STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

MR 11k

On infinite modes.

(Algol Bulletin, (1969), Nr 30, p 86-89,.)

by

C«HsAs Koster

1969

AB30 p 86

AB30.3.3 On infinite modes C.H.A. Koster
Amsterdam, febr 1969

0. Modes

In ALGOL 68 the 3 types of ALGOL 60 have been replaced by an unlim-
ited number of modes. A mode 1s any texminal production of the metanotion
MODE. The metaproduction rules for MODE form a context free grammar which
has an infinite number of terminal productions. In an ALGOL 68 program the
number of modes that are actually used i1s always finite, since all modes
that are used have to be the mode specified by some declarer of the pro-
gram, or 'reference to' such a mode, or the mode enveloped by the original
of some denotation, and the number of such declarers and denotations is,
of course, finite. The programmer has the freedom to declare new modes by
means of a mode—declaration; e.g., he can use lint as a shortening for

long int by

E1l mode lint = long int

or manlipulate dates as a whole using

E2) mode date = struct (int year, month, day)

Here the modes speclfied by lint and by date are clearly finite terminal
productions of MODE and thus of MOID. A production rule (R6.1.1 .2)

E3) SORTETY MOID unit: SORTETY unitary MOID clause.

implies, smongst others,

EL) SORTETY integral unit: SORTETY unitary integral clause,

E5) SORTETY long integral unit: SORTETY unitary long integral clause.
E6) SORTETY [date] unit: SORTETY unitary [date] clause.

where "[date]" stands for the mode specified by date.

- Since 1t is allowed to declare a mode in terms of 1it. itself, it is possible
for a declarer to specify an infinite mode, e.g., the declaration

ET7) mode person = struct (int a, ref person)

causes person to specify the mode [person] where "[person]" stands for
'structured with integrsl field letter a and reference to [person] field

letter £'. Also for this infinite mode, E3 implies

£8) SORTETY [person] unit: SORTETY unitary [person] clause.

Forbidding the infinite modes would seriously diminish the power of the

language, since 1t would, e.g., make it impossible to have chains of linked

structures like .

E9) mode cell = struct (string contents, ref cell next)

where the last cell of a chain will have next equal nil.

1. Potentisl dengers of infinite modes

In allowing infinite modes one must beware of the following:

a. A value of any mode must not take infinite storage space in the
computer. Example:
E10) rode full = struct ([1:10] full £, int s)
This declaration is Torbidden by RY.L. E.c , Bince the actual—declarer
struct ([1:10] £ull £, int s) "shows" full. Every value of mode [full] is -
composed of ten such va.lues and an integer, in this way teking up infinite ‘
room in the computer. An allowed declaration however is
E11) mode full = struct (ref [1:10] full £, int s)
because a reference to a row of full's need not take Infinite room in the

wetis

AB30 p 87

computer; every reference will take up only very few memory locations, de—
pending on the implementation. And indeed, according to Rb.b.k.c, E11 18
not forbidden.

b. No mode may allow ambiguous parsing of the program. Consider
the clause
B12) (mode t = ref t; t t1, t2; tl:= 12)
In the ass1gnatlon , the source t2 can be dereferenced any number of times,
and still the assignation would be syntactically correct; so the source is
ambiguous. Again, this declaration is not allowed by Ri.k.k.c, since the
actual—declarer ref t shows t.

c. It must be decidable whether two modes used in the program are
the same. Compare:
E13) mode person = struct (int age, ref person father)

E1k) mode purson = struct (int age, ref purson father)
and even -
E15) mode parson = struct (int age, ref

struct (int age, ref parson father) father)
If one tries writing out t the modes specified by Person, purson and parson
by a process skin to developing (R7.1.2.b), one gets after n steps
E16) [person] = A A n [person] B A n
where A = 'structured with integral field letter a letter g letter e and
reference to' and B = 'field letter £ letter a letter t letter h letter e
letter r', and the ex onentiation denotes repeated concatenation,
E1T) [purson] = n [purson] B A n
E18) [parson] AA AN n [parson] BB A n
After an infinite number of steps one would have
E19) [person] = A A inf B A inf
E20) [purson] = A A inf B A inf -
E21) [parson] = AA A inf BB A inf = A A inf B A inf
It is clear that the assumption [person] = [purson] does not lead to a con-
- tradiction, nor does [person] = [parson].
The purpose of this note is to glve an algorithm to decide the equivalence
of the modes specified by two given declarers in a program.

2 FEaquivalence of modes

In the sequel we assume that in all declarers the virtual—, actual—
and formel-row—of—rowers (R7.1.1.r) have been deleted 80 that the declarers
contain no strict-lower— or upper—bounds, ete.

The "defining declarer" of a mode—indication is the actual—declarer following
the equals—symbol following the defining occurrence of that mode—~indication
(R7.2.1.a), e.g., the defining declarer of lint is long int (E1).

A declarer D is “expanded" by replacing in D a mode—indication by its defi-
ning declarer. Expanding a declarer does not change the mode specified

by it. .
The "full expansion" of a declarer D is the declarer obtained by expanding D
until no mode—indications are left in it. The full expansion of a declarer
which specifies a finite mode can be obtained finitely, but the full expan—
sion of a)declarer specifying an infinite mode is an infinite tree (. See
K2.3.5.11).

AB30 p 88
Definition

Two declarers are "equivalent", i.e., specify one seme mode, if their full
expansions are the same tree.

E22) mode g = ref b, b = real, ¢ = ref reel

The full expansion of - the defining “declarers of both a and ¢ is ref real, so
a and ¢ specify one same mode.

E23) mode d = proc 4, e = proc proc €

Whether the full expan'gions of 4 and e are the same tree depends, after

~expanding once, on whether the full expansions of proc d and proc proc e are

the same tree, and so whether those of d and proc e are the same tree, and

so whether those of proc d and proc e are, and 80 whether those of d and e

ere. Thus, by induction, Tt is found that d and e are equivalent.

The inducuon steps can be formulated:

Two mode~indications specify one same mode if, under the assumption that -

they do, their defining declarers speclfy one same mode. .

A mode-—indication and & declarer specify one same mode if, under the assump—

tion that they do, the declarer specifies the same mode a8 the defining

declarer of the mode indication.

This approach to the equivalence of declarers suggests the following

algorithm for deciding the equivalence of two declarers: .

3. Algorithm

Step 1 If the two glven declarers D and E are the same sequence of symbols,
then they are equivalent;

Step 2 if D 1s a mode—indication, then D and E are equivalent provided
elther the assumption D = E has been made, or the assumption has
not been made and, making the assumption, E and the defining decla~ -
rexr of D are equivalent;

Step 3 1f E i1s a mode—indicatlion, then D and E 'are interchanged and
Step 2 1s taken;

Step &4 if D and E are declarators beginning with a reference~to—symbol -
(R7.1.1.1,m,n), then they are equivalent provided the declarers
obtained from them by deleting the reference—~to—symbol are equivalent;

Step 5 if D and E are declarators beginning with a procedure-symbol
(R7.1.1.w), then they are equivalent provided all corresponding
constituent virtual-parameters of the parameters—pack, if any, of
their virtual-plan (R7.1.1.x,8a) are equivalent, and, furthermore, the
virtual-declarers following thelr virtusl—plan elther are virtual—
void—declarers, or are eguivalent;

Step 6 if D and E are declarators-beginning with & structure—symbol
(R7.1.1.e), then they are equivalent provided in all corresponding
constituent field—declarators the declarers are equivalent and the
fileld—selectors are the same;

Step 7 if D and E are declarators beginning with a sub—symbol (R7 1.1. o,p) R
then they are equivalent provided they contain the same number of con—
stituent upper- and lower-bounds, and the declarers following thelr
bus—symbol are equivalent;

Step 8 if D and E are declarators beginning with a union—of—symbol (RT.1.1.cc),
then they are equivalent provided to every constituent virtual-declarer
of D there is an equivalent constituent virtual-declarer of E and vice

_ versa;

Step 5 D and E are not equivalent.

AB30 p 89

L. Concluding remarks

The mode~declarations of a program can be seen as rules in a deter-
ministic context free greammar, with the mode indications as nonterminals. The
© elgorithm uses knowledge of the possible structure of the rules (declarers) to
decide whether the (only) terminal production of two nonterminals are the same .
finite or infinite sentence. It is not customary to talk sbout infinite senten— .
ces but there seem to be no problems Involved in this specisl case. It is, of

course, in general undecidable whether the langusges produced by two grammars
are the same.

I will not prove that this algorithm in fact proves equivalence ac—
cording to the definition given, but I will show that it always terminates. In
performing the algorithm some number of assumptions are made, and only by going
on meking assumptions it could cycle. Every assumption is of the form M = D,
where M 1s a mode indicatlion contained in the program, and D is a declarer
contained in the progrsm. The number of such mode~indications and declarers
is finite, and so consequently is the number of possible assumptions. No at—
sumption is made twice as can be seen from Step 2; 80 the algorithm terminates.

The algorithm has one drawback, as can be seen from

- E22) mode m = m, n = real :

It will find m =n, in other vords it can not be finitely disproved that m and
n specify one same, mode. Indeed, m, which does not seem to specify any mode, is
equivalent to every declarer. Luckily this type of pa.ra.doxica.l mode—declaration
1s forbidden by Rb.b4.4.c.

The algorithm given looks formidable; in fact it 1s very fast and ef—
ficient. A version of it has been programmed in ALGOL 60, and recognises in ne—
glectable time the equivalence of :
E23) mode ml = struct (ref struct (ref m2 t1, ref m3 t2) t1, ref m) tag
E2k) mode m2 = struct (ref m3 t1, ref struct (ref ol 1 ref m t2) t2
E25) mode m3 = struct (ref Struct (ref =2 ©1, ref ml t2$ t1

ref struct (ref m3 tl ref m2 t2) t2$
The central procedure of the progrem is in A AIJ}GL]
E26) Boolean procedure equivalent (di1, d2); integer 4d1,4d2;

if same sequence of symbols (a1, d2) then equivalent:= true else

if mode indication (d1) then ‘

begin if postulated (d1, d2) then equivalent:= true else

begin postulate (41,
equivalent:= equivalent (defining declarer (d1), d2)

end
end else
if mode indication (d2) then equivalent:= equivalent (d2, d1) else
equivalent:= same tree (a1, d2);
The boolean-procedure equivalent performs step 1, 2 and 3 of the algorithm, and
delegates the remaining steps to same tree, which in turn relies heavily on '
equivalent. '

References:

R Report on the Algorithmic Language ALGOL 68, version MR99 or MR100,-
A. van Wijngearden (Editor).

K The Art of Computer Programming, Vol 1 / Fundamental Algorithus,

1968 D.E. Knuth.

