STICHTING

" MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
- AMSTERDAM

MR 111

On the generation of ALGOL 68 programs involving infinite modes.

- (Algol Bulletin, (1969), nr 30, p 90-92,)

by

L. Meertens

1969

AB30,3.4
On_the generation AIGOL 68 programs Involving infinite
7 | * L . :

L-Meertem
O, Introduction

%

Certain proper AIGOL 68 (particular—)programns, e.g., -
berin struct chain = (ref chain link); skip end, can only be. generated

W

eccording to the rules given in the Report on the Algorithmic Iangwmage

AIGOL 68 (1), by producing, in an infinite number of steps, & mode of.
infinite length. It has raised objections tlat this generation process 1is
not finlite and, therefore, not constructive. Mareover, G.S.Tseytin has
shown (2) tat the definitions in the AIGOL 68 report do not preclude an
interpretation of equality between infinite modes in wvhich, e.g., the :
modes specified by the mode—irdications & and b defined by the declaration

mode a = proc (&, &) a, b = proc (&, &, @ & are equwal, although these are
clearly Interded to be different. ; e e |
Ine purpose of this note 1s to sketch & process -that allows the - |
generation of such progrems in a finite, constructive way, and yet without
need to clange the syntax and the metaprodmt;on rules in the AIGOL 68

repart (with one annoying exception).

‘1. The steges of the generation process

The generation process is described in three stages (1.1 up to 1.3),.
-each stage ylelding the material to be used in the next stage. This does :
not imply that it is necessary to complete the first stage first, and next
the second stage, and so on; on the contrary: whenever the Process cannot
" be continued due to shortage of mmterial, the cwrrent stage mmy be -

Interrupted in order to generate new material; it is even-possible to
integrate the first two stages in the last stage, but this necessitates .
quite some administration circumvented in the approach described here. - -

Befare ve start one clange in the metaproduction rules of (1) has to
be m2de: rule 1.2,5.f is replaced by - -« -« .- ool oo o L

- NOTION: AIPHA; MODE; NOTION - AIPHA; NOTION MODEw v v ov - v .
It 1s a nuisance that this change introduces umnecessary anbiguities in -
the process of generating the program (but not on the semantic level). .
Inese anbliguities can be circumvented, but only-in a cumbersome way;. *'
we would have to vrite out:- - -. . .. : ~ *

NOTION: library prelude; library postlude; declaration prelude;
label; label sequence; etc.

1.1, Generation of "specific" metanotlons and thefr B
‘ - -- - - - . specific production rules

,.. Wie proceed from the.set of production rules..of the metalangwage, . -
obtained in 1.7.4 of (1). (Actwlly we need only a .finlte subset). - . *
A specific metanotion is a metanotion followed by the decimal notation
of & natwral number; e.g., MODE17. Associated with.a. specific metanotion .
1s 1ts specific production rule, cbtainable from & production rule. far
trat metanotion by inserting after that metanotion, as it appears before
- 1he colon, the number of tlat specific metanction and some, exrbitrarily.
chosen, natwral number after esch metanotion appearing in the direct ~
production (the part after the colon). E.g., the specific production rule

AB30 p 91

of MODI17 might de
- MODT 17: MOOD3.

and tlat of FIEIDI] '

, FIZID1: MODE18 field TAGR23. | _
Tn this exanmple, MOOD3 is the direct production of MODE1T7. The set of
specific metaproduction rules cannot, of course, contein both
ILOWVPER1: lower. - and B .
| IOWPER1: upper., as only one of these can be the specific

production rule far LOWPER1. For eny program only a finite number of
specific metaproduction rules has to be generated. .

1.2. Generation of "norm.l" production rules of the strict la.n B e

We proceed from the set of "unfinished" production rules of the strict
- lanmege, as obtainable from 1.1.5 of (1) when 1.1.5.2.Step3 (1.e., .
- replacing & metanotion by one of its terminal productions) is skipped.
These unfinished prodution rules are turned into normal production rules
(of the strict languwage) by inserting after each metanotion appearing in

" them & natural number, with the understanding that after all occurrences

of a given metanotion in some rule the same natural number 1s Inserted.

So actuwal LOWPERT bound: strict LOJPER1 bound. and _
actual LOWPER2 bourd: strict LOWPER2 bound. — both are normadld

production rules, but ' o
actual LOWPER] bound: strict LOWPERZ2 bound. - - 1s not a normal .

production rule of the strict langwmge. In contrast with the set of
specific metaproduction rules, the set of normal production rules may
contain both * '

NOTIONWLO96 option: NOTIONLOS6. and

NOTIONLOG6 option: EMPTY1. - |
From 2 given normel production rule another one may be obtained by
replacing one of the specific metanotions appearing in it by the’ direct
production of that specific metanotion. If, in stage 1, we have generated

the specifis metaproduction rule |
LOWPER1: lowver. -, then we can obtain from the normal

production rule
actual LOWPER1 bound: strict LOWPERT bounde.

two new ones, viz. Lo e .
actual lover bound: strict IOWPER1 bourd. - and

actwml LOWPER1 bound: strict lower bound.

From each of these rules ve may obtain yet another one:
actwrml lower bound: strict lower bound. '

For any program only & finite number of normal production rules has to
be generated. ' : .

1.5. Producing the programn

Before each norme.l production rule obtained in stage 2, < is placed.
‘EFach colon is replaced by >:i= <, each coma by > < and each - point by >.-
liexl, one rule <empty>::i= is added, and all occurrences of <-> are
‘replaced by <empty>. We thereby have obtained & Backus Normal Form grammaT
thet produces, starting from the metalinguistic variable <program>, our
program (vhere every symbol is still a metalinguistic variable, e.ge¢,

<begin symbol>). This syntax may, of course, be abbreviated by the -
- convention of using l for alternative direct productions. ,

AB30 p 92

-

2. The context conditions

The generation of the program 1s only half the story; 1f the program
is 1o be & proper one it has to satisfy the context. conditions. The
formulation of these conditions as given in (1) is not without more
applicable to the treatment used here; the cranges are, howvever, rather
obvious. Instead of comparing 'reference to structured with reference eee
(etc. ad {infinitum) mode identifier' with some other notion, ve my find
ourselves in the position where we wonder whether <MODE17 mode identifier>.
nappens to be the "same' as <structured with reference to MIDE17 fleld -
TAGES mode identifier>. This can be declded upon on the basis. of the
specific metaproduction rules cbtained iIn stage 1, by means of an
algorithm as has been given in (3), section 2.3.5, exercise 11.

5. Example

In the example given in the Introduction, the crucial spot is the
mode—declaration. The most important specific metaproduction rules and
normal production rule (as modified in 1.3) directly related to that
node-~declaration might be: ,, .

"¢ MODE1T: MOOD17.
MOOD17: STOWEDI.
STGED1: structured with FIEIDS1.
FIEIDS1: FIEIDI1. | |
FIEID1: MODE18 field TAGZ23.
MODE18: MOOD18.
MOOD18: TYPE1. | :
TYPE1: reference to MCDE1T.

<mode declaration>::= <mode symbol> <MIE17 mode indication>
<equwrls symbol> . e
<actwl structured with reference to MODE1T7 fleld-. - -
| ‘ TAGS3 declarer>

Tn this example, 'MODEIT7' and 'structured with reference to MDE17 field
TAG23!' stand for the same mode. '

&

*
@

References s | - CL * |
(1) A.van Wijngparden (Editor), B.J.Mailloux, "J.E.L.Peck-and C.H.A.Koster,

Final Draft Report on the Algorithmic Ianguage AIGOL 68,
Mathemetisch Centrum, Amsterdam, MR- 100, December 1968.
. . ¢ ¢ .. . -, - R - s .

Ietter to P.Branquart, J.lewi, M.Sintzoff and P.Wodon,

(3) D.E.Knuth, o o
The -Art of Computer Programming, | :
'Voé.é 1 / Fundamental Algoarithms,

Mathematical Centre,

Tweede Boerhaavestraat L9,
- Amsterdam 1005

The Netherlands

