A lower bound for the order of a partial transversal in a Latin square.

(Journal of combinatorial theory, 7(1969), p 94-95.)

by

K.K. Koksma

1969
Notes

A Lower Bound for the Order of a Partial Transversal
in a Latin Square

KLAAS K. KOKSMA

Mathematical Centre, Amsterdam, The Netherlands
Communicated by H. J. Ryser
Received November 11, 1968

ABSTRACT. The notion of partial transversal in a Latin square is defined. A proof is given of the existence of a partial transversal of order \(\frac{3}{4} N + \frac{1}{4} \) of a Latin square of order \(N (N \geq 7) \).

1. Introduction

A Latin square of order \(N \) is a square matrix, each of whose rows and columns is a permutation of the \(N \) symbols 1, 2, ..., \(N \).

A transversal of a Latin square of order \(N \) is a set of \(N \) different elements of the matrix with precisely one element in every row and column. A partial transversal of order \(k \) of a Latin square of order \(N (N \geq k) \) is a set of \(k \) different elements of the Latin square with at most one element in every row and column.

For odd \(N \), Ryser [1] conjectured that every Latin square has a transversal. As far as the author knows this conjecture is still undecided. So if we cannot prove the existence of a transversal, we can raise the question: How large may the order of a partial transversal be?

2. Formulation and Proof of the Theorem

Theorem. A Latin square of order \(N \geq 7 \) has at least one partial transversal of order \(\frac{3}{4} N + \frac{1}{4} \).

Proof: Let \(S \) be a Latin square of order \(N \). Let \(T = T_S \) be an integer for which the following holds: (i) There is no partial transversal of \(S \) of order \(\leq T \). (ii) There is at least one partial transversal of \(S \) of order \(T \). Without loss of generality, the Latin square \(S \) can be divided into submatrices \(LU, RU, LL, \) and \(RL \) as indicated in the figure, and assume that

94
the main diagonal of LU is a maximal partial transversal with elements $1, 2, \ldots, T$.

\[
\begin{array}{ccc}
 & L & U \\
T & & \\
 & T + l & \ \\
& T + k & R \ \\
\end{array}
\]

Condition (i) implies all elements in RL are $\leq T$; therefore, each row in LL must contain the elements $T + 1, \ldots, N$.

The total numbers of elements $> T$ in LL is $(N - T)^2$. Suppose $T + T^{1/2} < N$; then $N - T > T^{1/2}$ and $(N - T)^2 > T$. So, in this case, there must be some column, say the j-th column, which contains two elements $> T$ in LL. Because of the maximality of T we now have:

1. j cannot occur in RL, and so occurs $N - T$ times in RU;
2. if j occurs in RU in row $p (p \leq T)$, then the p-th element of the j-th row is $\leq T$; and
3. all elements of the j-th row in RU are $\leq T$.

Combining (1), (2), and (3) and using the fact that all elements of a row of a Latin square are different, it follows that the relation $2(N - T) + 1 \leq T$ necessarily holds; thus,

\[T \geq \frac{1}{2}N + \frac{1}{2} .\]

On the other hand, $T + T^{1/2} \geq N \geq 7$ implies (using the fact T must be an integer in the case $N = 7$ and $N = 8$) immediately

\[T \geq \frac{1}{2}N + \frac{1}{2} .\]

whence the theorem follows.

Remark. The author has convinced himself (using trivial arguments) that the theorem also holds for N in the range $3 \leq N \leq 6$; we have omitted this proof to keep this note short.

Reference