
REKENAFDEL I NG

W.P. DE ROEVER

stichting

mathematisch

centrum

AN EXACT RATIONAL FUNCTION SYSTEM WITH
"GARBAGE COLLECTION IN ALGOL 60

~
MC

MR 119/70 SEPTEMBER

2e boerhaavestraat 49 amsterdam

6iol.l01Ht.t:K MATHEMATISCH CENTIWM
AMSTER.DAM

PJunted at :the. Ma:thema.:Uc.a.l Cent.lte, 49, 2e. Boe.Jiha.a.vu:tJr.aa.t, Amtd.e/l4.am.

The Ma:thema.:Uc.a.l Cent.lte, 6ou.nde.d :the 11-:th 06 Fe.b'1..WVl.y 1946, .iA a non­
p1Lo6.U .i.n6.:U:tu.tlon cu.mi.ng at :the. pll.omo.tlon 06 pu.ll.e. ma:the.mati.C-6 and w
appUc.a.:Uon.&. I.t .iA .&pon.&oJLe.d by :the. Ne.:theJLeand-6 Gove.JLnme.n.t :thlLou.gh :the
N e.:theJLeand-6 OJLg a.niza.:Uo n 6 oil. :the. Adv anc.ement o 6 Pu.ll.e Ru eaJtc.h l Z • W. 0) ,
by :the. Mu.n.i.clpai.Uy 06 Am-6.tell.dam, by :the. Un.i.ve.ll..6.Uy 06 Am.&.te.Jz.dam, by
:the f 1r.ee Un.i.vell..6.Uy at Am-6.te.Jz.dam, and by .i.n.du.-6:tJuu.

Contents

I.1. Introduction to formula manipulation and garbage collection.

I.2.1.

I.2.2.

Modes and linking complexity.

The free-list garbage collection technique.

Representation of formulas in C1, C2.

page

6

9

14

I.4. Retrieval of and enquiries concerning objects stored in C1, C2.18

II.

II.1.

II.1.1.

II.1.2.

II.2

II.2.1.

II.2.2.

III.

III.1.

The number system.

Long integer and short integer arithmetic.

A brief description of the basic integer procedures.

Declarations and explanations of the basic procedures.

The rational number system.

Representation of a rational number.

Operations with rational numbers.

The rational function system.

Polynomial arithmetic.

III.1.1. Objects having the same hierarchy of variables.

III.1.2. A brief description of the basic integer procedures, that

22

22

22

22

32

32

34

38

38

38

perform polynomial arithmetic. 39

III.1.3. Declaration of the basic polynomial arithmetic performing

procedures. 40

III.2. Rational function arithmetic. 46

IV. The integer procedures S, P, Q and D.

v. Output and conversion. 51

References. 54

Summary:

The program, contained in and commented on in this pa.per, originated

from a suggestion by R.P. VANDERIET to develop an infinite

precision rationaJ. function system, using the formula manipulation

methods· for ALGOL 60 described in [12] and garbage collection

methods described in (13]. It is part of a future extension of his

formula manipu1ation system, to be named ABC for

"Algebraische Bewerkingen met de Computer".

I.1. Introduction to fornru.la :rmnipulation and garbage collection.

As an introduction to fornru.la manipulation, consider the following
ALGOL 60 program.

begin integer one,zero,sum,product,algebra.ic variable,k;
integer array C[1:3,1:1000];
integer procedure STORE (lhs, type, rhs); value lhs, type ,rhs;
integer lhs,type,rhs;
begin SToRE:= k:= k + 1; C[1,k]:= lhs;

C[2,k]:= type; C[3,k]:= rhs
end STORE; -
integer procedure TYPE(f,lhs,rhs); value f; integer f,lhs,rhs;
begin Ihs:= c[1,f]; TYPE:= C[2,f]; rhs:= C[3,f] end;

integer procedure S(a,b); value a,b; integer a,b;
S:= if a= 'zero then b else if b = zero then a
else"""'SrORE(a,sum,b)j -- -

integer procedure P(a,b); value a,b; integer a,b;
P:= if a= zero Vb= zero then zero else

- - ;l-..-.. if a= one then b else if b = one then 8_,f
eI'se STORE (a,produc-t,'o); --

integer procedure DER(f ,x); value f, x; integer f ,x;
begin integer a,type,b; type:= TYPE(f,a,b);

DER:= if f = x then one else
if type= sum tneri."""S(DER(a,x),DER(b,x)) else
Il type= product then S(P(a,DER(b,x)),P'(TIER(a,x),b))
else zero -

encf'"DmR;
IN"ITIALIZE: sum:= 1; product:= 2; al~ebra.ic variable:= 3; k:= o;

one:= STORE(O,algebraic variable,O);
zero:= STORE(O,algebraic variable,O);

comment

Suppose one wishes to calculate:
f = (X X X + X) X dy / dx + (y X y + y) X dx/ dx,

which is a trivial problem, but illustrates the need for automtic
garbage collection.

The calculation is performed by the following actual program;

ACTUAL PROGRAM:
begin integer x,y,f;

x:= STORE(O,algebra.ic variable,O);
y:= STORE(O,algebra.ic variable,O);
f:= S(P(S(P(x,x)<x),

, DER(y,x)J,

2

connnent

P(S(P(y,y),y),
DER(x,x)

));

Since declarations of opera.tors are not feasible in ALGOL 60, we
have to transform fornnilas as used in :rmthe:rmtical textbooks into
Polish prefix, that is functional notation, before trying to
construct representations of these by means of function designators.
In the above program we interpret the usual sum, product and
derivative operations by the integer procedure S ,P and DER.
Corresponding to certain fornnilas we construct function designators
availing ourselves of the afore - mentioned interpretation of operations,
which during their execution, result in the construction of objects
internal to the array c.
This processis com_r.e.ra.ble to a Goedelnu.mbering of a finite class
of fornnilas of some for:rml system, such that natural. numbers to
which no fornnila correspond in the used begin segments of natural.
numbers are avoided during the process of construction.

end
end

;

The result of the calculation is that f = ((y X y) + y). But during
the calculation process the expression S(P(x,x),x) has been
evaluated, resulting in the storage of the useless formula g =
((x xx)+ x) into the array c.
This fornnila is useless for two reasons:
a) it is not used for building up f,
b) it can.not be used later on, since it is not known where it is
stored inc.
Therefore, we :rmy freely consider this formula as garbage. To get
rid of it is not a simple :rmtter, since it occupies space in C
which is surrounded by space in which still interesting formulas
are stored (y and f).

Consider the situation that occurs, when the array Chas been filled
up completely during execution of some particular program.
Then the question arises, whether unneccessary information has been
stored, e.g. the object corresponding tog.

Suppose each subvalue referred to by the name possessed by the slice
C[1 : 3, i], i = 1 ,2, •• , 1000, may be ":rmrked" - the ne.nner in which is
discussed in the commentary following the declaration of procedure
C0ILECT GARBAGE at the end of section 1.1 ••
Then the nru.ltiple value referred to by the name possessed by C is :rmrked
in the following steps:

step l: If there exists a subvalue referred to by the name of a slice

C(1 :3,i],i= 1,2, •• , 1000, which is not yet "marked" and which
is referred to by a name possessed by a "f'ormula-identif'ier"
(defined in the sequel) then this value is "ma~ed" and

I
step 1 is ta.ken again;
otherwise, step 2 is ta.ken.

step 2: If' there exists a subvalue referred to by the name of' a slice
C[1:3,i],i = 1,2, •• ,1000, which is not yet "marked" and which
is referred to by a component of' a "marked" subvalue, then
this subvalue ie "marked" and step 2 is ta.ken again;
otherwise, the marking of' C is complete.

3

Now the subvalues referred to by names of' slices C[1:3,j], j = 1,2, •• ,
1000,which are not "marked" will not anymore be relevant f'or computation
during the execution of' the program and therefore be considered and
henceforward be defined as the garbage of' C.

So to determine the garbage of' C, the computer must be able to
distinguish between those identifiers, to which formulas - names of'
internal objects of' c, i.e. values. of' certain function designators
like STORE,S,P and DER in the previous example - have been assigned,
we shall call them in the sequel "formula - identifiers", f'rom those
f'or which this is not the case.
In ALGOL 68 the modes of' those ide~tif'iers provide an indication of'
this. In our system we have to construct explicitly a list of' those
identifiers, to be consulted in case a call of' COLLECT GARBAGE, the
central garbage determining and free space providing procedure,
results in a garbage collection. Actually "list of' identifiers" is
confusing and erroneous, f'or what really matters is a list containing
the values assigned to those f'ormula-identif'iers, i.e. the names of'
to be saved internal objects of' c.
Moreover, one cannot handle lists of' ALGOL 60 declared identifiers
in an ALGOL 60 program.

Therefore we relax the link between f'ormula-identif'ier and assigned
formula, by assigning the f'ormula-identif'ier the name of' the place
in the list, where the formula has been stored. That is, realize the
ALGOL 68 name concept in an ALGOL 60 program., by assigning the
f'ormula-identif'ier the name, it would possess in ALGOL 68, and store
the value, the name would ref'er to in ALGOL 68, in that list which
is the function of' the integer procedure SAVE: a call SAVE(Fi results
in computing the value of its actual para.meter F, af'ter which the
obtained value is stored in a list at a place referred to by SAVE's
value.

An additional procedure is now neccessary to obtain the stored value,
a formula., f'rom a f'ormula-identif'ier. This is the function of'
integer procedure v.

4

In de sequel we shall use "refer to", as applied to· our ALGOL 60
program, for

(i) the relation that exists between a formula - as defined
above - and the object it specifies in array C and

(ii) the relation that exists between the value of a
formula,...identifier and the forrrru.la stored- as mentioned
above - at a place in the list of to-be-saved names
specified by this value.

Since we shall store this list in C itself, the two cases of "refer to"
will coincide.
Therefore a formula is a name referring to an object internal to C and
the value of a formula,...identifier is a name referring to a formula.
This terminology has been derived from [1 5] and is an interpretation
of situations,occurring in this kind of formula manipulation in
ALGOL 60, in ALGOL 68, as suggested by a remark of VAN WIJNGAARDEN'S.
This is the function of the integer procedure V.

Now suppose one is writing the integer procedure S for storing a sum.
After declaration of, followed by assigning formula's in the above
relaxed sense to, the integers i and J, one subsequently tests the
execution of expressions S(V(i),S(V(iJ~V(j))) and S(S(V(j),V(j)),
S(V(i),V(i))).
During execution of the latter arithmetical expression, after execution
of S(V(j) ,V(j)), one has to save the object stored from the garbage
collection(as garbage collection may occur during computation of
S(V(i) ,V(iJ).
This contrasts with the computation of the former expression, as
garbage collection occurring during computation of S(V(i),V(j)) does
not erase the internal object referred to by V(i), its name being
contained in the list of names of internal objects to be saved.
So names referring to internal objects of C have to be distinguished
according to their being possible garbage or not.
In ALGOL 68 no problem of this kind occurs, as the use of a global
generator in the identity declaration of the identifier provides for
this distinction.

As checking on occurrence in this list is too time-consuming a process,
we mark names of saved internal objects (by adding 100000, the value
of the, in the embracing block, declared integer saved, confusion not
arising as 100000 excels any possible upperbound of C).

The introduction of a name upon relaxation of the link between
formulai-identifier and formula has, amongst other things, as a
consequence that this name has to have a scope, which corresponds
with the smallest embracing block in whose heading that identifier
occurs, i.e.

(i) upon its declaration the link identifier - name has to be
constructed, in our case by the integer procedure DE, and

(ii) upon leaving the block, in whose heading that identifier
occurs, the name I1R1St cease to exist, i.e. the object of
which the name is the forIIRlla referred to by the value of
that identifier, needs not to be mrked when garbage
collection occurs.

The latter requirement is the reason to store this list in C itself,
and we add the space occupied by those names to the space available
for forIIRlla manipulation in C, the free space of c.

This is the task of the procedure ERASE. When called upon, it is the
last statement prior to leaving the relevant block and it functions

5

due to the principle last in - first out, rrade possible by the ALGOL 60
block structure. The number of saved names, counted by the integer gnn
(global nuniber of names), is assigned as first statement of the block
to a locally declared counter, fnn, and subsequently raised as new
names are created by calls of SAVE. It is a precise standard which names
have been added corresponding to declared identifiers. If, during
elaboration of a program, a block, in which new names might have been
introduced, is not left by elaborating its textually last statement
ERASE(fnn), due to elaboration of a goto statement, leading outside
this particular block, the explicitly defined successor has to be a
statement(which is or contains as first-to-be-elaborated statement
ERASE(snnJ, where integer snn (second number of names) has been
assigned exactly the number of names needed for further elaboration
of the program. Another consequence of the link between forI!Rlla-identifier
and forIIRlla is, that a special procedure, whose call replaces assignments
to forIIRlla-identifiers, has to be constructed, the integer procedure
ASSIGN. By rraking it a function designator one provides for the AtGoL 68
value of an assignation.

For a description of particular garbage collection methods in ALGOL 60,
for this kind of forIIRlla manipulation system, I refer to[13].
VAN DE RIEI' describes in this article two techniques: the relocation
method and the free list technique.
The relocation method has as a possible advantage the feature that each
saved object is relocated after garbage collection as a whole, that
means, slices C[1:3,i] of the array C used for storage of one particular
object have succeeding subscripts, so the usual referencing within the
array C, to different components of that object, may be avoided e.g., by
specifying the number of necessary slices.
The main feature of the free list technique is that after garbage
collection no relocation of the saved objects takes place. The garbage
has as structure a linked list called the free list (see below). The
argument for using the free list technique have been given in the
above mentioned paper.

6

I.2. 1. Modes and linking complexity.

The next ALGOL 68 declaration of mode formula clarifies our use of
"formula" as stated in I. 1.

union formula= (ref short integer, ref algebraic variable, ref triple,
ref multilinked structure, ref linked list);

struct short integer = (int value);
struct algebraic variable = (string name);
struct triple= (formula left operand, int operator~ formula

right operand);
struct linked list= (ref linked list list, int value); .
struct mul tilinked structure = (ref mul tilink'e'd structure mul tilinked

- list, formula coefficient);
int sum = 33, product = 34, rational function = 35, rational number = 36,
-- quotient= 37;

The described marking of non - garbage and making an object of mode
linked list of the garbage of C, is the task of the procedure COLLECT
GARBAGE.
After marking the list of names of objects (formulas) to - be - saved,
the garbage collector proceeds by marking those objects, guided by the
names those objects contain, which can be best demonstrated by the mode
declarations in the above ALGOL 68 declaration prelude. They reflect
exactly the linking complexity, i.e. the complexity of the manner in
which names are contained, of the realizations of objects of corresponding
modes in the array c.

begin integer free cell,last free cell,last name,max of C,algebraic variable,
sum,product,quotient,one,zero,ONE,ZERO,long integer,short integer,rational
funciion,rational number,polynomial,multilinked structure,auxiliary,saved,
gnn,fnn,snn,minone,MINONE,G ,Gmin1 ,di; real dii;
max of C:= read; G:= read; comment ourcnoice for G is 10 ~ 6;
begin integer array C1[1:max of C]; ~ array C2[1:max of C];

comment
As in the formula manipulation program specified in I.1.1., the mode
concept has been realized in the array C, by declaring integer
identifiers having the same names as the corresponding modes and
assigning them values, analogous to the above identity declaration,
by call of the procedure INITIALIZE - see next section.

Here follows a short discussion and classification,according to
linking complexity, of those realizations:

(i) short integer, algebraic variable.

None of the components of the subvalue is a name of other
subvalues.

7

Objects of these modes, respectively algebraic variables and
short integers, are comparable to algebraic variables and
integers whose absolute value is limited by the value of the
expression G - 1 •

(ii) sum, product, quotient, rational function, rational number.

Both of the components of the subvalue are names, if one
neglects the operator field component. The structure of the
object corresponds to a general binary tree.
Objects of this mode are comparable with the usual
interpretation given to sum, product, quotient, rational
number and rational function.

(iii) long integer.

Objects of this mode correspond to objects of mode
linked list, with end specified by C1[last element]= o.
Generally a linked list :rm.y be realized in C as follows,
integers first element and last element having been
declared and assigned values:

(a)

(b)

The value possessed by (C1[first element],C2[first element])
is its first subvalue, referred to (in our interpretation
of an ALGm.. 60 program in ALGill. 68 terminilogy) by the value
of integer first element.

If the value possessed by (C1[i],C2[i]) is a subvalue
of the linked list, its successor is referred to by the
value of C1[i], if C1[i] + last element.

(c) The value possessed by (c1[1ast element],c2[1ast element])
is its last subvalue.

(iv) polynomial, ·multilinked structure.

An object of the second mode, as realized inc, corresponds
to an object of mode multilinked structure.
An object of the first mode, as realized in C, corresponds
again to a multilinked structure, however, its first
coefficient field is of mode ref algebraic variable, and
is comparable to a polynomial'"Tn the variable specified
by its first coefficient field.
Both of these objects can be realized in C as objects of
mode linked list, with, for each of the elements of these
lists, the second component (the value of C2[i]) of the
subvalue possessed by (C1[i],C2[i]) being a fornru.la and
in case of a polynomial the second component of the
first subvalue of the list referring to an object

' of mode algebraic variable.

8

(v) In [12,section 2.9] and [15,11.11 f] another mode arises,
that of a function (possibly specified by C1[i]) with
argument (possibly referred to by the value of C2[i]).
It does not occur in our system.

While in this section the difference between polynomials and objects of
mode long integer or short integer has been st~essed, in [4] Cm.LINS
emphasizes their similarity, by considering an object of mode
long integer as a polynomial of degree zero, using the concept "list of
order n".

A list of order n may be defined recursively as:

(i) a list of order zero is an object of mode linked list,

(ii) a list of order n, n a national number, is an object of
mode multilinked structure, whose coefficient fields
refer to lists of order n - 1 •

The importance of this concept in his syst~m is, that only arithmetical
operations between lists of the same order can be performed by its
subroutines. --
Let the value of Q refer to an object of mode long integer and the
value of Prefer to a list of order n, n > O, e.g., a polynomial in
the variables x[1], ••• , x[n] (consult section 3.1.1. for explanation),
the value of each referring to an object of mode algebraic variable.
If in Cm.LINS' system addition of P to Q is required, one bas to
construct explicitly a list of order n, in our system referred to by
the value of (consult section 1.3)
STORE ARRAY(i,-1,0,polynomial,if i = -1 then x[n] else

STORE ARRAY(i,-1,0,polynomiar,TI' i = -rtrien x[n - 1] else - ••
• • • STORE ARRAY(i ,=r, 0, polynomial, -

if i = -1 then x[1] else Q) •••)),
corresponding to "(•• (Q x x[1] ~ o) x •• x x[n] ~ oY": -
We do not wish to introduce such versions of "the same number" in this
system. This point of view has been expounded in section 3.1.1.

In the sequel we shall use the words "linked list", "multilinked structure",
"polynomial", "short integer", "algebraic variable" for an object of mode
linked list, multilinked structure, multilinked structure with first
coefficient field of mode algebraic variable, short integer,
algebraic variable., respectively the words "sum", "product", "quotient",
"rational number" , "rational function" for an object of mode triple with
the value of the operator field equalling the value of integers sum,
product., quotient, rational number, rational function, respectively, and
the word "long integer" for a "linked list".

9

I.2.2. The free-list garbage collection technique.

The available space for storage of information is structured as a
linked list and realized in C, compare I.2.1. (iii), with its first
subvalue specified (referred to, in our interpretation) by the value
of integer free cell and its last subvalue by the value of integer
last free cell.
When for the execution of the program a new subvalue is needed

(i) free cell is mde to refer to this object after the value
of C1[free cell] has been saved in an auxiliary integer k,

(ii) if free cell= last free cell, the garbage collector comes into
operation and a new linked list is formed of the garbage of C,

(iii) if free cell• last free cell, the assignment free cell:= k
is performed.

Having now at our disposal the notion of :multilinked structure, we are
able to characterize the garbage of C more precisely. The list of names
of objects to - be - saved, the name - list, constitutes a linked list, if
those names are considered separate from the objects they refer to. If
the value of integer i refers to one of its subvalues, the value of C1[i]
is a name of a to - be - saved object and, if C2[i] ~ o, the value of
C2[i] is the name of a next subvalue of the list, with its last subvalue
referred to by the value of integer last name.
However the object name - list taken together with the objects its
contained names refer to, constitute a multilinked structure (this is
here a natter of interpretation, in ALGOL 68 it is forced by the mode
declaration).

Garbage of C is e:xactly the complement with respect to C of the space
occupied by this object.

integer procedure ERROR(b,s); boolean b; strings;
if' b then
oegin"'"'Plrnlcr; PR string(s); EXIT; ERROR:= 1 end;

procedure INITIALIZE;

. ,

begin Integer i; for i:= 1 step 1 until mx of C do C1[i]:= i + 1;
free cell:= 1; last free ce!!:= mx of C; Gmin1y.;; G - 1;
last name:= o; saved:= 100 ooo; gnn:= fnn:= o;
algebraic variable:= 1 + 0 x 16;
short integer:= 2 + 0 X 16;
sum:= 1 + 2 X 16; product:= 2 + 2 X 16; quotient:= 5 + 2 X 16;
rational function:= 3 + 2 X 16; rational number:= 4 + 2 X 16;
polynomial:= 1 + 3X 16; :multilinked structure:= 2 + 3 X 16;
long integer:= 1 + 4 x 16;

10

DE(one,STDRE(O,short integer,1),DE(zero,STORE(O,short integer,o),
DE(minone,STDRE(O,short integer,-1),o)));
ONE:= V(one); ZERO:= V(zero); MINONE:= V(minone); snn:= gnn;

end INITIALIZE;

integer procedure TYPE(F,A,B); value F; integer F,A; real B;
begin ERROR(F < 0 V F = 100000 ,:f.F' not appropriate in ~);

if F > saved-then F:= F - saved; B:= C1[F];
A:= B-: 128; TYPE:= B - AX 128; B:= C2[F]

end TYPE;;

comment

We specify the above mentioned modes by declaring (in I.2.1)
identifiers carrying the names of those modes and assigning
them values in INITIALIZE. As a result, when writing one 's own
particular program, using the library prelude developed in this
paper, its first statement has to be a call of INITIALIZE.

In I. 1. we quoted from [13] a program for formula mnipulation
in its simplest form. In that program execution of the
assignment f:= STORE(lhs,type,rhs) creates an object in the
array C, corresponding to the sum or product, according
to the value of type, of objects representing subformulas
referred to by lhs and rhs.
This object is the contents of slice C[f,1:3].
As the length of a computer word affords us to store integers
much larger than any possible bound of an array, for efficient
use of the available memory we store not the multiple value
(lhs, type, rhs) but (lhs x 128 + type, rhs), so affording
128 possible modes of objects by coding. This explains our use
of a disguished two dimensional array C1, C2[1:max of C] and the
decoding by TYPE(F ,A,B), which results in TYPE being assigned
the mode of F, A:= lhs and B:= rhs.

Structure enquiries to modes are performed in keeping with
the above classification according to linking complexity by

Boolean procedure MONADIC OP(t); value t; integer t;
MJN'ADtc DP:= t : 16 = 1;

Boolean procedure DYADIC OP(t); value t; integer t;
DYADIC DP:= t: 16 = 2;

. ,

Boolean procedure MJLTILINKED STRUOI'URE(t); value t; integer t;
mtTILINKED STRUCTURE:= t : 16 = 3;

Boolean procedure LINKED LIST(t); value t; integer t;
LINKED LIST:= t : 16 = 4;

11

comment

They function Dl3.inly in COLLECT GARBAGE and the boolean procedure EQ,
which establishes equality of two objects, referred to by the value
of X and Y, in respects specified by the algorithm described
by its body.

;

boolean procedure EQ(X(Y); value X,Y; integer X,Y;
1f X = Y V abs(X - YJ = saved then EQ:= true else
oegin integer tX,tY~XA,YA; rearxB,YB; - -

tx:= TYPE(X,XA,XBJ; tY:= ~(Y ,YA, YB);
if tX = tY A (tX = short integer V tx = algebraic variable V
- 'MONADIC OP(tX) V DYADIC OP(tx)) then
EQ:= if tX = short integer V tx = algebraic'variable then

- XB=YBelse -
if MJNADIC OP(tx)'"7\'"'b = YB then EQ(XA,YA) else
'EQ(XA,YA) A EQ(XB,YB) -- -
else
1TtX = tY A (MULTILINKED STRUCTURE(tX) V LINKED LIST(tX)) then
oegin if (if MULTILINKED STRUCTURE(tX) then EQ(XB,YB) else -

XB = -ys)then
L: begin if"Xi.r= 0 =YA= 0 then

beginif XA = 0-A YA= O""tnen begin EQ:= true; goto OUT end
else - - - - -
lf"1"if MULTILINKED STRUCTURE(tX) then EQ(C2[XA],C2[YA])
- - else C2[XA] = c2[YA]) then
begin XA:= C1 [XA]; YA:= C1 [YA]; goto"L end -

end - -
endTIQ:= false;

ouT:
end
else EQ:= false

enar-

comment

Adding a name to the :multilinked structure of non garbage objects
of C1, C2 is performed by:

;

integer procedure SAVE(F); value F; integer F;

begin comment
SAVE(F) saves F from garbage collection by adding a cell, whose
name is the value assigned to SAVE, to the name list. The procedure
body 6f DE contains the statement SAVE(F) for creating a cell of
the name-list, the name of which is assigned to a formula-identifier
as an extension of the ordinary declaration. This cell Jll3.Y be used
for storing future formulas by means of caJ.ls of ASSIGN.

12

The value of' gnn, the number of' declared names, is needed for
realizing in the name - list the scope of' corresponding formula -
identifiers;

integer k;
ERROR(F < 0 VF= 100000,1'. F not appropriate in SAVE});
if F ~ saved ~ F:= F - saved; gnn:= gnn + 1;

k:= C1[f'ree cell]; C1[f'ree cell]:= F; C2[f'ree cell]:= last name;
SAVE:= last name:= free cell;

comment a name has been added to the name - list, so the
question whether there is still space lef't in C arises;

COLLECT GARBAGE(O,auxiliary,k)
end SAVE;

comment
As a complement to SAVE, shrinking the name - list, functions the
procedure ERASE:

procedure ERASE(n); value n; integer n;
for n:= n while n < gnn do
oegin join to free spacettast name); gnn:= gnn - 1;

last name:= C2[last name];
ERROR(gnn < snn,1'.ERASE not appropriat~)

end ERASE;

procedure join to f'ree space(k); value k; integer k;
begin C1[1ast f'ree cell]:= k; last free cell:= k end;

comment

;

F'or use in arithmetical expressions defining the value of' a
function designator, as ins, P and Q, the next two procedures
proved to be convenient:

integer procedure RS(n,F); integer n,F;
begin ERAsE(n); RS:= F ~;

integer procedure SR(n,F); integer n,F;
begin SR:= F; ERASE(n) end;

comment

;

Formula,...identif'iers are now initialized, after declaration of' integers
f'1,f2, •• ,f'n, by DE(f1,F1,DE(f'2,F2, •• ,DE(f'n,Fn,O) ••)), which call
results in adding new objects, referred to by the values of' f'l, •• ,f'n,
to the linked name-list such that C1 [f1] = Fi.

If Fi+ O, the value
of Fi refers to an object to be mrked during garbage collection,
otherwise in stead of assigning a name of a subvalue of C to C1[fi]
the lowerbound of C is 1 - C1[fi]:= 0 is elaborated.
The declaration of integer f together with the call DE(f,O,O)
my be compared with the ALGOL 68 identity declaration
ref formula f = heap formula. - --
If we try to interpret MAILLOUX's suggestion - see [9] - for the
implementation of heap generators versus local generators, the
stack would consist only of the name - list, while the rest of C
would occupy the heap.

Merely for reasons of syntactic checking, we assign the negative
values of the integers corresponding with names.

integer procedure DE{f,F,next); integer f,F,next;
begin f:= - SAVE(F); DE:= next end;

comment

Assignment to formula - identifier is performed by

;

;

13

integer procedure ASSIGN(f,F); value f,F; integer f,F;
begin ERROR(f < - Ill3.X of c V f 5 o
~ not appropriate in ASS:ITIN:}); if F > saved then F:= F - saved;

ASSIGN:= F + saved; C1[-f]:= F - -
end ASSIGN;

comment

To obtain a formula from the value of a formula,-identifier that
refers to it we use . ,
integer procedure V(f); value f; integer f;
V:= if f . .::: 0 then ERROR(true,~ ~ 0 in Vi,) else C1 [-:f] + saved;

comment

Conditional saving without corresponding formul&-identifier
is performed by

integer procedure EV(A); value A; integer A;

. ,

if A < saved then begin SAVE(A); EV:= A + saved end~ EV:= A;

comment

The procedure TRACE marks each subvalue of the object referred to by
the value of Fin a mum.er that reflects our particular way of constructing
objects in C, as discussed in I.3 •• This is such that C1(F] > o,
C1[F] = O only occurring if F refers to a subvalue of the name - list
originating from a call DE(f,O,O), the value of C1[F] being positive
in all other cases.
Thus the condition is fulfilled for the assignement C1[F]:= ...C1[F] - 1
to mark the subvalue referred to by the value of F. (Labels of sentences
below correspond to labels in COLLECT GARB.AGE).

1 :

2:

The condition F ,4 0 reflects the lower bound of C being 1 •

The condition C1[f] > 0 reflects the need to mark only
ummrked slices.

3: This block reflects exactly our discussion of a partitioning
of the set of modes in classes of linking complexity.

4: Garbage collection is necessary if free cell= last free
cell, else there is no objection left to the assignment of
a free cell:= fc.

5: This statement, auxiliary to the integer procedure STORE,
is explained in the discussion of STORE, see I.3 ••

6: This for - statement marks the multilinked structure which
consists of name - list plus referred to objects.

7: Garbage has been determined and transformed into a linked
list while undoing the marking of non garbage.

8: As the garbage of C is empty the call for garbage collection
has been of no avail.

I.3 •. Representation of formulas in c1,c2.

In r.2.1. we classified the modes used in terms of linking complexity.
Tracing objects, names in other objects refer to, we e~d up, as
circular reference does not occur in this system, in objects containing
no names anymore. These are algebraic variables, short integers and,
in a certain sense, long integers, taking into account that use of a
relocation method of garbage collection would have resulted in an
object containing no names (see page 5), although the free - list
technique requires a linked list for storing a long integer.

Every object internal to Cl and C2 originates directly or indirectly
from a call of integer procedure STORE:

integer procedure ES(A1,A); integer A1,A;
begin A1:= A; ff A1 < saved then begin SAVE(A1); A1:= A1 + saved

end ES;

comment

- -- end; ES:= A1

To obtain the ALGOL 68 feature of value of a closed clause whose
constituents are assignations to formula identifiers, for the sake
of convenience the next procedure, besides ASSIGN and DE, is used.
It functions IrRinly in □PER ON NUM and □PER ON RAT, the central
arithmetic performing procedures.

;

integer procedure Multiple ES(A1,A,B); integer A1,A,B;
begin A1 := A; if A1 < saved then begin sAVE(A1); A1 := A1 + saved end;

Mil.tiple Es:-;;--:s -
end;

procedure COLLECT G.ARBAGE(n,aux,fc); value n; integer n,fc,aux;
begin integer i,a;

procedure 'l'RACE(F); value F; integer F;
1: if F > 0 then
2: oegin if U'fTil'] > 0 then
3: begininteger-t,A; real B; t:= TYPE(F,A,B);

ff MONADIC DP(t) t.nen TRACE(A) else
TI' DYADIC OP (t) tnerioegin TRACEt'iTT; TRACE (B) end else
Il MULTILINKED S~) V LINKED LIST(t) tlien -­
oegin if MULTILINKED STRUCTURE(t) then TRACE(°lTT;for A:=

- ---:it while A =I= O<io
begin if MULTILINKED STRUCTURE(t) then TRACE(C2[ATT; a:= A;

A:= lIT"[A]; C1[a]:= - C1[a] - 1 -
end end; C1 [F] := - C1 [F] - 1

end end TRACE;
4: F"'"free cell+ last free cell then free cell:= fc else

6:

oegin free cell:= O;
TRACE(aux);
i:= last name;
for i:= i while i + 0 do
'Eegin TRACE(Cl[i]); C1TI]:= - C1[i] - 1; i:= C2[i] end;
for i:= 1 step 1 until IrRX of C do
TI"""C1[i] >othen -
oegin if 1ree<!e!l = 0 then free cell:= last free cell:= i else

jointo free space(i)-
end else C1[i]:= - C1[i] - 1;

8: Elfflt:IR(free cell = 0 ,l:no space left;:f.);
end end COLLECT GARBAGE; --

16

integer procedure STORE(A,t,B); value A,t,B; integer A,t; real B;
begin integer k;

if MJNADIC OP(t) /\A> saved then A:= A - saved else
TI DYADIC OP(t) then - -- -­
oegin if A> saved then A:= A - saved;

if lf5 saved then B:= B - saved
encl;

comment

The preceding conditional statement cancels the rm.rking of
saved formulas as mentioned in I.1. page 2 before they are
stored in C;

STORE:= free cell; k:= C1[free cell];
C1[free cell]:= AX 128 + t; C2[free cell]:= B;
auxiliary:= free cell; "'

comment

The subvalue referred to by the value of free cell is now an
object of mode specified by the value oft. As the value of free
cell has not been added to the name - list, garbage collection
might destroy the subvalue it refers to.
Execution of the statement labelled by 5 in the procedure
body of COLLECT GARBAGE prevents this;

COLLECT GARBAGE(1,auxiliary,k)
end sr□RE;

integer procedure AV(l,r); value l,r; integer l,r;
AV:= STORE(l.,aJ.gebraic variable,r);

integer procedure S INT(i); value i; integer i;
S INT:= if i < G then STORE(O,short integer,i) else
ERROR(true ,~i ,:::: GinS INT.});

comment

Linked lists and multilinked structures are stored by STORE ARRAY •

integer procedure STORE .ARRAY(i,low,up,type,Ai); ·
value low, up, type; integer low, up, type, i ,Ai;
begin integer p,fnn; boolean linked list; real q;

real procedure AI; -
iT"Iink:ed list /\(i < up) therr

.
:,

oegin real m; m:= Ai; i:=1+ 1; AI:= G x Ai + m end
coniiiien't"tlie value of G is such that G X G - 1 fits'"In one word
etse AI:= Ai;

17

ERROR(low>up,1'.]..ow'>up in STORE ARRAY}); linked list:= LINKED LIST(type);
fnn:= gnn; i:= low; q:= AI;
if 7 linked list A q ::: saved then q:= q - saved;

L: STORE ARRAY:= p:= STORE(O,type,q); SAVE(p);
low:= low+ (if linked list then 2 else 1);
for i:= low step 1 until up~ -
'6egin Cl [p] :-.;;;-nr i = low thenfree cell X 128 + type else free cell;

p:= free celI; q:= C1[pT;7!1[p]:= o; c2[p]:= o;
COLLECT GARBAGE(O,auxiliary,q); q:= AI;
if 7 linked list A q > saved then q:= q - saved; C2[p]:= q

ena; ERASE(fnn) - -
end §l'ORE ARRAY;

comment

The operation of STORE ARRAY splits up in two:
the object to be constructed is (i) a polynomial or (ii) a long integer.

(i) The value of AI equals the value of Ai.

(ii)

At L the first coefficient Ai for i = low is stored and saved,
by creating a head of the required mode, that is saved
dynamically. If garbage 9ollection occurs during conetruction
of the object, TRACE{C2[p]) createe n0 difficultiee on account
of the condition in the conditional etatement labelled by 1 in
the procedure TRACE, declared in COLLECT GARBAGE.
Moreover the partially constructed object ie saved by SAVE{p),
the etatement following the etatement labelled by L.

In principle a long integer ie a linked liet with
namee specified by C1(i] and values etored in c2[i],
if the value of i refers to one of ite subvaluee, and
I C2[i] I < G. As G i 2 - 1 fite in one computer word
(see REMARK preceding the declaration of the multiplication
procedure MULT in 2.1.1.) we may encode two of euch valuee
in one word. This motivatee the use of AI. Garbage collection
occurring during conetruction ie commented upon in (i) • . ,

integer procedure LONG INT(i,length,Ii); value length;
integer i,length,Ii;
begin boolean b; b:= true; i:= length+ 1;

for :i.:= i - 1 while1> 1 A. b do if Ii = 0 then length: 11111

length - 1 else b:= faiee; i:=7";- -
LONG INT:= "!r!ength > 1 then. STORE ARRAY(i,1,length,long integer,Ii)
elee - -
TI'"Tength = 1 then S INT(Ii) elee ZERO

ena1.DNG INT;

18

boolean procedure int(X); value X; integer X;
begin integer t; t:= TYPE(X,di,dii);

int:= t = short integer Vt= long integer
end;

integer procedure POL(i,degree,X,Ci); value degree,X;
integer i,degree,X,Ci;
begin boolean b; b:= true; i:= degree+ 1;

for i:= i - 1 while--r5 0 /\ b do
FEQ(Ci,ZERD) then degree:= degree - 1 else b:= false; i:• o;
ML:= if degree~/\ int(Ci) then Ci el~
STORE A°RRAY(i,-1,degree,polynomial,if "f""=:-1 then X else Ci)

end POL; -

comment

For one by one storing arbitrary formulas, e.g., referring to
objects not having the same hierarchy of variables(see III.1.1),

(i) the formula F, that has been constructed first, is stored
and saved by elaborating ES(L,STORE ARRAY.(i,O,O,multilinked
structure,F)) and,

(ii) after formula G has been constructed, it is stored and
saved by elaborating ADD TD(L,G).

procedure ADD TD(L,E); value L,E; integer L,E;
begin integer A,q; tp(53);

ERRDR(l MULTILINKED STRUCTURE(TYPE(L,A,dii)),
.f:type of L not appropriate in Add toi);

;

if L > saved then L:= L - saved; if E > saved then E:= E - saved;
if A =I= 0 then-
Tor q:= cTIAT while q :/= 0 do A:= q;
q:= C1[free ce11T; Cl[freecell]:= O; C2[free cell]:= E;
if A= 0 then C1[L]:= 128 X free cell+ C1[L]
eise C1[A]:= free cell;
"C'L!Il:ECT GARBAGE(O,auxiliary,q)

end;

comment

I.4. Retrieval of and enquiries concerning objects stored inc.

Let the value of F be a formula and (C1 [F] ,c2[F]) be a subvalue of the
object referred to by the value of F. (C1(F] : 128,c1[F] - C1[F] : 128,
C2[F]) is retrieved by a call TYPE(F,A,B) and-rrypE obtains the numerical
value C1[F] - C1[F] : 128 of the mode of that object in the sense
specified on page(- 6) .,

19

In case the mode of that object, referred to by the value of F, is known,
we may differentiate, for partial retrieval of the object, with regard
to its class of linking complexity, see I.2.1., as follows:

(i) a short integer is partially retr.ieved by integer procedure
VAL OF S INT.
If F = S INT(a), VAL OF S INT(F) = a.

integer procedure VAL OF S INT(a); value a; integer a;
v.At OF s INT:= C2[if a> saved then a-saved else a];

comment

. ,

(i) and (ii) a short integer, algebraic variable, sum, product,
quotient, rational number or rational function is
retrieved by 'I'YPE(F,A,B), as specified.

(iii) and (iv) a long integer or polynomial is partially retrieved
by integer procedure GEr ARRAY if one needs the
values of all value and coefficient fields (see
I.2.1.). If one needs the value of one value or
coefficient field specified by the value of s
(see below) a-call of integer procedure ELE:MENT(s,F)
results in the concerned value being assigned to
ELEMENT.

procedure GEr ARRAY(F,i,low,up,Ai); value F,low,up;
integer F,i,low,up,Ai;
begin integer t,A; real B; boolean linked list;

procedure AI(p); vaiue p; real p;
if linked list/\ i < up th~

;

begin real m; m:= entierTaos'(p)/G) x sign(p); Ai:= p - m x G;
i:= T+1; Ai:= m

end
else Ai:= p;
t:= TYPE(F,A,B); i:= low;
linked list:= LINKED LIST(t); AI(B);
for i:= i + 1 step 1 until up do
FA> 0 then l>egin AI(C2[A]);A:= C1[A] end else
AI:= if ~INKED STRUCTURE(t) then ZERTrelse'l'.5

end GEr'"""A:RRAY; - -

integer procedure E:LEMENT(s,X); value s,X; integer s,X;
begin integer type,t,A; real B; boo!ean linked list;

type:= TYPE(X,A,B); li'ilKeci list:= LINKED LIST(type);
t:= if linked list then 4 else 2;
ifs> t /\ type =f: sJior=t integer then

20

begin fort:= t + 1 while t < s /\A+ 0,do
beginif linked list then t:= t + 1; A-r;i C1 [A] end

end; - -
~:= if linked list then

"'("If s = 1 then ~entier(abs(B)/G) x sign(B) x G else
iTs = 2 then entier(abs(B)/G) x sign(B) else
TI' A+ 0 tnen (if 7 even(s) then . -
~[A] - entier(aos(C2[A])/G)'""xsign(C2[A]) X G
else entier(abs(C2[A])/G) x sign(C2[A])) else o)
eise -
n's = 1 then B else
TI' MULTil.!ffl'D ~(type) then (if A if: 0
then C2[A] else ZERO) else O - -

end ELEMENT;- - --

comment

Two complications arise:

(a) The encoding of each two succesive value fields of a
long integer in one integer in STORE ARRAY has to be
cancelled by a corresponding decoding in Gm ARRAY,
ELEMENT and integer proc~dure length (see below).

(b) Efficient arithmetic requires.the number of array
elements, specified by up - low, up and low being
parameters, only to be sufficient and not to be equal
to the number of to be assigned values"c5? value or
coefficient fields of linked list or mul.tilinked
structures.
So in case of a long integer we nay supply extra null 1s
and in case of a polynomial (in general :multilinked
structure) extra ZERO's as values, as, in contradistinction
to truncated power series, a polynomial of degree n > 0
with ZERO as n - th coefficient equals the polynomial of
degree n - 1 obtained by deleting its highest coefficient.

The number of array elements necessary and sufficient for retrieving
fields of an object referred to by,F, specified by n,

in case of a polynomial, by
counting the variable first, the coefficients as succeeding elements
in order of corresponding and increasing degree, as results from
POL, see I.3.,

in,case of a long integer, by
up - low, up and low being parameters of STORE ARRAY, when it
is called in the procedure body of LONG INT,

is the numerical value of integer procedure length(F)
upon call.

integer procedure length(F); value F; integer F;
begin integer t,A,l; boolean linked list; real B;

t:= TYPE(F,A,B); linked list:= LINKED LI'ST'(t);
if linked list V MULTil.INKED STRUCTURE{t) then
oegin 1:= if linked list then 2 else 1; -

21

t'or A:= Awhile A :f= O d~ -­
'begin B:= c1[A];

1:= 1 + (_!! linked list A (B :f= O V abs(c2[A]) ~ G) ~ 2 ~ 1);
A:= B

end; length:= 1
enO:-

else if t = short integer then length:= 1
else 'ER'ROR (true ,i:type not appropriate in length::J,);
end length;--

. comment

integer procedute LC determines the sign of the highest
coefficient ot' a polynomial recursively. ISIGN is specified
in 2.1.

integer procedure LC(A); value A; -integer A;
LC:= it' int(A) then ISIGN(A) ~ tc(ELEMENT(length(A) ,A));

;

22

comment

II. The number system.

II.1. Long integer and short integer arithmetic.

II.1.1. A brief description of the basic integer procedures.

Let the values of X and Y both refer to a long integer or short integer.
IABS and ISIGN are counterparts of the ALGOL 60 standard function
designators abs and sign, see [10, page 17].
The value of INVERT(X) refers to an object corresponding with the value
referred to by X, with sign inverted.
The value of SIGNDIF(X,Y), a procedure auxiliary to IQR, determines the
sign of the difference of the values referred to by X and Y.
The values of IPROD(X,Y) and ISUM(X,Y) refer respectively to the long
or short integer., that is an object corresponding with the product or
sum of the values referred to by their arguments X and Y.
The value of IDIF(X.,Y) refers to an object corresponding with the
difference of the values referred to by its arguments.
The value of IQR(X,Y,R) refers to the long or short integer that is an
object corresponding with the integral quotient of the values referred
to by X and Y with remainder referred to by R, leaving the case length(Y)
= 1 to IQRS(X,Y,R). -
The value of IGCD(X,Y) refers to the long or short integer., that is an
object corresponding with the greatest' common divisor of the values
referred to by the values of its arguments, leaving the case length(X) = 1
or length(Y) = 1 to IGCDS(X,Y).

Sign - convention.

The values of all value fields of a long integer have the same sign. .

II.1.2. Declarations and explanations of the basic procedures.

integer procedure IABS(I); value I; integer I;
f.ABs:= if ISIGN(I) < o ~ INVERl'(I) else I;

integer procedure ISIGN(I); value I; integer I;
!SIGN:= sign(ELEMENT(length(t),1));

integer procedure lNVERT(I); value I; integer I;
begin integer 1,1; 1:= length(!);

begin integer array B[1:1];
GEI' .AiffiAY(!,1,1,t,B[i]);
for i:= 1 step 1 until 1 do B[i]:=B[i];
iNVERT : = Ill'mT"INT (1 , l , B[i'TT

end end; --

integer procedure SIGNDIF(I,J); integer I,J;
begin integer fnn,I1,J1,li,lj;

fnn:= gnn;
li:= length(ES(I1,I)); lj:= length(ES(J1,J)); if li > lj then lj:= li;

AA: li:= sign(ELEMENT(lj,I1) - ELEMENT(lj,J1));
if li = 0 A lj > 1 then begin lj := lj - 1; goto AA end;
'SIGNDIF:= SR(fnn,lir- - -

end SIGNDIF;

integer procedure ISUM(I,J); integer I,J;
begin intege~ frin,I1,J1,li,lj,k,i;

f'nn:= gnn;
li:= length(ES(I1,I)); lj:= length(ES(J1,J));
k:= if li > lj then li + 1 else lj + 1;
begininteger a'rray B,C[1 :kr;-

GEr ARRAY{I1,i,1,k,B[i]);
GET ARRAY(J1,i,1,k,C[i]);
ADD(B,C,k); ISUM:= SR(fnn,LONG INT(i,k,B(i]))

end
enar-

comment

Adding algorithm.

We describe a simple form of this algorithm, namely for the addition of
two nonnegative integers.
Let the contents of integer arrays B ,c[1 :k - 1] be the value fields of

23

the long or short integers referred to by the values of X and Y (depending
on whether k ... 1 > 1 or k - 1 = 1) •
After termination of this algorithm the values of the value fields of
the long or short integer, which represents their sum, will be specified
by the contents of B.
B[k] = 0 A C[k] = o, j and carry are integers.

i:
ii:

iii:

j:= 1 and carry:= o,
B[j]:= (B[j] + C[j] + carq) mod G and
carry:= entier((B[j] + C[jJ + carry)/G) (At each stroke of the
addition holds abs(carry) < 1.
This follows inductively from
carry= O for j = 0 and abs(B[j] + C[j] + carry) < abs(2G - 2) +
abs(carry))), ·
j:= j + 1, if j < k goto ii otherwise B[k]:= cArry and terminate.

ADD is a slightly improved version of an adding procedure due to
KRUSEMAN - ARETZ, for the addition of long and short integers, irrespective
of their sign.

; I

24

procedure ADD(B,C,k); value k; integer k; integer array B,C;
begin integers t,w,carry;
M: for w:= B(kf + C[k] while w = O A k > 1 ~ begin B[k]:= o;

k: = k - 1 ; goto AA ~;

comment

The value of w determines the sign of the sum as follows:
The contents of arrays B and C repreBent respectively the value fields~­
of the long or short integers corresponding to I = B[1] x G ~ O + • • • +
B(k] X G ~ (k - 1) and J = C[1] X G ~ 0 + ••• + C[k] X G ~ (k - 1).
After execution of the preceding for statement the following equalities
hold: I = B[1] X G ~ 0 + ••• + B[kO] X G ~ (kO ... 1) + Rest I and J =
C[1] X G ~ 0 + ••• + C[kO] X G ~ (kO + 1) + Rest J
where Rest I+ Rest J = O, so I+ J = (B[l] + C[1]) X G ~ 0 + ••• +
(B[kO] + C[kO]) X G ~ (kO + 1).
As w = B[kO] + C[kO], sign(!+ J) = sign w, due to,

if I and J have the same signs, the sign - convention.,
if I and J have oppo"ffi'e signs, the condition

abs((B[1] + C[1]) X G ;f. 0 + ••• + (B[kO - 1] + C[kO - 1]) X G ~ (kO - 2)) <
(G - 1) X G ~ 0 + ,. •• + (G - 1) X G ~ (kO - 2) = G ~ (kO - 1) - 1 <
G ~ (kO - 1).,

One needs the value of sign(I + J) in-order that the value fields of the
sum, delivered in B, fulfill the sign - convention.

;

s:= sign(w); carry:= o;
for t:= 1 B[i! 1 until k do
oegin w:= + c[t] + carry;

ifs X w < 0 then begin B[t]:= w + s X G; carry:= ---send
e!'se if abs(wT>G then begin B[t] := w - s x G; -carry==-s end
else oegin B[t]T= wTcarry:= O end -

ena;lf carry:j: 0 then B[k + 1] : = ca"'rry
enc!; - -

integer procedure IDIF(I,J); integer I,J;
begin integer fnn,I1 J1,li,lj,k,i;

fnn:= gnn; ES(I1,I); ES(J1,J); li:= length(I1); lj:= length(J1);
k:= if li > lj then li + 1 else lj + 1;
begininteger a"rray B,C[1:kl;

GE!' ARRAY(I1 1 i,1,k,B[i]); GEr ARRAY(J1(i~1,k,C[i]);
for i:= 1 step 1 until k do C[i] := - C iJ;
Alffl(B,C,k);JI5IF:= SR(fnn--;Y,:'ONG INT(i,k,B[i]))

end
ena;'""

integer procedure IPROD(I,J); integer I,J;
begin integer fnn,I1,J1,li,lj,l,i;

fnn:= gnn; li:= length(ES(I1,I)); lj:= length(ES(J1,J));
1:= li + lj;
begin integer array B[1:li],C[1:lj],D[1:1];

GEI' ARRA.Y(I1,i,1,li,B[i]); GE!' .ARRAY(J1,i,1,lj,C[i]);
MULT(B,li,C,lj,D,1); IPROD:= SR(fnn,LONG INT(i,1,D[i]))

end
ena!PROD;

comment

Multiplication algorithm.

25

We describe a simple version of such an algorithm, for the multiplication
of nonnegative integers:

Let the contents of integer arrays I[1 : ki] and J[1 : kj] be the values
of the value fields of two long or short integers.
Upon termination of this algorithm their product will be represented by
the contents of B[1 : kb], kb= ki + kj.
Let i,j,carry and u be integers.

i: Assign zero to each array element of B and j := 1,
ii: i:= 1 and carry:= O
iii: u:= I[i] x J[j] + B[i + j - 1] +-carry, thereafter

B[i + j - 1] := u mod G and carry:= entier(u/G),
iv: i:= i + 1, if i < ki goto iii else B[i + j]:= carry,
v: j:= j + 1, if j ~ kj goto ii else terminate.

M.JLT is a slight improvement of a multiplication procedure for long or
short integers, irrespective of their sign, due to KRUSEMAN-ARETZ.

REMARK:
Note that abs(u) < G ,,f,. 2 and abs(k) < G. This nay be proved by induction
from abs(I[i] X J[j] + B[i + j - 1] + carry) < (G - 1) X G - 1 + G - 1 +
G - 1 < G ,,f,. 2. -:- .

Consequently the size of Gin our system has been restricted, as
G l. 2 -1 must f'ft in one computer word.

Due to the special properties of the arithmetic implemented on the
EL XS computer used at the Mathematical Centre, it is more
efficient on this computer to perform the above multi-il.ength arithmetic
by procedures in which reals in stead of integers, in order to perform
the arithmetic proper, have been declared.

procedure MULT(I,ki,J,kj,B,kb); value ki,kj,kb;
integer ki,kj,kb; integer array I,J,B;

;

26

begin integer ti,tj,tij,carry,Jtj; real u;
:for u:= 1 step 1 until ki do B[u]:= O;
:for tj := 1step 1 until kjao
'oe'gin carry:= O; JtJ:= J[tjT; f'or ti:= 1 step 1 until ki do

begin tij: = ti + tj - 1 ; u: = --:'.l'tj x I[tiT+B[tij] + carry;
carry:= entier(abs(u)/G) x sign(u); B[tij]:= u - carry x G

end; B[tj + ki]:= carry
ena

ena:r-

comment

Division algorithm.

To divide a :positive (n + m) - place integer X by a :positive n - place
integer Y, we use a generalization f'or arbitrary radix-G of' the common
pencil and paper radix - 1 0 di vision. This boils down to the repeated
integral division of' a (n + 1) - place integer u by an n place integer v,
given O < u/v < G, in other words to the computation of' entier(u/v).
If' we ma.Ke sure that v[n] > G{2, the digits modulo G of' u being
represented by u[n + 1], •• :,u 1] and of' v by v[n], ••• ,v[1] (this is
realized by nru.ltiplying X and Y by the normalization f'actor
entier((G/2)/Y[n])), the theorems, proven belowj state that f'or

Q = min(enter((u[n + 1] X G -1: u[n])/v[n) ,G 1)
holds Q > entier(u/v) > Q - 2.
By checking the conditions

u[n + 1] X G i 2 + u[n] x G + u[n - 1] > Q x { v[n] x G + v[n - 1])
andu-QXv>O -

the exact value of' entier{u/v) can be calculated.

Theorem IQR1. Q ~ q = entier(u/v).

Proof': This holds f'or Q = G - 1 as O< u/v < G, so assume Q < G - 1, then
Q X v[n] > u[n + 1] X G + u[n] - v[nT + 1 f'romQ 9s definition.

u - Q x v < u - Q X v[nl X G ,i\ (n 1) < u[n + 1] x G 4\ n + •• + u[1]
- (u[n + 1T X G + u[n] - v[n] + 1) X G ~ (n 1) = u[n - 1] X G ,i\ (n - 2)
+ •• + u[1] -G ,i\ (n - 1) + v[n] G ,i\ (n - 1) < v[n] x G ,i\ (n - 1) < v,.
So u Q X V < V => Q ~ q, QED. -

Theorem IQR2. v[n] > entier{G/2) => q > Q - 2.
Proof': Assume Q > q-+ 3 => Q < (uLn + T] x G ,i\ n + u[n] x G ,i\ (n 1))/
v[n] x G ,i\ (n - T) < u/(v[n] x G ,i\ {n - 1)) < u/(v - G ,i\ (n 1)) (if'
v = G ,i\ (n - 1) then 9, = Q) =>
3 < X - q < u/(v G ,1\ (n - 1)) - (u/v) + 1 = (u/v) (G ,i\ (n - 1)/
{ v-_ G ,i\ (n - 1)) + 1 => u/v > 2 (v[n] - 1) => G - 4 > Q 3 > q =
entier(u/v) ,::: 2(v[n] - 1) and v[n] < entier (G/2), - 'QED.

REMARK:
Analogous to the proof of theorem IQRl, given respectively u[n + 1] x
G i 2 + u[n] x G + u[n - 1] <, > Q X (v[n] X G + v[n - 1]), in
[7 , page 51 0, answers to-exercises 1 9 and 20] it is proven
that respectively q = entier(u/v) ~ - 1, q = Q or q = Q - 1.

27

FinaJ.ly, returning to the (n + m) - place by n - place divisiont observe
u/v < G <==> entier(u/G) < v <===> u[2] X G i O + •• + u[n + 1 J x G i [n-1]
< v[1] x G i O + •• + v[n] X G i [n - 1]. ,
Thus each time the condition for repeated (n + 1) -'place by n - place
division has been satisfied, as u - q v < v, and at the preliminary steps
of the algorithm the following nornal.ization takes place:
If Xis represented by its digits modulo G, X[n + m], ••• ,X[1], and Y by
Y[n], ••• ,Y[1], set X equal to the integer represented by X[n + m + 1],
••• ,X[1] with X[n + m + 1] = o.
As the previously given value of the nornal.±zation factor is less or
equal to G/2, the top (n + m + 1) - th - digit of the product of
norrralization factor and Xis smaller than G/2 and positive and the
top n - th - digit of the product of nornalization factor and Y is
greater than or equal to G/2.

;

integer procedure IQR(X1,Y1,R); integer X1,Y1,R;
begin integer x,Y,lX,lY,lQ,fnn; fnn:= gnn;

iX:= length(ES(X,X1)) + 1; lY:= length(ES(Y,Y1)); lQ:= lX - lY;
if EQ(X,ZERO) V EQ(Y,ZERO) V lX < lY then
oegin comment IQR:= ZERO if X1 or Y1 equals ZERO or length(Xl) < length(Y1)

else IQR:= IQRS(X1,Y1,~),£if length(Y1) = 1, else goto Next comment
~ ;

IQR:= ZERO; R:= X - saved; if EQ(Y,ZERO) then
begin PR nlcr; PR string(1=Y--equals ZERO i~); PR nlcr end

end else
!f"'"ly-;-1 then IQR:= IQRS(X,Y,R) else
oegin inte~s,i,j,normfactor,VGmin1,q,Q,q1,Q1,HeadY,

vmY, YYlY ,lb ,dummy;
integer array XX:[1:lX],YY-[1:lY] QQ[1:1Q];
DE(q,O,DE(q1,o,o)); s:= ISIGN(X) x ISIGN(Y);
YYlY:= abs(ELEMENT(lY,Y));

Ll: ES(normfactor,S INT(if yYIY X (G: (2 X YYlY)) = G: 2 then
G: (2 X YYlY) else G :(2 X YYlY) + 1));

. L2: UEI' ARRAY(IABS"("IPROD"("x,normf'actor)),i 1,lX,XX[i]);
GE.T ARRAY(ES(Y,IABS(IPROD(Y,normf'actor))),i,1,lY,'YY[i]);
ES(VGminl ,s INT(Gmin1)); YYlY:= YY[lY];
ES(HeadY,LONG INT(i~2,if i = 1 then YY[lY -1] .else yYIY));
ES(VYYlY,S INT(YYlYJ);Lb:= lY +T; -

L3: ~ j := lX step -1 until lb ~

L4: begin comment Next comment: (labels correspond to labels in the
declaration of IQR)

28

L1: The short integer referring to the normalization factor, ceiling - of
((G/2)/YYlY), is constructed, saved and assigned to normfactor.

L2: X and Y are normalized by multiplication with norm factor and
taking absolute values.

L3: The integral di vision entier((XX[j - lY] X G i (j - lY - 1) + .. • +
XX[j] X G i (j - 1))/(YY[1] X G i O + ••• + YY[lY] X G i (lY - 1))),
for j := lX,lX - 1, ... ,lY + 1, is performed. .

:,

Q:= if XX[j] > YYlY then ASSIGN(q,VGmin1) else
As'SIGN{q,I~S(LONG-mT(i,2,XX[j - 2 + i]T;VYnY,du:mmy));

L5: L: if SIGNDIF(LONG INT(i,3,XX[j - 3 + i]),IPROD(Q,HeadY)) = -1 then
begin Q:= ASSIGN(q,IDIF(Q,ONE)); goto Lend;
Qi:= ASSIGN(q1 ,IDIF(LONG INT(i.,lb~j ---rE' + i]),
IPROD(Q,Y)));

L6: if ISIGN(Q1) = -1 then
oegin Q:= ASSIGN(q-;:mIF'(Q,ONE)); Q1 := ASSIGN(q1 ,ISUM(Q1 ,Y)) end;

L7: GEr ARRAY(Q1,i,j - lY,j,XX[i]);
L8: QQ[j .- lY] := VAL OF S INT(Q)

end; ·
'ES"(°R,IQRS(LONG INT(i,lY,s X XX[i]),normfactor,du:mmy));
IQR:= SR(fnn,LONG INT(i,lQ,s X ~[i])); R:= R - saved

end
en"ci;

comment

L4: The previously mentioned first approximation to the integral value
of the fraction in L3, min(entier(XX[j] x G + XX[j - 1])/YYlY),G - 1),
is calculated.,

L5: The exact integral value is determined by first checking whether
xx[j] X G i 2 + XX[j - 1] X G + xx[j ... 2] - V(Q) X (YYlY X G + YY
[lY ... 1]) < O, if so,the approximation is at least one to large, and

L6: finally checking whether
XX[j] X G i lY + •• + XX[j - lY] ... V(Q) X (YY[1] X G i O + •• +
YY"[lY] X G i (lY - 1)) < 0,
if so, ·the approximation is exactly one to large.
For the sufficiency of these checks see theorems IQR1 and IQR2
and Remark., Their necessity has been shown in [7].

L7: Analogous to the pencil and paper method of division the dividend
receives its new value and

L8: the quotient digit is assigned to an array element specifying a
value field of the quotient.,

integer procedure IQRS(X1,Y,R); integer X1,Y,R;
'begin integer X.,fnn; boolean brZE!Rd.,'BYMINONE; fnn:= gnn;

bYZEID:= EQ(Y,ZER0)";'6'm'!NoNE:= EQ(Y,MINONE);
2:! EQ(Es(x,x,) ,ZERO) V bYZERO V EQ(Y ,ONE) V bYMINONE ~

. ,

begin IQ.RS:= if bYZERO then ZERO else if bYMINONE then
INvERI'(X) eise X - saved; -- - -
if bYZERO then r:= X - saved
else R:= ~

enae!se
oegininteger lX; lX:= length(X);

begin integer s,y,i,n; integer array XX[l:lX],r[O:lX]; realm;
s:= ISIGN(X);
GEI' ARRAY(if s > 0 then X else INVERT(X),i,1,lX,XX:[i]);
r[O]:= r[l'XJ:= o; - -
y:= VAL OF S INT(Y); s:= sign(y) X s; y:= abs(y);
for i:= lX step -1 until 1 do .

29

oegin m:= rTirx G +'"la["i];~[i]:= n:= entier(abs(m/y)) X sign(m/y);
r[i - 1]:= m - (n x y)

end;
R:= EV(S INT(s X r[O])) - saved;
IQ.RS:= LONG INT(i,lX,s X XX[i])

end
ena;
lffl'ASE(fnn)

end IQ.RS;

comment

IQ.RS is an auxiliary procedure. It is called upon in IQR, where name,
replacement of Xl by the name of a possibly not saved object and name
replacement of X1 and Y1, names of already in IQR saved objects, occurs,
and in IGCDS, where again name replacement by names of saved objects
occurs. So only X1 needs to be saved in IQ.RS.

;
comment

Greatest common divisor algorithm for multiple length integers due
to tEH:MER.

LEHMER observed [American Mathematical Monthly 45(1938) p 227-233]
that in using a multiple precision version of Euclides' famous algorithm,
the multiple precision steps to determine Q (such that U =<;[,I+ R with
abs(R) < V) were often superfluous, in the sense that the same Q might
have been determined by single precision arithmetic.

Let in the radix G representation of U and V, lU be the number of digits
of u, lV be the number of digits of V, u be the leading digit of U and v
be the leading digit of V.

2: A:= 1, B:= O, C:= O, D:= 1.

i: (u + B) X G ,f\ (lU - 1) < U < (u + A) X G ,f\ (lU - 1) and - -
ii: ' (v + C) X G ,f\ (lV ... 1) < V < (v + D) X G ,f\ (lV - 1) obviously hold.

30

iii: 3: If 1u = lV and

iv: 5: If v + C ,J: 0 /\ v + D ,J: O,

v: entier((u + B)/(v + C)) .:S entier(T/S) .:S entier((u + A)/(v + C)),

for T =AX lJ +BX V and S = C XU+ DX V by i, ii, iii, iv.
Q:= entier((u + A)/(v + C)).
The single precision calculation of entier(U/v) is possible by iii, if in v

entier((u + B)/(v + C)) = entier((u + A)/(v + C)) as U = T and V = s.

If so, straightforward calculation shows

(v + c)/((u - Q Xv)+ (A - Q X C)) < V/(u - Q XV)<
(v + D)/((u,- Q Xv) + (B - Q X D)),- -

which amounts to v after the following assignements have been performed
from left to right: ·

6: T:= A -Q X C, A:= C, C:= T, T:= S - Q X D, B:= D, D:= T,
T:= u - Q Xv, u:= v, v:= T,

7: Else, perform multiple precision calculation to determine Q ..
;

comment

This version of LEHMER's algorithm, IGCD, incorporates a trick due
to COLLINS (see his Revised SAC - I integer system). He observed,
that, if lU - lV = 11 still single precision simulation might be possible,
if multiplying both U and 1/ by the same factor, would result in answers of
the same length of digits. To avoid multiple precision multiplication
he introduces the following simplication (if (lU - lV) < 1) :

3: As~ign to u2 and u1 the two top digits of U and, if lU = IV, to
v2 and v1 the towo top digits of V else, if lU - lV = 1 1 to
v2 zero and to v1 V's top digit,

4: normfactor:= entier((G/2)/u2) and multiply the long integers
rep'resented by (u2, u 1) and (v2, v1) by normfactor, in order to

5: check if now the lengths of the results of these multiplications
are equal ..

REMARK:
Arabic numbered labels in the two comments above correspond to
labels in IGCD.. ,'

integer procedure IGCD(X,Y); integer X,Y;
begin integer fnn,u,v1,u,v,1u,1V;

fnn:= DE(u,IABS(X),DE(v,IABS(Y),gnn)); U:= V(u); V1:= V(v);
lU:= length(U); lV:= length(V1);
if lU = 1 V lV = 1 then begin IGCD:= IGCDS(U,V1); goto ENDIGCD end;
oegin integer normfactor,Normfactor,sd,u1,u2,v1,v2,s,t,T,i,A,B,'C;,'D,Q;

DE(s,O,DE(t,O,DE(normfactor,o,o)));
sd:= SIGNDIF(U,V1); A:= u;
U:= ASSIGN(u,if sd> 0 then U else V1);
V1 : = ASSIGN(v -;r.r sd-> ot'nen \f'l'eise A);
if sd < 0 thenoegin-A:=""l:'tJ"; lU:~; IV:= A end;

31

11' EQ(U,V1"j"tnen begin IGCD:= U - saved; goto-:EN'DIGCD end else
loop: if EQ(V1-;z:lm0) then begin IGCD:= U - saved; goto mDiamfend else
2: if IV = 1 then beg1'n'IGCD:= IGCDS(U, V1) ; goto EN'DMCD end else -

begin A:= D:= 1; B:= C:= O; -- - -
3: if' lU - lV < 1 then

begin u1 := ELEMENT'(IU - 1 ,U); u2:= ELEM.ENT(lU ,U);
if lU - lV = 1 then
oegin v1:= ~1V,V1); v2:= 0 end else
begin v1 := ELEMENT(lV - 1,v1); v2:~~(1v ,V1) end;

4: Normfactor:= ASSIGN(normfactor,S INT(if u2 X (G: Wx u2)) = G: 2 then
G: (2 x u2) eise (G: (2-x u2)) + 1)); -

u2:= ELEMENT(2,IPROD(Normfactor.,LONG 'fflti,2,1:f i = 1 then u1 else u2)));
v2:= ELEMENT(2,IPROD(Normfactor,LONG INT(i,2,Il i = 1 tnen v1 else v2)));

5: if v2 + C = 0 V v2 + D = 0 then goto 7; . - - --
Q: = (u2 + A) : (v2 _j:f C); if °QT" (u2 + B) fu;:(v2 + D) then goto 7;

6: T:= A - (Q x-c); A:= c; -rr:°= T; T:= B -(Q-xin); B:= 'D;"n:= T;
T:= u2 - (Q X v2); u2:= v2; v2:= T; goto 5

end else -
7:if ,r-;;-o V (lU - lV) > 1 then

begin IQR(U,V1,i); U:= ASSEN'("u,V1); V1:= ASSIGN(v,i) end else
begin U:= ASSIGN(u,ISUM(IPROD(S INT(A),u),IPROD(S INT(1!J":Vl1Tj;

Yl:= ASSIGN(v,ISUM{IPROD(S INT(C),u),IPROD(S INT(D},v1)));
d • •'I en ,

IOT= length{U); lV:= length{V1); goto loop
end --

en"a'.;
fflDIGCD: ERASE{fnn)

end IGCD;

integer procedure IGCDS(X,Y); value X,Y; integer X,Y;
begin integer procedure gcd(a,b); value a,b; integer a,b;

gcd:= if b = 0 then abs(a) else gcd(b,a - {(a : b) x b));
integerfnn.,R; fnn:= gnn; - -
if SIGNDIF{ES{X,IABS(X)),ES{Y,IABS(Y))) < O then
oegin R:= X; X:= Y; Y:= R end; IQRS(X,Y R); -
IGCDS:= SR{fnn,S INT(gcd{~OF S INT{Y),VAL OF S INT{R))))

end;

32

comment

II.2. The rational number system.

Before proceeding with the discussion of representation of and operations
on rational numbers, it should be realized that in this rational function
system all operations are unified in the integer procedures s, P and Q.,
A sum, product or quotient respectively of two arbitrary objects A and B
is constructed by a call of S(A,B),P(A,B) and Q(A,B), respectively.
In the sequel we assume that their functions are known. A :f'u.11 treatment
will be found in the sections corresponding to the relevant modes and in
chapter rv.,

II.2.1. Representation of a rational number.

Given two long or short integers referred to by the values of A and B, store
the rational number~ represented by the pair(A,B)(thinking in terms of
equivalence classes) as:

i: ZERO, if EQ(A,ZERO) or EQ(B,ZERO)(one is noticed by the system
that the latter case occurs by the procedure statement
PR string({13 equals ZERO in Q;:!,) in the procedure body of Q),

ii: A if EQ(B,ONE) or as P(A,MINONE)-if EQ(B,MINONE),

iii: STORE(A,rational number,B) if the integers referred to by A and
Bare relativity prime and ISIGN(B) positive and else, if ISIGN(B)
negative., as

iv: STORE(INVERT(A),rational number,INVERI'(B)).,

else the greatest common divisor of the values referred to by A and B
is calculated by means of IGCD(A,B) referring to a nonnegative integer).
By dividing by this integer a relatively prime pair(A1,B1) is constructed
and stored as a rational number according to ii,iii or iv.

REMARK: The condition that the value of ISIGN(B) is positive, when
storing a rational number., is dictated by the use of EQ.

How are objects of mode rational number, built up from long or short
integers as above, introduced in the system?

In the first place by integer procedure Q(A,B). Reading Q (see chapter
rv), it is clear to take care of i and ii above. Q calls upon
OPER ON NUM(quotient,A,B)(see II.2.) however, to treat case iii and iv,
so upon RNPROD(A,ES(B,RINV(B))). After elaboration of ES(B,RINV(B)), B
represents the inverse of B(so the original pair(ONE,B)), as follows
from the declaration of integer procedure RINV:

. ,

integer procedure RINV(A1); integer Al; _
begin integer A,t,l,fnn; real r; fnn:= gnn; t:= TYPE(ES(A,Al),1,r);

RfflV:= SR(fnn,if t = short integer Vt= long integer then

33

-Cif ISIGN(A) > 0 then STORE(ONE,rationarnumber,A) else
'STORE(MINONE,rational number ,INVERT(A))) else

if t = rational number then --
-C if EQ(l,ONE) V EQ(l,MDl'tlNE) then P(r,l) else
-if ISIGN(l) > 0 then ST~rational rni'iri6'er,l) else

-STORE(EV(INVERI'trJ) ,rational number, INVERT(l)Trelse
if t = polynomial then - -
-Cif LC(A) > 0 then'"STDRE(ONE,rational function,A) else

-STORE(MINO~tional function,P(MINONE ,A))) el~
if EQ(l ONE) V EQ(l,MINONE) then P(r,l) else -
TI' LC(l} > 0 then STORE(r,rational functfon,l) else
-STORE(EV(P(r;ffl'NONE)),rational function,P(l,MilrnN'E)))

end;

comment

If the value of A, a parameter of RNPROD, does not refer to a rational number,
the values possessed by A and Bare interchanged in the labelled conditional
statement, resulting in the value of the "original" B equalling the value of
rA and the value of the present B equalling the value of A after elaboration
of this statement. If upon call of RNPROD the value of A does not refer to a
rational number, RNPROD proceeds with elaboration of 7 EQ(ES(Gcd,IGCD(rA,B)),
ONE), which amounts to answering the question:
"Does the value of Gcd, having been assigned the saved value of an integer
representing the greatest common divisor of rA and B, equal the value of ONE
or not?", so, the question of relative primeness of the original pair(A~B).
If so, condition iii or iv has been fulfilled, else ES(rA,IQR(rA,Gcd,diJ)
and ES(B,IQR(B,Gcd,di)) result in a relatively prime pair(B,rA)
in the same equivalence class as the pair(A,B) we started with
(lA being ONE).

Finally notice that, by its last assignment RNPROD, so OPER ON NUM2,
so Q, receives its value ST rat(V(l),V(r)). This amounts in our case to
storing according to ii, iii or iv (see the beginning of this section).

integer procedure ST rat(A1 ,B1); integer Al,Bl;
begin integer fnn,A tA.,B, tB; fnn:= gnn;

tA:= TYPE(ES(A,A1},di,dii); tB:= TYPE(ES(B,Bl),di,dii);
ST rat:= SR(fnn,if EQ(B,ONE) V EQ(B,MINONE) then P(A,B)
if EQ(A,ZERO) V ~(B,ZERO) then ZERO else -
TI'(tA = short integer V tA = Iong integer) /\ (tB = short
-;;-- long integer) then
(if ISIGN(B) > 0 '$en STORE(A, rational number (B) else
sTn'RE(EV(INVERT(ATT;""rational number ,INVERT(B) J) e!se
if LC(B) > 0 then STORE(A,rational function,B) else
"Sl'.IORE1EV(P(MINDNE,A)),rational function,P(MINONE';Bj))

end;

else

integer, V tB

34

comment

II.2.2. Operations with rational numbers.

As in the previous section, callings, P and Q, with names referring to
short or long integers or rational numbers as arguments, boils down,
except for trivial cases, to calling OPER ON NUM2 the appropriate
operation being specified in its first argument. As the values of the
second and third parameter refer to saved numbers, it is justified to
put A and B in OPER ON NUM2 1s value list.

;

integer procedure □PER ON NUM2(oper,A,B,tA,tB); value oper,A,B,tA,tB;
integer oper,A,B,tA,tB;
begin integer fnn; fnn: = gnn;

OFER ON NUM2:= SR(fnn,if (tA = short integer V
- tA = long integer) A

(tB = short integer V
tB = long integer) then

(if oper = sum then ISUM(A,B) else
iToper = product then IPRDD(A--:;sr-else
'Rm>ROD(A,EV(RINV(BlTTT else -
if oper = sum then RNSl.1R'(r,B) else
Tr oper = prod.uc-tthen RNPROD(Jr,'BT -else
lrn'PRDD(A,EV(RINV(BlTTT . -

end;

comment

Of the integer procedures called upon in □PER ON NUM2, RNSUM and
RNPROD rennin to be discussed,.
RNSUM performs addition of two numbers, one of which at least
is a rational number, and delivers the name of the result as
its value, while RNPROD performs multiplication in an analogous
fashion.,
Since calculating the greatest common divisor of two integers is a
very time consuming process, one needs algorithins, which minimize both
the number of times IGCD is called upon and the length of its arguments.
We cite and use a modification of those used by BROWN in the ALP.AK
system for addition and multiplication as described in COU.INS 1 SAC-1
rational func~ion system.
People with a preference for making use of the full expressional
power of ALGOL 60 and with a tendency to think in ALGOL 68 terms will be
shown afterwards how □PER ON NUM2,RNSUM and RNPROD can be compressed
in a few, altbough very lengthy, statements .. They will be explained
in section III.2. by means of an ALGOL 68 declaration.,
A consistent description of RNSUM and RNPROD, which equals the following
comments upon RNSUM and RNPROD in clarity of description, is contained in
the ALGOL 68 identity declaration of □PER ON RAT in section III.2.

T = RNSUM(A,B). Assume A = lA/rA, B = lB/rB, where gcd(lA,rA) = 1 and
gcd(lB,rB) = 1. Gcd:= gcd(rA,rB).
If' Gcd = 1 then lT:= 1A X rB + rA X lB. rT:= rA X rB.
It f'ollows f'rom Gcd = 1, that gcd(lT,rT) = 1.
If' Gcd :j: 1, rA1 := rA/Gcd, rB1 := rB/Gcd and lT:= 1A X rB1 + lB XrA1.
:t'l':= rA X rB1. Next, Gcd:= gcd(rT,Gcd).
If' Gcd = 1 then T:= lT/:t'I' else lT:= lT/Gcd,rT:= rJ:/Gcd and T:= lT/rT.
Notice that ISIGN(rT) > o.

;

35

integer procedure RNSUM(A,B); value A,B; integer A,B;
begin integer tA,tBllA,lB,1,r,:f'nn; ~ rA,rB; fnn:= DE(l,O,DE(r,O,gnn));

tA:= TYPE(A,lA,rAJ;
if' tA =I= rational number then begin tB:= TYPE(B,lA,rA); B:= A end
e!se tB:= TYPE(B,lB,rB);-
Tit.A = rational. number A tB = rational. number then
oegin integer Gcd; if' 7 EQ(ES(Gcd,IGCD(rA,rB)),'!:JNEj then

begin ASSIGN(l,IS'tJR(IPROD(lA,ES(rB,IQR(rB,Gcd~di))r,­
IPRDD(lB,IQR(rA,Gcd,di)))J;

if' 7 EQ(ES(Gcd,IGCD(V(l),ASSIGN(r,IPROD(rA,rB)))),DNE) then
oegin ASSIGN(l,IQR(V(l),Gcd,di)); .ASSIGN(r,IQR(V(r),Gcd-;a:Ij) end

end else
'6egin'".As'SIGN(1,ISUM(IPRDD(lA,rB),IEROD(lB,rA)));

.ASsIGN(r,IPRDD(rA,rB))
end

enaelse
'oeg:Gi'"7i:S'SIGN(l,ISUM(lA,IPROD(rA,B))); .ASSIGN(r,rA)
end;
'R'N'S'UM:= SR(f'nn,ST rat(V(l),V(r))); END:

end RNSUM;

comment

T = RNPROD(A,B). Assume A= lA/rA, B = lB/rB, where gcd(lA,rA) = 1 and
gcd(lB,rB) = 1. Gcd1:= gcd(lA,rB) and Gcd2:= gcd(rA,lB). Then lA:= 1A/Gcd1,
rB:= rB/Gcd1, rA:= rA/Gcd2,1B:= 1B/Gcd2, except if' A = ONE and B = ONE.
lT:= 1A X lB and rT:= rA X rB. FinaJ.ly T:= lT/rT.
Notice that ISIGN(rT) > O.

;

integer procedure RNPROD(A,B); value A,B; integer A,B;
begin integer tA,tB<lA,lB,1,r,f'nn; ~ rA,rB; fnn:= DE(l,O,DE(r,O,gnn));

tA:= TYPE(A,lA,rAJ;
L: if' tA =I= rational. number then begin tB:= TYPE(B,lA,rA); B:= A end

e'Ise tB:= TYPE(B,lB.,rB); TI'7::A = rational. number -
i\--rn = rational number then
begin inte~er Gcd1,Gcd2;7::f' 7 EQ(ES(Gcd1,IGCD(rA,lB)),DNE) then

begin ES rA,IQR(rA,Gcdf;<li)); ES(lB,IQR(lB,Gcd1 1di)) end;-
i:f 7 EQ(ES(Gcd2,IGCD(rB,1A)),DNE) then -_,, -

)

36

begin ES(lA,IQR(lA,Gcd2,di)); ES(rB,IQR(rB,Gcd2,di)) end;
ASSfflN(l,IPROD(lA,lB)); ASSIGN(r ,IPROD(rA, rB)) -

end else
oeginlnteger Gcd; if 7 EQ(ES(Gcd,IGCD(rA,B)),ONE) then

begin ES(rA,IQR(rA,Gcd,di)); ES(B,IQR(B,Gcd,di)) end;
ASSIGN(l,IPROD(lA,B)); ASSIGN(r,rA) -

end;
lffl'PROD:= SR(fnn,ST ra.t(V(l),V(r)))

end RNPROD;

integer procedure IQI(X,Y); integer X,Y; IQI:= IQR(X,Y,dii);

integer procedure □PER ON NUM(oper,A,B,tA,tB);
value oper,A,B,tA,tB; integer oper,A,B,tA,tB;
'6eg:In integer fnn~lA,lB,Gcci,1,r; ~ rA,rB; fnn:= gnn;

DE(l,O,DE(r,O,OJ);
TYPE(A,lA,rA); if oper = quotient then
begin tB:= TYPE"'(ES(B,RINV(B)),lB,rlrJ';oper:= product end
eI's'e'TYPE(B,lB,rB); -
"'Il'ttA = long integer V tA = short integer) A
-(tB = long integer V tB = short integer)
then □PER ON NUM:= SR(fnn, if oper = sum then ISUM(A,B) else
- IPROD(A-;J:3)) els_e --
begin if tA + rational number th"er:t'"
'6egin IA:= lB; rA:= rB; B:= A enci;

OPER ON NUM:=
SR(fnn,if' tA = rational number A tB = rational number then

Tif oper = sum then -
-rif' 7 EQ(ES(Gcct;I'GCD(rA,rB)) ,ONE) then

-rif 7 EQ(ES(Gcd, -
- IGCD(ASSIGN(l,

ISUM(IPROD(lA,
ES(rB,

IQI(rB,Gcd)
)),

IPROD(lB,IQI(rA,Gcd)
))),

ASSIGN(r,IPROD(rA,rB))
)) ,ONE

) then ST ra.t(IQI(V(l)<Gcd),IQI(V(r),Gcd))
else ST ra.t(V(l) ,V(rJ)

) else ST rat(ISUM(IPROD(lA,rB),IPROD(lB,rA)),IPROD(rA,rB))
) el~
S'J:rat(IPROD(if' 7 EQ(ES(Gcd,IGCD(lA,rB)),ONE) then

'Riiltiple ES(rB,IQI(rB,Gcd), -
ES(lA,IQI(lA,Gcd))

)
else lA,
"!Ti EQ(ES(Gcd,IGCD(lB,rA)),ONE) then

)
end end;

M.u.tiple ES(rA,IQI(rA,Gcd),
ES(lB,IQI(lB,Gcd))

)
else lB

r;:rrnon(rA,rB)
)) else .
if' oper = sum then ST rat(ISUM(lA,IPROD(rA,B)) ,rA) else
"ST rat(IPROD(iflEQ(ES(Gcd,IGCD(rA,B)),ONE) then -

liil.tiple ES(rA,IQI(rA,Gcd),IQI(B--;rrcci))
else B,
nr

) '
rA

)

37

38

comment

III. The rational function system.

III.1. Polynomial arithmetic.

III.1.1. Objects having the same hierarchy of variables.

"Take, for instance, the possible fat nan in that doorway.
And, again., the possible bald nan in that doorway.
Are they the same possible nan., or two possible men?"
From a logical point of view., w.v.□ .Quine.

(1 XX i O + 1 XX i 1) X (1 X y i O + 1 X Yi 1),
- is undefined in this system.

(10 x xi O + 10 x xi 1)L(10),
is defined in this system.

(1 X Xi O + 1 X Xi 1) + ((1 X y i O + 1 X y i 1) X Xi O +
(1 xyio+ 1 xyi1)xxi1),

is defined in this system.
(1 X X i O + 1 X X i 1) X y i O + (1 X X i O + 1 X X i 1) X y i 1 =
(1 X y i O + 1 X y i 1) X Xi O + (1 X y i O + 1 X y i 0) X Xi 1,

is defined in this system and false.

These expressions can be transformed into function designators by

a: modifyi.ne; applications of x,/, , and = into Polish prefix
notation by prefixing P,PQl',"S and EQ,

b: replacing the coefficients 1 and 10 by ONE S INT(10), respectively,
and

c: replacing expressions like coef[O] x x i O + coef[1] x x i 1 by
POL(i,1,AV(24),coef[i]) ... xis the 24 - th letter of the alfabet.

All polynomials in this system, on which arithmetical operations
are performed, are represented in recursive canonical form. This
terminology has been derived from [4] and refers to the fact
that a polynomial inn variables is always regarded as a polynomial
in one variable(called the main variable), whose coefficients are
themselves objects, at least one of which is a polynomial in n-1
variables., having the same hierarchy of variables, a terminology
to be defined below.
This implies an assumed ordering of' the variables of any polynomial.
Whenever we write p(x[1], ••• ,x[n]), displaying the variables of p,
the intention is to specify this ordering, x[n] being the main
variable, x[n-1] being the main variable of' those coefficients of
p, that are not long or short integer, etc ••

Two objects have the same hierarchy of variables, a terminology
derived from [12, page 46], in case they are

i: polynomials with the same rm.in variable and with coefficients
having the same hierarchy of variables(i.e. every pair has
the same hierarchy of variables),

ii: a polynomial and a long or short integer,
iii: long or short integers.

From ii, iii and the word "variables" in the term defined above, we
might regard a long or short integer as a polynomial, provided the
latter term is taken in a wider sense than defined in I.2.1. ·
From the point of view of the ALGOL 60 procedure declarations of the
polynomial arithmetic performing procedures, described in this
section, there is, however, a substantial difference, as we have
to differentiate according to the mode being either polynomial or long
integer or short integer.

Let p be a folynomial of degreed, inn variables,
p(x[1] •• ,x n]) = p[O] x x[n] ,.f\ 0 + ••• + p[d] x x[n] ,.f\ d,
with pfo],p[1], •• ;p[d] objects having the same hierarchy
of variables. Let q be a long integer or a short integer.
To add p to or multiply p with q, in [4, the description
of PORDER page 26,27 and the arithmetic performing procedures]
COU.INS constructs an auxiliary version of q, (••• {{q x x[O] ,.f\ o)
X x[1] ,.f\ 0) X ••• X x[n] ,.f\ 0), and then adds or multiplies by
adding or multiplying the coefficients of degree zero recursively.
His point of view, that an infinite precision integer is a
polynomial of degree zero, explained in section I.2.1., entails
this.
In the footsteps of VAN DE RIET[12] we do not wish to
introduce in our system such versions of q as (••• {qX x[OJ ,.f\ 0)
X ••• X x[n] ,.f\ O), for, by introducing them, the unique representation
of a long integer or short integer is lost and awkward questions
concerning the eg_uality of e.g. g,(••• (~ x x[n] ,.f\ o) x •• x[o] ,.f\ o)
and (••• (q x x[OJ ,,f\ 0) x ••• x xln] ,.f\ OJ have to be raised and
answered.
Addition, in this system, of a non - polynomial 9- to a polynomial p
is performed in a recursive way by adding q to pLO], until the process

39

ends with the addition of q to a long or short integer, without introducing
auxiliary versions, as above.
The importance of the requirement that two objects p1 and p2 have
the same hierarchy of variables is, that arithmetical operations,
without introducing the afore - mentioned vaCllous occurrences of
variables, can only be performed between p1 and p2 if they fulfill ..,
this requirement.

III. 1 .~. A brief description of the basic integer procedures,
that perform polynomial arithmetic.

40

Let the values of X and Y refer to objects with the same hierarchy of
variables. If at least one of the values of X and Y refers to a polynomial,
the value of □PER ON POL(oper,X,Y,tX,xX,tY,yY) refers to the polynomial.or
integer(long or short), which is an object corresponding with the sum or
product of the objects referred to by the values of X and Y, depending on
whether oper = sum or oper = product(oper is of type integer).
Let the value of X refer to a multiple of the value, that Y refers to.
The value of PQI(X(Y) refers to the unique object such that the value
of EQ(P(PQI(X,Y),YJ,X) is true.
The value of PGCD(X,Y) refers to an object corresponding with the greatest
common divisor of the objects referred to by the values of X and Y.
The integer procedures PGCDS ,PSREM,PCONT and Product are auxiliary
to PGCD.

III.1.3. Declaration and description of the basic polynomial
arithmetic performing procedures.

Let the value of X refer to an object corresponding with coefX[n] Xx~ n
+ •• + coefX[O] Xx ,1\ O, with coefX[O], •• ,coefX[n] having the same hierarchy
of variables, let Y analogously refer to an instance of coefY[n] xx ,1\ m
+ •• + coefY[O] Xx ,1\ O, Y + ZERO, and n = ma.x(n,m).
The value of □PER ON POL(sum,X,Y) refers to an object corresponding with
coef[k] Xx ,1\ k + •• + coef[O] Xx ,1\ O, with k = n if n > m, else,
if n = m with k the maximal. nonnegative integer j bounded by n,
such that coefX[j] + coefY[j] + o, if such an integer exists, else
the value of OPER ON POL is the value of ZERO.
The value of □PER ON POL(product,X,Y) refers to an object corresponding
with the Cauchy product of two polynomials, of degree n + m.

integer procedure □PER ON POL(oper,PP,QQ,tp,xp,tq,xq);
value oper,PP,QQ,tp,tq,xp,xq; integer oper,PP,QQ,tp,tq,xp,xq;
oegin integer dp,dq,d,i,j,fnn; fnn:= gnn;
· if tp ~ polynomial then begin ES(PP(STORE ARRAY(i,0,1,

polynomial,if i = O-=aien xq else PP J); xp:= xq end;
if tq + polynomial then beginES(QQ,STORE ARRAY"{T;0,1,
polynomial,if i = O-=aien xp else QQ)); xq:= xp end;
dp:= length"('PP) - 2,;aq:= leng-tn(QQ) ... 2; -
d:= if dp < dq then dq else dp;

;

d: = 1f oper = product tneri'"" dp + dq else if dp < dq then dq else dp;
begininteger array Cp[-1 :dp],Cq[-1:dq]","C'[-1 :d]; - -

GET ARRAY(PP,i,-1,dp.,Cp[i]); GET ARRAY(QQ,i.,-1,dq,Cq[i]);
ERRDR(xp + xq,{:variables not the same in □PER ON POL});
□PER ON POL:= SR(fnn,PDL(i,d,xp,

if oper = sum then
-(if i > dp then Cg_[i] else

iTi > dq tneri'""Cpl i] e'IseS(Cp[i] ,Cq[i]))
else if oper~roduct tneri
--S-llIIlTI,o,i,P(if j < dp'"""tnen Cp[j] else ZERO,
' iT i-j-,:; dq then Cq[i-j] else ZERO))

•
else ERROR(true,<l:type in □PER ON POL not appropriate:})))

end enaljpER ON~

integer procedure Sum(i,low,up,Fi); value low,up;
integer low,up,i,Fi;
begin integer s,fnn; fnn:= gnn; DE(s,ZERO,O);

for i:= low step 1 until up do ASSIGN(s,S(V(s),Fi));
Sum:= SR(fnn-;vrs) - saved) -

end Sum;

comment

1: To obtain the value of PQI(X,Y) if coefY[O] = O, we divide
both polynomials by the polynomial corresponding to x i j,
with j the least nonnegative integer such that coefY[j] + O,
and proceed with applying ii on (x/(x i j))/(Y/(x i j)),
otherwise

41

2: the value of PQI(X,Y) refers to an object corresponding with the
polynomial with coefficients as described by
coef[j] = (coefX[j] - (coef[O] x coefY[j - 1] + ••• +
coef[j - 1] x coefY[O]))/coefY[o].

integer procedure PQI(X1,Y1); integer X1,Y1;
begin integer fnn,x,X,y,Y,lX,lY~tx,tt;

fiin:= gnn; DE(x,X1~DE(y,Y1,0)J; X:= V(x); Y:= V(y);
tX:= TYPE(X,di,diiJ; tY:= TYPE(Y,di,dii);
if EQ(X,ZERO) V EQ(Y,ZERO) then PQI:= ZERO else
ir EQ(Y,ONE) then PQI:= X e'Iie -
ir(tX = shortJ.nteger V ~ong integer) /\ (tY = short
Triteger V tY = long integer) then PQI:= IQR(X,Y,lY) else
if tX =I= polynomial then PQI:="'""ZEttl else -
oegin lX:= length(xr,::::-2; lY:= le~'tn(Y) 2;

begin integer array coefX[-1:lX]; integer i,varX;
GEr ARRAY(X,f,-1,lX,coefX[i]); varX:= coefX[-1];
if tY =polynomial/\ lX > lY then

begin integer array coefyt' 1:1YT;integer trivdivX,
----ri:ivdivY; boolean bool;

GET ARRAY(Y,i,-1,lY,coefY[i]); bool:= true;
trivdivX:= trivdivY:= o; i:= -1; -
for i:= i + 1 while bool /\ i < lX do
1!'"'8EQ(coefX[i] ,ZE:RU) then trivdivffe trivdivX + 1
eise bool:= false; bool:= t_.,.rue; i:= -1;
'tori:= i + 1 whlle bool A'"'T< lY do
FEQ(coefY[i],ZERO) then trivdivG trivdivY + 1
eise bool:= false; -
~rivdivX < trivdivY then PQI:= ZERO else

1 :1f trivdivY > 0 then -
begin integer dtrivarv; dtrivdiv:= trivdivX ... trivdivY;

;

42

PQI:= P(POL(i,dtrivdiv,varX,if i = dtrivdiv then ONE
else ZERO), - --
~(i ,lX -trivdivX,varX,coefX[i + trivdivX]),
POL(i,lY - trivdivY,varX,coefY[i + trivdivY])))

end else
2:oegminteger c,d,j; d:= lX - lY; c:= coefY[O];

begin integer array coef[O:d];
E$(coef[O],PQI(coefX[O],c));
for i:= l step 1 until d do
nr(' coef[i]~(D(coefX[i]-;sum(j, 0, i - 1 ,
P(if i - j < lY then coefY[i - j] else ZERO,coef[j]))),c));
PQ'I:= POL(f:;d,varX,coef[i]) --

end
ena

end'"erse
Tr°lX"°<lY /\ tY = polynomial then PQI:= ZERO else
~I:= POL(i,lX,varX,PQI(coef:xTIT;Y))

end
ena;
'fflABE (fnn)

end PQI;

comment

Discussion and declaration of integer procedure PGCD.

The algorithm for computing the greatest common divisor of two
polynomials, applied in this system, appeared for the first
time in [1] and has been extensively described in [7].
A brief summary of the relevant facts will be given in order
to compare its description with this ALGOL 60 version.

A set of elements of a unique factorization domain is said to
be relatively_prime if no prime(of the unique factorization
domain) divides alt of them. A polynomial over a unique factorization
domain is called primitive if its coefficients are relatively prime.
Moreover the set of those polynomials forms a unique factorization
domain itself.
Any (nonzero) polynomial u(x) over a unique factorization domain
Scan be factored in the form u(x) = c x v(x), where v(x) is
primitive and c is in s. Furthermore, this representation is
unique, in the sense that if u = c1 X v1(x) = c2 x v2(x), then
cl =ax c2 and v2(x) = a X v1(x), where a is a unit of s.
c is said to be the content of u, cont(u)(and is a greatest
common divisor of the coefficients of u(xJ.
Notice that this factorization explicitly requires multiplication
between elements of Sand polynomials overs.
If we take for S the integers representable in this system, realizing
that no infinite algebraic system can be represented in a computer,
such a multiplication has been defined. For other choices of Sit

has not been ~fined in this system. In the latter case we have
to regard c, when nw.tiplying with v(x), as a polynomial over s.
Let the value of U be the name of u, the name of c, when c is
regarded as a polynomial overs, is the value of PCONT(U,false).
If such an operation is not required the value of PCONT(U,true)
refers to c, as an element of s. -

• • ,

integer procedure PCONT(X,reduce); value X,red.uce; integer X;
boolean reduce;
begin integer fnn,i,lX; fnn:• gnn; lX:• length{X) - 2;

begin integer array coef[-1 : lX];
dM' ARRAY(X,I,-1,1X,coef[i]);
if 1X • 0 then PCONT:• if reduce then coef[O] else X
e!se - -
'6egin integer a,A,low; boolean bool; bool:• true;

low:• o; 1:• -1; DE(a,o,o),; -
for i:• i + 1 while bool A i < lX do
ir'"'EQ(coef[i] ,ZERO) then low:• low+ 1 else bool:• false;
A:• coef[low] + savea;i:= low;_ -
for i:• i + 1 while i < lX A 7 EQ(A,ONE) do
1?'"'"7 EQ(coef[i],ZERO) then A:• ASSIGN(a,PO°eD(A,coef[i]));
fflONT:• if reduce then-r= saved else POL(i,O, coef(-1] ,A)

end - - -
ena;
mBE(fnn)

end PCONT; -
comment

It can be deduced, that cont(gcd(u,v)) •ax gcd(cont(u),
cont(v)) and, if pp(u(x)) is defined as u(x)/cont(u(x)),
pp(gcd(u(x),v(x))) • b X gcd(P\)(u(x)),pp(v(x))), where a
and b are units of S and gcd(u{x) ,v(xJ) denotes any particular
polynomial in x, which is a greatest common divisor of u(x)
and v(x).
These equations reduce the problem of finding a greatest
common divisor of arbritra.ry polynomials to the problem of
finding greatest common divisors of primitive polynomials.

As a preliminary step, we describe an algorithm for the
pseudo - division of polynomials and its .ALGOL 60 version,
the integer procedure PSREM.
Given two polynomie.is, u(x) • u[m] x x ;t,. m + ... + u(o] x x ;t,. o,
referred to by the value of U, and v(x) • v[n] Xx ;t,. n +
••• ~ v[O] Xx ;t,. o, referred to by the value of V, where v[n] + 0
and m > n > o, the value of PSREM{U,V,m,n) refers, if n > o,
to the-; except for nw.tiplication by an instance of the value

44

referred to by MINONE, unique polynomial
r(x) = r[h- 1] xx,+. (n - 1) + ••• + r[o], such that there
exists a polynomial q(x) = q[m- n] Xx,+. (m - n) + ••• + q[O] Xx,+. o,
satisfying v[n] ,+. (m...; n + 1) x u(x) = q(x) x v(x) + r(x).
If n = 0 the vaJ.ue of PSREM equals the vaJ.ue of ZERO.

R: The description by KNUTH in [7, page 369] of an algorithm
for the pseudo - division of polynomials is:

R1: [Iterate on k.] Do step R2 fork:= m- n, m -n - 1, ••• ,0.
Then the algorithm terminates with u[n - 1] = r[n - 1], ••• ,
u[O] = r[O].

R2: [Multiplication loop.] Elaborate q[k]:= u[n + k] XV [n] Xx ,t- k
and u[j]:= v[n] X u[j] - u[n + k] X v[j - k] for j:= n + k - 1,
n + k - 2, ••• ,0. (When j < k this means that
u[j]:= v[n] x u[j], since we treat v(-1],v[-2], ••• as zero.)

;

integer procedure PSREM(X,Y,lX,lY);· vaJ.ue X,Y,lX,lY;
integer X,Y,!x,!Y; if lY = 0 then PSREM:= ZERO else
begin integer fnn,J;fc,LCY; integer array x,XX[-T":lX] ,YY(-1 : lY];

GE!' ARRAY(X,j,-1,lX,XX[j));
GET ARRAY(Y,j,-1,lY,YY[j]); LCY:= YY[lY];
for j:= O step 1 until lX do DE(x[j],XX(j],o);
for k:= ~ step -1 un"til. 0 do
for j := lY + k -7'"step -1 untilo do
'XX['j]:= ASSIGN(x[j]-;-n' j - k > 0 tnen D(P(LCY,XX[j]),P(XX[lY + k],

- - - YY[j - k]))
else P(LCY,XX[j]));

PSREM:= SR(fnn,POL(j ,lY - 1 ,YY[-1]-;nf j]))
end; -
comment

gcd(u(x),v(x)) = gcd(v(x),r(x)), for any common divisor of u(x)
and·v(x) divides v(x) and r(x). Conversely(any common divisor
of v(x) and r(x) divides v[n] ,+. (m - n + 1J x u(x) and it must
be primitive(since v(x) is primitive), so it divides u(x). If
r(x) = O, we therefore have gcd(u(x)) = v(x). If r(f) + O, we
have gcd(v(x),r(x)) = gcd(v(x),pp(r(x))), since v(x, is primitive,
so the process can be iterated.

COLLINS's algorithm.

Given nonzero polynomials u(x) and v(x) over a unique
factorization domains, this algorithm calculates a greatest
common divisor of u(x) and v(x).
We assume that an auxiliary algorithm exists to calculate greatest
common divisors of elements of s. The division of a, referred to

Fe

by the value of A, by b1 referred to by the value of~, :l.n s,
when 'b + O and a :Ls a :multiple of b, :Ls performed. 'by a cell o:f'
PQI(A,B).

01: [:Reduce to pr:Lmit:l.ve,] Elaborate d.: 1111 gcd.(cont(u) 1cont(v)),
and replace u(x) and v(x) by, respectively, pp(u\x)) and pp(v(x)).
This is the task of PGCD, a:• 1,

02: [Paeudo - division,]
Elaborate b:• (v[length(Y)]) ~ (length(X) - length(Y) + 1),
Calculate r(x) by mean.a of algorithm :R, in this 1yste:m by PSmllM,
If r(x) 1111 o, goto c4. I:t' d.eg(r) • o, replace v(x) bf 11 111 (ONE)
and go to CL!-.

03: [Adjudt rema.:l.nd.er.J :Replace u(x) by v(x) and v(x) by r(x)/a,
(The ma.in observation of COU..INS :La, that at this point ell
coe:f':t'ic:l.ents of r(x) are :multiples of a.), a:• band retum
to 02, Steps 02 and. 03 are performed. by PGCOO.

c4: [Attach the content.] The algorithm terminates, with
d x pp(v(x)) as answer. This :Ls p~:rformed. by PGOD.

:l.ntes~r :rocedure PGCD(X1,Y1)J integer X1,Y1J
tsee;:Y'.n !:n nn,Xe YJ :f'nn:• gnn;

, S(Y,Y1 H
:tf EQ(X.,ONE) V EQ(Y,ONE) V EQ(X,M!NONEJ) V EQ(Y,MINONE) then
_, PGCD: • ClNE else -
:l.:f' EQ(X,ZlmO) v°m(Y,ZE'.RCJ) then PGCD:• ZE'.RD elte
'ff int(X) then PGCD:• :Lf int'('!7 then IGCD(X,'!j'ilme
- PGCD(X,~(Y, t:ruejj elee - -
if int(Y) then roe~:• mcmtffloo(X,true),Y) el1e
"6ig:tn :l.nte1;r :1.,c ex CY ,var,coe:f'OJ var!'• ELI!lm'!'(i X);

coe:f'0:•1MCD~Eslox,Pcoo(x,t:rue)),ES(CY,POONTtY,true))));
ES(O,POL(i,O,var,coefO)); - -

J

PGCD:• :tf MJLTILINKED STRUCTURE(TYPE(ES(X,PQI(X,POL
- (i,O,var,CX))),d:t,di:1.))

A MULTILINKED STRUCTUmll(TYPE (ES (Y, PQI (Y lDL .
(:L,O,var;CYJ)),di,d:1.:1.)) then

P(C,if length(X) > length(Y) then PGC'.DS(X,Y) else PG~1X))
else""'O' - -

enctr""
m!E(:f'nn)

endJ -
:f'nn:• gnnJ procede:• trueJ lX: 1111 length(X)J -

4;

46

A:= DE{x,X,DE{y,Y,DE(a,O,DE{b,O,DNE))));
for Y:= V{y) while precede do
"begin lY:= length(Y); B:= ErnMEN'r(lY Y);

B:= ASSIGN(b,Product(j,O,lX - lY~B));
B:= ASSIGN(b,POL(i,O,ELEMENT(1,XJ,B));
X:= ASSIGN(x,PSREM(X,Y,lX - 2,lY - 2));
if EQ(X,ZERO) then ·
oegin procede:-;;;-raise; PGCDS:= SR(fnn,PQI(Y,PCONT(Y,false))) end
else
TI'""'Int(X) V length(X) = 2 then
oegin precede:= false; PGCOO:= RS{fnn,DNE) end
cl~ -
"6egin ASSIGN{y,PQI(X,A)); X:= ASSIGN(x,Y);

A:= ASSIGN(a,B); lX:= lY
end end

ena;-

integer procedure Product(i,low,up,Fi); value low,up;
integer low,up,i,Fi;
begin integer p,fnn; fnn:= gnn; DE(p,ONE,O);

for i:= low step 1 until up do ASSIGN(p,P(V(p) ,Fi));
Product:= V(p); ER.ASE(fnn) -

end;

comment

III.2. Rational f'unction arithmetic.

Except for a few trivial differences, the integer procedures
perf'orming rational function arithmetic are entirely similar
to the ones used for perf'orming rational number arithmetic,
□PER ON NUM2, RNSUM and RNPROD, the functions of which have been
combined in the integer procedure □PER ON NUM.
The complexity of the procedure □PER ON NUM forces us to explain
its functioning in a language better suited for explanation,
.ALGOL 68. As integer procedure □PER ON RAT is similar to □PER ON
NUM, we present a possible ALGOL 68 version of it, after which
the ALGOL 60 procedure declaration follows, and refer for the
algorithms used to section II.2.2. The go on symbol has been
represented by l•
Zrocedure □PER ON RAT= {int operation,formula A,B) ref triple:
operation= quotient I □PER ON RAT(product.,A,RINV(Bm
heap formula lA,rA,lB,rB,X,Y; ref triple C;
T"(rr::A) A (C: :B) I lA:= left operand of A; rA:= right operand of A;

lB:= left operand o:f B; rB:= rightoperand of B; - -
(operation = sum !neap formula gcd; - -
((gcd: = · PGCD(rA, rB"JTl one I ~ -

Note that the constituent foI"llS.l. - PARAMEI1ERS - pa.ck of the

)
)

identity declaration of PGCD, (formula A; formula B), contains
a go on symbol, as we have to translate the ALGOL 60 evaluation
from left to right of the actuaJ. parameter list into ALGOL 68. t

((gcd:= PGCD(X:= 1A X (rB:= PQI(rB,gcd)) + lB X PQI(rA,gcd),
Y:= rB)
) + ONE I ST rat(PQI(X,gcd),PQI(Y,gcd)) I ST rat(X,Y)

) I ST rat(lA X rB + lB X rA rA X rB)
) I ((X:= PGCD(rB,lA)) + ONE f rB:= PQI(rB,X); lA:= PQI(lA,X)

); . -
(TX:= PGCD(rA,lB)) + ONE I rA:= PQI(rA,X); lB:= PQI(lB,X)

) I
)l, ST rat(lA X lB,rA X rB) -

(l(C::A) I lA= left operand of B; rA:= right operand of B;
Y:= A I lA:= left operand or AT rA:= right operand or AT
(operation = sum I ST rat(Il +-rA X Y ,rA) I - -
((X:= PGCD(rA,Y)) + ONE I rA:= PQI(rA,X); Y:= PQI(Y,X)
); ST rat(lA X Y,rA) -

) -
)

;

integer procedure □PER ON RAT(oper,A~B,tA,lA,rA,tB,lB,rB);

47

value oper,A,B,tA,lA,rA,tB,lB,rB; integer oper,A,B,tA,lA,tB,lB; ~ rA,rB;
begin integer fnn; fnn:= gnn; if oper = quotient then begin

tB:= TYPE{ES(B,RINV(B)) ,1B,r13'j; oper:= product end;
begin integer Gcd,l,r; if tA + rational number MA+ rational

function then begin lA:= lB; rA:= rB; B:= A end; DE(l,O,DE(r,o,o));
□PER ON RAT:= -
SR(fnn,if (tA = rational number V tA = rational function) /\ (tB =
rationar-number V tB = rational function) then

(if oper = sum then -
\if 7 EQ(ES(Gca,'FGCD(rA,rB)) ,ONE) then
\if 7 EQ(ES(Gcd, -

- PGCD(ASSIGN(l,
S(P(lA,

ES(rB,
PQI(rB,Gcd)

)) '
P(lB ,PQI(rA ,Gcd)

))),
ASSIGN(r,P(rA,rB))

)) ,ONE
)then ST ra.t(PQI(V(l){Gcd),PQI(V(r),Gcd))
else ST ra.t(V(l),V(rJ)

) else ST-i:a:t(S(P(lA,rB),P(lB,rA)),P(rA,rB))
) else""'

48

ST ra.t(P(if 7 EQ(ES(Gcd,PGCD(lA,rB)),ONE) then
Riil.tiple ES(rB,PQI(rB,Gcd),

ES(lA,PQI(lA,Gcd))
)

else lA,
TI'! EQ(ES(Gcd,PGCD(lB,rA)) ,ONE) then
J;fiiltiple ES(rA,PQI(rA,Gcd), -

· ES(lB,PQI(lB,Gcd))
)

else lB
)-;P°(rA, rB)

)) else
if aper= sum then ST ra.t(S(lA,P(rA,B)),rA) else
"ST ra.t(P(if 7 mtms(Gcd,PGCD(rA,B) ONE) then-

J.Eltiple ES(rA,PQI(rA,Gcd~ ,PQI(lr,trcd))
else B,
n:­
),

rA
))

end end;

comment

TV. 'I'.he integer procedures s, P, Q and D.

If the values of X and Y refer to arbitrary objects,-the
value of S(X,Y),P(X,Y),Q(X,Y) and D(X,Y) refers to an instance
of their sum, product, quotient and difference, respectively.
It is assumed that their declarations are self - explanatory
(after reading chapters I, II_and III).

boolean procedure numbertype(type); value type; integer type;
,,

numbertype:= type = long integer V type = short integer V type =
rational number;

;

boolean procedure polynomialtype(type); value type; integer type;
polynomial.type:= type= polynomial V type= short integer V type
= long integer;

boolean procedure rationaltype(type); value type; integer type;
rational.type:= type= rational function V type= rational number
V polynomial type(type);

integer procedure S(A1,B1); integer A1,B1;
begin integer A,B,tA,tB,lA<lB,n; real rA,rB; n:= gnn;

tA:= TYPE(ES(A,A1),lA~rAJ; tB:=""'Tn'E(ES(B,B1),lB,rB);
S:= SR(n,if EQ(A,ZEROJ then B-saved else
if EQ(B,~) then A-sa'ved'else --
TI numbertype(W-/\ numbertype(tB) then
- OPER ON NUM(sum,A B,tA,tB) else -
if polynomialtype(tA) /\ polynomial'type(tB) then
- OPER ON POL(sum A,B,tA,rA,tB,rB) else -
if rationaltype(tA) /\ ra.tionaltype(tlr)then
- OPER ON RAT(sum,A,B,tA,lA,rA.,tB,lB,r".Bj"else
STORE(A.,sum,B)) -

end 3;

integer procedure P(A1,B1); integer A1,B1;
begin integer A,B,tA,tB,lA{lB,n; real rA,rB; n:= gnn;

tA:= TYPE(ES(A,A1),lA(rAJ; tB:='°""TYPE(ES(B,B1),lB,rB);
P:= SR(n,if EQ(A,ZEROJ V EQ(B,ZERO) then ZERO else
if EQ(A,O~) then B-saved else if EQ-nr,TIN'E) then A-saved else
TI numbertype"('=EK'j /\ numbertype('tB) then ...,J - -

- OPER ON NUM(product ,A, B, tA, tB) e!s'e
if polynomialtype(tA) /\ polynomialtype(tB) then
- OPER ON POL(product,A,B, tA,rA, tB, rB) els-;-­
if rationaltype(tA) /\ rationaltype(tB) t'fien
- OPER ON RAT (product ,A, B, tA, 1A, rA, tB ,Iir,'rB) else
if tA = sum then S(P(lA+saved,B),P(rA+saved,B)Teise
TI, tB = sum 'tneri S(P(A,lB+saved) ,P(A,rB+saved)) else - -- -

49

50

connnent

v. Output and conversion.

pr9cedure OUTPUT(F); value F; integer F;

begin procedure OP(F, type); value F, type; integer F, type;
begin integer t,A; real B;

procedure LBR; ift""< type then PR string(~(::J,);
procedure RBR; TI' t < type then PR string(~)::f.);
t:= TYPE(F ,A;B); -
if t = algebraic variable then Dvar(F) else
TI' t = short integer\/ t = long integer then Oint(F) else
TI' DYADIC OP(t) then -
oegin LBR; OP(A,tT;if t = sum then PR string(~+:j.) else

if' t = product thenPR string~) else PR stringf.P'$);
oP(B,t); RBR -- -

end else
oegininteger i,degree,X; degree:= length(F) - 2;

begiri integer array coef[-1:degree];
GE1' ARRAY(F,!,-1,degree,coef[i]);
if t = polynomial then
oegin integer coefTit:= sum;-LBR; X:= coef[-1];

for i:= 0 step 1 until degree do

. ,

oegin coefi:= coef[iJ; if EQ(coefi,ZERO) then goto end for i;
OP(coefi,product); PRstring(iX}); Dvar"CXTI' ~tring(.W);
PR int num(i); if i < degree then PR string(~+:!-);

end for i: -
end; RBR

enael.se ·
oeg~ string(~(:j.); for i:= 0 step 1 until degree do

begin OP(coef[i],0);7l' i < degree then PR string(f;:j.) end;
PR string(~):j.) -

end end end end OP;

procedure Oint(X); value X; integer X;
begin integer fnn,1; boolean b;

51

fnn:= gnn; 1:= length(X); b:= ISIGN(X) < O; if b then PR string(~(::J,);
if 1 = 1 then PR int num(VAL OF S INT(X))
eise -
'oegin integer elem;

if b then PR string(H); PR int num(abs(ELEMENT(l,X)));
Tor j := 1 1 step -1 until 1 do
oegin elem:= a~MENT'tf;X));

if elem < 1 000 then
oegin if elem > ""'"'mo then PRstring(~Oo:}) else

end

TI' elem> 10 'tnen PRstring(~oooo::J.Teise
TI' elem= o "tnen PRstring(~oooooo:}Teise

- PRstring(~00000::f,) -

52

else if' elem< 10 k, 4 then PRstring(.f::oo:j,) else
Tr elem < 10 k, 5 then PRstring(.f::o:j.); -

PR'""'Tnt num(elem)
end

ena;if' b then PR string(.f::)i)
encfljint; -
TIP'tF,O)

end;

procedure Ovar(X); value X; integer X;
PR sym(VAL OF S INT(XJ + 9);

procedure PR string(s); strings;
begin PRINTI'E:xT(s) ~;

procedure PR nlcr; PR string(.f::
:f);

procedure PR num(a); value a;real a;
begin PRINT(a)end; -- -

procedure PR int num(a); value a; integer a;
begin integer b; if' a < 0 then begin _PR string(H); a:= -a end;

if' a < 9 then P'Ir sym(a) else
oeginb:='a: 10; a:= a :::-'ox 10; PR int num(b); PR sym(a) ~

end; -

procedure PR sym(a); value a; integer a;
begin PRSYM(a) end;

comment

In the procedure Dint, whose function is the output of' long or short
integers, it has been assumed that G = 10 ~ 6.
The function of' the procedure Ovar is the output of' algebraic
variables.
By elaborating the call Ovar(X), the symbol, of' which the number in
the alf'abet has been specified by the value of' VAL OF S INT(X), is
printed.
The addition of' 9 to the value of' VAL OF S INT(X) in the procedure
body of' Ovar reflects the use of' a standard-procedure-,PRSYM,.. of' the
~thematical Centre.
The standard procedures, that have been used without describing
them, are PRINTI'E:xT and PUTEXT, f'or printing and punching a text
between the ~thematical Centre version of' the string quotes
"<j:'' and ":I>", and PRSYM and PUSYM, f'or printing and punching a symbol.
They have been described in [8].

/'1~ bool~an procedure even(s);ds; integers; even:= s = s :

. ,
2 X 2;

integer PL1,PL2,i,X,fnn;
comment now we shall demonstrate a simple example.;
INITIALIZE; fnn:= gnn; ES(X,AV(0,24)) ;
ES(PL1,POL(i,8,X,if i = 0 then S INT(-5) else

if i = 1 then S INT(2) else
if i = 2 then S INT(8) else
if i = 3 then S INT(~) else
if i = 4 then S INT(-3) else
if i = 5 then ZERO else -
if i = 6 then ONE else
if i = 7 then ZERO else ONE)) ;

ES(PL2,POL(i,6,X,if i = 0 then S INT(21) else
if i = 1 then S INT(-9) else
if i = 2 then S INT(-4) else
if i = 3 then ZERO else
if i = 4 then S INT(5) else
if i = 5 then ZERO else SINT (3))\.

PR string(f The greatest c'onmion divi~of t); P"Flicr;
OUTPUT(PL1); PR string({ and t); PRnlcr;
OUTPUT(PL2); PR string({ is: t);
OUTPUT(EV(PGCD(PL1,PL2))); ERASE(fnn)
end end ----
The input tape consists of

The output is:

The greatest comm.on divisor of

5000 1000000

(-5)*x+0+2*xt1+8*xt2+(-3)*x+3+(-3)*xt4+1*xt6+1*x+8 and
21*xt0+(-9)*xt1+(-4)*xt2+5*xt4+3*xt6 is: 1

53

54

[1] G.E. Collins, Subresultants and reduced polynomial remainder sequences,

JACM, vol. 14, nr. 1, Jan. 1967, pp. 128-142.

[2] G.E. Collins, The SAC-1 integer arithmetic system, Technical reference

note of the University of Wisconsin Computing Centre.

[3] G.E. Collins, The revised SAC-1 integer arithmetic system, Technical

reference note of the University of Wisconsin Computing

Centre.

[4] G.E. Collins, The SAC-1 polynomial system, Technical reference note of

the University of Wisconsin Computing Centre.

[5] G.E. Collins, The SAC-1 rational function system, Technical reference

note of the University of Wisconsin Computing Centre.

[6] D.E. Knuth, The art of computer programming, Volume 1, Fundamental

algorithms, Addison Wesley.

[7] D.E. Knuth, The art of computer programming, Volume 2, Semi-numerical

algorithms, Addison Wesley.

[8] F.E.J. Kruseman-Aretz, Het MC-ALGOL 60-systeem voor d~ X8, Voorlopige

programmeurshandleiding, MR 81, Mathematisch Centrum.

[9] B. Mailloux, On the implementation of ALGOL 68, Mathematisch Centrum.

[10] P. Naur (Editor), Revised report on the algorithmic language ALGOL 60.

[11] W.V.O. Quine, From a logical point of view, Harper Torchbooks, Harper

and Row, New York.

[12] R.P. van de Riet, Formula manipulation in ALGOL 60, part I, Mathe­

matical Centre Tracts nr. 17, Mathematisch Centrum.

[13] R.P. van de Riet, Garbage collection methods for .ABC in ALGOL 60,

T.W. report 110, Mathematisch Centrum.

[14] B.L. van der Waerden, Algebra I, Springer-Verlag, Heidelberg.

[15] A. van Wijngaarden (editor), B.J. Mailloux, J.E.L. Peck and

C.H.A. Koster, Report on the algorithmic language ALGOL 68, second

printing by the Mathematisch Centrum, Amsterdam, MR 101,

October 1969.

List of errata. MR 119/70.

page 1, line 15

page 1 , line 18

page 14,, line 11

page 14, last line

page 15, last line

page 14 and 15, modified

page 38, line 20

page 46, line 21

page 52, last line

page 53, line 17

else STORE (a,sum,b). -+

else STORE (a,sum,b);

if a= one then b else if b = one then a.

if a= one then b else if b = one then a

1: the condition F > 0

1: The condition F > 0

from a call of integer :erocedure STORE: -+

from a call of integer :erocedure STORE: ;

the . symbol must b~ deleted. ,
as indicated above, must be interchanged.

,_,
Product: = -V(p) ; ERASE (fnn)

Product:= V(p)-saved; ERASE (fnn)

vale value

if i = 5~ZERO else S INT(3)); -+

if i = 5 then ZERO else S INT(3)));

