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Abstract 

The criteria are studied according to which it is optimal to compress data by 
perpendicular projection onto a subspace spanned by a set of first eigenvectors 
of the covariance matrix. In pattern recognition such criteria have been 
studied by Tou and Heydom and by Watanabe. Several criteria have been 
found in a similar situation in multivariate statistics and these have been 
shown to be equivalent by Okamoto and Kanazawa. This paper emphasizes 
the equivalence of the results found in pattern recognition and in multi
variate statistics. It also shows how Watanabe's approach can be extended to 
prove Okamoto's result and consequently also some of the better-known 
variational properties of the eigenvalues of a covariance matrix. In connection 
with a criterion in terms of entropy, a characterization of the normal distribu
tion is given. 

DATA COMPRESSION IN PATTERN CLASSIFICATION 

One of the possible approaches to pattern classification proceeds in three 
principal steps. First, the pattern impinges on a 'retina' and the resulting 
(real-valued) measurements constitute a point inn-dimensional vector space. 
Subsequently, the 'sensory cortex' transforms this into a point in k-dimen
sional vector space (k~n) in such a way that enough information relevant to 
classification is retained. Data compression is regarded as the activity of the 
sensory cortex. Finally, in the 'motor cortex' a decision mechanism assigns 
the k-dimensional vector to one of the classes. This set-up is reminiscent of 
Rosenblatt's (1962) 'three-layer, series-coupled perceptron'. 

NOTATION 

Upper case letters are matrices; lower case letters are column vectors or their 
scalar components. An unindexed letter usually denotes the vector composed 
of the corresponding indexed scalars. A prime(') means transposition; it is 
applicable both to matrices and to vectors. Thus an inner product, sometimes 
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written elsewhere as (x, Wx), appears here as x'Wx. A diagonal matrix may 
be explicitly specified by diag(A1, ... , An), where the elements on the diagonal 
are A1, ... , An• The trace (sum of the eigenvalues) and the determinant 
(product of the eigenvalues) of a matrix, say M, are shown as tr(M) and 
IMI. 

Let x be an n-dimensional random vector with mean Ex= 0 and covariance 
matrix Exx' = V(x). We shall suppose that x has been multiplied by a scalar 
in such a way that tr(V(x))= 1. A1( V), A2( V), . .. , An( V) are the eigenvalues 
of V(x) in nonincreasing order andp1(V),p2(V), .. . ,pn(V) corresponding 
normalized eigenvectors. When the AS or ps are used without argument, 
they are understood to belong to V. When Vis used without argument, it is 
understood to belong to x. 

We may think of x as being associated with an n-dimensional probability 
density function or else with a sample of N vectors s1, ... , sN in n-space, 
each of which has a weight Ji, Ji+ ... + fN = 1. Such a weight may be taken 
to be proportional to the number of times that a pattern identical to s; has 
been observed. The usual, so-called unweighted, sample is a special case of 
this where Ji.= 1 / N for i= 1, ... , N. The weighted sample is itself a special 
case of a random vector x if we put Prob(x=s;)=f; for i= 1, ... , N (Oka
moto 1969). In this case we have 

V(x)=Exx'=f1s1s~ + ... + fNsNs;=SFS' 

where S=(s1, ... , sN) is an n x N matrix and F=diag(Ji, .. . ,IN). 

OPTIMAL APPROXIMATION TO A RANDOM VECTOR 

From now on we need to discuss only a random vector x, which is regarded 
as the output of the retina. The sensory cortex transforms it to a k-dimensional 
random vector in such a way that information relevant to classification is 
preserved as much as possible. Two restrictions are imposed: the transforma
tion is to be linear and information relevant to classification is to be extracted 
only from the covariance matrix V(x). We interpret the problem of optimal 
data compression as the problem of optimal approximation to a random 
vector by one of lower dimension. 

In statistics an equivalent problem has been studied by Pearson (1901). 
Since Hotelling's (1933) work on it, the method of approximating a random 
vector by its perpendicular projection onto a subspace spanned by a set of k 
first eigenvectors of the covariance matrix has become widely known as the 
'method of principal components'. The optimality criteria used by Pearson 
and Hotelling are different, and Rao (1965) has introduced yet another one 
leading to the same approximation. Okamoto and Kanazawa (1968) and 
Okamoto ( 1969) investigated the relation between these criteria. In the latter 
paper a theorem is presented that indicates a whole class of criteria that lead 
to the same approximation and of which the earlier are special cases. 

In pattern recognition, the same problem of approximation to a random 
vector has been encountered, but different names were used: 'feature 
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selection' or 'data compression'. Possibly as a result of this, the problem was 
solved anew (Watanabe 1965, Tou and Heydom 1967). One of the results 
ofTou and Heydorn is a direct consequence of the properties of the principal 
components approximation. Watanabe uses a criterion that leads to the same 
approximation but is more powerful in the sense that it simultaneously 
characterizes all solutions fork= 1, ... , n. Again, this may be shown to be a 
consequence of Okamoto's theorem. In this paper we have chosen the opposite 
direction and we shall show that Watanabe's approach may be extended to 
-yield Okamoto's theorem as a consequence and thereby also some of the 
more widely known extremal properties of the eigenvalues of a covariance 
matrix, such as Fischer's max-min theorem. 

WATANABE'S CRITERION 

Let Ube a square matrix whose columns are an orthonormal set u1, ... , un, 
that is, U' U = I, the identity matrix. Then we have: 

x=Ix= U'Ux= UU'x=u 1u~x+ ... +unu~x. 
Here the scalar random variables u1 x, ... , u;x are the components of x with 
respect to the basis u1, ... , un. Because of the invariance of the trace under a 
similarity transformation, we have: 

tr(V( U'x))=tr( U'VU)=tr( u-wU)=tr( V)= 1. 
This implies that, whatever orthonormal base we choose, the variances of the 
components add up to one. 

Watanabe ( 1965) chose as approximation to x its perpendicular projection 
onto a subspace spanned by k vectors of the basis. He selected the most 
'significant' k vectors, where significance of a basis vector was interpreted 
to be the variance of the corresponding component ( a component with small 
variance gives little information about the difference between various 
occurrences of x, which is what we are interested in). Therefore, the subspace 
to be chosen is spanned by the basis vectors corresponding to the components 
that have the largest variances. The total amount of variance collected in this 
way is the greater the more unequal the sum of variances is distributed over 
the basis vectors. The obvious way to express equality of a partition of 1 into 
n nonnegative numbers p1, ... , Pn is an entropy-like function H(p )= -<p(p1) 
•.• -<p(Pn) where <pis a continuous and convex function. 

Watanabe's results may be summarized as follows. A random vector xis 
approximated by its perpendicular projection onto the subspace spanned by 
the basis vectors u1, •. . , uk for which the corresponding components have 
the largest variances p1, ... , Pk• The approximation is considered optimal for 
k= 1, ... , n if the basis is chosen such that H(p) is minimum. 

Theorem 1 

The minimum is attained if and only if u1 =pi, ... , un=Pn· 
Proof. Let P be the matrix of which the columns are P1, ... , Pn• U is an 
arbitrary orthogonal matrix. 
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V( U'x)=EU'xx'U= U'VU= U'PAP'U= QAQ', 

where A=diag (A.1, ... , An) and where Q= U'P. Q is the product of ortho
gonal matrices and is therefore itself orthogonal. V( U'x)= QAQ' implies that 

P;=A1qf1 + . •. +Anq! or P;=A1ri1 + • .. +Anrin (1) 

where Pi is the ith diagonal element of V(U'x) and rik=qr,. are the non
negative elements of a matrix R. Because of the orthogonality of Q, both row 
and column sums of R equal 1. We can now write (1) as p = RA. The effect of 
multiplying by R may be called a linear averaging transformation: each 
element of p is a weighted mean of the elements of A. We shall say that A 
majorizes p when, supposing the ps and AS to be arranged in nonincreasing 
order, the following relations hold: 

A1 + ... +Ak~P1 + ... +pk fork= l, ... , n-1 and 

A1+ • • • +An=P1+ · · • +Pn• 
(2) 

Now, a necessary and sufficient condition for A to majorize pis that p=RA 
for some linear averaging transformation R (Hardy, Littlewood, and P6lya 
1934, theorem 46). 

Let <p be some continuous and convex function, then according to Jensen's 
inequality: 

<f>(p;) = <1>(J
1 
riiAi) ~ it rii<p(Ai). 

Equality occurs only if either for some j=ji, r;i= 1 and, consequently, 
r;j=O for j=/:)1, or if A1 = ... =An· 

n n n n 

H(p)= L -<p(pi)~ L L -rii<p(Ai)= L -<p(Aj)=H(A) 
i=l i=l j=l j=l 

Equality occurs only if there is equality for each pair of terms. Suppose 
U1 =p1, . .. , Un=Pm then Pl =A1, ... , Pn=An and H(p) attains the minimum 
H(A). Suppose H(p)=H(A). Either we have A1= ... =An and any ortho
normal basis is a set of eigenvectors. Or we have p1 =A1, ... , Pn=An and this 
also implies u1 = P1, ... , Un= Pn• This completes the proof of Theorem 1. 

Corollary 
max u'Vu=A1 under condition that u'u= l and 
min u'Vu=An under condition that u'u= 1. (3) 

Proof p;=u1Vui and A majorizes p for any choice of an orthonormal set 
u1, ... , Un. The conditions (2) imply that A1 ~ P1 and An~Pn· 

Let us denote in the following by Uk an n x k matrix whose columns are 
u1, ... , uk, by Pk an n x k matrix whose columns are P1, ... , Pk, which is a 
set of first k eigenvectors of V. Qk is a square orthogonal matrix of order k. 

Theorem 2 (Okamoto 1969) 

For a fixed k=l, •. . , n, all eigenvalues of UkVUk are maximized at A1(V), 
... , Ak( V) by the choice Uk=PkQk. The subspace spanned by the columns of 
Uk is unique if and only if Ak ( V) > Ak+l ( V). 
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Proof Let us proceed by induction on k. Corollary (3) shows the theorem 
to be true for k = I. Suppose it holds for k = i-1. We would now like to 
choose the columns of U; in such a way that A.i ( U~ VU;), ... , A.; ( U1 VU;) are 
maximized. Suppose that A.i(UWU;)>A.j(V) for somej=l, ... , i-1. Ifwe 
leave out the last column of U; we would have a contradiction to the supposi
tion that the theorem holds for k=i-1. We have, therefore, ui =pi, ... , 
u;-1 =p;-1. The vector u;must be orthogonal to ui, .. . , u;-1 and of length 1. 
This implies that U;=IX;P;+ ••• +1XnPn where u{u;= I implies IXf+ ... +ex:;= 1. 

UtYU;=ViPAP'U;=diag(A.1,., ., A.;-1, IX[A;+ • •, +IX;An)• 

Therefore, A.i(U;VU;)=A.i for j=l, ... , i-I and A.;(U[VU;)=1Xrl;+ ... 
+1XiAn. This last eigenvalue is maximized for IX;= I, IX;+i = ... =1Xn=0, which 
implies that U;=P;• 

FISCHER'S MAX-MIN THEOREM 

The fact that Okamoto's theorem can be proved quite simply makes one 
wonder whether a more widely known theorem like Fischer's max-min 
theorem may be proved by means of Okamoto's theorem (theorem 2) in a 
simple way. That this is indeed the case may be seen in this section. 

Theorem 3 ('Fischer's max-min theorem') 
AiV)=max min c'Vc, where minimization is over c satisfying c'c=l, 
c' ck+i =0, ... , c' en =0, where Ck+ 1, •.. , en are independent and maximization 
is over Ck+1, ... , en. The maximum occurs for Ck+ 1, ••• , en spanned by a set of 
n - k last eigenvectors of V. 
Proof Let Ube an orthogonal matrix whose columns ui, ... , un are such that 
Uk+1, .• . , un are spanned by Ck+i, .. . , en and uk=c. By corollary (3), the 
minimum of c'Vc is µk, a smallest eigenvalue of UiVUk> when we keep 
Ck+ 1, ... , en fixed. By theorem 2, the maximum of µk is A.k and this is achieved 
for u1, ... , uk, the columns of Uk, spanned by a set Pt, ... , Pk of first eigen-
vectors of V. 

CLOSEST FIT OF LINES AND PLANES 

Let D be a linear transformation that maps x onto a vector in the subspace 
spanned by ui, . .. , uk and let D1 = UkU!,, be the perpendicular projection of x 
onto this subspace. Suppose we want to find D and ui, ... , uk such that the 
sum of the variances of the components of the error vector, E(x-Dx)' 
(x-Dx), is minimum. We have, by Pythagoras' theorem: 

(x-Dx)' (x-Dx)=(x- Dix)' (x-D1x)+(Dix-Dx)' (Dix- Dx) 

which shows that, for fixed ui, ... , uk, D must be chosen as D =Di= UkUfr.. 
We now have to find the ui, .. . , uk for which the minimum occurs. 
I =tr( V(x)) =tr(Exx')= Ex'x=E( (x- Dix)' (x- Dix)+ (D1x) '(D1x) )= 

E(x-D1x)' (x- Dix)+E(D1x)'(D1x)=tr( V(x-D1x))+tr( V(D1 (x))). 

tr( V(x-D1x))= I-tr( V(D1x))= I-tr(ED1xx' Di') 

=I-tr( ukuk vukuo =I-tr( U/,, VUk). 
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Apparently, the u1, .. . , uk we are looking for are those that maxuruze 
tr ( Uf. VUk). Theorem 2 states that the choice u1 = p1, ... , uk = Pk maximizes 
each eigenvalue of u;.vuk and therefore also maximizes their sum. 

Pearson (1901) considered a set of N";!:;n points inn-space and sought a 
k-dimensional subspace that gives closest fit to this set, that is, a k-dimensional 
subspace such that the sum of squares of the perpendicularly-projecting lines 
from each of the points onto this subspace is a minimum. He concluded that 
the subspace sought is the one spanned by a set of first k eigenvectors of the 
covariance matrix of the set of points. Again, Tou and Heydorn (1967) 
derived this result in the one of their approaches to feature selection that 
they called 'estimation optimality'. 

SCATTER AND ENTROPY 

Hotelling (1933) considered the problem of approximating x by y= Ufox in 
such a way that I V(y) I, the scatter of y, is as large as possible ( again under 
the constraint Ufo Uk= Ik). The solution is identical to the one given by theorem 
2, because the determinant is the product of eigenvalues, which are all 
nonnegative. 

This is closely related to a result about the entropy of a normal distribution 
derived in Tou and Heydorn (1967). Let y be any normally-distributed 
k-dimensional random vector. Its density is given by: 

g(y)= I V(y)I-½. (2n)-½k. exp (-½tr(( V(y))-1yy')). 

It may be verified that the entropy 

H(y) = J ... J -g(y1, ••. , Yk) log (g(y1, ••. , Yk)) dy1 ••• dyk 

=½k log (2n)+½ log I V(y)I +½k. (4) 

If x is normally distributed, any perpendicular projection y= Ufox is also 
normally distributed. Theorem 2 shows, with eq. ( 4 ), that, for fixed k = 1, •.. , 
n, if we want to choose Uk such that H( Vix) is maximum, this is achieved 
by taking Uk=PkQk. 

A GENERAL CRITERION FOR OPTIMAL APPROXIMATION 

The previous two sections were concerned with special optimality criteria. 
Here it will be shown that theorem 2 allows a general formulation of optimal 
approximation to a random vector. We assume x to be approximated by its 
perpendicular projection onto a subspace of k dimensions. This subspace is 
spanned by the columns u1, •• . , uk of a matrix Uk ( Uf.Uk= 1). The projection, 
which is a k-dimensional random vector, is an optimal approximation if it is, 
in some suitable sense, as large as possible. This may be interpreted as making 
the covariance matrix V( Vix) as large as possible, and the interpretation of 
this has been given by Okamoto and Kanazawa (1968) (the account we give 
in this section is a slightly modified version of theirs in order to avoid a 
difficulty with the determinant function). 
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Let/be a real-valued function with nonnegative definite matrices of order 
n as argument satisfying the following conditions: 

f( V) :t!;,_f( V + W) for any nonnegative definite W and 
f( V) = f(P' VP) for any orthogonal P. 

These conditions are satisfied if and only if f is identical to some function 
g(..:1.1 (V), .. . , ..:1. 1 (V)) of a subset of the eigenvalues of V that is monotone 
nondecreasing iri each of its arguments. The criteria of the previous two 

_ sections, namely tr( UkVUd and I UkVUkl are special cases of this. Rao (1965) 
used the norm of Uk VUk as criterion, which is also a special case. 

A CRITERION IN TERMS OF ENTROPY 

According to the previous criteria, we were concerned with maximizing the 
approximating vector. Equivalently, we may minimize the error vector. The 
result is the same, but it is worth while to state it from this point of view 
because of the relation to yet another approach to the problem. 

Suppose that Un-k = ( u1, ••. , un-k) and we shall consider the perpendicular 
projection of x onto the subspace spanned by the columns of U.,-k as the 
error vector. Its covariance matrix V( U~-0)= U~-kV(x) Un-k· The criterion 
which we consider now is the entropy Hof the error vector, where H(f)= 

J-J(z) log (f(z)) dz, where f is the probability density function of U~-~ 

and integration is over the subspace spanned by the columns of Un-k• The 
problem is to choose Un-k such that the entropy of the error vector U~-kx is 
minimum. However, the entropy depends on the probability density-function/. 
Good (1965, 1968) argued that in many situations it makes sense to esti
mate probabilities in such a way that entropy is maximized under known 
constraints. He advocated the principle of 'minimaxing entropy': maximize 
entropy to find a probability distribution and, when planning an experiment, 
which is analogous to our choice of Un-k• minimize the expected maximum 
entropy. The minimax characterization of principal components to be given 
below is reminiscent of this. In our case, the constraint is that the distribution 
must have the same covariance matrix as the given error vector. 

Theorem 4 (Shannon 1948) 
Of all distributions having a given covariance matrix, the normal distribution 
with that covariance matrix has maximum entropy. 

Using the results of section 7, we arrive at the following characterization of 
the principal components solution: 

min max H(f(U~-kx))= 

½(n-k) log (2n)+½ log (.:tk+ 1 x ... x ..:l.n)+½(n-k), 

where maximization is over all distributions having the given covariance 
matrix and minimization is over n x (n-k) matrices Un-k· The maximum 
occurs for the normal distribution and the minimum occurs for Un-k= 
(Pn-k+1, .•. ,pn), a set ofn-k last eigenvectors of V. 
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A MAXIMUM ENTROPY CHARACTERIZATION OF THE 
NORMAL DISTRIBUTION 

Shannon's theorem (theorem 4) is not quite satisfactory, because the entropy 
of an n-dimensional normal distribution with covariance matrix V turns 
out to be: 

H=½n log (2n)+½ log (I Vl)+½n. 
Apparently, the entropy is not completely specified by the individual 

covariances vii• but only by I VI and Shannon's condition can be relaxed to 
stating this determinant. But then there is no unique distribution for which 
the maximum of entropy is achieved. In this section we are concerned with a 
less stringent constraint that leads to a uniquely determined maximizing 
distribution. 

Theorem 5 

Let W be a positive definite real symmetric matrix of order n. Of all density 
functions/ with zero average, of which the covariance matrix V satisfies 

tr(VW)~n, (5) 
f(x)=I WI ½(2n:)-tn exp (-½x'Wx) (6) 

has maximum entropy, which is 
H(f)=½n log (2n:)-½ log (I Wl)+½n. (7) 

Furthermore, any distribution satisfying eq. (5) and not identical to eq. (6) 
has an entropy less than eq. (7). 

Proof. Besides the entropy H(f)= J -J(x) log (f(x)) dx of the density 

function!, we shall also consider its energy U(f)= Jtf(x)x'Wxdx. We first 

determine the density /that maximizes Hunder the constraints JJ(x) dx= 1 
and U(f)=½n. This is equivalent to the maximization without constraints of: 

H+l(½n-U)+µ(Jf(x) dx-1), 

where }c and µ are Lagrange multipliers. 

H +l(½n-U)+µ(JJ(x) dx-1) 

= JJ(x) log (1/ f(x)) dx-JJ(x)½lx'Wx dx+ JµJ(x) dx+½nl-µ 

=f f(x) log (exp(µ) e;~~½lx'Wx)) dx+½ln-µ 

~I f(x{exp (µ) e;~~½lx'Wx) _1) dx+½ln-µ 

=exp (µ)J exp (-½1x'Wx) dx-l+½ln-µ. 

The maximum occurs if and only if in each point x we have 
f(x)=exp (µ) exp (-½lx'Wx). 

The choice l= 1, µ=½ log I Wl-½n log (2n) satisfies the constraints. 
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Then we have 
f(x)=I Wl½(2n)-½nexp (-½x'Wx) and 

H(f)=½An-µ=½n+½n log (2n)-½ log (I WI)-

(8) 
(9) 

This derivation can be applied directly to the distribution of the velocity 
components of a molecule of an ideal gas to yield Maxwell's distribution. In 
that case W would be the identity matrix, but the full generality of W may 
well be useful to find the distribution in cases where the quadratic form for 
the energy is more complicated. 

NotethatU(f)= f J(x)½x'Wx dx=½tr(VW), so that we found a maximum 

for the entropy under the condition that tr( VW)=n. The same maximum 
would be found under the condition tr( VW),.;:;n, for suppose for the moment 
that inequality holds. The geometric-arithmetic mean inequality implies that 

I vw1 11n,.;:;tr(VW)/n (10) 
so, in that case, we would have I VI < I w1-1. But the m.axim.ization could be 
carried out with W1 = v-1 and we would find an entropy 

H=½n+½n log (2n)-½ log (I W11). 
Therefore, any distribution, whether normal or not, for which I VI< I w1- 1, 

has an entropy smaller than eq. (9). 
The maximizing distribution must therefore have I VI;;;;,, I w1-1. Inequality 

is impossible because of eq. ( 10). The only remaining case we have to investi
gate is that of a distribution different from eq. (8), but with I VI= I w1-1 and 
also normal, achieves the same maximum. entropy. Then we have: 

1 =I VI I WI =I VWI =I VWI l/n,.;:;tr( VW)/n= I, 
where the last equality is the constraint. We m.ust therefore have equality in eq. 
(10), which implies V= w-1• This proves thateq. (8) uniquelym.aximizes H. 
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