stichting
mathematisch
centrum

REKENAFDEL ING MR 119/70

W.P. DE ROEVER
AN EXACT RATIONAL FUNCT ION SYSTEM WITH
GARBAGE COLLECTION IN ALGOL 60

‘r:;«h?' ":‘i‘

Ay

SEPTEMBER

2e boerhaavestraat 49 amsterdam

BibLIOTRLEK MATHEMATISCH CENTRUM
AMSTERDA#

Printed at the Mathematical Centre, 49, Ze Boethaavesiraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
progit institution aiming at the promotion of pure mathematics and its
applications. 1t (s sponsored by the Netherlands Government thirough the
Netherlands Onganization for the Advancement of Pure Reseanch (Z.W.0),
by the Municipality of Amstendam, by the University of Amstendam, by
the Free Univernsity at Amstendam, and by industries. :

Contents

page
I.1. Introduction to formula manipulation and garbage collection. 1
I.2.1. Modes and linking complexity. ‘ 6
I.2.2, The free-list garbage collection technique. 9
I.3. Representation of formulas in Ct, C2. , 14
I.L, Retrieval of and enquiries concerning objects stored in C1, C2.18
IT. The number system. 22
II.1. Long integer and short integer arithmetic. 22
IT.1.1. A brief description of the basic integer procedures. 22
IT1.1.2. Declarations and explanations of the basic procedures. 22
I1.2 The rational number system. 32
IT.2.1. Representation of a rational number. 32
II.2.2. Operations with rational numbers. 3k
IIT. The rational function system. 38
III.1. Polynomial arithmetic. 38
ITI.1.1. Objects having the same hierarchy of variables. 38
I1I.1.2. A brief description of the basic integer procedures, that
perform polynomial arithmetic. 39
ITI.1.3. Declaration of the basic polynomial'arithmetic performing
procedures. Lo
III.2. Rational function arithmetic. L6
Iv. The integer procedures S, P, Q and D. L9
V. Output and conversion. 51

References. 5L

Summary:

The program, contained in and commented on in this paper, originated
from a suggestion by R,P, VAN DE RIET to develop an infinite
precision rational function system, using the formule manipulation
methods for ALGOL 60 described in [12] and garbage collection
methods described in [13]. It is part of a future extension of his
formile manipulation system, to be named ABC for

"Algebraische Bewerkingen met de Computer”,

I,1., Introduction to formula manipulation and garbage collection.

As an introduction to formuila manipulation, consider the following
ALGOL 60 program,

begin integer one,zero,sum,product,algebraic variable,k;
integer array C[1 3,1:1000];
Integer procedure STORE (1hs type,rhs); value lhs,type,rhs;
integer 1nhs,type,rhs;
BegIn STORE:= ki= k + 1; C[1 ,kl:= 1hs;
T C[2,k]s= type; C[3,k]:= rhs
end STORE;

integer procedure TYPE(f,lhs,rhs); value f; integer f,lhs,rhs;
Begin Ins:= CL1,7]; TYPE:= c[e f]; The:= C[3;T] end;

integer procedure S(a,b); value a,b; integer a,b;
8:= if a = zero then b else ﬂ‘ b = zero then a
else"STDRE(a,,sum,B)j
integer procedure P(a,b); value a,b; integer a,b;
P:= Jff—a. = zero V b = zero then zero else

P R,
if a = one then b else if b = one then %
eIse STORE(a,product,b);

integer procedure DER(f ,x) 3 value f,x; integer f,x;
Pegin Integer a,type,b; typei= TYPE(f,a,b);
¢= 1f T = x then one else

if type = sum then S(DER(a,x),DER(b,x)) else
IT type = prodﬁ—cTthen S(P(a DER(b,x)) P{DER(a,x),b))
else zero

end DER;

INTTIALIZE: sum:= 1; product:= 2; algebraic variable:= 3; k:= 0O;
one:= STORE(O,algebraic variable,0);
Zeros= STDRE(O algebraic variable,o),

comment

Suppose one wishes to calculate:

f=(xXx+x)Xdy/ax + (y X y + y) x dx/dx,
vhich is a trivial problem, but illustrates the need for automatie
garbage collection,

The calculation is performed by the following actual program;

ACTUAL PROGRAM:
begin integer x,y,f;
~x:= BTORE(D,algebraic variable,0);
yi= STORE(O,algebraic variable o);
= S(P(S(P(x x),x),
DER(.V:)5

~

P(s(P(y,v),v),
DER(x,x)

))s

comment

Since declarations of operators are not feasible in ALGOL 60, we
have to transform formulas as used in mathematical textbooks into
Polish prefix, thgt is functional notation, before trying to
construct representstions of these by means of function designstors,
- In the above program we interpret the usual sum, product and
derivative operations by the integer procedure S,P and DER,
Corresponding to certain formilas we construct function designators
availing ourselves of the afore = mentioned interpretation of operations,
which during their execution, result in the construction of objects
internal to the array C,
This processis comparable to a Goedelnumbering of a finite class
of formulas of some formal system, such that natursl numbers to
which no formula correspond in the used begin segments of natural
nunmbers are avoided during the process of construction,
2

end

end

The result of the calculation is that f = ((y X y) + y). But during
the calculation process the expression S(P(x,x),x) has been
evaluated, resulting in the storage of the useless formulsg g =

((x X %) + %) into the array C,

This formula is useless for two reasons:

ag it is not used for building up f,

b) it cannot be used later on, since it is not known where it is
stored in C,

Therefore, we may freely congider this formule as garbage, To get
rid of it is not a simple matter, since it occuples space in C
which 1s surrounded by space in which still interesting formulas
are stored (y and f).

Consider the situation that occurs, when the array C has been filled
up completely during execution of some particular program,

Then the question arises, whether unneccessary information has been
stored, e.g. the object corresponding to g,

Suppose each subvalue referred to by the name possessed by the slice
c[1:3,i],1i = 1,2,..,1000, may be "marked" — the manmer in which is
discussed in the commentary following the declaration of procedure
COLLECT GARBAGE at the end of section 1.1.. -

Then the multiple value referred to by the name possessed by C is marked
in the following steps:

step t: If there exists a subvalue referred to by the name of a slice

c[1:3,1],1= 1,2,.,,1000, which is not yet "marked" and which
is referred to by a name possessed by a "formula~identifier"
(defined in the sequel) then this value is "marked" and
step 1 is taken again; '

otherwise, step 2 is taken,

step 2: If there exists a subvalue referred to by the name of a slice
cl1:3,1i],i = 1,2,.,,1000, which is not yet "marked" and which
is referred to by a component of a '"marked" subvalue, then
this subvalue is "marked" and step 2 is taken again;
otherwise, the marking of C is complete,

Now the subvalues referred to by names of slices C[1:3,j], j = 1,2,..,
1000,which are not "marked" will not anymore be relevant for computation
during the execution of the program and therefore be considered and
henceforward be defined as the garbage of C,

So to determine the garbage of C, the computer must be able to
distinguish between those identifiers, to which formilas - names of
internal objects of C, i,e. values of certain function designators
like STCORE,S,P and DER in the previous example = have been assigned,
we shall call them in the sequel "formila ~ identifiers", from those
for which this is not the case,

In ALGOL 68 the modes of those identifiers provide an indication of
this, In our system we have to construct explicitly a list of those
identifiers, to be consulted in case a call of COLLECT GARBAGE, the
central garbage determining and free space providing procedure,
results in a garbage collection, Actuslly "list of identifiers" is
confusing and erroneous, for what reslly matters is a list containing
the values assigned to those formula=identifiers, i.e, the names of
to be saved internal objects of C,

Moreover, one cannot handle lists of ALGOL 60 declared identifiers
in an ALGOL 60 program,

Therefore we relax the link between formila~identifier and assigned
formila, by assigning the formila~identifier the name of the place
in the list, where the formula has been stored. That 1s, realize the
ALGOL 68 name concept in an ALGOL 60 program, by assigning the
formila~identifier the name, it would possess in ALGOL 68, and store
the value, the name would refer to in ALGOL 68, in that list, which
is the function of the integer procedure SAVE: a call SAVE(FS results
in computing the value oFf 1ts actual parameter F, after which the
obtained value is stored in a list at a place referred to by SAVE's
value,

An additional procedure is now neccessary to obtain the stored velue,
a formila, from a formla~identifier, This is the function of
integer procedure V,

In de sequel we shall use "refer to", as applied to our ALGOL 60
program, for

(i) the>re1ation that exists between a formula ~ as defined
above = and the object it specifies in array C and

(ii) +the relation that exists between the value of a
formilag=identifier and the formila stored — as mentioned
above = gt 8 place in the list of to—=be-saved names
specified by this wvslue,

Since we shall store this list in C itself, the two cases of "refer to"
will coincide.

Therefore a formulae is a name referring to an object internal to C and
the value of a formula=identifier is g name referring to a formila.
This terminology has been derived from [15] and is an interpretation
of situations,occurring in this kind of formuls manipulation in

AIGOL 60, in ALGOL 68, as suggested by a remark of VAN WIJNGAARDEN'S,
This is the function of the integer procedure V,

Now suppose one 18 writing the integer procedure S for storing a sum,
After declaration of, followed by assigning formula's in the above
relaxed sense to, the integers i and], one subsequently tests the
execution of expressions S(V(i),S(V(ig,V(j))) and S(s(v(3),V(3)),
s(v(1),v(1))).

During execution of the latter arithmetical expression, after execution
of S(V(3),V(35)), one has to save the object stored from the garbage -
collection, as garbage collection may occur during computation of
s(v(1),v(1)).

This contrasts with the computation of the former expression, as
garbage collection occurring during computation of S(V(1),V(j)) does
not erase the internal object referred to by V(i), its name being
contained in the list of names of internal objects to be saved,

So names referring to internsl objects of C have to be distinguished
according to their being possible garbage or not,

In ALGOL 68 no problem of this kind occurs, as the use of a global
generator in the identity declaration of the identifier provides for
this distinction,

As checking on occurrence in this list is too time—consuming @ process,
we mark names of saved internsl objects (by adding 100000, the value
of the, in the embracing block, declared integer saved, confusion not
arising as 100000 excels any possible upperbound of C),

The introduction of a name upon relaxation of the link between
formila=identifier and formulas has, amongst other things, as a
consequence that this name has to have a scope, which corresponds
with the smallest embracing block in whose heading that identifier
ocecurs, i.e, -

&

(i) upon its declaration the link identifier =-- name has to be
constructed, in our case by the integer procedure DE, and

(11) upon leaving the block, in whose heading that identifier
occurs, the name must cease to exist, i,e, the object of
which the name is the formula referred to by the value of
that identifier, needs not to be marked when garbage
collection occurs.

The latter requirement is the reason to store this list in C itself,
and we add the space occupied by those names to the space available
for formla manipulation in C, the free space of C,

This is the task of the procedure ERASE, When called upon, it is the
last statement prior to Teaving the relevant block and it functions

due to the principle last in — first out, made possible by the ALGOL 60
block structure. The number of saved names, counted by the integer gnn
(global number of names), is assigned as first statement of the block

to a locally declared counter, fnn, and subsequently raised as new

names are created by calls of SAVE, It is a precise standard which names
have been added corresponding to declared identifiers, If, during
elaboration of a program, a block, in which new names might have been
introduced, is not left by elaborating its textually last statement
ERASE(fnn), due to elaboration of a goto statement, leading outside

this particular block, the explicitly defined successor has to be g
statement, which 1s or contains as first=to-bemelaborated statement
ERASE(snni, where integer snn (second number of names) has been

assigned exactly the number of names needed for further elaboration

of the program. Another consequence of the link between formula=identifier
and formula is, that a special procedure, whose call replaces assignments
"to formula~identifiers, has to be constructed, the integer procedure
ASSIGN, By meking it a function designator one provides for the ALGUL 68
value of an assignation,

For a description of particular garbage collection methods in ALGOL 60,
for this kind of formula manipulation system, I refer tol13],

VAN DE RIET describes in this article two techniques: the relocation
method and the free list technique.

The relocation method has as a possible advantage the feature that each
saved object is relocated after garbage collection as a whole, that
meens, slices C[1:3,i] of the array C used for storage of one particular
objeet have succeeding subscripts, so the usual referencing within the
array C, to different components of that object, may be avoided e.g., by
specifying the number of necessary slices,

The main feature of the free list technique is that after garbage
collection no relocation of the saved objects takes place., The garbage
has as structure a linked list called the free list (see below). The
argument for using the free — list technique have been given in the
above mentioned paper.,

&

I,2.1. Modes and linking complexity.

The next ALGOL 68 declaration of mode formula clarifies our use of
"formila" as stated in I,1,

union formula = (ref short integer, ref algebraic variable, ref triple,
Ter miltilinked structure, ref Linked 1ist);

struct short integer = (int value);

struct algebralc variable = (string name);

struct Triple = (formila left operand, int operator, formula
right operand5 -

struct linked 1list = (ref linked 1ist 1ist, int value);

struct miltilinked structure = (ref multilinked structure mi1t11inked
TIsT, fbrmula coefticient);

int sum = 33, product = 34, rational functio = 35, rational number = 36,

quotient = 37;

The described marking of non = garbage and making an object of mode
linked 1ist of the garbage of C, is the task of the procedure COLLECT
After marking the 1list of names of objects (formulas) to ~ be ~ saved,

the garbage collector proceeds by marking those objeets, guided by the
names those objects contain, which can be best demonstrated by the mode
declarations in the above ALGOL 68 declaration prelude., They reflect
exactly the linking complexity, i.e, the complexity of the manner in
which names are contained, of the realizations of objects of corresponding
modes in the array C.

begin integer free cell,last free cell,last name,max of C,algebraic variable,
sum,product ,quotient ,one,zero,0NE,ZERO,long integer,short integer,rational
function,rational number,polynomial ,miltilinked structure,auxiliary,saved,
gnn ,fnn ,snn ,minone ,MINONE,G,Gminl ,di; real d4ii;
max of C:= read; G:= read; comment our choice for G is 10 A 6;
begin integer array C1[1:maX of CJ; real array C2l1:max of Cl;

comment

A= In the formuls manipulation program specified in I,1.1,, the mode
concept has been realized in the array C, by declaring integer
identifiers having the same names as the corresponding modes and
assigning them values, analogous to the above identity declaration,
by call of the procedure INITIALIZE - see next section,

Here follows a short discussion and classification,according to
linking complexity, of those realizations:

(i) short integer, algebraic variable,

None of the components of the subvalue is a name of other
i subvalues,

Objects of these modes, respectively algebraic variables and
short integers, are compsrable to algebraic verisbles and
integers whose absolute value is limited by the value of the
expression G - 1,

(i1) sum, product, quotient, rational function, rational number,

Both of the components of the subvalue are names, if one
neglects the operator field component. The structure of the
object corresponds to g general binary tree,

Objects of this mode are comparable with the usual
interpretation given to sum, product, quotient, rational
number and rational function,

(111) long integer.

Objects of thie mode correspond to objects of mode
linked 1ist, with end specified by C1llast element] = 0,
Generally a linked list may be realized in C as follows,
integers first element and last element having been
declared and assigned values:

(2) The value possessed by (Cilfirst element],Colfirst element])
is its first subvalue, referred to (in our interpretation
of an ALGOL 60 program in ALGOL 68 terminilogy) by the value
of integer first element,

(p) If the value possessed by (C1[11,C2[1]) is a subvalue
of the linked list, its successor is referred to by the
value of C1[i], if C1[1] % last element,

(e¢) The value possessed by (Cil[last element],Co[last element])
is its last subvalue,

(1v) polynomial, multilinked structure,

An object of the second mode, as realized in C, corresponds
to an object of mode multilinked structure,

An object of the first mode, as realized In C, corresponds
again to a mudtilinked structure, however, its first
coefficient field is of mode ref algebraic variable, and
is comparable to a polynomial 1in the variasble specified
by its first coefficient field,

Both of these objects can be realized in C as objects of
mode linked list, with, for each of the elements of these
1ists, the Second component (the velue of C2[il) of the
subvalue possessed by (C1[11,C2[1]) being a formila and
in case of a polynomial the second component of the

first subvalue of the list referring to an object

of mode algebraic variable,

(v) 1In [12,section 2.9] and [15,11.11 £] another mode arises,
that of a function (possibly specified by Ci1[il) with
argument (possibly referred to by the value of C2[il),

It does not occur in our system,

While in this section the difference between polynomials and objects of
mode long integer or short integer has been stressed, in (4] coLrivs
emphasizes thelr similarity, by considering an obJect of mode

long integer as a polynomiasl of degree zero, using the concept "list of
order n .

A list of order n may be defined recursively as:
(1) a 1ist of order zero is an object of mode linked list,
(11) a 1ist of order n, n a national nunber, is an object of

mode multilinked structure, whose coefficient fields
refer To 118t8 Of order n = 1,

The importance of this concept in his system is, that only arithmetical
operations between lists of the same order can be performed by its
subroutines, ,
Let the value of Q refer to an object of mode long integer and the
value of P refer to g list of order n, n > 0, e.g., & polynomial in
the varisbles x[1], soe 3 x[n] (consult section 3.1.,1, for explanation)
the value of each referring to an object of mode algebraic varisble,
If in COLLINS' system addition of P to Q is required, one has to
construct explicitly a list of order n, in our system referred to by
the value OT (consult section 1.3)
STORE ARRAY(i,=1,0,polynomisl,if 1 = =1 then x[n] else
STORE ARRAY(1,-1 o,polynomia:T"I? i = =T then x[n — 1] else = ,.
«so STORE ARRAY(i,=T,0,polynomial,
if 1'="21 then x[1] else Q) ...)),
corresponding to "(..(Q x x[11 A 0) x ..”X x[n] A
We do not wish to introduce such versions of "the same nunber" in this
system, This point of view has been expounded in section 3,1.1,

In the sequel we shsll use the words "linked list", "multilinked structure",
"polynomial”, "short integer", "algebraic variable" for an object of mode
linked 1list, multilinked structure, multilinked structure with first
coefticient field of mode algebralc variable, short integer,

algebraic varisble, respectively the words 'sum ', ' product , "quotient",
"rational number', "rational function" for an object of mode triple with
the value of the operator field equalling the value of integers sum,
product, quotient, rational number, rational function, respectively, and
the word "long integer" for a "linked list",

I,2.2., The free-=list garbage collection technique,

The available space for storage of information is structured as a
linked 1ist and realized in C, compare I.2,1. (iii), with its first
subvalue specified (referred to, in our interpretation) by the value
of integer free cell gnd its last subvalue by the value of integer
last free cell,

When for the execution of the program a new subvalue is needed

(i) free cell is made to refer to this object after the vglue
of C1[free cell] has been saved in an auxiliary integer k,

(i1) if free cell = last free cell, the garbage collector comes into
opergtion and a new linked list is formed of the garbage of C,

(iii) if free cell # last free cell, the assignment free cell:=
is performed.

Having now at our disposal the notion of multilinked structure, we are
gble to characterize the garbage of C more precisely, The 1list of names
of objects to = be = saved, the name = 1list, constitutes a linked 1list, if
those names are considered separate from the objects they refer to, If
the value of integer i refers to one of its subvalues, the value of Ci[il]
is a name of & To — be = saved object and, if C2[1i] % 0, the value of
C2[1] is the neme of a next subvalue of the list, with its last subvalue
referred to by the value of integer last name,

However the object name — 1ist taken together with the objects its
contained names refer to, constitute a multilinked structure (this is
here a matter of interpretation, in ALGOL 68 it is forced by the mode
declaration),

Garbage of C is exactly the complement with respect to C of the space
occupied by this object.

integer procedure ERROR(b,s); boolean b; string s;
T b then
Pegin PR nler; PR string(s); EXIT; ERROR:= 1 end;

procedure INITIALIZE;
Pegin integer 1; for i:= 1 step 1 until max of C do C1{1]:
“free cell:= 1; 1ast free cell:= max of C; CGminli= G = 1;
last name:= 0; saved:= 100 000; gnni:= fnn:= 0;
algebraic variable:= 1 + 0 X 163
short integer:= 2 + 0 X 16;
sum:= 1 + 2 X 16; product:= 2 + 2 X 16; quotient:= 5 + 2 X 16;
rationsl function:= 3 + 2 X 16; retional number:= L4 + 2 X 16;
polynomials= 1 + 3 X 16; multilinked structure:= 2 + 3 X 16;
long integer:= 1 + 4 X 16;

=14+ 13

10

DE(one ,STORE(O,short integer,1),DE(zero,STORE(O,short integer,0),

DE(minone,STORE(O,short integer,—1),0)));
ONE:= V(one); ZERD:= V(zero); MINONE:= V(minone); smn:= gnn;
end INTTIALIZE;

integer procedure TYPE(F,A,B); value F; integer F,A; real B;
begIn ERROR(F < 0 V F = 100000,¥F not appropriate in TYPE});
TIF F > saved then Fi:= F — saved; B:= C1[F];

Zi= B : 128; TYPE:= B — A X 128; B:= C2[F]

comment

We specify the above mentioned modes by declaring (in I.2,1)
identifiers carrying the names of those modes and assigning
them vglues in INITTALIZE, As a result, when writing one's own
particular program, using the library prelude developed in this
paper, its first statement has to be a call of INITIALIZE,

In I.,1, we quoted from [13] a program for formula menipulation
in its simplest form, In that program execution of the
assignment f:= STORE(1lhs,type,rhs) creates an object in the
array C, corresponding to the sum or product, according

to the value of type, of objects representing subformuilas
referred to by lhs and rhs,

This object is the contents of slice C[f,1:3].

Asg the length of a computer word affords us to store integers
mich larger than any possible bound of an array, for efficient
use of the available memory we store not the miltiple value
(1hs, type, rhs) but (lhs X 128 + type, rhs), so affording

128 possible modes of objects by coding. This explains our use
of a disguished two dimensional array C1, C2[1:max of C] and the
decoding by TYPE(F,A,B), which results in TYPE being assigned
the mode of F, A:= lhs and B:= rhs,

Structure enquiries to modes are performed in keeping with
the above classification according to linking complexity by

3

Boolean procedure MIONADIC OP(t); value t; integer t;
VOWADIC OP:=¢T ¢ 16 = 1;

Boolean procedure DYADIC OP(t); value t; integer t;
DYADIC OP:="t : 16 = 2;

Boolean procedure MJLTILINKED STRUCTURE(t); value t; integer t;
WOLTICINKED STRUCTURE:= t : 16 = 3;

Boolean procedure LINKED LIST(t); value t; integer t;

TINRED LI8T:= © & 16 = L;

11

comment

They function mainly in COLLECT GARBAGE and the boolean procedure EQ,
which establishes equality of two objects, referred to by the value
of X and Y, in respects specified by the algorithm described
by its body,

boolean procedure EQ(X,Y); value X,Y; integer X,Y;
—TF X =YV abs(X - Y) = saved then EQr= frue else
Pegin integer tX,tY,XA,YA; resl XB,YB;
—FX;="TYPE(X, XA XB); +Y:= TYPE(Y,YA,YB);
if tX = tY A (tX = ghort integer V tX = algebraic variable V
- MONADIC OP(+tX) V DYADIC OP(tX)) then
EQ:= if tX = short integer V tX = glgebralc varisble then
— XB = YB else
1f MDNADIC OP(tX) ™A XB = YB then EQ(XA,YA) else
EQ(xa,YA) A EQ(XB,YB)
else .
IF X = tY A (MULTILINKED STRUCTURE(tX) V LINKED LIST(tX)) then
begin if (if MULTILINKED STRUCTURE(tX) then EQ(XB,YB) else
~XB = ¥B) then

L: begin if XA =0 = = 0 then
BegIn—:[f XA =0A YA 0 then begin EQ:= true; goto OUT end
else

TF (if MULTILINKED STRUCTURE(tX) then EQ(c2[xa],C2[YA])
else C2[xA] = CQ[YA]) ‘then
begin XA:= C1[XAl; YA:= C1[YA]; g5To L end
en
end; EQ:= false;
ouTs
end
else EQ:= false
end

comment

Adding a name to the multilinked structure of non garbage objects
of C1, C2 is performed by:

.
3

integer procedure SAVE(F); value F; integer F;

begin comment

saves F from garbage collection by adding a cell, whose
name is the value assigned to SAVE, to the name list. The procedure
body &f DE contains the statement SAVE(F) for creating a cell of
the name-list, the name of which 1s assigned to a formile=identifier
as an extension of the ordinary declaration, This cell may be used
for storing future formulas by means of calls of ASSIGN,

12

The value of gnn, the number of declared names, is needed for
realizing in the name = list the scope of corresponding formula =
identifiers;

integer k;
FRROR(F < O V F = 100000,¢ F not appropriate in SAVE});
1f F > saved then Fi= F = gaved; gnni:= gnn + 13

= C1[free celll; Cilfree celll:= F; C2[free celll:= last name;
SAVE:= last name:= free cell;

comment a name has been added to the name = list, so the
question whether there is still space left in C arises;

COLLECT GARBAGE(O,esuxiliary,k)
end SAVE;

comment,
A8 a complement to SAVE, shrinking the nsme = list, functions the
procedure ERASE:

-
2

procedure ERASE(n); velue n; integer n;
for n:= n while n < gnn do
Pegin join To Tree space(last name); gnni= gnn =— 1;
——I_-t name:= C2[last namel;
ERROR(gnn < snn,4ERASE not appropriate})
EEE ERASE;

procedure join to free space(k); velue k; integer k;
begin Cillast free celll:= k; last Tree celli= k end;

comment

For use in arithmetical expressions defining the value of a
function designator, as in S, P and Q, the next two procedures
proved to be convenient:

°
E

integer procedure RS(n,F); integer n,F;
begin ERASE(n); RO:= F end;

integer procedure SR(n F); integer n,F;
begin SR:= F; ERASE(n) end;

comment

Formileg=~identifiers are now initialized, after declaration of integers
£1,f2,,.,fn, by DE(f1,F1,DE(f2 F2,..,DE(fn,Fn 0)..)), which call
results in adding new objects, referred to by the values of f1,..,fn,
to the linked name-list such that C1[f1] =

13

If Fi £ 0, the value

of Fi refers to an object to be marked during garbage collection,
otherwise in stead of assigning a name of a subvalue of C to c1[fi] -
the lowerbound of C is 1 = C1[fi]:= 0 is elaborated.

The declarstion of integer f together with the call DE(f,0,0)

mey be compared with the ALGOL 68 identity declaration

ref fornmla, f = heap formula,

If we try to interpret MATLLOUX's suggestion — see [9] — for the
implementation of heap genergtors versus local generators, the
stack would consist only of the name = list, while the rest of C
would occupy the heap,

Merely for reasons of syntactic checking, we assign the negative
values of the integers corresponding with names.

.
2

integer procedure DE(f,F,next); integer f,F,next;

begin T:= — SAVE(F); DE:= next end;
comment

Asgignment to formula = identifier is performed by

.o

integer procedure ASSIGN(f,F); value f,F; integer f,F;
—max of CV £ 50, -
—{n_ame not appropriate in ASSIGN}5 if F > saved then Fi= F - saved;
ASSIGN:= F + saved; Cl[~fl:=F -
end ASSIGN;

comment

To obtain a formula from the value of a formilamidentifier that
refers to 1t we use

&
2

integer procedure V(f); value f; integer f;
Vi="If £ > 0 then ERROR(True,qname > 0 in V}) else C1 [~f] + saved;

comment

Conditional saving without corresponding formila~identifier
is performed by

Ve

integer procedure EV(A); value A; integer A;
I E < saved then begin SEVE(Z); EV:i= A& + saved end else EVi= A;

N\

comment

The procedure TRACE marks each subvalue of the object referred to by

the Value of F in a mammer thet reflects our particular way of constructing
objects in C, as discussed in I.3.. This is such that Ci1[F] > 0,

ci[F]l =0 only occurring if F refers to a subvalue of the name - list
originating from a call DE(f,0,0), the value of Ci1[F] being positive

in all other cases.

Thus the condition is fulfilled for the assignement C1[F]:= —C1[F] = 1

to mark the subvalue referred to by the value of F, (Labels of sentences
below correspond to labels in COLLECT GARBAGE).

1¢ The condition F >

A

2: The condition C1[f] > 0 reflects the need to mark only
unmarked slices, v

0 reflects the lower bound of C being 1,

3: This block reflects exactly our discussion of s partitioning
of the set of modes in classes of linking complexity,

h: Garbage collection is necessary if free cell = last free
cell, else there is no objection left to the assignment of
a free cell:= fc.

5: This statement, auxiliary to the integer procedure STORE,
is explained in the discussion of STORE, see I.3,.

6: This for = statement marks the multilinked structure which
consgists of name = list plus referred to objects,

T: Garbage has been determined and transformed into g linked
list while undoing the marking of non garbage.

8: As the garbage of C is empty the call for garbage collection
has been of no avail.

I.3. Representation of formulas in C1,C2,

In I,2,1, we clagsified the modes used in terms of linking complexity,
Tracing objects, names in other objects refer to, we end up, as
circular reference does not occur in this system, in objeets containing
no names anymore, These are algebraic varisbles, short integers and,

in a certain sense, long integers, taking into account that use of a
relocation method of garbage collection would have resulted in an
object contaeining no names (see page 5), although the free — list
technique requires a linked list for storing a long integer,

Every object internal to C1 and C2 originates directly or indirectly
from a call of integer procedure STORE: ®

4,

integer procedure ES(A1,A); integer Al,A;
begin AV:= A; if A1 < saved Then begin "SAVE(A1); Al:= A1 + saved
ena; ES:= Al

end ES;
comment

To obtain the ALGOL 68 feature of value of a closed clause whose
constituents are assignations to formmla identifiers, for the sake
of convenience the next procedure, besides ASSIGN and DE, is used,
It functions mainly in OPER ON NUM and OPER ON RAT, the centrsl
arithmetic performing procedures.,

°
2

integer procedure Multiple ES(A1,A,B); integer Al,A,B;

begin A1:= A; 1T Al < saved then begin SAVE(AT); A= A1 + saved end;
~Multiple ES:=B

ends

procedure COLLECT GARBAGE(n ,aux,fc) 3 value n; integer n,fc,aux;
Pegin integer i,a;
procedure TRACE(F); value F; integer F;
1¢7 if I > O then i}
2: Tbegin if TTF] > O then
3: ~ Dbegin integer t,A] real B; t:= TYPE(F,A,B);
DP(t) Then TRACE(A) else
IT DYADIC OP(t) then begin TRACE(ZA); TRACE(B) end else
IF MULTILINKED STROCTURE(t) V LINKED LIST(t) them —
Begin if MULTILINKED STRUCTURE(t) then TRACE(EB); for A=
A while A # 0 do
begin if MULTILINKED STRUCTURE(t) thenm TRACE(C2[ATY; a:= A;
T A= TT[A]l; ci[al:= = C1[a] =1
end end; Cl1{Fl:= = C1[F] =1
end end TRACE;
hs TF free cell + la.st free cell then free cell:= fc else
begin free cell:=
5 _TMCE(B.U.X),
= lagt name;
62 for i:= 1 while 1 # 0 do
Begin TRACETCTT1]); C1TT]:= = C1[1] = 15 1:= c2[1i] end;
Ts Tor 1:= 1 step 1 until max of C do T
TFC1[1] >70 Then
Pegin if Tree cell = O then free cell:= last free cell:= i else
T joIn To free space(i)
end else C1[1]:= = C1[i] = 13
8: ERROR(Tree cell = 0,4no space left});
end end COLLECT GARBAGE;

16

integer procedure STORE(A,t,B); value A,t,B; integer A,t; real B;
Pegin integer k; <
T if MONADIC OP(t) A A > saved then A:= A — saved else
IF DYADIC OP(t) then
begin if A > saved then A:= A - saved;
1T B> saved then B:i= B — saved
B

comment

The preceding conditional statement cancels the marking of
saved formilas as mentioned in I,1, page 2 Dbefore they are
stored in C;

STORE:= free cell; k:= Cl1[free celll;
Cllfree celll:= A X 128 + t; C2[free ce11]-— B;
auxiliary:= free cell;

comment

The subvalue referred to by the value of free cell is now an
object of mode specified by the value of t, As the wvalue of free
cell has not been added to the name = list, garbage collection
might destroy the subvalue it refers to.

Execution of the statement labelled by 5 in the procedure

body of CUOLLECT GARBAGE prevents this;

COLLECT GARBAGE(1,auxiliary,k)
end STORE;

integer procedure AV(l,r); value 1,r; integer 1,r;
AV:= STORE(I,algebraic variable,r);

integer procedure S INT(i); value i; integer i;
= TF T <G then STORE(D,8hort integer,i) else
ERRDR(true,{i > G in S INTH);

comment

Linked lists and multilinked structures are stored by STORE ARRAY,

°
7

integer procedure STORE ARRAY(i,low,up,type,Al);
value low,up,type; integer low,up,type,i,Ai;
Pegin integer p,fnn; BOOIean linked list; real q; .
real procedure AI;
IF Tinked I1st A(i < up) therr
begin real m; me= Ai; i:=1 + 1; Al:=G X Ai + m end
‘comment the value of G is such that G X G = 1 fits 1n one word

eIse AT:= Ai;

17

ERRUR(loﬁ>up,{1ow>up in STORE ARRAY}); linked list:= LINKED LIST(type);
fnni:= gnn; i:= low; q:= AI;
if 7 linked list A q > saved then q:= q — saved;

L: STORE ARRAY:= p:= STORE(O,type,q); SAVE(p);
lows= low + (if linked list then 2 else 1);

for 1:=

low sTep 1 until up do

Pegin Cl[pl:= IT 1 = Low then free cell X 128 + type else free cell;

pi= free cell; q:= Cl1[pl; Cilpl:= 0; Colpl:= 0;

COLLECT GARBAGE(O auxiliary,q), qs= ATl;
if 7 linked 1list A g > saved then q:= q = saved; C2[p]'- q
end; ERASE(fnn)
5§g§1§mJRE ARRAY;

comment

The operation of STORE ARRAY splits up in two:
the object to be constructed is (i) a polynomial or (ii) a long integer.

(1)

(11)

The wvalue of AT equals the value of Ai,

At L the first coefficient Ai for 1 = low is stored and saved,
by creating a head of the required mode, that is saved
dynamically. If garbage collection occurs during construction
of the object, TRACE(C2[pl) creates no difficulties on account
of the condition in the conditional statement labelled by 1 in
the procedure TRACE, declared in COLLECT GARBAGE,

Moreover the partially constructed object is saved by SAVE(p),
the statement following the statement labelled by L,

In principle a long integer is a linked list with

names specified by Ci1[1] and values stored in C2[1l,

if the value of 1 refers to one of its subvalues, and

jco[1]l] < G, A8 G A 2 = 1 fits in one computer word

(see REMARK preceding the declaration of the multiplication
procedure MULT in 2,1,1,) we may encode two of such values

in one word, This motivates the use of AI, Garbage collection
occurring during construction is commented upon in (i).

H

integer procedure LONG INT(i,length,Ii); value length;

integer 1i,length, li,

begin EOOlean b; bi= true; i:= length + 1;
Tor Ii= T =1 while T>1Abdo if I1 = 0 then length:=

Tength — 1 else bi= false; i:= 1;

LONG INT:= TT_Iength S ‘then STORE ARRAI(l 1,length, long integer,Ii)

else

’T‘Iength = 1 then S INT(Ii) else ZERO

eﬁH—LDNG

£

INT;

boolean procedure int(X); value X; integer X;
bPegin integer t; t:= TYPE(X,dI,dii);

int:= t = short integer V t = long integer
end;

integer procedure POL(i,degree ,X,Ci) 5 value degree,X;
Integer 1,degree,X,Ci;
begin boolean b; bi= true; i:= degree + 1;
T for It= 1 =1 vwhile I > 0A D do
I BEQ(Ci,ZERO) then degree:= dégree — 1 else bi= false; i:= 0;
POL:= if degree = O A int(Ci) then Ci else
STORE ZARRAY(1,-1,degree,polynomial,if T = —1 then X else Ci)
end POL; - ~

comment

For one by one storing arbitrary formulas, e.g., referring to
objects not having the same hierarchy of variables(see III,1,1) s

(1) the formla F, that has been constructed first, is stored
and saved by elaborating ES(L,STORE ARRAY.(i,O ,0,Mmiltilinked
structure,F)) and,

(11) after formula G has beer constructed, it is stored and
saved by elaborating ADD TO(L,G),

°
B

procedure ADD TO(L,E); value L,E; integer L,E;

begin Integer A,q; tp(53);

~ERROR(T MULTILINKED STRUCTURE(TYPE(L,A,dii)),

4type of L not appropriate in Add to});

if L > saved then L:= L — saved; if B > sgved then E:= E - sgved;
IF A # O then™ -
Tor q:= CTLAT] while q # O do A:= g3
q:= Cl[free ceITl; C1[free Gelll:= 0; C2[free celll:= E;
if A = O then C1[L]s= 128 X free cell + Ci[L]
else C1[AT:= free cell;
TOITECT GARBAGE(O,auxiliary,q)

end;

comment

I.Lk, Retrieval of and enquiries concerning objects stored in C,

Let the value of F be a formila and (C1[F],C2[F]) be a subvalue of the
object referred to by the value of F, (C1[F] : 128,C1[F] ~ C1[F] : 128,
C2[F]) is retrieved by a call TYPE(F,A,B) and TYPE obtains the numerical
value C1[F] — C1[F] : 128 of the mode of that object in the sense
specified on page(T~ 6).

19

In case the mode of that object, referred to by the value of F, is known,
we may differentiate, for partial retrieval of the object, with regard
to its class of linking complexity, see I,2,1,, as follows:

(i) a short integer is partially retrieved by integer procedure
VAL OF S INT,
If F = S INT(a), VAL OF S INT(F) =

we

integer procedure VAL OF S INT(a); value a; integer a;
VAL OF t= COLif a > maved then a~saved else al;

comment

(1) and (ii) a short integer, algebraic variable, sum, product,
quotient, rational number or rational function is
retrieved by TYPE(F,A,B), as specified,

(iii) and (iv) a long integer or polynomial is partially retrieved
by integer procedure GET ARRAY if one needs the
values of all value and coefficient fields (=ee
I,2,1,). If one needs the value of one value or
coefficient field specified by the value of =

(see below) a-call of integer procedure ELEMENT(s,F)
results in the concerned value being assigned to
ELEMENT,

°
3

procedure GET ARRAY(F,i,low,up,Ai); value F,low,up;
Integer F,i,low,up,Ai;
’B'eTgTrT{nteger t,A; real B; boolean linked list;
procedure AI(p), value p; real D;
If Tinked 1list A T < up then
Pegin real m; m:= entier(abs(p)/G) x sign(p); Ai:= p — m X G;
I:= i 1’ Ajt=m
end
Te Ajs= p;
T:= TYPE(F,A,B); i:= low;
linked 1list:= LINKED LIST(t); AI(B);
for i:= 1 + 1 step 1 until up do
I A > 0 then Yegin AT(C2[A]); Z:= C1[A] end else
Ki:= if MOLTILIRKED STRUCTURE(t) then ZERD elge O
5_{1_9 GET ARRAY;

integer procedure ELEMENT(s ,X) 3 value 8,X; integer =,X;
begin Integer type,t,A; real B; Boolean linKed list;
T Typet= TYPE(X,A,B); linked 1isTi= LINKED LIST(type);
te= if linked 1ist then U4 else 2;
if 8> t A type + short inTteger then

20

begin for ti= t + 1 while t <s A A A%0 -do
Pegin if linked 1ist then T:= t + 1;
end; -

Az= c1[A] end

FLEMENT:= if linked 1list then

end ELEMENT:

comment

TIf &= = 1 then B — entier(abs(B)/G) x sign(B) X G else
iT s = 2 then entier(abs(B)/G) X sign(B) else

I A ¥ 0 Then (if 1 even(s) then

T3[A] - entler(abs(c2lal)/6) <& sign(Ce[A]) X G

else entier(abs(c2[A])/G) x sign(C2[A])) else 0)

else

I s = 1 then B else

I7 MJLTILINRED STRUCTURE(type) then (if A £ 0

Then C2[A] else ZERO) else O

Two complications arise:

(a) The encoding of each two succesive value fields of a

(v)

long integer in one integer in STORE ARRAY hss to be
cancelled by a corresponding decoding in GET ARRAY,
ELEMENT and integer procedure length (see below),

Efficient arithmetic requires.the number of array
elements, specified by up -~ low, up and low being
parameters, only to be sufficilent and not to be equal

to the nunber of to be assigned values of velue or
coefficient filelds of linked 1list or multilinked
structures,

So in case of a long integer we nny supply extra null's
and in case of a polynomial (in general multilinked
structure) extre ZERO's as values, as, in contradistinction
to truncated power series, a polynomial of degree n > 0
with ZERO a8 n = th coefficient equals the polynomiasl of
degree n = 1 obtained by deleting its highest coefficient,

The nunber of array elements necessary snd sufficient for retrieving
fields of an object referred to by.F, specified by n,

in case of a polynomial, by

counting the variable first, the coefficients as succeeding elements
in order of corresponding and increasing degree, as results from
POL, see I,3.,

in ,case of a long integer, by

up = low, up and low being parameters of STORE ARRAY, when it
is called in the procedure body of LONG INT,

is the numericel value of integer procedure length(F)

upon call,

°
3

21

integer procedure length(F); value F; integer F;
PegIn Integer t,A,l; boolean Tinked 1ist; real B;
~—t:= TYPE(F,A,B); linked Iist:= LINKED LIST(%);
if linked 1ist V MULTILINKED STRUCTURE(t) then
Pegin 1l:= if linked list then 2 else 13 ~—
Tor A:= K while A % 0 do
Pegin B:= TTLAT; -
TI:= 1+ (if linked list A (B$ OV abs(C2[Al) > G) then 2 else 1);
A:= B -
end; length:= 1
end
else if t = short integer then lengthi= 1
eise ERROR(true,ftype not appropriate in length});
31_1_3 length;

" conment

integer procedure LC determines the sign of the highest
coefficient of a polynomial recursively, ISIGN is specified
in 2,1,

we

integer procedure LC(A); value A; integer A;

ICT= IF Tnt(A) then ISIGNTA) else IT(ELEMENT(length(A),A));

22

comment

I1, The nunber system,

11,1, Long integer and short integer arithmetic,

IT,1.1, A brief description of the basic Integer procedureé.

Let the values of X and Y both refer to a long integer or short integer,
IABS and ISIGN are counterparts of the ALGOL 60 standard function
designators abs and sign, see [10, page 171]. _
The value of INVERT(X) refers to an object corresponding with the value
referred to by X, with sign inverted,

The value of SIGNDIF(X,Y), a procedure auxiliary to IQR, determines the
sign of the difference of the values referred to by X and Y,

The values of IPROD(X,Y) and ISUM(X,Y) refer respectively to the long

or short integer, that is an object corresponding with the product or
sum of the values referred to by theilr arguments X and Y,

The value of IDIF(X ,Y) refers to an object corresponding with the
difference of the values referred to by its arguments,

The value of IQR(X,Y,R) refers to the long or short integer that is an
object corresponding with the integral quotient of the wglues referred
to by X and Y with remainder referred to by R, leaving the case length(Y)
= 1 to IQRS(X,Y,R),

The value of IGCD(X,Y) refers to the long or short integer, that is an
object corresponding with the greatest common divisor of the values
referred to by the values of its arguments, leaving the case length(X) = 1
or length(Y) = 1 to IGCDS(X,Y).

Sign - convention,

The values of gll wvalue fields of a long integer have the same sign, .

IT,1.2, Declarations and explanations of the basic procedures,

“we

integer procedure IABS(I); velue I; integer I;
TABS:= if ISIGN(I) <0 then INVERT(I) else 1;

integer procedure ISIGN(I); value I; integer I;
TSIGN:= sign(ELEMENT(length(T),IV); —

integer procedure INVERT(I); value I; integer I
begin Integer 1,i; 1l:= length(l);
begin integer array B[1:1];
~GET ARRAY(I,T,T,I,Blil);
for i:= 1 step 1 until 1 do B[1l:= -B[1];
TNVERD:= LORG INT(1,1,B[iT)

end end;
el

23

integer procedure SIGNDIF(I,J); integer I,J;
begIn Integer fnn,I1,J1,11,15;

fnn:= gnn;
~ 1i:= length(ES(I1, I)), 1j:= length(ES(J1,J3)); if 11 > 1j then 1j:= 1i;
AA: 1i:= sign(ELEME[\TT(l,],Iﬂ - ELEMENT(lJ,J1)),

if 11 =0A1j> 1 then begin 1jt= 1) = 1; goto AA end;

BIGNDIF:= SR(fnn,11i} -
end SIGNDIF;

integer procedure ISUM(I,J); integer I,J;
begln Intege? Tmm,I1,J1,11,157K,1;
fon:="gnn;
1ii= length(ES(I1,I)); 1j:= length(ES(J1,J));
ki= if 11 > 1j then 11 + 1 else 1 + 1;
begin integer array B,C[1:xT;
mmm,la[11);
GET ARRAY(J1,1,1,k,C[1]);
ADD(B,C k), ISUM:= SR(fmn ,LONG INT(i,k,B[1]))
end

endi

¥

comment

Adding slgorithm,

We describe a simple form of this algorithm, namely for the addition of
two nonnegative integers,

Let the contents of integer arrays B ,C[1 :k = 1] be the value fields of
the long or short integers referred to by the values of X and Y (depending
on whether k = 1> 1 ork=1=1),

After termination of this algorithm the values of the value filelds of

the long or short integer, which represents thelr sum, will be specified
by the contents of B,

Blk] = 0 A C[k] = 0, j and carry are integers.

is J:= 1 and carry:= O,

i1z B[3li= (B3] + C[3] + carry) mod G and
carry:= entier((B[j] + C[IY + carry)/G) (At each stroke of the
addition holds abs(carry) < 1, :
This follows inductively from
carry = O for j = 0 and abs(B[j] + C[j] + carry) < abs(2G - 2) +
abs(carry))), -

iiis jJei= j + 1, if jJ < k goto ii otherwise Blk]:= carry and terminate,

ADD is a slightly improved version of an adding procedure due to
KRUSEMAN - ARETZ, for the addition of long and short integers, irrespective
of their sign.

2k

procedure ADD(B,C,k); velue k; integer k; integer array B,C;

begin integer s,t,w,carry;

AAs Tor wi= Blkj + C[x] while w= 0 A k> 1 do begin B[k]’:= 0;3
k:=Kk = 15 goto AA end]” - T

comment

The value of w determines the sign of the sum as follows:
The contents of arrays B and C represent respectively the value fields.
of the long or short integers corresponding to I = B[1]1 X GAO + ... +
Bkl xGA(k=1)and T =Cl11 xGAO+ ... +ClkI XxG A (k = 1),
After execution of the preceding for statement the following equalities
hold: I =B[1l] xGAO+ ... + BlkOl XGA (kO =~ 1) + Rest I and J =
ci1] xGAo+ eoe + C[kO]l X G A (KO + 1) + Rest J
where Rest I + Rest J =0, so I + J = (B[1] + c[1]5 XGANO+ .00 +
(B[x0] + c[k01) x G A (kO +1).
As w = B[kO] + C[k0], sign(I + J) = sign w, due to,

if T and J have the same signs, the sign = convention,

if I and J have opposite signe, the condition
abs((B[1] + C[1]) XTA O+ .., + (B[kO = 1] + C[k0 = 1]1) x G A (k0 = 2)) <
(G=1)XGAO+ 40e +(G=1)XGA(KO=2)=GA (k0O =1) =1<
G A (x0 = 1),

One needs the velue of sign(I + J) in-order that the value fields of the
sum, delivered in B, fulfill the sign = convention,

.
3

s:= sign(w); carry:=

for ti= 1 step 1 until k do

begin wi= Bl:E?i + CIET + carry;

""'1'f"s><w<0thenbegin Blt]:= w+ 8 X G; carry:= ~s end
elge if abs(w')"?_Gm begin Bltl:= w = 8 X G; .carryi= s end
else begin Bl[t]T= v} carry:= O end -

end; If carryt O then B[k + 1]:= Carry

. enH_' -

integer procedure IDIF(I,J); integer I,J;

begIn integer fnn,I1,J1,11,15k,1;

“fon:= gnn; E s(11 15 ES(J1 ,J)3 1is= length(I1); 1j:= length(J1);
ke= if 11 > 1j then 11 + 1 else 1j + 1;
begin integer array B,C[1:kT;

BT RRRAY(I1ST, Tk, B[i]), GET ARRAY(J1,1,1,k,C[1]);
for i:= 1 step 1 wntil k do cl1):= — cf1];
ADD(B,C,k)3 IDIF = SR(fnn,lONG INT(1,k B[i]))

end

enH;

integer procedure IPROD(I,J); integer I,J;
begin integer fnn,I1,J1,1i,13,1,1;

S

25

fnn:= gnn; 1lit= length(ES(I1,I)); 1j:= length(ES(J1,JT));

1= 11 + 1J;

begin integer array B[1:11],C[1:13]1,D[1:1];

—CET MY(IF'I‘T‘, JT1,11, B[i]), GEI' ARRAY(J1 i,1,15,C[11);
MuLT(B,11,C,13,D, 1), IPR SR(fnn,LDNG INT(i 1 D[i]))

end

end IPROD;
comment

Multiplication algorithm,

We describe s simple version of such an algorithm, for the multiplication
of nonnegative Integers:

Let the contents of integer arrays I[1 : ki] and J[1 : kj] be the values
of the wvalue fields of two long or short integers,

Upon termination of this algorithm their product will be represented by
the contents of B[1 : kb], kb = ki + kJ.

Let i,j,carry and u be integers,

i: Assign zero to each array element of B and j:= 1,

iis ¢= 1 and carry:= 0

1112 us= T[1] x JL4] + Bf1 + j = 1] + carry, thereafter
B[1 + j = 1]:= u mod G and carry:= entier(u/G),

ive 1= 1+ 1, if 1 < ki goto iii else B[i + jl:= carry,

ve =+ 1, if J 3 kj goto ii else terminste,

MILT is a slight improvement of a multiplication procedure for long or
short integers, irrespective of their sign, due to KRUSEMAN-ARETZ,

REMARK ¢

Note that abs(u) < G A 2 and abs(k) < G, This may be proved by induction
from abs(I[1] x J[J] + Bl1 + j = 1] + ca.rry) < (G-1) XGem1l+Gml+
G=1<GA2,

Consequently the size of G in our system has been restricted, as
=] mist T1t in one computer word,

Due to the special properties of the arithmetic implemented on the

EL X8 computer used at the Mathematicasl Centre, it is more

efficient on this computer to perform the above milti=length arithmetic
by procedures in which reals in stead of integers, in order to perform
the arithmetic proper, have been declared,

°
~ 3

procedure MULT(I,ki,J,kj,B,kb); value ki,kj,kb;
in—‘teger ki,kj ,kb, integer array I1,J,B;

#

26

begin integer ti,tj,tij,carry,Jtj; real u;
Tfor u:s= 1 step 1 until ki do Bluli= 0;
Tor tj:= 1" step 1 until kj do
begin carry:= 0; JEJi= J[tJ15 for ti:= 1 step 1 until ki do
T begin tiji= ti + tj = 13 us= Jtj X I[tiT + B[tIJT + carry:;
carry:= entier(abs(u)/G) X sign(u); Bltijls= u = carry X G
end; Bltj + kil:= carry :
end

ena;

comment

Division algorithm,

To divide a positive (n + m) — place integer X by a positive n - place
integer Y, we use a generalization for arbitrary radix-G of the common
pencil and paper radix = 10 division, Thisg boils down to the repeated
integral division of a (n + 1) = place integer u by an n — place integer '
given 0 < u/v < G, in other words to the computation of entier(u/v).
If we make sure that vin] > G{2, the digits modulo G of u being
represented by uln + 11,.,5,ul1] and of v by vinl,...,v[1] (this is
reglized by multiplying X and Y by the normalization factor
entier((G/2)/¥Inl])), the theorems, proven below, state that for
Q = min(enter((uln + 11 x G + u[n])/v[nj),G -1)
holds Q > entier(u/v) > Q - 2,
By checking the conditions
uln+ 11 xeA2+uln]l X6 +uln=11>Q x (vIn]l xG + vln = 11)
andu=QXv>0 - :
the exact value of entier(u/v) can be calculated,

Theorem IQR1, Q > q = entier(u/v),

Proof: This holds for Q = G = 1 as 0< u/v < G, 80 assume Q < G = 1, then
Q X vin] >uln + 11 x @ + uln] = vInT + 1 from Q's definition,

U=mQXv<u=aQXvinl xA(m=1)<uln+11xGAn+ ..+ ul1l

w (un + 1 TxG+uln]l =vinl + 1) xR (n=1) =uln=1) xG A (n=2)
+ o +ulll =mGA(@=1)+vinleA=1)<vinl xeAR=1)<n~,
Sou=Qxv<v=>Q>q, QED, ~

Theorem IQR2, vin] > entier(G/2) =>q > Q ~ 2,

Proor: Assume Q > g+ 3 =>Q< (uln + TI x G An +ulnl X6 A (n=1))/
vinlxeA@=T)<u/(vInl ReA(h=1)) <u/(v—=0CGA (n=1)) (if
v=GA(n=1) then g = Q) =

32X m g /(v mGA (e 1)) = (ufy) + 1 = (u/v) (@A (nm1)/
(v=CA@=1N)+1=>u/vyr>2(¥[nl =1) =C=b>Q=3>q-=
entier(u/v) > 2(vln] - 1) and vln] < entier (G/2), ~ QED,

27

REMARK ¢
Analogous to the proof of theorem IQR1, given respectively uln + 11 x
GA2+ulnl xg+un=11<,>Qx (v[n] x& + vIln=11), in

T , page 510, asnswers to exercises 19 and 20] it is proven
that respectively q = entier(u/v) RQ=1,g=Qorg=Q~1.

Finally, returning to the (n + m) — place by n — place division, observe
u/v < G <===> entier(u/G) < v <===> ul2]l x G A0+ .. + uln + 1j X G A [n—1]
<vltIxGAO+ .. +vinl xG A[n=11, ‘

Thus each time the condition for repeated (n + 1) — place by n =— place
division has been satisfied, as u =~ q v < v, and at the preliminsry steps
of the algorithm the following normelization tskes place:

If X is represented by its digits modulo G, X[n + m],...,X[1], and ¥ by
Y[nl,...,Y[1], set X equal to the integer represented by X[n + m + 1],
eoe,X[1] with X[n + m + 1] = 0,

As the previously given value of the normslization factor is less or
equal to G/2, the top (n + m + 1) = th = digit of the product of
normalization factor and X is smaller than G/2 and positive and the

t0p n = th = digit of the product of normslization factor snd Y is
greater than or equal to G/2,

°
2

integer procedure IQR(X1,Y1,R); integer X1,Y1,R;
begin integer X,Y,1X,1Y,1Q,fnn; fnn:= gnn;
IX:= Tength(ES(X,X1)) + 1; 1Y:= length(ES(Y,Y1)); 1Q:= 1X = 1Y;
if EQ(X,ZER0) V EQ(Y,ZERO) V 1X < 1Y then
Pegin comment IQR:= ZERO if X1 or Y1 equals ZERO or length(X1) < length(Yt)
~else IQR:= IQRS(X1,Y1,R)" if length(Y1) = 1, else goto Next comment

2

IQR:= ZERO; Ri:= X = saved; if EQ(Y,ZERQ) then
begin PR nler; PR string({Y equals ZERO in IQR}); PR nler end
end else -
TF 1Y = 1 then IQR:= IQRS(X,Y,R) else
Pegin integer s,i,j,normfactor,VGmini,q,Q,q1,Q1,Heady,
TVYYLY,YYIY,1b, qunmys
integer array XX[1:1X],Yy[1:1Y],0q[1:1Q];
DE(q,0,DE(q1,0,0)); s:= ISIGN(X5 X ISIGN(Y);
YY1Y:= abs(ELEMENT(1Y,Y));
L1: ES(normfactor,S INT(if YY1Y x (G : (2 X YY1Y)) = G : 2 then
G : (2 X YY1Y) else G T (2 x YY1Y) F 1)); - T
" L2: BET ARRAY(IABS(IPROD(X,normfactor)),i,1,1X,Xx[1]);
GET ARRAY(ES(Y,IABS(IPROD(Y,normfactor) 5) ,1,1,1Y,YY[1]);
ES(VGmin1 ,S INT(Gmin1)); YYiYs= Yy[1Y];
ES(HeedY ,LONG INT(1,2,if 1 = 1 then YY[1Y = 1] else YYIY));
ES(VYY1Y,sS m(m¥5);‘1b:= YT _—
L3: for ji= 1X step -1 until 1b do

&5
LTS

Lh: begin comment Next comment: (labels correspond to labels in the
declaretion of IQR)

P

28

I

The short integer referring to the normalization factor, ceiling = of
((g/2)/YY1Y), is constructed, saved and assigned to normfactor,

12: X and Y are normalized by multlplication with norm factor and

taking absolute values,

L3: The integral division entier((XX[J = 1Y] X G A (j = 1Y = 1) + ,.0 +

sl xa A (G =1))/(x¥[1l xe Ao+ ...+ Y¥[1Y] xe/}\ (1Y - 1)),
for ji= 1X,1X = 1,,.,1Y + 1, is performed.

2
3

Q= if XX[j] > YY1Y then ASSIGN(q,VGmin1) else
ASSTGN(q ,IQRS(LoNG TNT(1,2,XX[j = 2 + 1]),VIV1Y,dummy));

L5: L: if SIGNDIF(LONG INT(i,3,XX[j — 3 + il), IPRUD(Q HeadY)) = =1 then

begin Q:= ASSIGN(q,IDIF(Q DNE)), goto L end;
QT:= ASSIGN(q1,IDIF(LONG INT(i,1b,XXLj — 1b + il),
IPROD(Q,Y)));

L6: if ISIGN(Q1) = =] then

begin Q:= ASSIGN(q,IDIF(Q,0NE)); Q1:= ASSIGN(q1,ISUM(Q1,Y)) end;

L7: GET ARRAY(Q1,1,j — 1Y,J,XX[1])s
L8: Qalj - 1Y]:= VAL OF S NT(Q)

end;

TSTR,IQRS(LONG INT(i,1Y,s X XX[il),normfactor,dummy));

IQR:= SR(fnn,LONG INT(i,lQ,s x @li])); Ri= R = saved

end

end; -

comment

Lh: The previously mentioned first approximation to the integral velue

LTz

1.8:

of the fraction in L3, min{entier(Xx[J] x G + XxX[j ~ 11)/¥11Y),G - 1),
is calculated,

The exact integral value is determined by first checking whether
W31 xG A2+ XX[5 =11 xG + XX[j =~ 2] = V(Q) x (YYIY X G + YY
[1Y = 1]) < 0, if so,the approximtion is at least one to large, and
finally checking whether

il xG ALY + ., + XX[§ = 1Y] -V(Q) x (YW1l xe Ao+ ,, +
1Yl x G A (1Y —- 1)) < O,

if so, the approximation is exactly one to large,

For the sufficiency of these checks see theorems IQR1 and IQR2

and Remark, Their necessity has been shown in [7].

Analogous to the pencil and paper method of division the dividend
receives its new wvalue and

the quotient digit is assigned to an array element specifying a
value field of the quotient,

°
3

integer procedure IQRS(X1,Y,R); integer X1,Y,R;

begin integer‘xz?nn, boolean bYZERﬁ“BYMENDNE, fon:= gnn;

(Y,ZERO); DYMINONE:= EQ(Y MINONE);

if EQ(ES(X x1) ZERO) V bYZERO V EQ(Y,ONE) V bYMINONE then

F

29

begin IQRS:= if LYZERO then ZERD else ir DYMINONE then
TINVERT(X) else X = saved;
if bYZERQO Then ri:= X — saved
else R:= ZERO
end else
Pegin Integer 1X; 1X:= length(X);
begin integer s ,y, ,n; integer array XX[1:1X],rl[0:1X]; rea.l m;
—a:=
GET ARRAY(:Lf s > O then X else INVERT(X),1,1,1X,xx[1]);
rl0]e= r[1XT:= 0;
y:= VAL OF S INT(Y); s:= sign(y) X s; y:= abs(y);
for i:= 1X step =1 until 1 do

Pegin m= rII] X G ¥ XX[11; Xx[1]:= n:= entier(abs(m/y)) x sign(i/y);

—_rﬁ—ﬂ'—m— (n X y)
end;
Ti= EV(S INT(s x r[0])) — saved;
IQRS:= LONG INT(1,1X,s X xx[1i]) -
end
end;
FRASE(fnn)
end TQRS;

comment i
IQRS is an auxiliary procedure. It is called upon in IQR, where name -
replacement of X1 by the name of a possibly not saved object and name
replacement of X1 and Y1, names of already in IQR saved objects, occurs,
and in IGCDS, where again name replacement by names of saved objects
occurs, So only X1 needs to be saved in IQRS,

3
comment

Greatest common divisor slgorithm for multiple length integers due
to LEEMEK,

LEHMER observed [American Mathematical Monthly 45(1938) p 227-233]

that in using a multiple precision version of Euclides® famous algorithm,
the multiple precision steps to determine Q (such that U = QV + R with
abs(R) < V) were often superfluous s in the sense that the same Q might
have been determined by single precision arithmetic,

Let in the radix G representation of U and V, 1U be the nunber of digits
of U, 1V be the number of digits of V, u be the leading digit of U and v
be the leading digit of V,

2: As= 1, Bi= 0, Ci= O, Dz= 1,

is (u+B)><G/f\(lU—1)5U_<_(u+A)XG/f\(lU-1Sand

it: (v +C) X GA (1v-1)5v_<_ (v+ D) xG A (1V = 1) obviously hold,

30

iiiz 3¢ If 1U = 1V and

ive S5: If v+ C$+O0OAv+D4%0,

e entier((u + B)/(v + C)) < entier(T/S) < entier((u + A)/(v + C)),
for T=AXU+BXxVandS=0CxU+DXV by i, ii, 1ii, iv,

Q:= entier((u + A)/(v + C)).

The single precision calculation of entier(U/V) is possible by iii , if in v
entier((u + B)/(v + C)) = entier((u + A)/(v+ C)) as U =T and V = S,

If so, straightforward calculation shows

(v+C)/((u=Qxv)+ (A=Q@xC))<V/(U=QxV)<
(v + D)/((ue=Q x v) + (B =Q xD)),” B

which amounts to v after the following assignements have been performed
from left to right:

6: T
Ts

ou
=
i
o
X
Q
A
>

7: Else, perform multiple precision calculation to determine Q,

P4
comment

Thie version of LEHMER's slgorithm, IGCD, incorporates a trick due

to COLLINS (see his Revised SAC — I integer system)., He observed,

that, if 1U - 1V = 1, still single precision simulation might be possible,
if mltiplying both U and V by the same factor, would result in answers of
the same length of digits, To gvoid multiple precision multiplication

he introduces the following simplication (if (1U = 1V) < 1)s

3: Assign to u2 and ul the two top digits of U and, if 1U = 1V, to
v2 ‘and v1 the towo top digits of V else, if 1U = 1V = 1, to
v2 zero and to vl Vs top digit,

b: normfactor:= entier((G/2)/u2) and miltiply the long integers
represented by (u2,ul) and (v2,v1) by normfactor, in order to

5: check if now the lengths of the results of these multiplications
are equal,

Arabic nunbered labels in the two comments above correspond to
labels in IGCD, A

integer procedure IGCD(X,Y); integer X,Y;
begin integer fnn,U,V1,u,v,1U,IV;
_m'(—'u,IABs(x) ,DE(v, IABS(Y) gnn)); Us=
1Us= length(U); 1V:= 1ength(V1)
if1IU=1V 1V =

31

V(u); V= v(v);

1 then begin IGCD:= IGCDS(U,V1); goto ENDIGCD end;

begin integer normfactor,Normfactor,sd,ut,u2,vl,v2,s,t,T,i,A,B,T,0,qQ;

~DE(s,0,DE(t,0 DE(normfa.ctor 0 o))),
sd-— SIGNDIF(U V1); A= U;
ASSIGN(u,:Lf 8d > 0 then U else V1);
v1 1= ASSIGN(v,If sd > O Then VT else A);
if 8d < O then begin A:= 10; 1U:="1V; 1Vi= A end;

IF EQ(U,V17 then begin IGCD:= U = Sa.ved; goto ENDIGCD end else

loop: if EQ(V1—ZEROT—H"E en begin IGC
2: if IV =
begin As= Di= 1; Bi= Ci:= O;
3T 17 1U = 1V < 1 then
begin ul:= ELEMENT(IU ~ 1,U); u2:=
11U = 1V = 1 then
Pegin v1:= ELEMENT(1V,V1); v2:= O end else

ELEMENT(1U,U);

= U — saved; goto ENDIGCD end else
1 theén begin IGCD:= . IGCDS(U V1); goto ENDIGCD end else -

begin vi:= ELEMENT(1V - 1,V1); ve:= BLEMENT(1V,V1) end;

L s Normfactor:= ASSIGN(normfactor,S INT(if uv2 X (G
(2 x u2) eTse (G : (27

- ELEMEK\TT(2,IPROD(Nomrfactor LONG TNT(i,2,Tf 1
v2s= ELEMENT(E,IPRDD(Nor'mfactor LONG INT(i,2,If 1

5: if v2 + C = = 0 then goto T;

] IIX

‘,A.‘

2% u2)) =

2 then

u2)) + 1))
1 then ul else u2))
1 then v1 else v2))

.
E
.
2

Q= (u2 + A) & (v2 i c), if TF (W@ F B) ¢ (v2 + D) then goto T;
6: Ts= A = (Q X C); A= C; Ti= T T~_B-(Qx? D); B:= D; D:= T3
Ti= u2 = (Q X v2); ul:= v2; v2:= T; goto 5
end else -
TTIEB=0V (U = 1V) > 1 then
begin IQR(U,V1,1); U:= ASSTGN(u,V1); V1:= ASSIGN(v,i) end else

begin U= ASSIGN(u,ISUM(IPRDD(S INT(A),U),IPROD(S INT(

~VTT= ASSIGN(v,ISUM(TPROD(S TNT(C),U), TPROD(S INT(D),V1

end;
TO:=
end
end;
TNDIGCD: ERASE(fnn)
El_c_i_ IGCD;

length(U); 1V:= length(Vi); goto loop

integer procedure IGCDS(X,Y); value X,Y; integer X,Y;
PegIn Integer procedure gcd(a,m.lue ameger a,b;
geds= 1T b = O then albs(a) else gcd(b,a ~ (Ta X Db));
integer fnn,R; Tnni= g -
If'sIGNDIF(Es(X IABS(X)) ,ES(Y,IABS(Y))) < O then
Pegin Ri= X; X:= Y; Y:= R end; IQRS(X,Y,R);
TGCDS:= SR(fnn,S INT(gcd(VALOF S INT(Y$,VAL OF S INT(R)))
end;

&

s

)

32

comment

I1.2, The rational nunber system,

Before proceeding with the discussion of representation of and operations
on rational numbers, it should be realized that in this rational function
system all operations are unified in the integer procedures S, P and Q.

A sum, product or quotient respectively of two arbitrary objects A and B
is constructed by & call of S(A,B),P(A,B) and Q(A,B), respectively,

In the sequel we assume that their functions are known, A full treatment
will be found in the sections corresponding to the relevant modes and in
chapter IV,

IT.2.1, Representation of a rational number,

Given two long or short integers referred to by the values of A and B, store
the rationsl number, represented by the pair(A,B)(thinking in terms of
equivalence classess as:

i: ZERO, if EQ(A,ZERD) or EQ(B,ZERO)(one is noticed by the system
that the latter case occurs by the procedure statement
PR string({B equals ZERO in Q}) in the procedure body of Q),

ii: A if EQ(B,ONE) or as P(A,MINONE) if EQ(B,MINONE),

iii: STORE(A,rational number,B) if the integers referred to by A and
B are relativity prime and ISIGN(B) positive and else, if ISIGN(B)
negative, as

iv: STORE(INVERT(A),rational number,INVERT(B)),

else the greatest common divisor of the values referred to by A and B

is calculated by means of IGCD(A,B) referring to a nonnegative integer),
By dividing by this integer a relatively prime pair(A1,B1) is constructed
and stored as a rational number according to ii,;iii or iv,

REMARK: The condition that the value of ISIGN(B) is positive, when
storing a rational nunber, is dictated by the use of EQ,

How are objects of mode rational number, built up from long or short
integers as above, introduced iIn the system?

In the first place by integer procedure Q(A,B), Reading Q (see chapter
IV), it is clear to take care of i and ii above, Q calls upon.

OPER ON NUM(quotient,A,B)(see II,2,) however, to treat case iii and iv,
so upon RNPROD(A,ES(B, RINV(B))) After elaboration of ES(B,RINV(B)), B
represents the inverse of B(so the original pair(ONE,B)), as follows
from the declaration of integer procedure RINV:

o
& s

33

integer procedure RINV(A1); integer Al; _
begin integer A,%t,1,fnn; real r; fnn:= gnn; t:= TYPE(ES(A,A1),1,r);
:= mn,if t = short integer V t = long integer then
‘Tif ISIGN(A) > O then STORE(ONE,rational number,A) else
STORE(MINONE,ratIonal number INVERT(A))) else
if t = rational number then
~Tif EQ(1,0NE) v EQ(1 ,MINONE) then P(r,1) else
—if ISIGN(l) > 0 then STURE'(r—,?ationa;L Tumber,l) else
" STORE(EV(INVERT(T)) ,rational number, INVERT(1)7T] else
if t = polynomial then
“Tif 1LC(A) > O then STORE(ONE,rationsl function,A) else
T STORE(MINONE, rational flmctlon,P(MINDNE A))) else
if EQ(1,0NE) V EQ(1,MINONE) then P(r,1) else
IF Lc(15 > 0 then STDRE(r,ra"i—nal functTo'n"l) else
T STORE(EV(P(7,MINONE)) ,rationsl function P(l ,MITORE)))

end;

comment

If the value of A, a parameter of RNPROD, does not refer to a rational number,
the velues possessed by A and B are interchanged in the labelled conditional
statement, resulting in the velue of the "original" B equalling the value of
rA and the value of the present B equalling the value of A after elaboration
of this statement. If upon call of RNPROD the value of A does not refer to a
rationsl number, RNPROD proceeds with elaboration of 1 EQ(ES(Ged,IGCD(rA,B)),
ONE), which amounts to answering the question:

"Does the value of Ged, having been assigned the saved value of an integer
representing the greatest common divisor of rA and B, equal the value of ONE
or not?"', so, the question of relative primeness of the original pair(A,B).
If so, condition i1ii or iv has been fulfilled, else ES(rA,IQR(rA,Ged dij)
and ES(B,IGR(B,Ged,di)) result in a relatively prime pair(B rA)

in the same equivalence class as the pair(A,B) we started with

(1A being ONE),

Finglly notice that, by its last assignment RNPROD, so OPER ON NUM2,
so Q, receives its value ST rat(V(1),V(r)). This amounts in our case to
storing according to ii, iii or iv (see the beginning of this section).

J

integer procedure ST rat(A1,B1); integer A1,B1;

Pegin integer fmn,A,tA,B, tB' fons= gnn;

A= TYPE(ES(A, A15 a1 dil), tBs= TYPE(ES(B,B1),di dli),
ST rate= SR(fnn,lf EQ(B ONE) V EQ(B, MINDNE) then P(A B) else
if EQ(A,ZERO) V EQ(B, ZERD) then ZERO else
T7(+A = short integer V tA = long integer) A (tB = short integer V tB
=" long integer) then y
(if ISIGN(B) > O Then STORE(A,rational number,B) else .
STORE(EV(INVERT (AY), rational number INVERT(B)S) Se
if LC(B) > O then STORE(A rationsl function,B) eIé'é" y
BTORE(EV(P(MINORE, A)),rational function,P(MINONE,ET))

end;

34

comment

I1T.2,2. Operations with rational numbers,

As in the previous section, calling S, P and Q, with names referring to
short or long integers or rational numbers as arguments, boils down,
except for trivial cases, to calling OPER ON NUM2 the appropriate
operation being specified in its first argument, As the values of the
second and third parameter refer to saved numbers, it is justified to
put A and B in OPER ON NUM2's value list.

.
H

integer procedure OPER ON NUM2(oper,A,B,tA,tB); value oper,A,B,tA,tB;

integer oper,A,B,tA,tB;

begin integer fnn, fnn gnn;

ON NOM2:= SR(fnn,if (tA = short integer V

T~ tA = long integer) A
(tB = short integer V
tB = long integer) then

(if oper = sum then ISUM(A,B) else

iT oper = product then IPROD(A,B) else

RNPROD(A,EV(RINV(BY) T else

if oper = sum then RNSUM(Z,B) else

I oper = product then RNPROD(E,BY €lse

RNPROD(A,EV(RINV(E)T))

end;

comment

Of the integer procedures called upon in OPER ON NUM2, RNSUM and

RNPROD remain to be discussed,

RNSUM performs addition of two numbers, one of which at least

is a rational number, and delivers the name of the result as

-its value, while RNPROD performs multiplication in an analogous

fashion,

Since calculating the greatest common divisor of two integers is a

very time consuming process, one needs algorithms, which minimize both
the nunber of times IGCD is called upon and the length of its arguments.
We clte and use a modification of those used by BROWN in the ALPAK
system for addition and multiplication as described in COLLINS® SACwi
rationasl funciion systemn,

People with a preference for making use of the full expressional

power of ALGOL 60 and with a tendency to think in ALGOL 68 terms will be
shown afterwards how OPER ON NUM2,RNSUM and RNPROD can be compressed

in a few, altfqough very lengthy, statements, They will be explained

in section III.2. by means of an ALGOL 68 declaration,

A consistent description of RNSUM and RNPROD, which equals the following
comments upon RNSUM and RNPROD in clarity of description, is contained in
the ALGOL 68 identity declarastion of OPER ON RAT in section III,2,

4

35

= RNSUM(A,B). Assume A = 1A/rA, B = 1B/rB, where gcd(1A,rA) = 1 and
gcd(1B,rB) = 1, Ged:= ged(ra,rB),
If Ged = 1 then 1T¢= 1A X B + rA X 1B, rT:= rA X rB,
It follows from Ged = 1, that ged(1T,rT) = 1,
If Ged + 1, rAl:= rA/ch, rBl:= rB/ch and 1T:= 1A X rBl + 1B XxrAl,
rTs= rA X rBl, Next, Ged:= gcd(rT,Ged)., :
If Ged = 1 then T:= 1T/+T else 1T:= lT/ch rT:= ¢T/Ged and T:= 1T/xT,
Notice that ISIGN(rT) > O,

°
3

integer procedure RNSUM(A,B); value A,B; integer A,B;
Pegin Integer tA,tB,1A,1B,1 r,?""'real rK,rB; fnn:= DE(1,0,DE(r,0,gnn));
—FAT="TYPE(E,1A,7A);
if tA ¥ rational number then begin tB:= TYPE(B,1A,rA); B:= A end
€Ise tB:= TYPE(B,1B,rB);
T TA = rational number A tB = rgtional number then
Pegin integer Ged; if 1 EQ(ES(Ged,IGCD(rA,rB)),UNEJ then
~ begin ASSIGN(1, ISUM(IPROD(1A,ES(rB IQR(rB Ged,di))7V,
IPROD(1B, IQR(rA Ged di)))$
if 71 EQ(ES(Ged,IGCD(V(1) ASSIGN(r,IPRDD(rA rB)))),0NE) then
Pegin ASSIGN(1,IQR(V(1),Ged,di)); ASSIGN(r, IQR(V(r) Ged,dIT) end
ena eIse
begin ASSIGN(1,ISUM(IPROD(1A,rB),IPROD(1B,rA)));
“'KSSIGN(r,IPROD(rA rB))
end
end else
Begin ASSIGN(1,ISuM(14,IPROD(rA,B))); ASSIGN(r,rA)
end;
RNWSUM:= SR(fnn,ST rat(V(1),V(r))); END:
29 RNSUM;

comment

T = RNPROD(A,B), Assume A = 1A/rA, B = 1B/rB, where gcd(1A,rA) = 1 and
ged(1B,rB) = 1, Gedl:= ged(1A,rB) and Ged2:= ged(rA,1B), Then 1As= 1A/Gedl,
rBs= rB/ch1 rAs= rA/Ged2,1B:= 1B/Ged2, except if A = ONE and B = ONE,
1T:= 1A X 1B and rT:= rA X rB, Finally T:= lT/rT

Notice that ISIGN(xT) > 0.

integer procedure RNPROD(A,B); value A,B; integer A,B;
begin integer tA,tB,1A,1B,1,r,frn; real rA—B—‘f‘ := DE(1,0,DE(r,0,gnn));
~—KT="TYPE(A,14,vA)
L: if tA # rational nunber then begin tBs= TYPE(B,1A,rA); B:= A end
else tB:= TYPE(B,1B,rB); If tA = rational number -
A tB = rational number then
begin integer Gedl,Ged2; 1f 1 EQ(ES(Gedl,IGCD(rA,1B)),0NE) then
*B@im%m IQR(rA chr‘di)), ES(1B, IQ,‘R(]_B Gedl di)) end;™
T EQ(ES(ch2 IGCD(rB 14)), DNE) then

36

begin ES(1A,IQR(1A,Ged2,di)); ES(rB,IQR(rB,Ged2,d1)) ends
ASSTGN(1, IPROD(]A 1B)); ASSIGN(r,IPRDD(rA B))

end else

begin Integer Ged; if 1 EQ(ES(Ged,IGCD(rA,B)),ONE) then

“Tbegin ES(rA,IQR(vK,Ged,di)); ES(B IQR(B Ged,di)) ends
ASSTAN(1, TPROD(1A, B)); ASSTGN(r,rA) ;

end,

RNPROD:= SR{fnn,ST rat(V(1),v(r))).

2@ RNPRODj3

integer procedure IQI(X,Y); integer X,Y; IQI:= IQR(X,Y,dii);

integer procedure OPER ON NUM(oper,A,B,tA,tB);
value oper,A,B,tA,tB; integer oper,A,B,tA,tB;
begin integer fnn 1A,1B,Gcd,1,r; real rA rB, fins= gnn;
10, D6 (E,0,0));
TYPE(A,1A, rA), if oper = quotient then
begin tB:= TYPE(ES(B,RINV(B)),1B,rB); oper:= product end
'éI'sTe'“IYPE(B 1B,rB);
IF(TA = long integer V tA = short integer) A
(4B = long integer V tB = short integer)
then OPER ON NUM:= SR(fnn, if oper = sum then ISUM(A,B) else
IPROD(ALB)) else
begin if tA # rational number then
begin 1A:= 1B; rAs= rB; B:= A ena:
“TOPER ON NUM:=
SR(fnn,if tA = rational number A tB = rational number then
TIf oper = sum then
~(if 1 EQ(ES(Ged, IaeD(rA,rB)),ONE) ‘then
~(if 7 EQ(ES(Ged,

IGCD(ASSIGN(1,
ISUM(IPROD(14,
ES(rB,
IQI(rB,Ged)
2
IPROD(1B,IQI(rA,Ged)

))ASSIGN(r, IPROD(rA,;-B))
,ONE
) then ST rat(IQI(V(1),Ged),IQI(V(r),Ged))
else ST rat(V(1) V(rs)
))1else ST -—('ISUM(IPRDD(]_A rB) ,IPROD(1B,rA)) ,IPROD(rA,rB))
else
ST rat(IPROD(if 1 EQ(ES(Ged,IGCD(1A,rB)),0NE) ‘then
Miltiple ES(rB,IQI(rB ch)
ES(lA IQI(lA ch))

else 1A,
IF 1 BQ(ES(Ged,IGCD(1B,rA)) ,ONE) then

-

Multiple ES(rA,IQI(rA,Ged),
ES(1B,IQI(1B,Ged))

else 1B
) IPROD(rA,rB)
)) else

if oper = sum then ST rat(ISUM(1A,IPROD(rA,B)),rA) else

BT rat(IPROD(iT T EQ(ES(Ged,IGCD(rA,B)),ONE) then
Miltiple ES(rA,IQI(rA,Ged),IQI(B,Gcd))
else B, :

)
rA
))

end end;

37

38

comment

IITI, The rational function system,

ITT,1, Polynomial arithmetic,

IIT,1.1., Objects having the same hierarchy of variables,

"Tgke, for instance, the possible fat man in that doorway.

And, agein, the possible bald man in that doorway,

Are they the same possible man, or two possible men?"

From a logical point of view, ' W.V.0.Quine,

(IxxAo+1xxA1)X (O xyAo+1XxXyA1),
is undefined in this system,
(tox x A0+ 10xxA1)/(10),
- is defined in this system,

(IxxAo+1xxA1)+(OxyAO+1 XyA1)XxxAO+
(IxyAo+1xyA1)XxAT

is defined in this system,
OxxAO+1xxAD)xyAO+ (I xxAO+1XxxA1) xXyA1=
(IxyAOo+1xyAD)xxAo+ (I xyAOoO+1XyAO) xxA

is defined in this system and false.
These expressions can be transformed into function designators by

a: modifying applications of X,/, , and = into Polish prefix
notation by prefixing P,PQI,S and EQ,

b: replacing the coefficients 1 and 10 by ONE S INT(10), respectively,

and
c: replacing expressions like coef[0] X x A 0 + coefl[1] x x A 1 by
POL(i,1,Av(2k4) ,coefli]) = x is the 24 ~ th letter of the alfabet,

All polynomials in this system, on which arithmetical operations
are performed, are represented in recursive canonical form, This
terminology has been derived from [H] and refers to the fact

that a polynomial in n variables is always regarded as a polynomial
in one variable(ca.lled the main variable) , whose coefficients are
themselves objects, at least one of which is a polynomial in nel
variables, having the same hierarchy of variables, a terminology
to be defined below,

This implies an assumed ordering of the variables of any polynomisl,
Whenever we write p(x[11,...,x[n]), displaying the variables of p,
the intention is to specify this ordering, x[n] being the main
variable, x[n=1] being the main variasble of those coefficients of
p, that are not long or short integer, etc..

. 39

Two objects have the same hierarchy of variables, a terminology
derived from [12, page B0Il, in case they are

it polynomials with the same main variable and with coefficients
having the same hierarchy of variables(i,e, every pair has
the same hierarchy of variables),

ii: 8 polynomisl and a long or short integer,

iii: long or short integers,

From ii, iii and the word "variables" in the term defined above, we
might regard a long or short integer as a polynomial, provided the
latter term is taken in a wider sense than defined in I,2,1.

From the point of view of the ALGOL 60 procedure declarations of the
polynomisl srithmetic performing procedures, described in this
section, there is, however, a substantial difference, as we have

to differentiate sccording to the mode being either polynomisl or long
integer or short integer.

Let p be a polynomial of degree d, in n variables,

p(x[1] ..,xfn]) = plo] x x[n] Ao+ ... + plal x x[n] A 4,

with pfO],p[1],..;p[d] objects having the same hierarchy

of varigbles, Let q be a long integer or a short integer,

To add p to or multiply p with q, in [4, the deseription

of PORDER page 26,27 and the arithmetic performing procedures]

COLLINS constructs an guxiliary version of q, (...({q X x[0] A 0)

x x[11 A0) x ... X x[n] A 0), and then adds or miltiplies by

adding or multiplying the coefficients of degree Zero recursively,

His point of view, that an infinite precision integer is a

polynomial of degree zero, explained in section I.,2.1,, entails

this,

In the footsteps of VAN DE RIET[12] we do not wish to

introduce in our system such versions of q as (...(q X x[0] A 0)

X ..o X x[n] A 0), for, by introducing them, the unique representation
of a long integer or short integer is lost and awkward questions
concerning the equality of e.g. q,(...(qa X x[n] A 0) x .. x[0] A 0)
and (...(qa x x[0] A 0O) X ... X xfn] A 0) have to be raised and
answered,

Addition, in this system, of a non == polynomial q to a polynomisl p

is performed in a recursive way by adding q to p%o], until the process
ends with the addition of q to a long or short integer, without introducing
auxiliary wversions, as above,

The importance of the requirement that two objects pl and p2 have

the same hierarchy of variables is, that arithmetical operations,
without introducing the afore = mentioned vacuous occeurrences of
variables, can only be performed between pl and p2 if they fulfill -
this requirement,

ITI.1.2, A brief description of the basic integer procedures,
tThat perform polynomisl erithmetic.

Lo

Let the values of X and Y refer to objects with the same hierarchy of
variables, If at least one of the values of X and Y refers to a polynomial,
the value of OPER ON POL(oper,X,Y,tX,xX,tY,yY) refers to the polynomisl or
integer(long or short) , which is an object corresponding with the sum or
product of the objects referred to by the values of X and Y, depending on
whether oper = sum or oper = product{oper is of type integer).

Let the vslue of X refer to a multiple of the wvalue, that Y refers to.

The value of PQI(X,Y) refers to the unique object such that the value

of BQ(P(PQI(X,Y),Y),X) 1s true. -

The value of PGCD(X ,Y) refers to an object corresponding with the greatest
common divisor of the objects referred to by the values of X and Y,

The integer procedures PGCDS,PSREM,PCONT and Product sre suxiliary

to PGCD, :

IIT,1.3, Declaration and description of the basic polynomial
arithmetic performing procequres,

Let the value of X refer to an object corresponding with coefX[n] X x A n
+ .o + coefX[0] X x A O, with coefX[0],..,coefX[n] having the same hierarchy
of variasbles, let Y analogously refer to an instance of coef¥[nl X x A m
+ ,. + coef¥[0] X x A O, Y % ZERO, and n = max(n,m).

The value of OPER ON PDL(sum,X ,Y) refers to an object corresponding with
coef[k]l X x Ak + ., + coef[0] X x A O, withk =n if n > m, else,

if n = m with k the maximal nonnegative integer j bounded by n,

such that coefX[j] + coefY[jl + 0, if such an integer exists, else

the value of OPER ON POL is the value of ZERQ,

The velue of OPER ON POL(product,X,Y) refers to an object corresponding
with the Cauchy product of two polynomials, of degree n + m,

@
2

integer procedure OPER ON POL(oper,PP,QQ,tp,xp,tqa,xq);
value oper,PP,qq,tp,tq,Xp,xq; integer oper,PP,QQ,tp,tq,xp,xq;
begin integer dp,dq,d,i,j,fnn; fnn:= gnn;
~1T tD F polynomial then begin ES(PP,STORE ARRAY(:L,O,1 ,
' Polynomiel,if i = O then xq else PPS); Xp:= xq end;
if tq ¥ polynomial then begin ES(Qq,STORE ARRAY(1,0,1,
Ppolynomial,if 1 = O then Xp else QQ)); xq:= xp end;
dps= length(PP) — 2; dg:= length(QQ) — 2; -
d:= if dp < dq then dgq else dp;
d:= IT oper = product then dp + dq else if dp < dg then dg else dp;
begin integer array Cpl—l:dpl,Cql-—17dg],Cl=1:d];
~"GET ARRAY(PF,I,-1,dp,Cpli]); GET ARRAY(GQ,i,-1,dq,Cql1]);
ERROR(xp #+ xq,fvariables not the same in OPER ON POL});
OPER ON POL:= SR(fnn,POL(i,d,xp,
if oper = sum then
T7(if 1 > dp then Cqli] else
iT™1i > dg then Cpli] eTse s(Cplil,Cqlil))
else if oper = product Then
~Bum(3,0,1,P(if j < dp then Cplj] else ZERO,
. iFi=j"< dq then Cqli~JT €lse ZERO))

b1

else ERROR(true,{type in OPER ON POL not appropriateb)))
end end OPER ON POL;

integer procedure Sum(i,low,up,Fi); value low,up;

integer low,up,i,Fi;

Begin integer s,fnn; fon:= gnn; DE(s,ZER0,0);

T Tor I1:= low step 1 until up do ASSIGN(s,S(V(s),Fi));
Bum:= SR(fnn,V(s) ~ saved)

end Sums

comment

1:¢ To obtain the value of PQI(X,Y) if coef¥[0] = 0, we divide
both polynomials by the polynomial corresponding to x A j,
with j the least nonnegative integer such that coef¥[j] # 0,
and proceed with applying i1 on (X/(x A 3))/(Y/(x A 3)),
otherwise '
2: the value of PQI(X,Y) refers to an object corresponding with the
polynomial with coefficients as deseribed by
coef[j] = (coefX[j] = (coef[0] X coef¥[j = 1] + ... +
coef[j = 1] X coefY[0]))/coef¥Y[0],

Ve

integer procedure PQI(X1,Y1); integer X1,Y1;
Pegin integer fnn,x,X,y,Y,1X,17,tX,TY;
~—fam:= @mi DE(x,X1 DE(y,¥1,0)); Xi= V(x); Y= V(y);
tXs= TYPE(x,di,diii; tYs= TYPE(Y,di,dii);
if BQ(X,ZER0) V EQ(Y,ZERO) then PQI:= ZERO else
TF EQ(Y,ONE) then PQI:= X else
IF(tX = short Integer V tX = long integer) A (tY = short
Tnteger V tY = long integer) then PQI:= IQR(X,Y,1Y) else
if tX + polynomisl then PQI:= ZERQO else —
Pegin 1X:= length(X) = 2; 1Y:= lengTh(Y) = 2;
begin integer array coefX[=l:1X]; integer i,varX;
“TGET ARRAY(X,T,=T,1X,coefX[1]); varX:= coefX[~11;
if tY = polynomial A 1X > 1Y then
begin integer array coefY[-1:1Y]; integer trivadivX,
T Erivdivy; boolean bool; -
GET ARRAY(Y,T,~T,1Y,coef¥[1]); bool:= true;
trivdivks= trivdivYi= 0; ii= =1;
for i:= 1 + 1 while bool A 1 < 1X do
T EQ(coefX[1];7ERT) then trivaivXs= trivdivX + 1 -
‘else bools= false; bool:= true; is= =1}
for i3= 1 + T while bool A1 < 1Y do
TF EQ(coefY[1];ZFR0) then trivdivY:= trivdivY + 1
‘else bool:= false;
TF TrivdivX < trivdivY then PQI:= ZERO else
1:71f trivdiv¥ > 0 then —
begin integer dtrivdiv; dtrivdive= trivdivX — trivdivy;

42

PQI:= P(POL(i,dtrivdiv,varX,if i = dtrivdiv then ONE
else ZERO), -
PQI(POL(1,1X —trivdivX,varX,coefX[i + trivdivX]),
POL(1,1Y = trivdivY,varX,coefY[i + trivdivY])))
end else
2: begin Integer ¢,d,j; di= 1X - 1Y; c:= coefY[0];
begin integer array coefl0:d]; :
T ES(coerl0],PQl(coefX[0],c));
for i:= 1 step 1 until 4 do
T8(coer[11;PQI(D(CoetX i];8um(j,0,1i = 1,
P(if 1 = j < 1Y then coef¥[i — j] else ZERO,coef[jl))),c));
PQT:= POL(15d,varX,coef[i])
end
end
end else
IF1X¥ < 1Y A tY = polynomial then PQI:= ZERO else
PQI:= POL(1,1X,varX,PQI(coefX[1],Y))
end
end;
ERESE(frn)
end PQI;

comment

Discussion and declaration of integer procedure PGCD,

The algorithm for computing the greatest common divisor of two
polynomisls, applied in this system, appeared for the first

time in [1] and has been extensively described in [7],

A brief summary of the relevant facts will be given in order

to compare its description with this ALGOL 60 version,

A set of elements of a unique factorization domain is said to

be relatively prime if no prime{of the unique factorization

domgin) divides all of them, A polynomial over a unique factorization
domein is called primitive if its coefficients are relatively prime.
Moreover the set of those polynomials forme a unique factorization
domgin itself,

Any (nonzero) polynomial u(x) over a unique factorization domein

S can be factored in the form u(x) = ¢ X v(x), where v(x) is
primitive gnd ¢ is in S, Furthermore, this representation is

unique, in the sense that if u = ¢l X v1(x) = 2 x v2(x), then

cl = a x c2 and v2(x) = a X vi(x), where & is a unit of S,

c 1is said to be the content of u, cont(u) and is a greatest

common divisor of the coefficients of u(xs.
Notice that this factorization explicitly requires multiplieation
between elements of S and polynomials over S,

If we take for S the integers representable in this system, realizing
that no infinite algebraic system can be represented in a computer,
suchr a multiplication has been defined, For other choices of S it

has not been defined in this system, In the latter case we have
to regard ¢, when multiplying with v(x), as a polynomial over S,
Let the value of U be the name of u, the name of c, when ¢ is

regarded as & polynomisl over S, is the value of PCONT(U,false).
If such an operation is not required the value of PCONT(U,Erue)

refers to c, as an element of S,
)

we

integer procedure PCONT(X,reduce); value X,reduce; integer X;
boolean reduce; ‘ ' -
begin Integer fmn,1,1X; froni= gmn; 1X:= length(X) = 2;
begin Integer array coefl[-l:1X];
“OET ARRAY(R,T,=T,1X,coef[1]);
_:% 1X = O then PCONT:= if reduce then coef[0] else X
else
Pegin integer a,A,low; boolean bool; booli= true;
Tow:s= 0; 1:= ~1; DE(=,0,0);
for is= 1 + 1 while bool A 1 < 1X do
I EQ(coef[1] ,ZERT] then low:= low + 1 else bool:= false;
Ei= coef[low] + saved; 1:= low;. -
for i3= 1 + 1 while 1 < 1X A 71 EQ(A,ONE) do
T EQ(coef[1T;78R0) Then A= ASSIGN(a,FUUD(A,coef[1]));
PCONT:= if reduce then A = saved else POL(1,0,coef[~1],A)
end -
end;
ERESE(fnn)
_e_ric_i PCONT;

comment

It can be deduced, that cont(ged(u,v)) = a X ged(cont(u),
cont(v)) and, if pp(u(x)) is defined as u(x){cont(u(x)),
pp(ged(u(x),v(x))) = b x gcdg (u(x)) ,pp(v(x))), where a

and b are units of S and ged(u(x) ,v(xS) denotes any particuler
polynomial in x, which is & greatest common divisor of u(x)
and v(x),

These equations reduce the problem of finding a greatest
common divisor of arbritrary polynomials to the problem of
finding greatest common divisors of primitive polynomlels,

As & preliminary step, we describe an algorithm for the

pseudo = division of polynomisls and its ALGOL 60 version,

the integer procedure PSREM,

Given two polynomials, u(x) = ulm] x xAm+ ..., + ulol x x Ao,
referred to by the value of U, and v(x) = vin] X x A n +

eee & V[0l X x A O, referred to by the value of V, where vinl % 0
and m > n > 0, the value of PSREM(U,V,m,n) refers, if n > 0,

to the, except for muiltiplication by an instance of the value

L3

L

referred to by MINONE, unique polynomial .

r(x) =rflh =11 xxA(n=1)+,., + rl0], such that there

exists a polynomial q(x) = qlm=n]l x x A (m=n) + ... + al0] x x A O,
satisfying vin] A (m=n + 1) X u(x) = q(x) x v(x) + r(x).

If n = 0 the value of PSREM equals the value of ZERO,

R: The description by KNUTH in [7, page 369] of an algorithm
for the pseudo = division of polynomials is:

R1: [Tterate on k,] Do step R2 for ki=m=n, m=n = 1,.,.,0,
Then the algorithm terminstes with uln = 1] = r[n = 11,...,
ulo] = rlo0],

R2: [Multiplication loop.] Elaborate gqlk]:= uln + k] XV [n]l x x Ak
and ul j1:= vln] x ulj] = uln + k] x v[j = k] for ji=n + k =1,
n+km=2,,.,,0, (When j < k this means that
uljls= vinl x ulj], since we treat vl-11,v[-2],... as zero,)

3

integer procedure PSREM(X,Y,1X,1Y); value X,Y,1X,1Y;
Integer X,Y,IX,I¥; if 1Y = O then PSREM:= ZERO else ,
begin integer fnn,j,k,LCY; integer array x,XX[~T @ 1X],YY[-1 : 1Y];
3J 9=t ,lX,XX[,j_I)3
GET ARRAY(Y,J,=1,1Y,Y¥[31); Leys= vy[1Y];
for js= O step 1 until 1X do DE(x[J],xx[31,0);

ToF ki= 1X = TY sT6p =1 wi¥Il 0 do
Tor je= 1Y + k = 1 step =1 until 0 do
XXC31:= ass1eN(x[3177IF § =K S 0 then D(P(LCY,Xx[3]),P(xx[1Y + k],

YY[j - k1))
else P(LCY,xx[31));
PSREM:= SR(fnn,POL(j,1Y = 1,YY[-117X%T51))
end;

comment

ged(u(x),v(x)) = ged(v(x),r(x)), for eny common divisor of u(x)
and v(x) divides v(x) and r(x)., Conversely, any common divisor

of v(x) and r(x) divides vin] A (m = n + 15 x u(x) and it mst

be primitive(since v(x) is primitive), so it divides u(x). If
r(x) = 0, we therefore have ged(u(x)) = v(x). If r(x) * 0, we
have ged(v(x),r(x)) = ged(v(x),pp(r(x))), since v(x) is primitive,
so the process can be iterated.

COLLINS*s algorithm,

Given nonzero polynomials u(x) and v(x) over a unique
factorization domain S, this algorithm calculates a greatest
common divisor of u(x) and v(x).

We assume that an suxiliary algorithm exists to calculate grestest
common divisors of elements of S, The division of a, referred to

hs

by the value of A, by b, referred to by the value of B, in 8,
when b & O and e is & miltiple of b, is performed by & call of
PQ1(A,B),

01: [Reduce to primitive,] Hlaborate di= ged(cont(u),cont(v)),
and replace u(x) and v(x) by, respectively, ;pp(u(x))and polv(x)).
This is the task of PGCD, ai= 1, :

¢2: [Peeudo = division,] ' ,
Elaborate b= (vilength(Y)]) A (length(X) « length(¥) + 1),
Caleulate »(x) by mesns of slgorithm R, in this system by PSREM,
If r(x) = 0, goto Cb, If deg(r) = 0, replace v(x) by "1" (ONE)
and go to Cli.

¢3¢ [Adjust remainder.] Replace u(x) by v(x) end v(x) by »(x)/a,
(The mein observetion of COLLINS is, that at this point all
coefficients of r(x) are multiples of a.), ai= b and return
to (2, Steps C2 and C3 are performed by PGCDS,

ch: [Attach the content,] The slgorithm terminates, with
d X pp(v(x)) es enswer, This is performed by PGCD,

integer procedure PACD(X1,¥1); integer X1,Y1;
‘Be“g‘In; En%e‘“‘é’z‘*"’i(’n"ﬁéx Y; fones gnng
“ESTGXT T;E Be(Y,Y1)3
4f BQ(X,0NE) v EQ(Y,ONE) Vv EQ(X,MINONE) Vv EQ(Y,MINONE) then
= POCD:= ONE else —
1r BO(X,Z8R0) VHE(Y,ZER0) then PUCDi= ZERD else
TF int(X) then PGCDi= if in€YT then IGCD(X,Y) else
== paOD(X,PUND(Y, true)T elge -
4f int(Y) then PGCUTE"PaCBTPCONT(X,true),Y) else
Pegin integer 1,C,CX,0Y,var,coef0; Vari= L (1,%);
s oT= BVTraln{mS{O% [POTRT (X, true)) BS(CY , FCONTLY true))))s
B8(C,PoL(L,0,var,coef0)); — —
PGCDee 4f MULTILINKED STRUCTURE(TYPE(ES(X,PQI(X,POL
- (1,0,var,Cx))),ds,a11))
A MULTILINKED smmcmm(m$ms(y,1:@:(y POL -
1,0,var,0t))),d1,d11)) then
P(0,4if length(X) > length(Y) then PGCDS(X,Y) else PGUDSTY,X))
elge = — —

end;
TRASHE(fan)

ends
L)

integer procedure PGCDS(X,Y); value X,Y; integer X,Y;
'Begin& Integer Inn,x,y,1X,1¥,a,k;5,8,1,J; Boolean procede;

fant= gnng procedet= true; 1Xi= length(X);

46

A:= DE(x,X,DE(y,Y,DE(a,0,DE(b,0,0NE))));
for Y:= V(y) while procede do
begin 1Y:= length(Y); B:= ELEMENT(1Y,Y);
= ASSIGN(b,Product(j,0,1X — 1Y 135),
ASSIGN(b,POL(:L 0 EIEMENT(1 Xs,B));
ASSIGN(x,PSREM(X Y,1X = 2,1Y = 2));
if EQ(X,ZERO) then
Pegin procedes= ?alse; PGCDS

15 -?1

>~ o

SR(fnn,PQI(Y,PCONT(Y,false))) end
else . _
T Int(X) V length(X) = 2 then
Pegin procede:= false; PGCDS:= RS(fnn,ONE) end
else -
BegIn ASSIGN(y,PQI(X,A)); X:= ASSIGN(x,Y);
T Ai= ASSIGN(a,B); 1X:= 1Y
end end

enH;

integer procedure Product(i,low,up,Fi); value low,up;
Integer Tow,up,1,Fi;
mnteger p,fnn; fnns= gnn; DE(p,ONE,0);
~ for Ti= Tow step 1 until up do ASSIGN(p,P(V(p) Fi));
Product:= V(P); ERASE(fnn)

end;

comment

I7I.,2, Rational function arithmetic,

Except for a few trivial differences, the Integer procedures
performing rational function arithmetic are entirely similar

to the ones used for performing rationsl number arithmetic,

OPER DN NUM2, RNSUM and RNPROD, the functions of which have been
conbined in the integer procedure OPER ON NUM,

The complexity of the procedure UPER ON NUM forces us to explain
its functioning in a language better suited for explanation,
ALGOL 68, As integer procedure OPER ON RAT is similar to OPER ON
NUM, we present s possible ALGOL 68 version of it, after which
the ALGOL 60 procedure declaration follows, and refer for the
algorithms used to section II.2.2, The go on symbol has been
represented by 3.

rocedure OPER ON RAT = (int operation,formula A,B) ref triple:
‘%Bﬁx‘é‘ﬂan = quotient | OPER ON RAT(promRmV(Bm
heap formula 1A,rA,1B,rB,X,Y; ref triple C;
((C:: A A (C: B)I lA'— 1eft operanm TAs= right operand of A;
1B:= left operand of B; rB:= right operend of B,
(operation = sum |[“Hesp formuls ged;
((geds=-PGCD(rA,rBY) $+one I ¢
Note that the constituent formgl - PARAMETERS = pack of the

k7

identity declaration of PGCD, (formuls A; formula B), contains

a go on symbol, as we have to translate The ALGUL 60 evaluation

from left to right of the actual parameter list into ALGOL 68, ¢
((ged:= 1)’GCD(X:= 1A X (rB:= PQI(rB,ged)) + 1B X PQI(rA,gecd),

Y:= B

) + WNE | ST rat(PQI(X,gecd),PQI(Y,ged)) | ST rat(X,Y)
)ISTrat(lAXrB-!-lBXrArAXrB) -
)| ((xs= PaCD(xB,14)) + ONE [+B:= PQI(rB,X); 14:= PQI(14,X)

(‘(x-— PGCD(rA,1B)) # ONE | rA:= PQI(rA,X); 1B:= PQI(1B,X)
); ST rat(1A X 1B,rA X rB)

) |
(7(C::A) | 1A= left operand of B; rA:= right operand of B;
Y:= A | 1A:= left operand Of A rA:= right operand Of Aj
(operation = sum | ST rat(TE + rA X Y,rA) l
((x:= PaCD(rA,Y)) 4 ONE | rA:= PQI(rA X); Y:= PQI(Y,X)
); ST rat(1A X Y,rA)

)~
)
)
)

we

integer procedure OPER ON RAT(oper,A,B,tA,1A,rA,tB,1B,rB);
value oper,A,B,tA,1A,rA,tB,1B,rB; integer oper,A,B,tA,1A,tB,1B; real rA,rB;
Pegin integer fnn; fnn:= gnn; if oper = quotient then begin
~~tB:= TYPE(ES(B,RINV(B)),1B,rBJ; oper:= product end;
begin integer Ged,1l,r; if tA # rational number A TA # retional
~function then begin 1AT= 1B; rA:= rB; B:= A end; DE(1,0 DE(r,O 0));
OPER ON RAT:=
SR(fan,if (tA = rational number V tA = rational function) A (tB =
rations]l number V tB = rational function) then
(if oper = sum then
“(4if 71 EQ(ES(Ged,PGCD(rA,rB)) ,ONE) then
“Tif 7 EQ(ES(Ged,
PGCD(ASSIGN(l
S(P(lA,
ES(rB,
PQI(rB Ged)

P(lB,PQI(rA,ch)

))),
ASSIGN(r,P(rA,rB))
) ,ONE
Ythen ST rat(PQI(V(1),Ged),PQI(V(r),Ged))
else ST rat(V(1) v(r$)
)) else ST rat(S(P(1A,rB) P(lB rA)),P(rA,rB))
else

48

ST ra.t(P(lf 1 EQ(ES(Ged,PGCD(14,rB)) ,ONE) then
Wi tiple ES(rB,PQI(rB ch),
ES(lA PQI(]_A Ged))

else 1A,

IF 1 EQ,(ES(ch PGCD(1B,rA)),ONE) then

Miltiple ES(rA PQI(rA, ch)
ES(lB PQI(lB ch))

else 1B
)>P(TA,rB)
)) else
if oper = sum then ST rat(S(1A,P(rA,B)),rA) else
BT rat(P(if 1 TQ(ES(Ged, PGCD(rA B) UNE) then
Miltiple ES(rA,PQI(rA chS ,PQI(F,Gcd))
else B,

),
TA

end end;

comment

IV, The integer procedures S, P, Q and D,

If the values of X and Y refer to arbitrary objects, the

value of S(X,Y),P(X,Y),a(X,Y) and D(X,Y) refers to an instance
of their sum, product, quotient and difference, respectively,
It is assumed that their declarations are self = explanatory
(after reading chapters I, IT and III),

s

boolean procedure numbertype(type); value type; integer type; ~
numbertypes= type = long integer V type = short Integer V type =
rational number;

boolesn procedure polynomisltype(type); value type; integer type;
polynomialtype:= type = polynomial V type = short infeger V type
= long integer;

boolean procedure mtionaltype(type) H iialue type; integer type;
rationaltypes= type = rational function V type = rational number
V polynomisltype(type);

integer procedure S(A1,B1); integer A1,B1;
Pegin integer A,B,tA, tB 1A,1E,n; real rA rB, n:= gnn;
-—‘TYFE’(’ES(A A1) 1A rA$ tB: "I‘Y‘P‘E(ES(B B1),1B,rB);
Si= SR(n,if EQ(A,ZERO) then B-saved else
if EQ(B,ZFR0) then A-saved else
7 numbertype(TE) A numbertype(tB) then
OPER ON NUM(sum,A,B,tA,tB) else —
if polynomialtype(mi A polyno"'aItype(tB) then
OPER ON POL(sum,A,B,tA,rA,tB,rB) else
rationaltype(‘bAS A ratlonaltype(tBi then
OPER ON RAT(sum,A,B,tA,1A,rA,tB,1B,rB] else
STORE(A,sum,B))
end 3;

H:

if

integer procedure P(A1,B1); integer A1,Bl;
begin integer A,B,tA, tB ,1A4,1B,n3 real rA rB, n:= gnn;
“%KT—‘TYPEms(A A]) 1A rAi tB: -"'I'YPE(ES(B B1),1B,rB);
P:= SR(n,if EQ(A ZERoi v EQ(B ZERO) then ZERO else
if EQ(A,CNE) then Bw-saved else if EQ(B,0ONE) then A-saved else
T numbertyperﬂt‘; A mumbertype(TB) then « — :
~ OPER ON NUM(product,A,B,tA,tB) else '
1if polynomialtype(tA) A polynomial’ESr'ﬁE(tB) then
OPER ON POL(product,A,B,tA,rA,tB,rB) else
if rationaltype(tA) A ra.tionaltype(tB) then
OPER ON RAT(product,A,B,tA,1A,rA,tB,IB,TB) else
if tA = sum then S(P(1A+saved B) P(rA+saved B)T else
17T, tB = sum Then s(p(a, 1B+saved) P(A,rB+saved)) else

L9

50

STORE(A, product,B))
&%P; (Ap)

;B)B integer A,B)

integey procedure Q(;B'l)} integer A1,B1; | ‘
ey ,:LA 18,Ged 0} :ree.l vA,rB) niw gnnj
"‘%m ms A,M),lA,rA } tBys TYPETHE(B é1),18,r8)3

19 5Q(B, zmz then PR string(¢B ZERO in
Qi="8R(n, 1f EQ(ATZERO) V BQ(B,ZER0) then z;sm else

if EQ(E,0NE) then A-eaved else

f5 nwribwty‘p@'(ﬁ'? A numbertype(*tzB; then

™ OPER ON NUM(quotient,A, B tA,tB) €lge
1f polynomialtype(td) A polynomial*b%"e’(‘w) ‘then
— (if EQ(ES(Ged,PGCD(A,B)),0NE) then
(if 1LC(B) > 0 then STORE(A""Eiona.l function,B)
else STORE(EVIPTA, NENL'JNE)S rational function,P(B MINGNE))
) 1)‘“"1“3 87 mt(PQI(A Ged) ,PAL(B,00d))
else
if re¥lchaltype(tA) A raticnaltype(tB) then
== OPER ON RAT(quotient,A,B,tA 1A,?A t8,T8,rB) else
STORE(A,quotient,B))
end Qs

51

comment

V., Output and conversion,

o

procedure OUTPUT(F); value F; integer F;

begin procedure DP(F type); value F type, integer F,type;
BPegin integer t,A; real B3~
procedure LBR; if € < type then PR string(4(});
procedure RBR; T t < type Then PR string({)});
Te= TYPE(F,A;B)T
if t = algebraic variable then Ovar(F) else
T t = short integer V t = long integer then 0int(F) else
IF DYADIC OP(t) then
Begin LBR; OP(A,T); if t = sum then PR string({+}) else -
_'.’L'f"t product then PR string{¥{<F) else PR string
OP(B,t); RBR
end else
Pegin integer i,degree,X; degree:= length(F) — 2;
Pegini integer array coefl[—1:degreel;
T CET ARRAY(F,I,=T,degree,coefli]);
if t = polynomial then
Pegin integer coefl; te= sum;- LBR; X:= coef[~1];
for 13= O step 1 until degree do
Begin coefTi= coefl1]; if EQ(coefi,ZERO) then goto end for i;
.mcoefi,product) ; PR strmg(b(’}), Ovar(X); PR string({Mb);
PR int num(i); if 1 < degree then PR str1ng(4:+:1>),
end for i
end; RBR
end else °
begin PR string(&(}); for is= 0 step 1 until degree do
""Eé'gin OP(coef[1],0);7IF i < degree them PR string(¥;}) end;
PR string({)})

end end end end OP;

procedure 0int(X); velue X; integer X;
begin integer fnn,l} boolean b;
Tons= gnny 1:= lengTh(X); b:= ISIGN(X) < 0; if b then PR string((});
if 1 = 1 then PR int num(VAL OF S INT(X))
else
Pegin integer elem;
~iT b then PR string({-}); PR int num(abs(ELEMENT(1,X)));
Tor jo= 1 = 1 step =1 until 1 do
Pegin elem:= abs(ELEMENT(J,X));
Tif elem < 1000 then
Begin if elem > 100 then PRstring(400}) else
IF elem > 10 Then PRstring(40000}) &lse
I elem = O Then PRstring(£000000b 7T else

- - - P
end Retring(€00000%})

52

else if elem < 10 A L then PRstring(400}) else
IT elem < 10 A 5 Then PRstring({o});
PR Int num(elem)

end
end; if b then PR string({)})
end Oint;
OP(F,0)

end;

procedure Ovar(X); value X; integer X;
PR sym(VAL OF S INT(X) + 9);

procedure PR string(s); string s;
begin PRINTTEXT(s)end;

procedure PR nler; PR string(&

2

. procedure PR num(a); velue ajreal a;

begin PRINT(a)end;

procedure PR int num(a); value a; integer a;

begin integer b; if a < O then begin PR string({=t); a:= —a end;
1T a < O then PR sym(a) €ise -
bPegin be=a ¢ 10; at=a = b X 10; PR int num(b); PR sym(a) end

endy - T

procedure PR s;ym(a); value a; integer aj;
begin PRoYM(a) end;

comment

In the procedure Oint, whose function is the output of long or short
integers, 1t nas been assumed that G = 10 A 6,
The function of the procedure Ovar is the output of algebraic
variables, -
By elaborating the call Ovar(X), the symbol, of which the nunber in
the alfabet has been specified by the value of VAL OF S INT(X), is
printed,
The addition of 9 to the value of VAL OF S INT(X) in the procedure
body of Ovar reflects the use of a standard=procedure=PRSYM= of the
Mathematical Centre.
The standard procedures, that have been used without describing
them, are PRINTTEXT and PUTEXI', for printing and punching a text
between the Mathematical Centre version of the string quotes
""" and "$}", and PRSYM and PUSYM, for printing end punching a symbol,
They have been described in [8],

N 5
boolean procedure even(s);/valeis; integer s; eveni=s =s : 2 X 2;

°
«np

53

integer PL1,PL2,1i,X,fnn;
comment now we shall demonstrate a simple example.;

INITIALIZE; fnn:= gnn; ES(X,AV(0,2L)) 3
ES(PL1 POL(l 8,X,if i = 0 then S INT(-5) else

ig,i = 1 then S INT(2) else

if i = 2 then S INT(8) else

if i = 3 then S INT(=3) else

if i = b then S INT(-3) else

if i = 5 then ZERO else

if i = 6 then ONE else

if i = 7 then ZERO else ONE));
ES(PL2,POL(i,6,X,1f 1 = O then S INT(21) else

if i = 1 then S5 INT(-9) else

if i = 2 then S INT(-k4) else

if i = 3 then ZERO else

if i = 4 then S INT(5) else

if i = 5 then ZERO else S INT(3%§%

PR string(t The greatest common divisor of }); P

OUTPUT(PL1); PR string(and); PRnler;
OUTPUT(PLZ); PR string(is:)3

OUTPUT (EV (PGCD(PL1,PL2))); ERASE(fnn)

end end -

The input tape consists of 5000 1000000

The output is:

The greatest common divisor of
(~5)*x+0+2%x4 1484 x42+ (=3) xx43+(=3) *xt U+ 1% x 6+ 1%x48 and
21%x40+(~9) *x+ 14+ (=k) *x4+2+5% x4+ 4+3%x46 is: 1

54
L1]
£al

L3]

(4]
£51]
[6]
[7l
L8]

L9l
{101
L1111

[12]
[13]

[14]
L15]

G.E. Collins, Subresultants and reduced polynomial remainder sequences,
JACM, vol. 14, nr. 1, Jan. 1967, pp. 128-1k2,

G.E. Collins, The SAC-1 integer arithmetic system, Technical reference

note of the University of Wisconsin Computing Centre.

G.E. Collins, The revised SAC-1 integer arithmetic system, Technical
reference note of the University of Wisconsin Computing

Centre.

G.E. Collins, The SAC-1 polynomial system, Technical reference note of

the University of Wisconsin Computing Centre.

G.E. Collins, The SAC-1 rational function system, Technical reference

note of the University of Wisconsin Computing Centre.

D.E. Knuth, The art of computer programming, Volume 1, Fundamental
algorithms, Addison Wesley.

D.E. Knuth, The art of computer programming, Volume 2, Semi-numerical
algorithms, Addison Wesley.

F.E.J. Kruseman-Aretz, Het MC-ALGOL 60-systeem voor de X8, Voorlopige

programmeurshandleiding, MR 81, Mathematisch Centrum.
B. Mailloux, On the implementation of ALGOL 68, Mathematisch Centrum.
P. Naur (Editor), Revised report on the algorithmic language ALGOL 60.

W.V.0. Quine, From a logical point of view, Harper Torchbooks, Harper

and Row, New York.

R.P. van de Riet, Formula manipulation in ALGOL 60, paft I, Mathe-

matical Centre Tracts nr. 17, Mathematisch Centrum.

R.P. van de Riet, Garbage collection methods for ABC in ALGOL 60,
T.W., report 110, Mathematisch Centrum.

B.L. van der Waerden, Algebra I, Springer-Verlag, Heidelberg.

A. van Wijngaarden (editor), B.J. Mailloux, J.E.L. Peck and

C.H.A. Koster, Report on the algorithmic language ALGOL 68, second

e printing by the Mathematisch Centrum, Amsterdam, MR 101,
October 1969.

List of errata. MR 119/70.
page 1, line 15 else STORE (a,sum,b). >
else STORE (a,sum,b);
page 1, line 18 if a = one then b else if b = one then a. >
if a = one then b else if b = one then a
page 1k, line 11 1: the condition F > 0 >
1: The condition F > 0
page 14, last line from a call of integer procedure STORE: -
from g call of integer procedure STORE: H
page 15, last line the 3 symbol must be deleted.
page 14 and 15, modified as indicated above, must be interchanged.
page 38, line 20 s -> s
page 46, line 21 Product: = V(p); ERASE (fnn) -
Product: = V(p)-saved; ERASE (fnn)
page 52, last line vale -> value
page 53, line 17 if i = 5 then ZERO else S INT(3)); >

if i

5 then ZERO else S INT(3)));

av i

z»,:ww,%k . mww; -
e o
2 nwwm.wvmm% %ﬁw«m
o : »w,m o

».,,;um,w. =

o

.
. i ki%@.ﬁ,uvwm?ﬁ

x%s
\bﬂﬂ o »iﬂw

a,,,,,,«x,ﬁﬁ .

&%uk,

mwz wf w,

w w,xs,hnm i

wﬁuﬁﬁ m».%wmwav:%

,,51%'
‘3% ‘Ji
:’ ;s
3‘

*
,%\
o

&
“ﬁ

%
.

e ww.«&, \\w,,ku\&

pa w\vxw e
) - -

mﬂk,mv.,%mmwmw»wzy -
= B;Wu o

5

%*iim

,.‘,mwﬁw& :,wm;.mwz:,ﬁu
e \amm - \\m&w&w =
T»x hi, wm ;

k:aw,ﬁ,wb = .& = wm

Sr%ﬁ?ﬁ mwﬁxwy
_ k.m\f; -
2 x&x&&w -
& wwuw» e
e
i e w,w%\w%,m%,.
“o ,,uw”wwww,\s o a&f -

Soae ,\J?.\ﬂ\wﬁm\,n
mm
K » é - %n

