
REKENAFDEL I NG

T.J. DEKKER

stichting

mathematisch

centrum

MR 118/70

.f>. FLOATING-POINT TECHNIQUE FOR EXTENDING
THE AVAILABLE PRECISION

~
MC

JULI

2e boerhaavestraat 49 amsterdam

31Dl..101Hllttl. MATHEMATISCH CE~TRIUM
AMSTEI\DAM

P/t.i.nted a.t .the Ma.the.ma.tlc.a.t Centlte, 4 9 , 2 e Bo eJthaa.v u:tJr.a.a:t, Amli.teJtdam.

The Ma.the.ma.tlc.a.t Centlte, 6oun.de.d .the. 11-.th 06 Fe.bJW.aJLy 1946, 1.-6 a. non
pll.O oU -UU>.tltu.t,i.o n cu.mbig a.t .the. pJr.omo:tlo n o 6 pWLe ma.the.ma.tlc.6 a.nd w
a.pp.Uc.a..tlon.6. 1.t .l-6 1>pon60Jr.e.d by .the. Ne..thelli.a.nd6 Gove.Jr.nme.n.t .thJr.ough .the.
Ne..the/Lla.nd6 011.ga.nlza.tlon 6011. .the. Adva.nc.e.me.n.t 06 PWLe Ruea1tc.h (Z.W.O),
by .the. Munlclpa.ll:ty 06 Am.6.te.Jr.da.m, by .the. Unlve!L6Uy 06 Amh.te.Jr.da.m, by
.the. F1r.e.e. Unlve!L6Uy a.t Am.6.teJt.dam, a.nd by .lndul>Wu.

A FLOATING-POINT TECHNIQUE FOR EXTENDING THE AVAILABLE PRECISION

Abstract

by

*) T.J. Dekker

A technique is described for expressing multilength floating-point arith

metic in terms of singlelength floating-point arithmetic, i.e. the arith

metic for an available (say: single or double precision) floating-point

number system. The basic algorithms are exact addition and multiplication

of two singlelength floating-point numbers, delivering the result as a

doublelength floating-point number. A straightforward application of the

technique yields a set of algorithms for doublelength arithmetic which are

given as ALGOL 60 procedures.

*) Part . . . • . of this research was done while the author was visiting
Bell Telephone Laboratories, Murray Hill, New Jersey.

Contents

1 Introduction

2 Floating-point number systems

3 Floating-point operations

4 Exact addition

5 Exact multiplication

6 Splitting into halflength numbers

7 Doublelength arithmetic

8 Appendix. ALGOL 60 procedures

9 Acknowledgements

10 References

page 1

4

6

8

16

21

24

32

36

36

1. Introduction

Multilength floating-point arithmetic is often described in terms of

integer arithmetic. The mantissa of a multilength floating-point number is

then represented by means of some integers and another integer is used for

the exponent.

In contrast with this approach, we present some basic algorithms

which enable us to describe multilength floating-point arithmetic in terms

of singlelength floating-point arithmetic. A multilength floating-point

number is then represented by means of some singlelength floating-point

numbers. In particular, we represent a doublelength floating-point number

as the sum of two singlelength floating-point numbers, one of them being

(almost) negligeable in singlelength precision. The basic algorithms

are exact addition and multiplication of two singlelength floating-point

numbers, delivering the result as a doublelength floating-point number.

After two introductory sections on floating-point systems and arith

metic, we deal with exact addition in section 4.
Let x and y be singlelength floating~point numbers and let

z = fl(x+y);

i.e. z is the result of a singlelength floating-point addition of x and y.

Let zz be the correction term exactly satisfying

Z + ZZ = X + Y•

It will be shown that, under various conditions, zz can be obtained by the

formula

zz = fl((x-z)+y}.

For example, this is true if the singlelength floating-point system is

binary, addition and subtraction are optimal and Ix I ~ I y I . Similar

formulas have been used by M9Sller (1965) , Kahan (1965) , Babu~ka (1968) and

Knu~h (1969) for reducing the error in calculating the sum of several

2

terms.

M¢ller (1965} gives a more elaborate formula which turns out to be a

double application of ours. Knuth (1969) shows that this formula yields

the correction term zz if floating-point addition and substraction are

optimal.

In sections 5 and 6, we deal with exact multiplication of two single

length floating-point numbers.

First, each factor is splitted into two "halflength" numbers, and then the

exact product is formed in a rather obvious way. Splitting the factors as

well as forming the exact product are expressed in terms of singlelength

floating-point operations which, under certain reasonable conditions, are

shown to yield the correct results.

Veltkamp (1968) developed a similar technique with a slightly modified al

gorithm for exact multiplication.

In section 7, we give a straighforward application of the foregoing

results to obtain algorithms for doublelength arithmetic. In the appendix,

the algorithms are given as ALGOL 60 procedures.

An important application (in fact, the-main incentive for this research),

is the calculation of the doublelength scalar product of two vectors of

singlelength floating-point numbers.

Application of our results to multilength arithmetic we hope to present in

a future publication.

A drawback of our technique is that it works only if the singlelength

floating-point system and arithmetic satisfy certain conditions (which are

fulfilled, for example, on the General Electric 635 and Philips Electro~

logica X8 computers).

Our technique is then, of course, most effective if we take as single

length system the highest precision floating-point system available.

Therefore, an essential feature of our algorithms is that, with respect to

this singlelength system, no doublelength accumulator is used.

Our technique is especially attractive if the mantissa length of the

highest precision floating-point system available is larger than the

capacity of an available fixed-point (i.e. integer) system, because then

less work is needed to obtain a certain required precision.

3

Moreover, since the floating-point operations·used take care of the

shifting and normalizing needed at various stages, a reasonable efficiency

can be reached by writing our algorithms entirely in a high-level language

such as ALGOL or FORTRAN.

4

2. Floating-point number systems

The starting-point for our technique is a certain system, R, of

floating-point numbers, and the floating-point arithmetical operations

defined an R.

Let the base, 6, of R be an integer larger than 1.

We assume that the mantissa as well as the exponent of the elements of R

are integers within a certain range.

More precisely, we assume:

1) a floating-point number x has the form

(2. 1) X = mx 6ex,

where mx, or m(x), denotes the mantissa, and ex, or e(x), the

exponent of x;

2) the system R of floating-point numbers is

(2.2) R = {x I X = mx eex, lmxl < M, -D <ex< E},

where Mis a positive integer (usually M = et, where tis the number

of mantissa digits) and D, E are positive integers or infinite (the

latter if we want to disregard underflow and/or overflow).

Floating-point number systems of the form (2.2) were proposed by

Grau (1962) and are actually used in some computers, e.g. Burrough B 5500

(octal) and Philips Electrologica X8 (binary). Apart from overflow and

underflow, the floating-point systems have this form in most, if not all,

computers, since the mantissa can always be interpreted as an integer by

subtracting a suitable constant from the exponent.

Remarks

1) Representation (2.1) is not always unique. In most machines, a certain

standarization is defined in order to make the respresentation unique. The

most common standarization is the normalization in which the magnitude of

a non-zero mantissa has a lower bound M/6. Some elements of R having an ,,

5

exponent (nearly) equal to -D do not have a normalized representation due

to underflow in the exponent range. A system of the form (2.2) without

requiring normalization has the advantage, that addition and subtraction

never lead to underflow.

2) We shall assume that Mis not congruent to 1 (mod a), because this

slightly simplifies some theorems and proofs. This assumption is no true

restriction if we disregard overflow. Indeed, if M = 1 + a K for some

integer K, then M may be replaced by a K without changing the system R,

except that (for finite E) the elements± M aE are removed from the,

system. This remark also justifies the restriction to a symmetric mantissa

range, since, for M = a K, the not uncommon asymmetric mantissa range

- (1+M) < mx < M defines the same system, apart from overflow, as the

symmetric mantissa range given in (2.2}.

6

3. Floating-point operations

We use the following notation from Wilkinson (1963, p. 4). If A is

an expression involving floating-point numbers and the arithmetical

operations+,-, x, /, then fl(A) is the corresponding expression obtained

by replacing the arithmetical operations by the corresppnding floating

point operations.

Let* represent+,-, x or/, and let x and y be elements of R.

(3,1) Definition. The floating-point operation corresponding to* is

faithful if, for all x and y, the result fl(x *y) equals either the
'

largest element of R smaller than or equal to x * y, or the smallest

element of R larger than or equal to x *Y•

Thus, when x *Y lies between two successive elements of R, either

one will do, but when x *Ye. R, the result must be exact (and when x *Y

is outside the range of R, the result must be the nea.:r;est, i.e,. the

largest or the smallest, element of R)~

(3.2) Definition. The floating-point operation corresponding .to* is

optimal (or properly rounding) if, for all x and y, the result fl(x *Y)

is an element of R nearest to x *Y•

Note that this definition uniquely determines the result, except when

x *Y lies halfway between two successive elements of R, in which case an

optimal operation may round up or down.

Related to this definition is the following notation which will be used

below.

(3, 3) Notation.

to~.

For any real~, round(~) denotes an integer closest

The result z = fl(x *Y) of a properly rounding operation can be

represented in the form (2.1), where mantissa mz and exponent ez satisfy

(3.4) -ez mz = round (x ~ y {3) ,

7

provided that no overflow or underflow occurs.

For addition and subtraction, we also need the following definitions.

(3.5) Definition. Floating-point addition is properly truncating if it

is commutative (i.e. fl(x+y) = fl(y+x)) and, for all x and y satisfying

lxl ~ IYI, the result fl(x+y) equals the largest element of R smaller than

or equal to x + y if y ~ 0 or the smallest element of R larger than or

equal to x + y if y < O.

Thus, when x + y does not belong to R, it is truncated in the direc

tion of - y. Note that this definition uniquely determines the result.

(3.6) Definition. Floating-point subtraction is properly truncating if,

for all x and y, we have fl(x-y) = fl(x+y'), where y' = -y and the
I

floating-pfnt addition is properly truncating.

(3.7) Definition. Floating-point addition and subtraction are super-

faithful if, for each x and y, the result fl(x±y} is obtained by properly

rounding or by properly truncating.-

Remark

Arithmetical operations having these properties are not difficult to

realize.

In fact, there are machines in which the floating-point addition and sub

traction are optimal (e.g. General Electric 635, Philips Electrologica X8).

In order to obtain faithful addition and subtraction, the result must only

be normalized before it is truncated or rounded, cf. Kahan (1965). To

obtain a super-faithful, or even optimal, addition and subtraction, it is

by no means necessary to have a (nearly) doublelength accumulator. Optimal

addition and subtraction can be perfectly well formulated using an

accumulator having no more than two guarding digits; see Knuth (1969, p.183

Algorithms A and N and p. 194 exercise 5).

8

4. Exact addition

Let x and y be given elements of Rand let

(4. 1) z = fl(x+y).

We want to find the correction term zz satisfying the (exact) relation

(4.2) Z + ZZ = X + y.

We shall derive some formulas for calculating zz which use only single

length floating-point addition and subtraction.

First we consider the formula

(4.3) w = fl(z-x), zz = fl(y-w)

and prove some theorems stating sufficient conditions for the validity of

this formula. For practical computation, formulas (4.1) and (4.3) can be

written as the following sequence of ALGOL 60 statements:

(4.4) "z := x + y; zz := y - (z-x)",

in which w remains anonymous.

Let x, y GR be representaile such that their exponents satisfy

ex~ ey.

In particular, this holds if x, y e:. R satisfy

(4.6)

(4.7) Theorem. If R has the form (2.2), where 8 = 2 or 3 and Mis a

multiple of 8, and if, moreover, floating-poi~t addition is optimal and

subtraction faithful, then, for all x and y satisfying (4.5) and for z ,,

9

obtained according to (4.1), formula (4.3) yields the correction term zz

defined by (4.2).

Proof. According to (4.5), we may assume

ex ey x = mx 8 , y = my B , ex .?:_ ey.

We prove the theorem by showing

1)

2)

w = z - x,

zz = y - w.

Proof of (1). Since floating-point subtraction is faithful, we need to

show only that z - xis an element of R. Obviously, z can be represented

such that ez <ex+ 1. We first assume that no overflow occurs in forming

z and distinguish between two cases.

1a) ez < ex.

Then we have (for definition of "round" see 3.3)

mz = mx Bex-ez + round (my Bey-ez),

so that

(ex-ez) ez z - x = mz-mx B f3 =

Hence, z - x e R.

1b) ez = ex + 1 t

Let d = ex - ey. Then

mz = round (mx/s + my/sd+1),

whereµ= Smz - mx satisfies

ex
= µ B (say),

lµI < lsmz-mx-my/sdl + jmy/Bdl

B/2 + Jmy/sdl < B/2 + M.

10

Hence, since B ~ 3 andµ is integral, we have

so that z - xis representable as an element of Reither with mantissaµ

and exponent ex if lµI < M, or, since Mis a multiple of B, with mantissa

µ/Band exponent ex+ 1 if lµI = M.

We now assume that overflow occurs in forming z.

Then ez = ex and lmzl = M - 1, so that

z - x = (mz-mx) Bex.

Hence , z - x E:'... R.

This completes the proof of (1).

Proof of (2). Since floating-point subtraction is faithful, we need to

show only that y - w is an element of R.

From ex.::_ ey, it follows that y - w is equal to an integer times Bey.

Moreover, IY-wl ~ IYI, because otherwise x would be closer to x + y than z

contradicting the assumption that floating-point addition is optimal.

Hence , y - w f;... R.

This completes the proof of (2) and the theorem.

Theorem (4.7) does not hold for B ~ 3 if Mis not a multiple of B
(which, according to section 2 remark 2 can only occur for B = 3), nor for

any B > 3.

For example, if B = 3, M = ~ (3t+1) (this being the most natural range in

the "balanced" ternary system using the digits +1, O, -1, see Knuth (1969,

p. 173)) and x = y = M - 1, then z = 3t and z x = ~ (3t+1), which is not

an element of R; if B = 10, M = 100 and x = y = 98, then z = 200 and

z - x = 102, which is not an element of R.

The theorem can be extended to any B and M, provided that an enlarged

mantissa range (an extra digit,say) is available for w. Such an extended

theorem has practical applications, because w may remain anonymous (see

4.4) and some systems have an enlarged mantissa range for the anonymous

floating-point values.

11

* Therefore, we define an enlarged system R for w, analogous to (2.2), as

follows.

(4.8) R*= {x Ix= mx Bex, lmxl < M*, -D <ex< E},

where M* > M + 8/2. (This is certainly true if R*has at least one more

digit for the mantissas of its elements than R~)

Then the following theorem holds without any restriction on 8 and M.

(4.9) Theorem. * Let R have the form (2.2) and R the form (4.8). Let

x, y 8 R satisfy (4.5) and let z € R be obtained according to (4.1), where

the floating-point addition is optimal. Furthermore, let formula (4.3) be

* calculated such that the subtraction producing w ~ R is faithful with
* respect to R and the other operation is faithful with respect to R.

Then formula (4.3) yields the correction term zz € R defined by (4.2).

Proof, The proof is analogous to that of theorem (4,7). We have to show

(1) and (2). The proof of (2) is unqhanged and that of (1) is modified as

follows.
. * We need to show only that z - xis an element of R.

In case (1a) and in the case that overflow occurs in forming z, we obtain

z - x SR.
* * Hence, z - x € R, since R c R.

In case (1b) we obtain z - x =µBex, where lµI < 8/2 + M ~M*.

* Hence z - x e R •

This completes the proof of'. (1),,and of' ,the theorem.

For propeviliy truncating addition, the following theorem holds without

any restriction on 8 and Mand without requiring an enlarged mantissa

range for w.

(4.10) Theorem, If R has the form (2.2), floating-point addition is

properly truncating and subtraction is faithful, then, for all x and y

satisfying (4.5) and for z obtained according to (4.1), formula (4.3)

yields the correction term zz defined by (4.2).

12

Proof. The proof is analogous to that of theorem (4.7). We have to show

(1) and (2).

Proof of (1). We need to show only that z - xis an element of R. Let

trunc (;) denote the largest integer.::_; if y ~ 0 or the smallest integer

~; if y < 0 (i.e. the properly truncated value of;; see 3.5).
Obviously, z can be represented such that ez .::_ex+ 1. We first assume

that no overflow occurs in forming z and distinguish between two cases.

1a~ ez .::_ ex.

Then we have

Hence, z - x s R.

1b) ez = ex + 1.

0 ex-ez + mz = mx µ (ey-ez) trunc my 8 ,

Let d = ex - ey. Then

mz = trunc (mx/8+my/8d+1),

() ex ex (.) z - x = 8mz-mx 8 = µ 8 say •

Since mz is obtained by properly truncating, we have

Hence z - x s R, becauseµ is integral.

In the case that overflow occurs in forming z, we can show that z - x s R

in the same way as in the proof of (4.7).
This completes the proof of (1).

Proof of (2). We need to show only that y - w is an element of R.

From ex~ ey, it follows that w equals an integer times Sey. Since z is

obtained by properly truncating the mantissa of y (case 1a) or x + y

(case 1b), or by truncating the mantissa y to some value smaller in

magni t11de (in case of overflow) , we have I w I .::_ I y I . Moreover, w and y do

13

not have opposite signs, because otherwise x would be between z and x + y

contradicting the assumption that floating-point addition is properly trun

cating.

Hence, ly-wj ~ IYI, so that y - w S R.

This completes the proof of (2) and the theorem.

Remarks

1) As pointed out in section 2 remark 1, addition and subtraction never

lead to underflow in a system of the form (2.2). If we restrict ourselves

to normalized representations, then theorems (4.7), (4.9) and (4.10) do

not remain valid, since underflow may occur in forming zz. Of course, the

theorems remain valid in cases where no underflow occurs.

2) The theorems do not hold if addition is only faithful, because the

correction term zz is then not always an element of R. For example, if

S = 2, M = 16, x = 15, y = 15/32 and z = 16, then zz = - 17/32, which is

not an element of R.

For super-faithful addition (s~e definition 3.7), we immediately

obtain by combining theorems (4.7) and (4.10):

(4.11) Corollary •.

by "super-faithful".

Theorem (4.7) remains valid, if "optimal" is replaced

Similarly, combining theorems (4.9) and (4.10), we obtain

{4.12) Corollary. 'l'heorem (4.9) remains valid, if "optimal" is replaced

by "super-faithful".

Instead of formula (4.3), we now consider the formula

(4.13) w = fl(x-z), zz = fl(w+y).

For practical computation, formulas (4.1) and (4.13) can be written as the

following sequence of ALGOL 60 statements:

14

(4.14) "z := X + y; ZZ ,- X - Z + y",

in which w again remains anonymous. Here, we make use of the fact that, in

ALGOL 60, subsequent additions and subtractions are performed from left to

right, so that the expression "x - z + y" is equivalent to 11 (x-z) + y",

see Naur (1962, 3,3.5.). For applications, we prefer this formula above

(4.4), because many compilers produce a slightly faster code for (4.14)
than for (4.4).
Since the floating-point number system R is symmetric (i • e. x €. R implies

- x G. R, see (2.2) and section 2 remark 2), and R* also (see 4.8), and

since optimal, properly truncating or super-faithful addition is certainly

faithful, we immediately obtain

(4.15) Corollary. Theorems (4.7), (4.9) and (4.10), and corollaries

(4.11) and (4.12) remain valid if formula (4.3) is replaced by formula

(4.13).

The formulas (4.3) and (4.13) are numerically equivalent but for the

sign of w. (Since the second subtraction in (4.3) corresponds to the

addition in (4. 13), we talk about "other operation" in theorem (4. 9) .)
The pair of formulas { 4. 1) and (4. 13) , or the equivalent formulation

(4.14), is our basic algorithm for exact addition of two floating-point

numbers. In the applications, it will often be necessary to interchange

the roles of the terms x and y when Ix I < I y I , in order to ensure that

{4.5) holds. In the subsequent sections, we shall use this basic algorithm

to obtain algorithms for doublelength arithmetical operations.

We conclude this section with a formula for the correction term zz

satisfying (4.2), in the case that floating-point addition and subtraction

are optimal, R has the form (2.2) with arbitrary 13 and M, but no enlarged

mantissa range is available for anonymous real values (in particular, w).

Since we cannot guarantee that w = z - x in (4.3), we apply formula (4.13)

to obtain the correction term, z2, for w. This leads to the formula

(4.16)

15

w = fl(z-x), z1 = fl(y-w),

v = fl(z-w), z2 = fl(v-x),

zz = fl(z1-z2).

Since we assume that R is symmetric, this formula is eq'IJ.ivalent to that

given by M¢ller (1965, p. 42 process A) and Knuth (1969, p. 203 formula

48), the only difference being that there - z2 instead of z2 is calculated

and added to z1.

For this formula, the following theorem holds even without requiring (4.5).

(4.17) Theorem of M¢ller-Knuth.

If R has the form (2.2) and floating-point addition and subtractio~ are

optimal, then for all x, ye.Rand for z obtained according to (4.1),

formula (4.16) yields the correction term zz defined by (4.2).

M¢ller (1965) has a weaker assumption for floating-point addition and

subtraction and obtains a weaker result. Knuth (1969, p. 203 Theorem B)

assumes that floating-point addition and subtraction are optimal {p. 197,

formula 11), but excludes overflow and underflow. In fact, overflow does

not invalidate the theorem, whereas underflow does not occur in a number

system R of the form {2.2) (see section 2 remark 1).

For a proof of this theorem we refer to Knuth (1969, p. 201-203). An

alternative proof can be given along the lines of the proof of Theorem

(4.7).

16

5. Exact multiplication

Let x and y be given elements o~ R. We want to calculate their exact pro

duct and to deliver it as a pair (z,zz) of elements of R satisfying the

(exact) relation

Z + ZZ = X X y,

with some extra condition that zz be (almost) negligeable within machine

precision with respect to xx y.

For simplicity, we assume that the system R of floating-point numbers

has the form (2.2), with the restrictions

13 = 2,

where tis the number of binary digits in the mantissa, and D and E are

infinite. Thus R obtains the form

(5,3)

In other words, we restrict ourselves to binary floating-point t-digit

arithmetic disregarding overflow and underflow. The following results on

exact multiplication can be generalized, however, to nonbinary systems.

We use the notation R (t) , because we shall also refer to binary floating

point k-digit number systems R(k) for some values k ft.

Moreover, we assume that floating-point addition and subtraction are

optimal and multiplication is faithful (see definitions 3.1 and 3,2).

In order to form the exact product of x and y, we first split x and

y each into two "halflength" numbers. Let t 1 and t2 be (roughly equal)

integers such that

t = t1 + t2.

Let hx (the "head" of x) be an element of R(t2) as near to x as possible;
. . ex . .1,, (i.e. if x = mx 2 , where mx is normalized when x T O thus, ex is minimal

and lmxl.::. 2t-1), then ,,

17

(For the definition of round see 3,3,)

remaining part of x:

tx = x - hx.

Let tx (the "tail" of x) be the

Since hx is obtained by rounding, tx is an element of R(t1-1). Let y

similarly split into hy and ty.

Then we obviously have

hx x hy €. R(2t2),

hx x ty, tx x hy c. R(t-1),

tx x ty e. R(2t1-2).

So, in order to make sure, that these numbers fit in R = R(t), we choose

(cf. 5. 4)

t2 = entier (t'l2), t1 = t - t2.

Then 2t2 < t and 2t1 - 2 < t - 1. Since hx x ty and tx x hy are repre

sentable as elements of R(t-1) with the same exponent, their sum is an

element of R(t). So, the calculations

p = fl (hx x hy) ,

q = fl(hx x ty + tx x hy),

r = fl (tx x ty)

are exact, because the floating-point operations involved are faithful.

We find z and the correction term z1(say) by performing an exact addition

of p and q:

z = fl(p+q), z1 = fl((p-z) + q).

Since certainly IPI .::_ jqj, we have ep .::_ eq, in other words, the relation

corresponding to (4.5) holds. Hence, z + z1 = p + q according to theorem

(4.7) and corollary (4.15), since-we assume that R has the form (5.3) and

flOating-point addition and subtraction are optimal.

18

From these assumptions, it al.so follows that z1 is representable as an

element of R(t-1) with the same exponent as r. Hence, z1 + r ER, so that

zz defined by (5.1) is obtained from

(5.10) zz = n(z1+r).

So we have proved the following

(5.11) Theorem. If R has the form (5.3}, floating-point addition and sub

traction are optimal and multiplication is faithful, then for all x, y ER

splitted into head and tail according to (5.5) and (5.6), where t1 and t2

are given by (5.7), the formulas (5.8), (5.9) and (5.10) yield z and zz

satisfying (5.1).

Formulas (5.8), (5.9) and (5.10) can be written as the following

sequence of ALGOL 60 statements (cf. 4.14):

{ "p := hxx hy; q := hx x ty + tx x hy;

Z := p + q_; ZZ := p - Z + q_ + tX X ty".

Note that, in the last assignment statement, the additions and subtractions

are performed from left to right (see (4.14) and Naur (1962, 3,3.5.)).

We use (5.12) in our algorithm for exact multiplication (§ee ALGOL 60 pro

cedure "mul 12" in appendix).

As to the extra condition that "zz be (almost) negligeable within

machine precision with respect to xx y", we shall show fort> 2 that

(5.13) lzzl < Ix x YI
1 + T 2-t ,

where T = 2 if t even and T = 3 otherwise.

Proof. If x = 0 or y = O, then obviously zz = z = O and (5.13) holds. So

we may assume that x and y are nonzero, and thus also hx, hy and p+q. Let

£ = tx/x, n = ty/y, o = z1/(p+q).

19

Then a simple calculation yields

zz =(xx y) ((1 - En) o + En).

Since floating-point addition is optimal, we have

-t
lol < _2_

- 1+2-t

(cf. Wilkinson (1963, p. 17-19) who gives the bound 2-t). Similarly, it

follows from (5.5) and (5.6) that

Hence,

-t2
IE I , In I 2-

2
-t2

1+2

I zz I < IX X y I [,

Since, according to (5.7),

2t-2t2 = T _ 1

and, for t ~ 2 ,

we obtain

lzzl < Ix x YI

from which (5.13) immediately follows.

12-~
1 + T ~

T -

A slightly smaller bound for zz is obtained if the algorithm is modi

fied as follows. After calculating z and zz as above (see 5.12), an exact

addit,ion of z and zz is performed:

20

(5.14) "u := z; z := u + zz; zz := u - z + zz".

Then z and zz still satisfy (5.1) and, since addition is optimal, we now

have

(5.15)

This bound is only about 2 or 3 times smaller than the bound given by

(5. 13) • Therefore we did not include (5. 14), requiring three extra additions

or subtractions, in our algorithm "mul 12".

The following algorithm for exact multiplication, due to Veltkamp

(1968), also works under the conditions stated in theorem (5.11).

z = fl.(x x y),

zz = fl((((hx x hy - z) + hx x ty) + tx x hy) + tx x ty).

If multiplication is optimal, then zz satisfies (5.15), otherwise the bound

for zz is about twice as large, because multiplication is assumed to be

faithful. Veltka.mp's algorithm requires one more multiplication and one

less addition than ours.

21

6. Splitting into halflength numbers

Let x be a given element of R. We want to calculate hx and tx as defined

by (5.5) and (5.6) by means of some simple arithmetical operations. We

consider the formula

(6. 1) p = fl(x x c), q = fl(x-p), hx = fl(q+p),

where c is some constant, and we try to find a value for c such that the

formula yields hx defined by (5.5). The most obvious choices c = + 2t1

do not always work.
t 1 I I t-1 t 1-1 <) For example, if tis even, c = 2 and mx = 2 + 2 , then fl q+p

is not an element of R(t2); if c = -2t 1 and lmxl = 2t-1, then fl(q+p)

is not properly rounded to t2 bits.

On the other hand, defining

(6.2)

the following theorem holds.

(6.3) Theorem. If R has the form (5.3), floating-point addition and

subtraction are optimal, multiplication is faithful, and t1, t2 and care

defined by (5. 7) and (6 .2), then, for all x e. R, formula (6. 1) yields hx

defined by (5.5).

Proof Let, for any real~, trunc (~) denote the largest integer.::_~ or

the smallest integer,::..~- If x = O, then the theorem is obvious. If

x f O, then we may and shall assume (for definiteness) that the floating

point numbers involved are normalized, i.e. the absolute value of the

mantissas are> 2t-i. Since hx defined by (5.5) is· an element of R(t2),

thus, certainly of R = R(t), and addition is optimal, we need to show only

that q + p obtained from (6.1) equals hx. Obviously ep equals either

ex+ t1 or ex+ t1 + 1 which cases we now consider separately.

a) ep =ex+ t1. Since multiplication is faithful, we have

(-t 1} (-t 1) mp = trunc mx + mx 2 = mx + trunc mx 2 •

22

Obviously, eq = ep or eq = ep-1. We show that the latter is impossible.

Indeed, if eq = ep-1, then, since subtraction is optimal,

(1-t 1) (1-t 1) (-t 1 mq = round mx 2 - 2mp = round mx 2 - 2mx - 2 trunc mx 2) •

Hence,

If I mx I > 2 t-1 , then this yields l mq I ~ 2 t ,since mq is an integer, and if

lmxl = 2t-1, then round and trunc are exact, so that lmql = 2t. So, mq is

not within the mantissa range, which shows that eq = ep-1 is impossible.

Hence, we have eq = ep = ex+ t1 and

mq = round (mx 2-t 1) - mp,

so that

which equals hx defined by (5.5).

b) ep =ex+ t1 + 1. Then

(-t1-1) mp= trunc mx/2 + mx 2 •

Obviously, eq = ep-1 or eq = ep.

If eq = ep-1 = ex·+ t1, then

mq = round (mx 2-t 1) - 2mp,

so that

23

which equals hx defined by (5.5).

If eq = ep =ex+ t1 + 1, then

-t1-1 -t1-1 (I -t1-1) mq = round (mx 2) - mp = round (mx 2) - trunc mx 2 + mx 2 .

Hence,

lmql < lmxl/2 + i + 1.

. t-1 I I t . This is within the normalized mantissa range 2 ~ mq < 2 only if

lmxl
t . = 2 - e, where£= 1 or 2, but then we obtain

-t1-1) ep (-t1) ep-1 q+p = round (mx 2 2 = round mx 2 2 ,

which equals hx defined by (5.5).

This completes the proof.

After calculating hx according -to (6. 1) , we obtain tx defined by

(5.6) from

(6.4) tx = fl(x-hx)

which is equivalent to (5.6), because txe..R and subtraction is optimal.

Formulas (6.1) and (6.4) can be written as the following sequence of

ALGOL 60 statements, where c is assumed to have the value given by {6.2):

"p : = x x c ; hx : = x - p + p; tx : = x - hx" •

Note that, in ALGOL 60, "x - p + p" is equivalent to "(x-p) + p" (see

(4.14) and Naur (1962, 3,3.5.)). We use formula (6.5) in our algorithm.

for exact multiplication (see ALGOL 60 procedure "mul 12" in appendix).

24

7. Doublelength arithmetic

We now give a straightforward application of the results of the previous

sections to obtain algorithms for doublelength addition, subtraction, mul

tiplication, division and square root. In the appendix, the algorithms

are given as ALGOL 60 procedures. For simplicity, we assume that the con

ditions of section 5 are satisfied, viz. R has the form (5.3), floating

point addition and subtraction are optimal, and multiplication is faithful.

The algorithms for addition and subtraction, however, would also work

correctly under the weak.er assumptions stated in theorems (4.7), (4.9)
and (4.10) and corollaries (4.11), (4.12) and (4.15), provided that no

overflow occurs.

In several computers , more than one floating-point system is available,

e.g. a "single" and a "double" precision system. Our technique is, of

course, most effective if we start from the highest precision system

available (provided that it satisfies the requirements). Thus, starting

from a "double" precision system and arithmetic, our technique yields a

"quadruple" precision system and arithmetic.

We shall, however, call the system R used as starting-point for our

technique "singlelength floating-point number system", and the arithmetical

operations defined on R "singlelength floating-point arithmetical opera

tions".

(7.1) Definition. A doublelength floating-point number is a pair (r,s) of

singlelength floating-point numbers (i.e. r,s G.R) satisfying

2-t

1+2-t •
(7.2) Isl < lr+sl

The value of the doublelength number (r,s) is, by definition, equal to

r + s. We call r the head ands the tai~ of (r,s). -- --
In particular, any pair (r,O) is a doublelength floating-point number,

and, since addition is optimal, also any pair (z,zz) obtained by performing

an exact addition (see section 4).

25

Sometimes we replace (7.2) by the weaker condition

where C is some constant not much larger than 1; we call a pair (r,s)

satisfying (7.3) a nearly doublelength floating-point number.

In particular, a pair (z,zz) obtained by exact multiplication (5.12)

is a nearly doublelength floating-point number, because, according to (5.13)

and Theorem (5.11), we can take C = T/(1 + T 2-t).

On the other hand, the magnitude of the tail of a doublelength number

may be much smaller than the bound given by (7.2). Thus, the mantissa of a

doublelength floating-point number cannot always be represented by means

of a multilength integer of fixed maximum length. This is in contrast with

the usual approach in which the mantissa is represented by means of some

integers.

The doublelength sum of two (nearly) doublelength floating-point

numbers (x,xx) and (y,yy) is calculated as follows (see ALGOL 60 procedure
11 add 211 in appendix) •

First, the heads x and y are added exactly (4.14). Here the roles of x and

y are interchanged when !xi < IYI, in order to ensure that (4.5) holds.

Thus, we obtain a doublelength number (r,rr) such that r + rr = x + y.

Subsequently, the tails are added torr:

s = fl((rr+yy) + xx),

so that r + s approximately equals the sum of (x,xx) and (y,yy). Here again

the roles of xx and yy are interchanged when lxl < IYI, in order to reduce

the maximum error in (7.4) and to ensure commutativity. Finally, an exact

addition of rands is performed. Although not always lrl ~ Isl (cancel

lation in forming r may cause -Ir I to be slightly smaller than Is I) , the

relation corresponding to (4.5) certainly holds, so that, for this final

exact addition, we never need interchange the roles of rands.

Since singlelength addition is optimal, the final exact addition transforms

the approximate sum into a doublelength floating-point number having the

same value.

26

Doublelength subtraction is performed in a completely analogous

fashion (see ALGOL 60 procedure "sub 2 11 in appendix).

The calculation of doublelength product, quotient and square root is

rather obvious and can be sketched as follows (for details see error ana

lysis below and ALGOL 60 procedures "mul 2", "div 2" and "sqrt 2" in

appendix). First a nearly doublelength approximation, (c,cc), of the

required result is calculated. Here, besides some singlelength operations,

exact multiplication is used. The pair (c,cc) satisfies the relation

corresponding to (7.3), but not always (7.2). Therefore, an exact addition

is performed, which transforms the result obtained into a doublelength

floating-point number having the same value.

Error analysis

The only error in the doublelength addition is committed in forming s

(7.4). Assuming that (x,xx) and (y,yy) are nearly doublelength numbers

satisfying

where c1 and c2 are constants not much larger than 1, we shall show that,

for sufficiently large t, the error, E+, of the doublelength addition

satisfies

Proof From (7.4), it follows that

s = (rr+yy) (1+e) (1+e') + xx(1+e'),

where lel, le'I ~ 2-t/(1+2-t) < 2-t, because addition is optimal, cf.

Wilkinson (1963, p.9). Similarly,

From these relations and (7.5), we obtain

27

IE+I .::_ lrr+yyl(21-t+2-2t) + lxx:12-t

< lx+xxl{(21-2t+2-3t)(1+C1 2-t) + c1 2-2t}

+ IY+yyl(21-2t+2-3t)(1+c2 2-t+c2).

Since IYI _.::_ lxl (otherwise the roles of x and y would be interchanged),
. -3t the sum of the terms of order of magm. tude 2 and lower is smaller than

lx+xxl c
1

2-2t for sufficiently large t. This establishes (7.6).

If (x,xx) and (y,yy) are doublelength numbers, then c 1 , c2 < 1 so

that (7.6) reduces to

'IE+I ..::. (lx+xxl + IY+yyl) 22- 2t

If, however, doublelength addition is used, in combination with our exact
'(

multiplication ~lgorithm, for calculating the doublelength scalar product

of two vectors of singlelength floating-point numbers, then one of the

constants c
1

, c2 is smaller than T (i.e. 2 if t even and 3 otherwise

(5.13)) and the other is smaller than 1. Repeated application of (7.6)

then yields an upper bound for the error of the doublelength scalar

product, cf. Wilkinson (1963, p.18).

Formula (7.6) means that the error is small in doublelength precision

with respect to the sum of the magnitudes of the terms, the loss being

at most a few bits. The relative error of the doublelength sum, however,

is not always small, because severe cancellation may take place in forming

r. Since this can happen only if rr = O, the algorithm for doublelength

addition can easily be modified such that a small relative error is

ensured (Veltkamp, 1968). We did not include this modification in our

algorithm, because it is of only limited value if the terms are not exact.

The doublelength product, quotient and square root produced by our

algorithms all have a small relative error. In other words, if the operands

are (nearly) doublelength numbers, then the corresponding absolute errors,

E l< El r , and E, satisfy

28

IExl < lx+xxl x ·ly+yyl) ex 2-2t,

JE11 < (lx+xxl / IY+YYI) cl 2-2t,

IE1 < Y (x+xx) cl" 2-2t,

where ex, cl and c·r are constants not much larger than 1. (Here we assume,

of course, that the denominator of the quotient is nonzero and the argu

ment of the square root is nonnegative.}

If the operands are doublelength floating-point numbers (7.1) and single

length division and square root are faithful, then, for t .::_ 10 (say), the

constants are bounded by

X I ✓-c < 9 + T, C .::. 21.1, C .::. 12.7.

where T = 2 if t even and T = 3 otherwise (5.13). If, moreover, single

length multiplication and division are optimal (which holds for the

Philips Electrologica X8 computer), then

(7.10) c·x .::_ 7 + T , C / < 1 2 • 1 , C /" < 1 0 • 2 •

Proof Let

p = (x+xx) X (y+yy) , P' =XX y +XX yy + xx X y.

Since the operands are doublelength numbers (7. 1) , ve have

(7.11)

In "mul 211 the following approximation, P", is calculated:

P" = c + fl({x x yy + xx x y) + cc),

where c and cc, obtained by exactly multiplying x and y, satisfy (cf.

section 5)

c +cc= xx y, lccl < Ix x YI
-t

T 2
-t.

1 + T 2

29

Hence, we obtain (cf. Wilkinson (1963, p. 7-11))

P" = c +[}(xx yy){1+e:) + (xx x y){1+e:')}{1+e: 1) + c~ (1+e: 2),

where

because addition is optimal, and, for some constantµ,

From the assumption that multiplication is faithful, it follows that

µ .::_ 2; if multiplication is optimal, thenµ= 1.

From the formulas for P' and P" , we easily derive

(7.12)

So, combining (7.11) and (7.12), we obtain

X
This establishes the relations given above for C.

Let

Q = (x+xx)/(y+yy), Q' = (x+xx - xx yy/y)/y.

Since the operands are doublelength numbers (7.1), we have

In "div 211 the following approximation, Q", is calculated:

Q" = c + fl(((((x-u) - uu) + xx) - c x yy)/y),

where
c = fl(x/y) = (x/y)(1+e:) {say), u + uu = c x Y,

30

u and uu being obtained by exactly multiplying candy. Since cancellation

occurs in calculating fl(x-u), this is exact. More0ver, since division

is faithful, we have x - c x y ER, so that

fl((x-u) - uu) = x - u - uu = -xe.

Hence (cf. Wilkinson (1963, p. 7-11)),

where

Q" = (x/y)(1+£) + [{ (x/y H-d + xx/y} (1+e1)

- (x/y) (yy/y) (1+£) (1+£ ")] (1+£2) (1+£ I),

because addition and subtraction are optimal, and, for some constantµ,

-t
< µ 2 •

Since we assume that multiplication and division are faithful, we obviously

haveµ.::_ 2; if these operations are optimal, thenµ< 1. Denoting the sum
3t -2t . of the terms of order 2- and lower by 6 2 , we obtain

Further analysis shows that, for t .::_ 10, we can take 6 = 0. 1 • So, from

this and (7. 14) , we obtain

This establishes the relations given above for cl.

Let

R = V x + xx, R 1 = h + xx/ (2Vx) •

Since the argument is a doublelength number, we have

31

In "sqrt 211 the following approximation, R", is calculated:

R" = c + fl((((x-u) - uu) + xx) x 0.5/c),

where

c = sqrt(x) =Yx.(1+£) (say), u + uu = 2
C ,

u and uu being obtained by exactly multiplying c and c. Since cancellation

occurs in calculating fl(x-u), this is exact. Hence,

2 fl((x-u) - uu) = (x-u-uu)(1+E 1) = -x(2E+E)(1+£ 1),

R" = 'Jx(1+£) + [j-x(2£+£2)(1+£ 1) + xx} x 0. 5/ ~
(1+£2)(1+£')

1+€

where, for some constantµ.::_ 2,

Here againµ< 1 if division is optimal. From this we obtain

I jR"-R' I .::. IRI (2.5µ+7.5+e)2-
2
t,

,

where e2-2t again denotes the sum of the terms of order 2-3t and lower. For

t > 10, we can take e = 0,075, So, from this and (7.17), we obtain

This establishes the relations given above for cV--and completes the proof,

The doublelength operations defined by our algorithms "add 211
, "sub 2",

"mul 211
, "div 211 and "sqrt 211 are not faithful. To obtain faithful double

length operations, one would have to calculate the result in triplelength

(or maybe_ even quadruplelength) precision and then to round or truncate

it to doublelength. This would, of course, require considerably more

work and be preferable only in exceptional situations.

32

-~
8. Appendix. ALGOL 60 procedures

In this appendix, we give a set of ALGOL 60 procedures for doublelength

arithmetic and exactmultiplication.
I

The procedures work 'correctly if the singlelength floating-point system is

binary, singlelengt~ floating-point addition and subtraction are optimal

(3.2), multiplication is faithful (3.1) and no overflow or underflow occurs

(cf. section 5).

The procedures for doublelength addition and subtraction also work correct-

. ly in a nonbinary system, provided that a guarding digit is available for

the mantissas of anonymous quantities (i.e. quantities which are not

assign~d to a variable; for details see section 4).

The procedures have been tested on the Philips Electrologica X8 computer at

"Mathematical Centre, .Amsterdam. This is a binary machine having t = 40

binary digits in the mantissa and 12 bits for the exponent

(i.e. D = E = 2048 in (2.2)).

In particular, the algorithms described in "add 2" and "mul 12" have been

used extensively for calculating doublelength scalar products of vectors of

singlelength floating-point numbers.

Procedure "add 211 has been tested also on the GE635 computer at Bell Tele-
'

phone Laboratories, Murray Hill. This is a binary machine having two

floating-point systems, viz. single precision t = 27 and double precision

:t = 63. Procedure "add 2" worked correctly in both systems.

In the. comments, (x,xx), (y,yy) and (z,zz) denote (nearly) doublelength

numbers (see section 7).

33

comment add 2 calculates the doublelength sum of (x,xx) and (y,yy),

the result being (z,zz);

procedure add 2 (x,xx,y,yy,z,zz);

value x,xx, y,yy; real x,xx, y,yy, z,zz;

begin real r, s;

r, := X + y;

s := if abs (x) > abs (y) then

x - r + y + yy + xx else y - r + x +xx+ yy;

z := r + s;

zz := r - z + s

~ add 2;

comment sub 2 calculates the doublelength difference of (x,xx) and

(y,yy), the result being (z,zz);

procedure sub 2 (x,xx, y,yy, z,zz);

value x,xx, y ,yy; real x,xx, y ,_yy, z ,zz;

begin real r, s;

r := X - y;

s := if abs (x) > abs (y) then

x - r - y - yy + xx else - y - r + x + xx - yy;

z := r + s;

zz := r - z + s

end sub 2;

34

comment mul 12 calculates the exact product of x and y, the result

being the nearly doublelength number (z,zz). The constant should be

chosen equal to 2 t (t - t +2) + 1, where tis the number of binary

digits in the mantissa;

procedure mul 12 (x, y, z,zz);

value x, y; real x, y, z,zz;

begin real hx, tx, hy, ty, p, q;

end mul

p :=xx constant;

hx := x - p + p; tx := x - hx;

p := y x constant;

hy := y p + p; ty := y - hy;

p := hx X hy;

q := hx X ty + tx X hy;

z := p + q;

zz := p - z + q + tx X ty

12;

comment mul 2 calculates the doublelength product of (x,xx) and (y ,YY),

the result being (z,zz);

procedure mul 2 (x,xx, y,yy, z,zz);

value x,xx, y ,yy; real x,xx, y ,YY, z ,zz;

begin real c,cc;

mul 12 (x, y, c,cc);

cc :=XX yy + xx X y + cc;

Z := C + CC;

ZZ := C - Z + CC

end mul 2;

35

comment div 2 calculates the doublelength quotient of (x,xx) and

(y,yy), the result being (z,zz). If y = O, the effect of this pro

cedure is undefined;

procedure div 2 (x,xx, y,yy, z,zz);

value x,xx, y,yy; real x,xx, Y,YY, z,zz;

begin real c,cc, u,uu;

C := x/y;

mul 12 (c, y, u,uu);

cc := (x-u-uu+xx-cxyy)/y;

z := c + cc;

ZZ := C - Z + CC

end div 2; ,

comment sqrt 2 calculates the doublelength square root of (x,xx), the

result being (y,yy). If (x,xx) is not positive, then the result equals

(0 ,o) ;

procedure sqrt 2 (x,xx, y,yy);

value x,xx; iI'eal x,xx, y ,yy;

begin real c,cc, u,uu;

if x > 0 then

begin c := sqrt (x);

mul 12 (c,c, u,uu);

cc := (x-u-uu+xx) x 0.5/c;

y := c + cc;

yy := C - y + CC

end

else Y := yy := 0

end sqrt 2.

36

9. Acknowledgements

The author expresses his gratitude to Professor Dr. F.E.J. Kruseman Aretz,

formerly at Mathematical Centre, .Amsterdam, to Professor Dr. G.W. Veltkamp

at Technological University, Eindhoven, and to Dr. W.S. Brown and Dr. P.L.

Richman at Bell Telephone Laboratories, Murray Hill, for many valuable

suggestions and inspiring discussions. The author is also grateful to

Mr. H.J.W. ten Hagen, Mr. H.N. Glorie and Mr. D.F. Winter at Mathematical

Centre, Amsterdam, for their assistance in testing the algorithms.

10. References

I. Babuska (1968), Numerical stability in mathematical analysis, IFIP

congres 68, Invited papers, p. 1-13.

A.A. Grau (1962), On a floating-point number representation for use with

algorithmic languages, Comm. ACM 5, p. 160-161.

W. Kahan (1965) , Further remarks on reducing tr1,lilcation errors, Comm. ACM

8, p. 40.

D.E. Knuth (1969), The art of computer programming, vol. 2 (Addison Wesley).

O. M¢ller (1965), Quasi double-precision in floating-point addition, BIT 5,
p. 37-50.

P. Naur, ed. (1962), Revised report on the algorithmic language ALGOL 60.

G.W. Veltkamp (1968), Private communications (see also RC Informatie

nr. 21 & 22, Technological University, Eindhoven).

J.H. Wilkinson (1963), Rounding errors in algebraic processes (Her Majesty's

Stationary Office).

T.J. Dekker

Mathematical Centre

Amsterdam

Netherlands.

