
Programming Techniques

Increasing the

Efficiency of Quicksort

M. H. VAN EMDEN

Mathematical Ce:ntre, Amsterdam, The Netherlands

A method is presented for the analysis of various generali
zations of quicksort. The average asymptotic number of
comparisons needed is shown to be an log2 (n). A formula is
derived expressing a in terms of the probability distribution
of the "bound" of a partition. This formula assumes a par
ticularly simple form for a generalization already considered
by Hoare, namely, choice of the bound as median of a random
sample. The main contribution of this paper is another gen
eralization of quicksort, which uses a bounding interval in
stead of a single element as bound. This generalization turns
out to be easy to implement in a computer program. A nu
merical approximation shows that a = 1.140 for this version
of quicksort compared with 1.386 for the original. This im
plies a decrease in number of comparisons of 18 percent;
actual tests showed about 15 percent saving in computing
time.

KEYWORDS AND PHRASES; sorting, quicksort, information content, entropy,

distribution of median
CR CATEGORIES: 3.73, 4.49, 5.31, 5.6

I. Quicksort

By sorting a sequence we mean arranging a sequence of
numbers into nondecreasing order. We shall frequently
refer to the rank of an element, which means the index of
the place it occupies in the sorted sequence; the rank of a
particular element, say x, will be denoted by r (x). The se
quence to be sorted will be referred to as a[l], • • • , a[n]
or as a[l :n]. Quicksort (which is due to C. A. R. Hoare
see [4, 5]) is the obvious choice for sorting a sequence that
can be contained within a random access memory because
it combines efficiency with the advantage that, apart from
the sequence itself, the necessary additional storage is
proportional to log2 (n).

The principle of quicksort may be described as follows.
Take any real number y (let us refer to this as the bound).

This paper is related to an algorithm of the same title, which will
be published in a later issue of Communications of the ACM [9].

Volume 13 / Number 9 / September, 1970

Suppose that there are integers p and q such that

0 :::; p < q :s; n + 1, }
among a[l: p] none is greater than y,
among a[q:n] none is smaller than y.

(1)

Suppose now that p and q are any pair of integers satis
fying all three of these conditions and also such that (q - p)
is minimal. If p + 1 = q, then we are ready; otherwise we
have a[p + 1] > y and a [q - 1] < y. These elements are
interchanged, and again p is increased and q is decreased
as much as possible. This results in a change of at least 1 in
p or q so that, continuing in this way, we at last find that
p + 1 = q. Let the final value of p be r. A partition is now
completed, which means that of a[l:r] none is greater, and
of a[r + 1 :n] none is smaller than y.

The problem of sorting a[l :n] is now reduced to sorting
a[l :r] and a[r + 1 :n] separately. Thus the length of the
sequence to be sorted is successively reduced until only se
quences of length 1 or 2 are left. We shall see that the ef
ficiency of quicksort depends on the way of selecting y.
For the theoretical analysis of the number of comparisons,
it will not be necessary to specify how y is selected; only the
existence of a probability distribution will be postulated for
the resulting r.

2. Average Number of Comparisons

Hoare [5] showed that the average number of compari
sons done by quicksort is, asymptotically for large n,
equal to 2n ln (n). He also showed, by means of an infor
mation-theoretic argument, that the minimum number of
comparisons is n log2 (n). This minimum would be achieved
if the bound is always in the middle.

This section derives, by means of a similar argument,
that the average number of comparisons is asymptotically
equal to an log2 (n), where a is independent of n and we
express a in terms of the probability distribution of the
bound. Applications of this formula to the distributions
considered by Hoare yield his results.

The number of comparisons required by a particular
sorting algorithm may vary greatly for sequences of the
same length; so, if we are to compare the performance of
different sorting algorithms, we must define some sort of
average. Suppose that no two elements are equal to each
other; in that case not the elements themselves are im
portant, but only their rank; hence a sequence may be re
garded as a permutation of the integers 1, • • • , n. In the
sequel we mean by "average" the average over the en
semble of all permutations of 1, · · · , n where each occurs
with the same probability.

An information-theoretic argument yields a formula for
the average number of comparisons necessary to sort a
sequence of length n. We can view the process of sorting as

Communications of the ACM

lfilBlJOTHEEK MATHEMATISCH CENTRlJM
AMSTERDAM

563

one of collecting information about the particular permuta
tion initially presented, because we would be able to re
construct this permutation working backward from the
sorted sequence if a record were kept of interchanges ef
fected. Therefore, we must gain an amount of information
equal to the uncertainty inherent in the random drawing
of a permutation.

We suppose that, before the partition, any of the permu
tations of 1, · · • , n are equally probable. According to
Shannon's theory of information [7], the uncertainty in
this situation equals the entropy of the discrete probability
distribution {p1, · · · , Pn!} where Pi = 1/n! for i = 1, · · · ,
n!:

n!

- L Pi log2 (pi) = log2 (nl) bits.
i=l

If, before the partition, a[l :n] contains any of the possible
permutations of 1, · · · , n with probability 1/n !, then after
ward the equivalent statement holds for a[l:r] and
a[r + 1: n]. This may be verified as follows. The algorithm
described in Section 1 may also be described as the suc
cessive random drawing without replacement from an urn
initially containing balls numbered 1, • • • , n. Suppose that
p + n - q + 1 balls have been drawn already. Another ball
is drawn, if available, and it is placed in a[p + 1] if smaller
than y and in a[q - 1] otherwise. Thus a[l:r] is obtained
by drawing balls from the urn randomly, without replace
ment, under the condition that its number be not greater
than r. This implies that every permutation of {1, • · • , r}
has probability 1/r ! of actually occurring. Moreover,
which ball with number greater (not greater) than r is
drawn, is independent of the balls with number not greater
(greater) than r drawn previously. Therefore, the permuta
tion being formed in a[l: r] is independent of the one being
formed in a[r + 1:n] and vice versa.

This implies that the number of possibilities after the
partition is r! (n - r) !, each with equal probability, so
that the uncertainty is log2 (r!(n - r)!). Introducing a
quantity H, we find for the information yield of a partition.
which equals the decrease of uncertainty,

nH = log2 (n!) - log2 (r!) - log2 ((n - r)!).

In quicksort, the bound y is selected in such a way that
r (y) has probability 1/n to become equal to 1, · · · , n.
The generalization that we will consider consists of intro
ducing a different way of selecting the bound having a
different probability distribution. We will regard r as a
random variable, such that

n

prob {r = r} = fr, r = 1, · · · , n, L fr = 1.
r=l

This gives for the expected information yield of a partition

n

E(nH) = log2 (n!) - Lf,(log2 (rl) + log2 ((n - r)!)).
r=l

564 Communications of the ACM

This equals, asymptotically for large n,

E(nH) ,..._, n log2 (n)
n

Lfr(r log2 (r) + (n - r) log2 (n - r))
r=l

and

n (() ())
r r n-r n-r

E(H) ,.._, - L f, - log2 - + -- log2 -- .
r=I n n n n

For large n, the sum may be replaced by an integral:

E(H) ,.._, - { g(x) (x log2 (x)

- (1 - x) log2 (1 - x)) dx,

where g (x) is the probability density function of a; = r/n.
In the sequel we shall confine our attention to symmetric
distributions, that is, where g (x) = g (1 - x), and then
we have:

E(H) ,.._, -2 fo
1

g(x)x log2 (x) dx. (2)

In our derivation of the efficiency of a sorting algorithm,
apparently a partition of a sequence of length n is the
natural unit, irrespective of the way in which this partition
has been effected. However, it has become usual (see
Hoare [5]) to use the comparison between an element and
the bound as the unit. We need n of these to complete a
partition; so E (H) may be interpreted as the average in
formation yield of a comparison.

This result (2) holds asymptotically for large n for par
titions in sequences of length n. However, completing the
process of sorting requires partitions in sequences of any
length not smaller than, say, 2. Suppose 0 is the proportion
of all comparisons required for subsequences of length
::S:pn, where (2/n) ::S: p < 1, and n is the length of the
original sequence. 0 attains its maximum 0m when all parti
tions end exactly in the middle:

Om = pn log2 (pn) = (l + log2 (p))
n log2 (n) P log2 (n) ·

For any p > 0 we can choose an n large enough to satisfy
(2/n) ::S: p; hence O < 0m < p and also O < 0 < p. This
implies that for any fixed p (O < p < 1) we can choose n
so large that the proportion 0 of all comparisons required
for subsequences of length ::S:pn is smaller than p. Finally,
we can make n sufficiently large to approach the asymp
totic result (2) closely enough for sequences of length pn.
This means, essentially, that, for n ---+ oo, "almost all"
comparisons are done in "large" sequences, and that ex
pression (2) can be expected to apply to the total time
taken by quicksort, not just to the first partitions.

Under our assumption of equally probable permutations
of 1, · · · , n, the total amount of information to be gained
during sorting is n log2 (n); so that we find for the average
number of comparisons required for a generalization of
quicksort:

Tn "'n log2 (n)/E(H) = an log2 (n), (3)

Volume 13 / Number 9 / September, 1970

where

This formula, which was supplied, with a faulty proof, in
van Emden [2], is due to F. E. J. Kruseman Aretz [6],
who obtained it by a different method. It allows us to de
rive two results given by Hoare [5] as special cases.

The first result applies to the original version of quick
sort. Here g (x) = 1 if O ::;; x ::;; 1, g (x) = 0 otherwise.
Substituted in (3), this yields a = 2 ln (2) = 1.386, which
is Hoare's result.

The second result applies to the theoretical mini1num of
a. Consider the random variable ;r that has IJ (x) as proba
bility density function. We shall derive the minimum of
a where g (x) is allowed to vary over all symmetric func
tions such that f~ g (x) dx = 1. One of the forms that
Jensen's inequality might assume (see, for instance, [1])
1s:

E(f(;r))::;; f(E(;r)), (4)

where ;r is a random variable assuming nonnegative values
with probability one, and f is a continuous and convex
function.

If we choose f(x) = -x log2 (x), we find

E(-;r log2 (;r)) = - f g(x)x log2 (x) dx

= 1/(2a) ::;; - E(;r) log2 (E(;r))"

Because of the supposed symmetry of g (x), E (;r) = .5;
hence a 2: 1, which iR Hoare's result.

In ,Jensen's inequality, equality occurs if and only if ;r
assumes one value with probability 1. This value can only
be .5 in the symmetric case; we may conclude that 1 is the
lower bound for a, which is assumed if and only if
prob (;r = .5) = 1, which corresponds to such a choice of
the bound in quicksort that every partition ends exactly
in the middle.

3. Two Ways of Increasing Efficiency

3.1. Bound as Median of a Random Sample. Hoare
[5] suggests an improvement of his algorithm to be ob
tained by choosing as the bound the median of random
sample of size 2k + 1, and remarks that the resulting
saving is very difficult to estimate. This modification has
also been studied by Frazer and McKellar [3]. The formula
(3) for the asymptotic number of comparisons is appli
cable to this case, in which it assumes a particularly
simple form.

It is a well-known fact in order statistics that, whatever
the distribution of the elements themselves, their ranks are
uniformly distributed and the probability density function
of the median of a sample of size 2k + 1 from a uniform
distribution is g (x) = x\1 - xl / B (k + 1, k + 1), where

Volume 13 / Number 9 / September, 1970

B is the Beta function. To find a, we have to evaluate the
integral

{ g(x)xlnxdx

(1/B(k + 1,k + 1)) f xk+
1

X ln x(l - x l dx (5)

(B(k + 2,k + 1)/B(k + 1,k + 1))

·(if;(k + 2) - if;(2k + 3))

(if;(k + 2) - if;(2k + 3))/2,

where if; is the logarithmic derivative of the gamma func
tion:

From

1

d
if;(x) = dx ln r(x).

(3) and (5) we find that

if;(2k + 3) - if;(k + 2)
In (2)

1
+ 2k + 2

1 1 1--+--2 3

ln (2)

1
... + 2k + 1

In (2)

1
2k + 2

This shows that ak > 1 and limk+oo ak 1, as indeed re-
quired by Jensen's inequality (4). See Table I.

TABLE I

4 6
k I 0

ak 1.386 1.188 1.124 1.092 1.073 1.061 1.053 1.000

It may be useful to remark that ak is independent of n.
Therefore, for any size 2k + 1 of a random sample, for suf
ficiently large n, the time required to find the median of the
sample is an arbitrarily small proportion of the time re
quired to complete a partition. Although the asymptotic
properties of this method do not depend on the efficiency
of the method used to find the median, the following note
may be of interest.

Van Wijngaarden [8] proposed the following modification
of quicksort for finding the median of a sequence. Instead
of sorting each of the parts designated by a partition, only
that one is sorted in which the median lies. In this way the
median is found as the last of a sequence of nested intervals
containing it. He showed that the number of comparisons
required is, asymptotically for large n, equal to {3n, where
(3 does not depend on n. Kruseman Aretz [6] showed that
f3 = 2 + 2 In (2).

3.2. Bounding Interval. Quicksort starts each partition

Communications of the ACM 565

by designating an element of a[l:n] as the bound y. We
found that efficiency may be improved by merely postpon
ing the decision of what the bound is going to be. In fact,
during the whole of the partition we only use an interval
containing the bound; at any time any element of this in
terval could still be chosen without disturbing the partition
obtained so far; hence the term "bounding interval"
which we have chosen for this strategy.

To be specific, suppose that integers p and q satisfy the
relations (1). In this situation there is no need to choose y
as bound; but if, for instance,

and

xx = max a[i],
i

zz = min a[i],
i

q ::; i ::; n,

then any element whose rank is not less than r (xx) and
not greater than r (zz) might be chosen. To complete the
partition, p must be increased and q must be decreased. It
is possible to preserve the validity of (1) by, if necessary,
interchanging elements, or by increasing xx, or by decreas
ing zz.

When at last p + l = q, the interval containing the
bound has shrunk to the pair {xx, zzl, either of which could
be chosen as bound. In actual fact neither is, because the
necessity of a bound has vanished: the partition is complete
already.

This particular way of effecting a partition implies a
certain density function g. It depends on the supposition
that the ranks represent a random permutation of the in
tegers 1, · · • , n. It is only useful to use g to compute
efficiency if it holds not only for the initial partition but
also for all successive ones, that is,, when the partition
leaves a random permutation in each of the parts. That this
is the case may be seen as follows.

Let r' be the rank of the final value of zz. A particular
element in the left half is replaced if and only if its rank is
~r', even though the tests deciding its replacement are
based on values of xx and zz that are, in general, not yet
equal to their final values. Thus the replacements are drawn
randomly, without replacement, from the uniform dis
tribution on 1, · · · , r' - 1, and so are elements that re
main in the left part.

4. Computing the Asymptotic Efficiency when
Using a Bounding Interval

4.1. The Succession of Intervals as a Random Walk on
the Unit Half-square. As shown in Figure 1, an interval
may be represented by a point P on the unit square, where
the coordinates are the rank (divided by n) of its endpoints
xx and zz. Because r (xx) < r (zz), P may only lie above
the diagonal shown. The following description applies to
the strategy embodied in procedure qsort. Picking the
first x on the left ,that is greater than xx and the first z on
the right that is smaller than zz corresponds to a uniformly
distributed drawing of a point Q from the points of the

566 Collilllunications of the ACM

P(il-------71"'--------lzz

A

B D

C E

0 xx

Fm. l

unit square whose first (second) coordinate is greater
(smaller) than that of xx (zz). These points form a rec
tangle of which P is the northwest corner; this rectangle
may be referred to as the "shadow" of P.

The procedure qsort distinguishes whether Q is found in
A, B, C, D, or E. If Q is found in A or B, both xx and zz
are adjusted; if in C only zz, if in D only xx, and if in E
neither xx nor zz are adjusted. Any of these adjustments is
preceded by a reflection with respect to the diagonal if Q
is found in B, C, D, or E. Under the assumption of a uni
form distribution of Q on the shadow of P, the probability
of each of these contingencies is proportional to its area.
Hence we obtain the following succession rule:

lf drawn from:

A or B
C

Probability

(zz-xx) 2u
xx(zz-xx)u
(zz-xx) (1-zz)u
xx(l-zz)u

Q uniformly distributed on:

interior of A
west side of A (6)

D north side of A
E p

Here the factor u = l/ (zz (1 xx)) ensures that these
probabilities add up to 1.

This rule of succession defines a random walk on the
upper half of the square with absorption on the diagonal.
We may regard a partition as the following experiment:

(1) A point is drawn at random, according to a
uniform distribution, from the upper half of
the square.

(2) The successors according to the above rules
are regarded as the stations of a random
walk.

(7)

Every random walk ends on the diagonal, and the proba
bility density function resulting from this experiment is the
function g (x) needed to compute the asymptotic efficiency.

To approximate a we have set up the following dis
cretized model of the experiment (7). The unit square is
divided into a number of equal sized square cells, for every
one of which we compute the probability mass (probability

Volume 13 / Number 9 / September, 1970

that the point is in the cell under the condition that it
started where it did) at each stage of the experiment. We
pick a certain cell such that all cells above it or to the left
of it are empty (contain zero mass).

In this model the succession rules (6) are interpreted as
rules governing the distribution of mass from a certain cell
over all others of the unit half square that are not above it
or to the left of it. Suppose that according to these rules a
certain proportion, say p, remains in the cell. Another ap
plication of the rules leaves p2, and so on. We require the
result of infinitely many applications, and apparently this
is achieved by computing the effect of a single application,
multiplying all numbers so obtained by 1/ (1 - p), and
putting the mass of the selected cell equal to zero.

Let V be the set of cells not on the diagonal containing
nonzero mass. As long as Vis nonempty, it is possible to se
lect an element of V that, according to the rules, may only
give mass to other cells but may never receive any. Appli
cations of the process described above to such a cell de
creases the number of elements in V by 1. The computation
continues until Vis empty. Then all probability mass has
diffused into the squares on the diagonal and their masses
may be regarded as a discrete approximation of the density
function g.

This computation was carried out with rules (6) cor
responding to procedure qsort and it yielded a = 1.140.
Strictly, our analysis shows that the effectiveness of a par
tition is 18 percent greater than in quicksort, where

Volume 13 / Number 9 / September, 1970

a = 1.386. Although qioOrt is very simple to program, a
partition requires slightly more time than in the case of
quicksort, because occasionally the bounding interval has
to be adjusted. This probably explains an observed saving
in computing time of about 15 percent.

Acknowledgment,s. The author :is much indebted to
Professor Dr. F. E. J. Kruseman Aretz of Philips Research
Laboratories, Eindhoven, Netherlands, for valuable guid
ance in this matter; also to the referees, whose remarks
caused the paper to be extensively revised.

RECEIVED OCTOBER, 1969; REVISED MARCH, 1970

REFERENCES

I. BECKENBACH, E. F., AND BELLMAN, R. Inequalities. Springer,
New York, 1961.

2. VAN EMDEN, M. H. lets quicker dan quicker. Informatie 11
(1969), 30-32.

3. FRAZER, W. D., AND McKELLAR, A. C. Samplesort: a sampling
approach to minimal storage time sorting. In proc. of the
Third Annual Princeton Conf. on Information Sciences and
Systems, 1969, 276-280.

4. HOARE, C. A. R. Algorithm 64, Quicksort. Comm. ACM 4,
7 (July 1961), 321.

5. HOARE, C. A. R. Quicksort. Comput. J. 5 (1962), 10-15.
6. KRUSEMAN ARETZ, F. E. J. Private communication.
7. SHANNON, C. The Mathematical Theory of Communication.

U. of Illinois Press, Urbana, Ill., 1963.
8. VAN WIJNGAARDEN, A. Private communication.
9. VAN EMDEN, M. H. Algorithm 402: Increasing the efficiency of

quicksort. To appear in Comm. ACM 11 (Nov. 1970).

Communications of the ACM 567

/1 I< /J 2
t:.

Algorithms

ALGORITHM 401
AN IMPROVED ALGORITHM TO PRODUCE

COMPLEX PRIMES [Al]
PAUL BRATLEY (Recd. 25 Feb. 1970)
Departement d'informatique, Universite de Montreal,

C.P. 6128, Montreal 101, Quebec, Canada

KEY WORDS AND PHRASES: number theory, prime numbers,
complex numbers
CR CATEGORIES: 5.39

integer procedure cprimes(m, PR, PI);
value m; integer m; integer array PR, PI;

comment The procedure generates the complex prime numbers
located in the one-eighth plane defined by O :::; y < x. Any prime
found in that area has seven more associated primes: -x + yi,
± x - yi, ± y ± xi. These associated primes must be generated
externally to cprimes. The first complex prime generated by
cprimes is 1 + i, which exceptionally lies on x = y and has only
three associated primes.

The algorithm generates a list of complex primes in order of
increasing modulus: the parameter m of the call is the highest
modulus to be included in the list and should satisfy m > 2.
PR and PI will contain respectively the real and imaginary
parts of the generated list, with PR ~ Pl ~ 0 for each prime.
The value of the procedure is the number of primes generated.

Algorithm 311 (1), sieve 2, is used to generate the rational
primes less than m 2• Then it is known (see, for instance (2])
that a rational prime p of the form p = 4n + 1 can be expressed
as p = a2 + b2, and factorized as (a+bi}(a-bi) in the complex
plane, where a + bi and a - bi are complex primes. For our
present purpose we choose a > b and include only a + bi in the
list. A rational prime p of the form p = 4n + 3 remains prime
in the complex plane, so we include p + Oi in the list if p < m.
Finally, the complex prime 1 + i may be thought of as one of
the factors of the remaining rational prime 2 = (1 +i) (1-i).

Although this algorithm and Algorithm 372 [3] are not directly
comparable, since they produce the list of complex primes in a
different order, the accompanying remark suggests that the
present algorithm is often to be preferred.

REFERENCES :
1. CHARTRES, B. A. Algorithm 311, Prime number generator 2.

Comm. ACM 10 (Sept. 1967), 570.
2. HARDY, G. H., AND E. M. WRIGHT. An Introduction to the

Theory of Numbers, 4th ed. Clarendon Press, Oxford, 1965,
Chs XII and XV.

3. DuNIIAM, K. B. Algorithm 372, An Algorithm to produce
complex primes, CSIEVE. Comm. ACM 13 (Jan. 1970),
52-53;

begin
integer a, b, c, d, e, i, j, p, q;
integer array P2[1:0.7Xm j 2/Zn(m)],

P3(1 :1.4Xm/Zn(m)];
e : = sieve 2(m i 2, P2);
PR[l] := PI[l] := a := c := 1;
b := O;
ford := 2 step 1 until e do
begin

p : = P2(d]; q ._= p - I;
if (q+4) X 4 ¢ q then
begin

if p:::; m then

Volume 13 / Number 11 / November, 1970

L. D. FOSDICK, Editor

Ll:

begin b := b + I; P3[b] := pend
end
else
begin

if a:::; b then
begin

if P3[a] j 2 < p then
begin

c := c + I; PR[c] := P3[a];
a := a + I; Pl[cJ := O;
go to LI

end
end;
q := entier(sqrt(p/2)+1);
for i := q step 1 until p do
begin

j := sqrt(p-ij 2);
if i j 2 + j j 2 = p then go to £2

end
comment Note that the jump to £2 is always made before

the cycle is terminated;
£2:

c := c + 1; PR[cJ := i; PI[c] := j
end

end;
£3:

if a:::; b then
begin

c := c + 1; PR[cJ := P3[aJ;
a :=a+ I; Pl[cJ := O;
go to £3

end;
cprimes := C

end cprimes

ALGORITHM 402
INCREASING THE EFFICIENCY OF

QUICKSORT* [Ml]
M. H. VAN E:.vrDEN (Recd. 15 Dec. 1969 and 7 July 1970)
Mathematical Centre, Amsterdam, The Netherlands

* The algorithm is related to a paper with the same title and by
the same author, which was published in Comm. ACM 13 (Sept.
1970), 563-567.

KEY WORDS AND PHRASES: sorting, quicksort
CR CATEGORIES: 5.31, 3.73, 5.6, 4.49

procedure qsort(a, ll, ul);
value Zl, ul; integer Zl, ul; array a;

comment This procedure sorts the elements a[Zl], a[Zl+l], • • • ,
a[ul] into nondescending order. It is based on the idea described
in [1]. A comparison of this procedure with another procedure,
called sortvec, obtained by combining C. A. R. Hoare's quicksort
[2] and R. S. Scowen's quickersort [3], in such a way as to be
optimal for the Algol 60 system in use on the Electrologica X-8
computer at the Mathematical Centre is shown below. Here

Communications of the ACM 693

"repetitions" denotes the number of times the sorting of a
sequence of that "length" is repeated; "average time" is the
time in seconds averaged over the repetitions; "gain" is the
difference in time relative to time taken by sortvec.

procedure length repetitions average time gain
sortvec 30 23 .09
qsort 30 23 .06 +.37
sortvec 300 16 1.25
qsort 300 16 1.03 +.17
sortvec 3000 9 17.43
qsort 3000 9 15.25 +.13
sortvec 30000 2 232.46
qsort 30000 2 197.96 +.15

REFERENCES:
1. VAN EMDEN, M. H. Increasing the efficiency of quicksort.

Comm. ACM 13 (Sept. 1970), 563-567.
2. HOARE, C. A. R. Algorithm 64, quicksort. Comm. ACM 4

(July 1961), 321-322.
3. ScoWEN, R. S. Algorithm 271, quickersort. Comm. ACM 8

(Nov. 1965), 669;
begin

integer p, q, ix, iz;
real x, xx, y, zz, z;
procedure sort;
begin

integer l, u;
l := ll; u := ul;

part:
p := l; q := u; x := a[p]; z := a[q];
if x > z then
begin y := x; a[p] := x := z; a[q] := z := y end;
if u - l > 1 then
begin

xx := x; ix := p; zz := z; iz := q;
left:

for p : = p + 1 while p < q do
begin

X := a[p];
if x 2;: xx then go to right

end;
p : = q - 1; go to out;

right:
for q : = q - 1 while q > p do
begin

z := a[q];
if z ::,; zz then go to dist

end;
q := p; p := p - 1; z := x; x := a[p];

dist:

out:

694

if x > z then
begin

y := x; a[pJ := x := z;
a[q] := z := y

end;
ifx > xx then
begin xx := x; ix := pend;
if z < zz then
begin zz := z; iz := q end;
go to left;

if p ~ ix I\ x ~ xx then
begin a[p] := xx; a[ix] := x end;
if q ~ iz I\ z ~ zz then
begin a[q] := za; a[izJ := z end;
if u - q > p - l then
begin ll := l; ul := p - 1; l := q + 1 end
else

Communications of the ACM

begin ul := u; ll := q + l; u := p - 1 end;
if ul > ll then sort;
if u > l then go to part

end
end of sort;
if ul > ll then sort

end of qsort

REMARK ON ALGORITHM 343 [Fl]
EIGENVALUES AND EIGENVECTORS OF A REAL

GENERAL MATRIX [J. Grad and M. A. Brebner.
Comm. ACM 11 (Dec. 1968), 820-826]

WILLIAM KNIGHT AND WILLIAM MERSEREAU (Recd. 7
Apr. 1970)

Computing Center, University of New Brunswick,
Fredericton, New Brunswick, Canada

KEY WORDS AND PHRASES: eigenvalues, eigenvectors,
latent roots, Householder's method, QR algorithm, inverse iter
ation
CR CATEGORIES: 5.14

This remark reports certain failures of Algorithm 343 when
applied to pathological matrices. The smallest example is a 4 X 4
matrix for which 16 guard bits (5+ digits) proved insufficient; all
computed eigenvalues were incorrect in the most significant digit.

The algorithm was implemented on an IBM System/360 model
50 using Fortran IV-G. The program was not modified to operate
completely in double precision as was done for Knoble's certifica
tion [2]. Satisfactory agreement was obtained for the three sample
matrices given with the algorithm.

Example A

-50
-52
-53
-51

53
1
0

53

52
53

1
52

51
52
53
52

The exact eigenvalues are all 1. The computed eigenvalues follow.
(Computed eigenvalues are reported rounded to 2 places after
the decimal point, any further figures being, rather obviously,
pointless.)

2.35
1.03 ± 1.38 i

-0.41

The maximum error in a computed eigenvalue exceeds 2 percent
of the largest element of the matrix.

Example B

-41
2

- 3
- 4
-55
-51

55
10
0
0
0

55

4
55
10
0
0
4

3
4

55
10
0
3

2
3
4

55
10
2

51
2
3
4

55
61

The exact eigenvalues are all 10. The computed eigenvalues:

14.76 ± 2.92 i
9.70 ± 5.33 i
5.54 ± 2.39 i

The maximum error in a computed eigenvalue exceeds 9% of the
largest element in the matrix.

Volume 13 / Number 11 / November, 1970

