl else a(y, g, a(x,f, g)). 

As an example of the application of these rules, we consider the equivalence 
x:=y; y:=x ,..._, x:=y (axiom Ba1 of Section 2.3.2). With x:=y is associated 
a(x, y(y, g), g). By the given rules this is equivalent to a(y, y(x, a(x, y(y, 
g), fl), a(x, y(y, g), g)), i.e., to the function associated with x:=y; y:=x. 

The three rules are studied in detail by Kaplan (71 ). An axiomatic 
theory is developed with these rules as axioms, to which some rules of 
inference are added. A formalism is introduced for interpreting the well­
formed formulas of the theory; moreover, it is defined what it means for a 
formula to be true in a given interpretation. Then the following complete­
ness theorem is proved: A formula is a theorem of the axiomatic theory if 
and only if it is true in all interpretations. 

2.4.4. Recursion Induction on State Vector Functions 
As a final example of McCarthy's work, we discuss an application 

of the combination of the ideas from the two previous sections. Consider 
the following two programs P1 and P2 , with corresponding functions cr1 

and cr2 : 

P1 is 
L 1 : if n=O then goto L 2 ; s:=nxs; n:=n-1; goto L 1 ; L2 : 

P2 is 

Let ii be the function corresponding to s:=nxs; n:=n-1. (Note that ii 
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can be expressed in terms of a and y.) Then for a 1 we have 

(6) 

From the properties of a and y, and the definition of the factorial, it follows 
that if y(n, ,;) = 0, then ai,;) = ,;, and if y(n, ,;) ,f:= 0, then P2 is equivalent 
to 

(For this equivalence see also an example of Section 2.3.2.) We conclude 
that 

ai,;) = if n=0 then ,; else crio'(,;)) (7) 

Comparison of Eqs. (6) and (7) yields, by recursion induction, that cr1 = cr2 • 

McCarthy has also introduced a method for directly applying recursion 
induction to programs, i.e., omitting the intermediate use of state vector 
functions. He in fact applied it to obtain the equivalence given above of 
P1 and P2 ( 99). Since we have not discussed this method, we had to use state 
vector functions in the derivation of P1 ,....., P2 • 

2.5. Flow Diagrams 

2.5.1. General Properties 

Ever since the first years of computing, flow diagrams have been used 
for the representation of programs (their use goes back to Goldstine and 
von Neumann (60)). As is well known, they are especially suitable for 
providing an overall picture of the global properties of a program-in 
particular, with respect to its sequencing structure. 

Although flow diagrams have been used for practical purposes for a 
long time, theoretical investigation of their properties has started only 
relatively late. The first treatment which might be called abstract of flow 
diagrams seems to be due to Kaluzhnin (69) (see also Fels (56)). Kaluzhnin 
introduces the notion of a graph schema, defined as follows: 

Let there be given a set A = { A1 , A 2 , ••• , An}, the elements of which 
are called operators, and a set F = {F1 , F2 , ••• , Fm}, the elements of which 
are called discriminators. 

A finite, labeled, directed graph (Berge (14)) is called an A-F-graph 
schema if it satisfies the following conditions: 

1. There is precisely one node, called the entrance, to which no arrow 
leads and away from which exactly one arrow leads. 
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2. There is precisely one node, called the exit, away from which no 
arrow leads. 

3. With the exception of the entrance and exit nodes, from each node 
of the graph there leads either one or two arrows. In the first case it is called 
an operator node, and is labeled by an element of A. In the second case 
it is called a discriminator node, and is labeled by an element of F. The 
arrows leading away from a discriminator node are marked, e.g., by O and I. 

An interpretation of an A-F-graph schema is defined by the selection 
of a domain D, and by interpreting the elements of A as functions from D 
to D and the elements of Fas functions from D to {O, I}. An interpreted 
graph schema defines a partial function from D to D in the usual way: 
Starting with the entrance node a path is followed through the graph in 
the arrow direction. When an operator is met the function corresponding 
to it in the given interpretation is evaluated for the argument considered 
(the result becomes the argument for the next function) and the arrow 
leaving this node is followed. A discriminator node determines a choice 
from the two arrows leading from it. It selects the arrow marked O (I) if the 
value of the corresponding function for the argument considered is O (I). 
The evaluation of the function determined by the graph schema terminates, 
if ever, when the exit node is reached. (A more formal description of the 
evaluation of the function determined by an interpreted graph schema may 
be found in the paper by Kaluzhnin (69) and in most of the papers to be 
discussed presently c1a,s1,101,126). 

After the definition of graph schemata some of their properties are 
studied. A rule is given for obtaining, for each Markov algorithm, an inter­
preted schema which defines the same function. The graph-schema for­
malism provides a convenient means of defining substitution or composition 
operations-this in contrast, e.g., with Markov algorithms. The substitution 
of a given graph schema for an operator node Ai in another schema is 
defined as follows: Replace each occurrence of A; in the second schema by 
the graph which results after deleting the entrance and exit nodes of the 
first schema. Note, however, that substitution cannot be defined in the same 
way for discriminator nodes. 

We have given a rather detailed account of the main ideas of Kaluzh­
nin (69) because they return in some form in many of the other papers on 
properties of flow charts, with the discussion of which we now proceed. 

As already mentioned, an important application of flow charts is their 
use in the study of the sequencing concept. It should be clear, however, 
that there is no essential difference between the representation of the se-
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quencing structure of a program by means of a flow diagram, or a linear 
notation based on goto statements. (On the other hand, the repetitive effect 
of the recursive use of procedures is in general not directly representable 
by means of a flow diagram. This question is discussed by Cooper (38

) and 
McCarthy (99).) Which of the two approaches-sometimes characterized as 
geometric versus algebraic-is preferred is mainly a matter of convenience. 
For the investigation of the global properties of a sequencing structure a 
flow-chart representation may be more appropriate, whereas local aspects 
-e.g., considered in the axiom systems of Yanov and Igarashi-are more 
concisely representable in terms of a linear notation. 

The close connection between properties of flow charts and of goto 
statements implies that a number of investigations treated in the previous 
sections may just as well be viewed as dealing with flow charts. This holds, 
e.g., for Yanov's work, the equivalence results of which are immediately 
applicable to graph schemata, or for the results on the formalized computer 
programs of Luckham et al. (91), the operator nodes of which must be 
interpreted as assignment statements. In addition, flow charts were in fact 
used by McCarthy (99) in his explanation of the association of state vector 
functions with programs. 

There is a fairly extensive literature dealing with flow charts, with 
varying degrees of relevance for the semantics of programming languages. 
No attempt at completeness will be made in our discussion of them, but 
we shall indicate briefly the various directions which may be distinguished 
in these investigations, and give some representative references. 

First we mention some papers which are concerned with the relation 
between graph schemata and notions from logic-in particular, computability 
theory. Peter (111 •112) gives the first proof of the equivalence of the class 
of functions defined by means of graph schemata and that of partial recursive 
functions. Asser (6) proves the equivalence of graph schemata with his 
function-algorithms (7). Kunze (76) studies a certain extension of graph 
schemata which allows operations on only a part of the object being trans­
formed. Another proof of the equivalence of graph schemata with partial 
recursive functions is given by Ershov (51). The same equivalence result is 
again proved by Basu (13), who also gives an algorithm for the transforma­
tion of flow diagrams to a linear notation. Thiele (126) considers (extended) 
graph schemata, the operator and discriminator nodes of which are inter­
preted by functions and predicates as studied in the first-order predicate 
calculus, and investigates to what extent the results of the predicate calculus 
can be extended to these structures. Our judgment on the relevance of the 
sort of results meant here is twofold. On the one hand, they are not as yet 
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directly applicable to semantics; the remarks of the first part of Section 
2.1.2 are largely pertinent here. However, graph schemata are much more 
suitable for the representation of properties of programs than, e.g., Turing 
machines. Hence it may well be that further development of the logical 
investigations of graph schemata will lead to results which are indeed inter­
pretable as results on programming concepts. Clearly, major progress in 
semantics would be achieved, if, e.g., the work of Thiele were extended in 
such a way that theorems of the predicate calculus could be interpreted in 
some manner as theorems on properties of programs. 

In a second group of papers properties of graph schemata are investigat­
ed by means of graph theory. Examples are Karp (72), who uses graph 
theory to determine redundancies in programs (detection of nodes which 
cannot be reached from the entrance node, or from which the exit node 
cannot be reached), and Schurmann (117- 119), who gives algorithms to de­
termine the number of certain cycles in graphs, which cycles correspond to 
loop structures in programs. Use is made in these papers of the connection 
matrices of the graphs considered. This is also done by Krider (75) and Hain 
and Hain (62), who are mainly concerned with the actual drawing of flow 
charts. 

In our opinion, the purely graph-theoretic approach to flow-chart in­
vestigation is useful only for a limited class of problems. In order to obtain 
deeper results, the graph structure must be investigated together with the 
properties of the predicates associated with its discriminator nodes, and 
with the effects of the operators upon these predicates, which effects de­
termine the flow of control. For most purposes the graph structure alone 
is too poor a model of the flow diagram. 

Probability aspects of graph models of computations are studied in a num­
ber of papers, e.g., (93- 95 •113). These investigations are only remotely related 
to programming concepts (an exception is, of course, the notion of parallel­
ism, which is, however, not considered in the present chapter), especially 
since many of them pertain also to operating systems, e.g., in a time­
sharing environment. Discussion of them is therefore omitted. 

Narasimhan (107) is more directly concerned with programming lan­
guages. An extensive formalism is introduced with flow diagrams as basic 
components. Rules are given for the substitution of a flow diagram for 
nodes in another diagram. These substitutions may be considered as sub­
routine calls. Compared with other work, an extension is introduced which 
amounts to the treatment of subroutines with parameters. The formalism 
also allows parameters referring to other flow diagrams. For such nested 
calls of subroutines, the term hierarchical computation is used. The system 
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is envisaged as a general framework in which properties of languages and 
computers can be phrased. In fact, the paper even purports to develop "a 
unified meta theory of programming languages and computers." This highly 
ambitious goal has certainly not been achieved. All that can be said is that 
the proposed formalism may be of some use for the investigation of the 
transfer of information between different flow diagrams, although this will 
have to be borne out by further elaboration. 

A more interesting paper is that by Bohm and Jacopini (18). The 
problem is considered whether it is possible to decompose each flow dia­
gram into a finite number of base diagrams. By means of a counterexample 
it is shown that this is not the case. It is necessary to introduce an extension 
of the flow-chart formalism which amounts to the following: Whenever an 
argument is subjected to a test by one of the discriminator nodes of the flow 
chart it is supplied with an indication of the result of this test. A mechanism 
for inspecting or deleting these indications is also introduced. It is then 
shown how, in the extended formalism, each flow diagram can be decompos­
ed using either three or two base diagrams. Related is the work of Cooper(40). 

Meaning-preserving transformations of graphs are introduced, and necessary 
and sufficient conditions are given which must be satisfied by a graph to 
allow reduction to some normal form by means of these transformations. 
A comment by Cooper on the relation of his work to that of Bohm and 
Jacopini is given in (41). In order to clarify the relation between the results 
of Bohm and Jacopini (18), Cooper (40) and various approaches discussed in 
the previous sections (e.g., is it possible to express these results as properties 
of the functions associated, in McCarthy's sense, with programs?) we expect 
that the method of Floyd (58), to be treated in the next section, will be useful. 

2.5.2. Floyd's Method 
Flow diagrams are used as a tool for assigning meaning to programs 

in an important paper by Floyd (58). 

Consider a flow diagram with commands associated with its nodes. 
(The distinction of the previous section between operator and discriminator 
nodes is not made here; commands include both cases.) With each con­
stituent arrow of the flow diagram a proposition is associated which states 
the condition to be satisfied by the variables manipulated by the program 
(i.e., the state vector) in order that the flow of control take the arrow 
concerned (similar to these propositions are the "general snapshots" 
proposed independently by Naur (108)). A verification condition for a 
command is a relation which holds between the propositions associated 
with the incoming and outgoing arrows of the command, respectively. 
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This relation is to be defined such that if it is satisfied, and if the proposition 
associated with the arrow along which the command is entered is true, then 
the proposition associated with the arrow from which the exit, after exe­
cution of the command, is taken, is also true. 

An axiomatic treatment is given of the general requirements which 
must be met by the verification conditions in order to obtain a complete 
and consistent theory. These requirements are illustrated by the definition 
of the verification conditions for the statements of a particular flow-chart 
language. It is shown for instance that for the assignment statement x : = f(x, 
Yi, ... , Yn) the condition must have the following form: 

· Let P(x, Yi, ... , Yn) and Q(x, Yi, ... , Yn) be the propositions associated 
with the incoming and outgoing arrows of this statement, respectively. Then 
the verification condition is: If there exists x0 such that P(x0 , Yi, ... , Yn) 
holds and such that x = f(x0 , Yi, ... , Yn), then Q(x, Yi, ... , Yn) holds. 

Next, verification conditions for some typical ALGOL-like commands, 
such as conditional, goto and for statements, are derived, and the locality 
aspect of declarations is treated. A method for dealing with assignment 
statements inside expressions is given-which amounts to the introduction 
of a processor with a pushdown stack-as an illustration of the side-effect 
feature of procedures. 

As a final application, a technique for proofs about termination of 
programs is proposed: Associate with each arrow of the flow chart-besides 
the already-mentioned propositions-also a state vector function with values 
in a well-ordered set. Then show that for each command the value of the 
function associated with the incoming arrow is greater than the value of 
the function associated with the outgoing arrow, where the two arrows are 
such that their associated propositions satisfy the verification condition for 
this command. 

2.6. Concluding Remarks 

In this section we make a few concluding remarks on the research on 
basic programming concepts discussed in the preceding sections. For this 
purpose we consider again the list of Section 2.1.1. It appears that the 
majority of the investigations concentrates upon concepts 4, 5, and 7, i.e., 
conditional constructions, sequencing, and assignment. A rearrangement 
of the references dealing with one more of these concepts may be useful: 
assignment (10•21 •71); conditions (9 •23 •25 •44 •114 •130); assignment and condi­
tions (106); conditions and sequencing (11,16-18,38-40,47,so,52,53,64,116,135-138); 

and assignment, conditions, and sequencing (20,58,63,65-67,77-81,91,98,99,104,105, 
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108,123 •125) (a few references have been included in this scheme which were 
not yet mentioned, but are to be treated in Section 3). 

If one bears in mind that, apart from a few exceptions, all these papers 
use different methods and formalisms, one will appreciate the remark of 
Section 2.1 concerning the difficulty of incorporating the various approaches 
into one unified system, allowing a systematic exposition of the interrelation­
ships of the proposed methods and the results obtained. It seems likely 
that decisive progress will be achieved only if a number of unifying notions 
will have been found, having the same effect on semantics as, e.g., the theory 
of phrase-structure grammars has had on syntax. However, although we 
feel that a complete synthesis is not within direct reach, there are a number 
of less ambitious goals for future research which may contribute towards 
unification, and which seem not too difficult. Possible candidates for such 
investigations are: 

1. A study of the relation between the various axiomatic characteriza­
tions of assignment. 

2. An analysis of the relation between the functional approach to 
sequencing ( via systems of recursive functions), and the imperative approach 
(via goto statements). 

3. An analysis of the relation between the algebraic properties of se­
quencing (axioms of Yanov and lgarashi), and the various methods based 
on flow charts. 

4. More abstractly (and more difficult), an investigation of the dif­
ferent notions of equivalence between programs and the corresponding 
equivalence-preserving transformations. 

3. FORMAL DEFINITION OF PROGRAMMING 
LANGUAGES* 

3.1. Introduction 

After having given in Section 2 a survey of the investigations of basic 
concepts in programming, we devote Section 3 to a discussion of the research 
which has been done on complete programming languages. Most of this 
research is concerned with the formal definition of (syntax and) semantics 
of programming languages. 

* Section 3 owes much to our participation in the discussions of the IFIP Working 
Group 2.2 on formal language description languages. However, all opinions expressed 
in this section are our own and do not necessarily reflect the opinions of the Group. 
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The work reported in the previous section was inspired mainly by the 
wish to investigate the mathematical properties of concepts in programming 
and to obtain proofs about these properties. On the other hand, research 
in methods for formally defining languages is motivated primarily by other 
reasons of a more practical nature. Of these we mention the following: 

I. First of all, the wish to provide the compiler writer with a complete, 
precise, and unambiguous definition of the language for which he must 
construct a compiler. Such a definition should, for instance, make it clear 
which parts of the language are not fully specified, so that the implementor 
knows where he may choose his own interpretation. As an example of an 
implementation-dependent feature of most programming languages, take 
real arithmetic, the implementation of which will differ with the various 
machines for which it is intended. However, the formal description may well 
state some basic requirements which must be satisfied by all implementations. 

2. A formal description method for languages can also be of use in 
their design. It should lead to a vocabulary for discussions about concepts 
in the language. One might expect of it the detection of incompatible, con­
tradictory, or ambiguous constructions, or it might be used as a source of 
inspiration for new concepts which would not have originated directly from 
practical considerations. These applications of a formal description method 
will in particular arise when a new language is designed on the base of an 
already existing method. For instance, the design of ALGOL 68 has been 
influenced by the previously developed method for its syntactic description 
(cf. Section 3.6); in addition, there has been much interaction between the 
design of CPL and the theoretical investigations of semantics by Landin, 
Strachey, and others (Section 3.5). 

3. People who want to write or understand programs may want to 
consult the formal definition of the language in those cases where their 
usual reference document does not provide a sufficiently clear answer to 
their problem. Experience has shown that such situations, where the manual 
which describes the language does not give satisfactory information, often 
occur. 

4. A formal definition of a language may be used for standardizing 
this language. A need for the availability of a formal definition method has 
been expressed several times by people who are concerned with the standardi­
zation of programming languages, e.g., by Steel (122). 

5. Comparison of different languages may be facilitated when they 
have been described formally using the same method. It should then be 
possible to establish which concepts in the languages are essentially the 
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same, and for the remaining ones what relationships, if any, they have with 
each other. 

6. Finally, one might expect of a formal definition of a language that 
it can be used to give proofs about properties of the language; one may 
distinguish here among proofs about general concepts in the language, 
about individual programs, and about compilers for it. This application is 
usually considered to be of less importance than the ones mentioned above, 
since it is recognized that more or less complete descriptions of full languages 
are too complicated to be used as a tool for giving proofs. However, some 
systems for formally describing languages have indeed been used for proofs, 
e.g., on the correctness of a small compiler (Section 3.3). 

After these introductory remarks on possible reasons for formal lan­
guage definition we shall devote the remainder of this chapter to a survey 
of the several systems which have been used up to now. The book edited 
by Steel (121 ), which contains the proceedings of a conference on formal 
language description languages held in 1964, may serve as a further in­
troduction to the field of language definition. The principles of many of 
the systems currently in use are presented in this book (an important 
exception is the Vienna work on the definition of PL/I). It also contains, 
especially in the discussions, a great deal of information on how the various 
authors motivate their approaches. 

3.2. The Markov-Algorithm Approach 

Markov algorithms have become well known in programming. They 
were introduced by Markov (92) (for an introductory exposition see Men­
delson (103)) for the investigation of problems in computability theory, 
mainly leading to theorems on undecidability, and may be compared from 
this point of view, for instance, with Turing machines. However, the trans­
formation scheme as present in Markov algorithms has found several ap­
plications in practical programming, the first of which seems to be due to 
Y ngve in his design of COMIT ( 139). Most of these applications are in the 
field of languages for symbol manipulation, for which we refer to Bo­
brow (15) (see also Christensen (35) and Itturiaga (68)). 

Obviously, Markov algorithms need extensions with other concepts in 
order to be useful for practical purposes. For instance, in many cases some 
goto mechanism is added. Other extensions will appear presently in our 
discussion of the use of Markov algorithms for formally defining languages. 

The starting points for the use of Markov algorithms for language 
definition are the papers of van Wijngaarden (131 •132), Caracciolo (26), and 
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Caracciolo and Wolkenstein (34). It was noticed only afterward that these 
papers had in common the introduction of an essentially similar extension 
to the Markov-algorithm concept, which may be summarized as follows: In 
the ordinary Markov algorithm one has transformation rules, the left- and 
right-hand sides of which are sequences of symbols over some given al­
phabet. In order to establish whether a rule is applicable to a given sequence, 
the sequence is scanned for the occurrence of a sub-sequence which is 
identical to the left-hand side of the transformation rule. If such a sub­
sequence does occur, then its first occurrence is replaced by the right-hand 
side of the rule concerned. In the extended version the transformation rules 
consist in general not only of symbols from the given alphabet (to be called 
terminal symbols), but also of metalinguistic variables, for instance, in 
Backus notation. An example of such an extended rule is 

(unsigned integer) 0 + (digit) ----+ (unsigned integer) (digit) (8) 

The corresponding extension of the concept of applicability, and of the 
transformation determined by an applicable rule, is then: Consider a trans­
formation rule and a terminal sequence. The rule is applicable to the se­
quence considered if its left-hand side satisfies the following condition: 
There exist productions of the metavariables occurring in it such that the 
sequence which results after substituting these productions for these meta­
variables is identical with a sub-sequence of the considered terminal sequence 
(In case there is more than one possibility for such productions, the first one 
in a suitably defined:order is chosen.) This sub-sequence is then replaced by 
the sequence which results from the right-hand side when the same substitu­
tions of productions for metavariables have been performed there as in the 
left-hand side. 

Example: Rule (8) is applicable to the sequence 210 + 5, provided 
that the usual definitions of (unsigned integer) and (digit) are available, 
and it transforms this sequence to 215. 

In this description of the proposed extension of the Markov algo­
rithms (26 ,34 •131 ,132) (essentially the same system was proposed subsequently 
by Cohen and W egstein (37)) some modifications have been introduced in 
order to bring out the common features. We now treat some other ideas 
of these papers. 

Caracciolo (26) and Caracciolo and Wolkenstein (34), instead of using 
metalinguistic variables in the transformation rules, used in fact a some­
what more general approach: The rules may contain names of arbitrary 
sets, provided that it is effectively decidable for each given sequence of 
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symbols whether it belongs to this set or not. Moreover, a further extension 
was considered in which the right-hand side of a transformation rule does 
not simply determine a replacement-in case of applicability of the rule to 
a given sequence-but in general the application of some recursive function 
to this sequence. (Essentially the same extension of Markov algorithms was 
studied previously by Asser and Vuckovic (7).) 

In order to establish whether a transformation rule is applicable to some 
sequence, it may be necessary to determine whether some part of this 
sequence is a production of a metavariable occurring in the left-hand side 
of the rule. In Caracciolo's system a separate set of formulas is supposed 
to be given for this purpose. On the other hand, in van Wijngaarden's 
work (131 •132) these questions are settled by consulting the same list of trans­
formation rules, i.e., these rules contain all relevant "syntactic" information. 
Details of the precise way in which this is done are omitted here. 

We now consider some applications of the systems of van Wijngaarden 
and Caracciolo to language design and definition. 

Van Wijngaarden (131) was concerned both with the design of a language 
called generalized ALGOL and with its formal description. Some ideas on 
this generalization of ALGOL were taken up by Wirth (128) and Wirth and 
Weber (129), although in the latter a completely different method for formal 
definition was used. In van Wijngaarden (132) the emphasis was laid on the 
formal definition of ALGOL 60. The ideas of this paper were used as the base 
for our de Bakker's (8), where an almost complete definition of ALGOL 60 
was given (the only feature not treated being real arithmetic), consisting 
of about 800 transformation rules. The meaning of an ALGOL 60 program 
is determined by the way in which it is transformed by these rules. Here 
another extension of the Markov-algorithm scheme not yet discussed is of 
importance, viz., the possibility of having a dynamically growing list of 
rules. The execution of a particular ALGOL 60 program will lead to the 
extension of the list of language-defining rules with rules which reflect the 
meaning of this specific program. For instance, the occurrence of the 
assignment statement a : = 3 in a program causes the creation of a new 
rule a -+ 3 ( omitting some details on locality), which will be applied each 
time the value of a is needed subsequently in the execution of the program. 
De Bakker (8) also gives a precise definition of the formal system used, 
illustrated by several examples, and an implementation of an abstract 
machine for interpreting it. 

The system of Caracciolo has been applied to a large class of problems. 
However, many of these have been described only in reports as yet un­
published. The list of applications includes: 
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I. The design of a language for symbol manipulation, called PANON 
I B (27,33,34). 

2. The definition of a storage allocation mechanism for FORTRAN, 
concerning the notions of COMMON, DIMENSION, and EQUIV AL­
EN CE, by Aguzzi and Pinzani (1). 

3. The formal definition of a machine tool language by Caracciolo 
and Camera (29 ) (also see Caracciolo (24)). 

4. The definition of the record and file manipulation in COBOL (84). 

5. The definition of ALGOL 60 (31 ). The main difference between this 
and de Bakker (8) is that Caracciolo's system does not include the idea of 
a growing list of rules. The relevant information originating during the 
execution of the program, i.e., the sequence being transformed, is kept 
available by including it in some way in this sequence. Moreover, the 
treatment of goto statements and locality is simpler than that in de Bakker's 
system (8). 

6. The definition of SIMULA (32). 

7. The definition of the de Bakker's formal system (8) and some prin­
ciples of the system which has been used for the formal definition of PL/I, 
(Section 3.4) by Caracciolo (28) and Caracciolo and Carlucci (30). 

3.3. McCarthy's Ideas on Formal Definition 

McCarthy's main paper on the formal definition of languages was given 
at the 1964 IFIP Working Conference (101) (the basic ideas were already 
described in the last part of a paper to the the 1962 IFIP Congress (99); 

some comments were added in a paper to the 1965 IFIP Congress (100). 

The first important concept of McCarthy's system is that of abstract 
syntax, as opposed to the usual notion of concrete syntax. The concrete 
syntax of a language, e.g., given by a context-free grammar in Backus 
notation, prescribes which sequences of symbols constitute valid construc­
tions in the language. The abstract syntax, on the other hand, makes no 
commitments about the way in which such constructions are represented 
by sequences of symbols, but for each type of construction names of a 
predicate and of functions are given, where the predicate is such that it is 
true precisely for a construction of the given type, and the functions are 
used for decomposing the construction in its relevant parts. For instance, 
in an abstract syntax one is not interested in whether an infix or prefix 
notation is used in binary arithmetic expressions; it is only necessary to be 
able to recognize it as an arithmetic expression and to have functions for 
obtaining its operator and its first and second operands. 



210 Semantics of Programming Languages [Chapter 3 

Abstract syntax is especially useful in combination with McCarthy's 
proposal for defining the semantics of a programming language: This is 
done by means of a state vector function (Section 2.4.3), called "lang," 
say, such that f = lang(n, ~) gives the state f which results from applying 
the program n to the state ~- The crucial point here is to decide what in­
formation should be included in the state vector. In Section 2.4.3 it was 
taken to be the set of current values of the variables occurring in the pro­
gram. In McCarthy (101) and in the papers to be discussed presently it also 
includes a statement counter, the current value of which is the number of 
the statement to be executed. These components are sufficient for the 
definition of languages containing only some simple concepts such as arith­
metic and Boolean expressions, assignment and goto statements. For the 
treatment of richer languages, which also include concepts as locality, 
procedures, declarations, etc., many more components must be introduced, 
as was done, e.g., in the system for the formal definition of PL/I (Section 3.4). 

As an illustration of the use of state vector functions for formal de­
finition, we consider the treatment of the assignment statement. Let the 
predicate assignment(s), and the functions left(s) and right(s) be available 
in the abstract syntax, and let sn be the name of the statement counter, 
with the current value n. Furthermore, we assume that a function value 
(t, fl has already been defined, delivering the value of the expression t for 
the state ~- The meaning of an assignment statement, using the function a 
of Section 2.4.3, is then described by: 

.. . if assignment(s) then 

a(sn, n + I, a(left(s), value(right(s), e), fl) ... 

The formalism sketched above, though not yet elaborate enough for 
the definition of complete languages, has found interesting applications in 
proofs about compilers, e.g., by McCarthy and Painter (102), Painter (109), 

and Kaplan (7°). The former paper (102) can be considered as preparatory 
to the latter two (70 ,109), where a proof is given of the correctness of a 
compiler for a language including arithmetic and Boolean expressions, 
assignment, conditional, and goto statements, and some 1/0. The notion 
of a correct compiler is defined as follows: First the semantics of the source 
language and the object language ( of an idealized machine with a small set 
of instructions resembling actual assembly operations) is given by the 
method described. In order to construct the object program produced by 
the compiler, it is necessary to also provide a synthetic (abstract) syntax of 
the machine language, i.e., a set of rules for composing a program, as 
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opposed to the analytic abstract syntax which gives a means for taking a 
program apart. The connection between the analytic and synthetic syntax 
of a language is defined by certain "regularity conditions." Next a function 
is postulated which establishes a 1 : 1 mapping of the variables of the source 
program onto a set ofregisters used in the object program. Then the compiler 
is correct if for each source program, the corresponding object program 
produced by it satisfies the following requirement: 

Let the variables of the source program and the registers corresponding 
to them by the postulated function be assigned the same initial values. Then 
the final values of the variables in the source program and the registers of 
the object program are the same, these values being obtained by application 
of the semantic function of the source language and object language, 
respectively. 

The main tool in the proofs is recursion induction or some of its 
variants. The proofs by both Painter (109) and Kaplan (7°) are long and 
complicated. In our opinion, they provide a good illustration of the need 
for some fundamental theorems in the theory of semantics which would 
make it unnecessary to start from scratch, as it were, every time one wants 
to give a proof in this field. 

3.4. The Vienna Method 

One of the major achievements in the area of language definition is 
the formal definition of PL/I, as given by the PL/I definition group of the 
IBM Laboratory in Vienna. 

The method used, although developed with view to PL/I, consists in 
fact of a number of concepts quite generally applicable. Hence it can also 
be used with other languages; this has been illustrated by employing it 
for the definition of ALGOL 60. 

The principles of the method are explained by Lucas et al. (90). It is 
based on the definition of an abstract machine which is characterized by 
the set of its states and its state transition function (cf. Elgot (48

) and Elgot 
and Robinson (49) ). A given program defines an initial state of the machine; 
the subsequent behavior of the machine is said to define the interpretation 
of the program. To be more precise, let A be the state transition function 
and ~o the initial state. Then the behavior of the machine is the sequence 
~ 0 , ~ 1 , ••• , ~i, ~i+1, .•• , with ~i+1 = A(~i). The sequence terminates, if 
ever, if an element of a given set of final states is reached. 

The interpreting machine is used in this way to attach a meaning to 
programs and their constituent expressions. However, it proved to be in-
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convenient to have the machine operate directly upon the sequences of 
symbols which constitute these expressions, as prescribed by the syntax. 
To circumvent this difficulty, an intermediate stage has been introduced. 
McCarthy's abstract syntax is used to define programs as abstract objects, 
and these abstract objects are the entities manipulated by the interpreting 
machine. Hence, before the machine can be applied to a given program 
text, i.e., a sequence of symbols produced by the concrete syntax, the text 
must first be translated into the corresponding abstract object. For PL/I 
this translation is described by Alber and Oliva (3); a general discussion 
of the relation between abstract and concrete syntax can be found in the 
paper by Lucas et al. (90). 

Next we explain some features of the formalism used for the description 
of the operations of the interpreting machine. A general class of objects is 
introduced, of which both the abstract objects representing programs and 
the states of the machine are subclasses. These objects may be considered 
as tree-structured entities: An object is either elementary or it is composed 
of a finite number of immediate components, each of which is again an 
object. The immediate components of an object are named by means of 
selectors. The application of a selector to a nonelementary object yields 
the immediate component with this selector as its name. To a nonelementary 
immediate component again a selector can be applied, etc. In this way, by 
successive application of selectors, all components of a given object can be 
obtained. 

Several operations on objects and their selectors are defined. The most 
important of these is the so called µ-operator. Given an object A and a 
composite selector (i.e., the functional product of a number of selectors) 
and an object B, application ofµ results in a new object, viz., A, where the 
component to which the composite selector points has been replaced by B. 

Some general schemes for the definitions of subclasses of the class of 
objects are introduced, e.g., for the definition of objects, the immediate 
components of which satisfy certain predicates. These schemes can be used, 
e.g., in the definition of the abstract syntax of a language. 

The formalism for dealing with general objects is then applied in the 
description of the properties of the interpreting machine. It was already 
mentioned that the states of the machine are special cases of these objects. 
Each state has a so-called control part as one of its immediate components. 
The control part of a given state is used by the machine to determine the 
operations to be executed in order to obtain the successor state of this 
state, i.e., it contains the relevant information for the state transition func­
tion. (During the execution of a program the situation may arise that one 
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has to perform a set of actions in unspecified order-e.g., the order of 
evaluation of primaries in an expression is not defined in ALGOL 60; in order 
to be able to describe such cases, the state transition function has been 
extended in that it does not, in general, define one successor state, but a 
set of successor states; hence, we have in fact a nondeterministic machine.) 

The interpreting machine is illustrated by Lucas et al. (90) by applying 
it to the definition of a simple language with some arithmetic, conditions, 
assignment, procedures, and blocks. In addition to the control part, several 
other state components are necessary to deal with these concepts. We 
mention: The environment component, which is used to associate identifiers 
with unique names (this is necessary to treat the scope problem), and the 
dump component, which has a stacklike structure and is used to represent 
the dynamic nesting of blocks, procedure, and function activations. 

The short explanation given above of the general principles of the 
Vienna method must suffice here; for further information we refer to the 
paper by Lucas et al. (90). 

As already noted, the most important application of the method is the 
definition of PL/I. This is described in a number of reports. The main 
document is by Walk et al. (127), and gives the abstract syntax and inter­
pretation of PL/I. The translation of concrete PL/I programs into abstract 
programs is described by Alber an.d Oliva (3) (for the concrete syntax of 
PL/I see Alber et al. (4)). The PL/I compile time facilities are not considered 
by Walk et al. (127) but are treated separately by Fleck and Neuhold (57). 

An informal explanation of the paper of Walk et al. (127) is given by Lucas 
et al. (89). 

The Vienna group has also started to exploit the formal definition of 
PL/I in investigations on properties of the language, especially concerning 
problems of implementation. Lucas (87) considers two interpretations of 
the PL/I block concept, one based on the environment mechanism of Walk 
et al. (127) and the other based on a chaining mechanism (5), and proves 
the equivalence of these two interpretations. A further study in this area 
has resulted in the detection of a deeply hidden error in a PL/I compiler (88). 

Finally, we mention reports (82 •83) in which the Vienna method is 
applied to the formal definition of ALGOL 60. 

3.5. The A-Calculus Approach 

Several authors have based their investigations on Church's A-calcu­
lus (36). Its introduction into programming is due to McCarthy (96), who 
did not, however, further pursue its use in his theory of computation. 
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Semantic theories in which the A-calculus does play a central role have been 
developed by Landin (77- 81) and Strachey (123•125). Related is the work of 
Bohm (16) and Bohm and Gross (17), who use both the combinatory logic 
of Curry (Curry and Feys (42) or Rosenbloom (115)) and the A-calculus in 
the system CUCH. We shall now give a short explanation of some of the 
main ideas of these authors. 

In the first paper cited (77) Landin uses the A-calculus for modeling 
expressions (as opposed to statements) occurring in programming languages. 
To be more precise, he observes that an expression is usually constructed 
from its components in three ways: by forming A-expressions (e.g., in the 
case that the expression contains bound variables, or when an auxiliary 
function is used in its definition), by forming an operator/operand com­
bination, or by forming a list of expressions. In order to investigate this 
general structure of expressions, the notion of "applicative expression" is 
introduced, and an abstract machine is described for evaluating applicative 
expressions in a given environment. Similar problems are considered by 
Burge {19). 

In the next paper cited (78) (to which Landin's paper (80) at the 1964 
IFIP Working Conference is an introduction) Landin also takes the impera­
tive features of languages into account. Jumps are taken care of by treating 
them-apart from one important difference-as procedure calls. To deal 
with assignment, both the notion of applicative expression and the structure 
of the evaluating machine are extended. The system is applied to a definition 
of ALGOL 60 semantics, essentially by exhibiting how to model constructs of 
ALGOL 60 by means of extended applicative expressions. A formal description 
of the correspondence is also given; "abstract ALGOL" is introduced as an 
intermediate step, and a set of formulas is given to translate this both into 
concrete ALGOL. 60, i.e., sequences of symbols, and into extended applicative 
expressions. Landin applies his formal system in a discussion of alternatives 
to various ALGOL 60 concepts, e.g., regarding its parameter mechanisms 
(call by name or value versus call by reference) and some variations on the 
own concept. 

Strachey's work on semantics (123 •125) has been developed in parallel 
with the design of the programming language CPL ( 12 •22 •124). The main 
difference with Landin's system is that he does not propose any extension 
of the A-calculus, but an (as yet only informally described) method for 
mapping the constructs of the language into pure A-notation. Central con­
cepts in Strachey's system are the "left-hand value" and "right-hand value" 
of an expression. These terms correspond to the values of the left part (i.e., 
the address) and right part of an assignment statement, but they are general-
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ized and also used in other situations, such as for the specification of param­
eters. An abstract store is used, which is a function from left-hand values 
to right-hand values. A method is then described of associating (composi­
tions of) functions with (sequences of) commands. In the general case, when 
a loop structure is present in a sequence of commands, the association will 
lead to a set of mutually-dependent recursive functions. 

Some extensions of Strachey's (123) work have been investigated by 
Burstall (20), who has also made a detailed study of assignment (21 ), partly 
based on Landins work (81). 

Finally, we add a few remarks on the cucH system. Bohm and Gross (17) 

give an explanation of its principles, whereas Bohm (16) is more concerned 
with applying it to the description of concepts in programming. CucH is 
introduced as a language, the expressions of which allow different inter­
pretations, with the provision, however, that the same interpretation be 
given to expressions which are convertible into each other (in the sense of 
the A-calculus). Some possible interpretations of CUCH expressions are then 
proposed, partly dealing with notions which are often taken for granted in 
other systems, such as integer arithmetic (in this respect CUCH may be con­
sidered to be complementary to, e.g., the work of Landin), but also with 
more advanced concepts, such as the representation of flow diagrams by 
systems of functions. 

3.6. Other Methods 

In this section we deal with some other methods which have been used 
(or proposed) for formal definition. 

First of all we consider the definition of ALGOL 68 (134). Clearly, the 
method applied here is not as completely formal as those discussed in the 
previous sections, since use is made in it of the English language. However, 
it is also clear that the definition is considerably closer to a completely 
formal definition than, e.g., that of ALGOL 60. As to the syntactic part of 
the description, the formal system used is much more powerful than Backus 
notation; thus, less English is needed here (and much richer structures can 
be defined). To be more precise, whereas in Chomsky's classification Backus 
notation corresponds to grammars of type 2, the system used for the de­
finition of the syntax of ALGOL 68, viz., the van Wijngaarden grammars, is 
of type O (120), i.e., it has the same power as Turing machines or their 
equivalents. (From this it follows that all use of English in the definition 
of the syntax, as present, e.g., in the definition of the class of "proper 
programs" by means of the context conditions, might have been avoided. 
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However, this possibility is only of theoretical interest; a fully formalized 
syntax would be very large and difficult to read.) 

In the definition of the semantics of ALGOL 68 no (explicit) formal 
system, but only English, has been used. A hypothetical computer is in­
troduced, and the meaning of the various constructions of the language is 
defined by stating which actions it performs in their "elaboration." Since 
English is used in these definitions in a very precise and rigorous way, they 
may to some extent be viewed to be of a formal, though not symbolized, 
nature. However, in order to be able to apply this "formal" system to other 
languages, it is necessary to determine first which of its features are inde­
pendent of the specific properties of ALGOL 68. This separation of concepts 
of the describing formalism from concepts of the language described must 
be awaited before the method can be considered as a candidate for the 
formal description of other languages. 

An axiomatic approach to formal definition has been proposed by 
Hoare (63). He first gives some general arguments in favor of such an 
approach, and then illustrates it by an axiomatic definition of several basic 
features of programming languages, such as integer and real arithmetic 
(cf. van Wijngaarden (133)), expressions, procedures, assignment, and jumps. 
Of this general arguments we mention the following: The definition of 
constructs in a language by means of a set of axioms may be considered 
as an implicit one, stating only their essential properties. This is precisely 
what is needed for standardization of the language, since it provides the 
compiler writer on the one hand with a set of conditions to be satisfied 
by his implementation (which can be viewed as one of the possible con­
structive models of the axiom system), whereas on the other hand it leaves 
him sufficient freedom to adopt the implementation to a particular machine. 
Several other arguments, e.g., on the advantages of the axiomatic method 
in the design and comparison of languages, are also given. Although we 
are not always convinced that these only hold for the axiomatic approach, 
as opposed to formal methods in general (e.g., in the (constructive) Vienna 
method there is also a very careful distinction between the rules to be 
satisfied by each implementation and those which leave open a choice to 
the implementor), it may well be true that by means of a set of axioms a 
more concise and elegant definition can be given than by a constructive 
method. The examples of Hoare have indeed a simple structure; however, 
he has not yet applied his method to the definition of a complete language. 
We think that this should be done first before a fair comparison with other 
systems can be made. 

A number of methods for the specification of semantics have resulted 
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from the research on the automatic construction of compilers. There exists 
a fairly general agreement that these methods, however large their practical 
use may be, do not provide a solution to the problem of formal definition. 
First of all, they are of course heavily influenced by present-day compiler 
techniques, and it is felt that these should be kept apart from the definition 
of the meaning of a language, since they are in a sense extraneous to it. 
One should first provide a compiler-independent definition of the semantics 
of a language, and then one or more compilers can be constructed which 
satisfy this definition. A second argument is the following: Compiler-orient­
ed specification of semantics is usually directed toward a (possibly some­
what abstracted) real machine; hence one might argue that the definition 
of a language by means of a compiler is not complete unless some formal 
description of the machine is given as well. However, the construction of 
such a description, if feasible at all, is an independent problem, and the 
definition of the language should not be burdened by it. (It should be re­
marked that the distinction between the compiler-oriented methods and 
other formal techniques is not always as clear-cut as suggested here. For 
instance, in the method of Wirth and Weber (129) a very simple machine 
is used, the operations of which may well be considered as self-explanatory.) 

Because of the arguments mentioned above we feel that a discussion 
of the compiler-oriented methods is outside the scope of this chapter; they 
are reviewed in great detail by Feldman and Gries (55). 

A particular aspect of some compiler-oriented methods, in which the 
meaning of a program is specified in parallel with the construction of its 
parsing tree, is abstracted and generalized by Knuth (74). Consider a lan­
guage, the syntax of which is defined by means of a context-free grammar. 
To the elements of the vocabulary (terminals and nonterminals) of the 
grammar are assigned "attributes," and with each production rule there are 
associated functions of the attributes. The attributes are of two types, either 
"synthesized" or "inherited." Consider a derivation tree of a word in the 
language and an element of the vocabulary labeling a node in the tree. If an 
attribute of this element is defined-by means of the associated functions­
in terms of the attributes of its descendants only, it is called synthesized; 
if it depends only on the attributes of its ancestors, it is called "inherited." 
In general, a combination of synthesized and inherited attributes may lead 
to circular definitions. An algorithm is given yielding a necessary and suf­
ficient condition for detecting circularities. The system is illustrated by 
means of a simple language describing the operations of Turing machines. 
(In our opinion, the semantic definition in this example is not quite suffi­
cient: It yields essentially a translation of a Turing machine program into 
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another program resembling the conventional scheme with states and a state 
transition function. However, the definition does not include a direct formal 
description of the way in which the machine operates upon the tape.) 

Again, a judgment on the merits of Knuth's method must be reserved 
until it has been applied to a complete programming language. 

3. 7. Summary 

The various language-definition methods of the previous sections may 
be briefly summarized as follows: 

In the Markov-algorithm method programs are interpreted by means 
of an abstract machine supplied with a list of transformation rules; the 
machine operates directly upon sequences of symbols. 

In McCarthy's method programs are considered as abstract objects 
to which a meaning is attached by means of state vector functions. 

In the Vienna method program texts are translated into abstract 
objects which are interpreted by an abstract machine characterized by its 
states and state transition function. 

In Landin's method programs are translated via an intermediate stage 
of abstract objects into extended A-expressions, and these expressions are 
evaluated by an abstract machine. 

In Strachey's method programs are translated into pure A-expressions. 
In the ALGOL 68 method the meaning of a program, i.e., a sequence of 

symbols produced by the syntax, is defined by the actions which are per­
formed in its elaboration by a hypothetical computer. 

In the axiomatic method the meaning of a program is derived from a 
list of axioms which characterize implicitly the properties of the construc­
tions in the language concerned. 

In the compiler-oriented methods programs are translated into assembly 
language programs for machines which more or less resemble present-day 
computers. 

In Knuth's method meaning is attached to a program by associating 
semantic functions with the nodes in its derivation tree. 

There is apparently a great variety in these systems. In our opinion, it 
is not yet possible to determine which one of the methods should be pre­
ferred, or to predict which method, if any, will prevail in the future. First 
a set of criteria must be developed for comparing the different systems. 
However, there has as yet been no systematic research in this area leading 
to a general framework in which the respective merits of the various methods 
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can be assessed. Therefore we restrict ourselves to a few tentative remarks 
on a number of points which should be taken into account in the judgement 
of a formal definition method; no attempt will be made at a systematic 
evaluation of the methods reviewed by means of these criteria. 

1. A first criterion is the scope of the description method. Is it applicable 
to all programming languages or only to a certain subclass of them? The 
relevance of this question is limited by the lack of a suitable definition of 
the notion of programming language; this renders "the class of all pro­
gramming languages" a rather vague entity. In principle, the answer is 
easy: As soon as the formalism can describe Turing machines, it has enough 
descriptive power. In practice, one may have some confidence that a system 
which has proved capable of defining a language of the size of ALGOL 60, 
say, will also be applicable to the definition of a reasonably large class of 
other languages (see, e.g., the definition of a machine tool language by the 
Markov algorithm method (29)). However, for the definition of the more 
esoteric special-purpose languages corresponding special methods may well 
be preferable. 

2. A general criterion of great importance concerns the (inevitably 
vague) notions of readability, transparency, conciseness, and elegance of 
the description. One should distinguish here between the method and its 
applications to specific languages. A very simple method will lead to a very 
complicated definition. (No one has ever tried to use Turing machines for 
language definition.) On the other hand, one requires the method to be 
substantially simpler than the language to be described. Clearly, a compro­
mise must be found between these two extremes. Another way of putting 
this is as follows: When one uses a metalanguage for the definition of a 
language, one expects it to be unnecessary to introduce a metametalanguage 
for the definition of the metalanguage, etc. Concerning these problems, 
one should compare the remarks of Landin and Bohm on the self-defining 
capabilities of their systems. The method of de Bakker (8), used on the one 
hand for the definition of ALGOL 60, is also defined by means of an ALGOL 60 
program. For a discussion of the apparent circularities in this approach we 
refer to de Bakker (8). 

A number of criteria can be derived directly from the various possible 
uses of a formal definition, as listed in Section 3.1. 

3. Some properties of a definition method which are of interest to the 
compiler writer are: Is it possible to leave the definition of certain parts of 
the language either completely open, or to give only a partial definition of 
them, i.e., a definition which states some basic properties of the concept 
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concerned, but does not give a full specification? Does the definition provide 
information on the division of the actions to be performed at compile time 
or at run time? (This is related to the question of where the borderline is 
drawn between syntax and semantics in the method under discussion.) 
What are the properties of the method with respect to the problem of es­
tablishing whether the constructions used in the implementation satisfy 
the definition? 

4. Questions related to language design are, e.g.: How much insight 
is gained into the properties of the language concepts by formally describing 
them? Is it possible to reflect independent concepts by more or less inde­
pendent parts of the description? Are small changes in language concepts 
expressible by small changes in the description? Does the formal description 
help in the clarification of the interactions between the constituent concepts 
of the language, e.g., with respect to the detection of concepts which are 
overlapping, incompatible, or which lead to ambiguous constructions? 

5. For the people who want to write or understand programs, the main 
criterion will be the readability, etc., of the definition. To the use of a formal 
description in the comparison of languages, the criteria mentioned under (4) 
are applicable. In order to qualify as a language standard, a description 
must find the right balance between complete and partial definition. 

6. Generally applicable criteria concerning the possibility of obtaining 
proofs about or in a certain description method cannot be given. One might 
give some preference to methods which rely on functions and functional 
composition, since these often provide a convenient means for the phrasing 
of mathematical arguments. Ultimately, however, only on the base of 
experience can it be decided whether a system is useful for the derivation 
of proofs. 

Programming languages are highly complex structures, and it is only 
to be expected that this is reflected in their formal definition. However, we 
feel that there exists a fairly general agreement that the present methods are 
not yet satisfactory with respect to these criteria (in particular criterion 2) 
and that future research should continue in trying to improve them. 

Conclusions 

The theory of semantics of programming languages is only in its initial 
stage. Before the goals mentioned in Section 1 will be attained much work 
needs to be done, on deeper investigation of the foundations of program­
ming concepts, on further development of language definition techniques, 
and on the application of semantics to language design and translation. 
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We hope that this chapter has given an impression of what has already 
been achieved in semantic research, and in this way may have contrib­
uted a little to its advancement. 
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