
.. ------------------------------------

REKENAFDEL I NG

P. W. HEMKER

stichting

mathematisch

centrum

MR 1213/71

AN ALGOL 60 PROCEDURE FOR THE SOLUTION OF
STIFF DIFFERENTIAL EQUATIONS

~
MC

DECEMBER

2e boerhaavestraat 49 amsterdam

!U8l!G'1Tt-lf!EK MATHEMAT!S€1'1 CiiNHUll"i
AMSTEi>..DA!'l

P.Jun:te.d a.:t :the. Ma:the.ma:ti.c.a.l Ce.nbte., 49, 2e. Bowi.a.a.vutlta.a,t;, Airui:telldam.

The. Ma.:the.ma:ti.c.a.£. Ce.n:tlt.e., 6ounde.d :the. 11-:th 06 Fe.bJt.UaJty 1946, .l6 a non­
pJt.o 6li ,i,.n.6.:tl:tu.t,i,o 11 a.,i,rn,in9 a.:t :the. pll.amo:ti..o 11 o 6 pUll.e. ma.:the.ma:ti..c..6 a.nd w
a.pp.ti.c.a.tloM. I:t ,£,6 .6pon.6oJt.e.d by :the. Ne.:the.Jtla..n.d.6 Gove.Jt.nme.n:t fuough the.
Ne.the!Lland.6 0Jr.gavu.za.:ti..on ,6oJt. .the. Adva11c.e.me.n:t 06 PUJt.e. Rue.all.c.h (Z.W.0),
by .the. Muvu.clpa.lliy on Am.6.te.ll.dam, by :the. Uvu.veJLolitj 06 Am6:tvu:1am, by
:the. FJte.e. Uvu.veJLoliy a:t Am.6.te.Jtdam, and by htd.u.f..W.u.

Contents

1. Introduction

2. Linear multistep methods according to Adams-Moulton

and Curtiss-Hirschfelder

3. Administration and realization

4. The control of steplength and order

5. The structure of the procedure MULTISTEP, a strategy

for solving stiff equations

6. The ALGOL 60-procedure MULTISTEP

7. Numerical results

Appendix: Computation of the constants akl

References

Abstract

In this report a concise description is given of the Adams-Moulton

method together with Gear's method for the solution of stiff differ­

ential equations . .An ALGOL 60-procedure is provided which selects that

method which is in agreement with the behaviour of the differential

equation and some prescribed accuracy parameters. A number of numerical

experiments are reported.

3

1. Introduction

Adams-Bashforth and Adams-Moulton methods are well-known and very

popular in application to high-accuracy computation of slowly varying

systems of differential eq_uations. However, difficulties occur when

these methods are applied to systems in which the solution contains a

rapidly varying component. These difficulties are due to the stability

properties which force the user to take a small steplength. In 1952

Curtiss and Hirschfelder published linear multistep methods appropriate

to these so called "stiff" systems of differential eq_uations. Since

then much research was done on the theory of linear multistep methods

(e.g. Dahlq_uist [1956,1963], Henrici [1962]). Many methods were proposed;

however, no methods were found significantly superior to those mentioned.

In 1962 Nordsieck reported a method in order to make the administra­

tion of the multistep methods free from its rigid system of grid-points.

In his paper he also started an investigation of automatic steplength

and order control for Adams methods. In several publications Gear

[1967,1968,1971] developed the same idea for methods suitable for

stiff eq_uations.

This paper contains a short description of the Adams-Moulton (A.M.)

and Curtiss-Hirschfelder (C.H.) methods. An ALGOL 60-procedure is given

which makes a choice between these two types of methods and uses auto­

matic steplength and order control. In conclusion, a number of numerical

results will be reported. A description of the convergence and stability

properties of the A.M. and C.H. methods is given in detail in Hemker

[1971].

2. Linear multistep methods according to Adams-Moulton and Curtiss­

Hirschfelder

Both Curtiss-Hirschfelder and Adams-Moulton methods are based on

polynomial approximations to a function known at some grid-points.

Several formulae can be used to obtain these approximations. In classical

multistep theory the Lagrange formula is used. In order to give a con­

cise description of the methods we prefer the use of the Grunert and

the Newton formula.

4

We define two sequences of polynomials

Definition

Definition

Every (n+1)st degree polynomial h(x) can be written as an inproduct

h(x)
➔ ➔ ➔ ➔ = G(x) .a = H(x) .p.

➔ ➔

Here the vectors a or p contain the coefficients characterizing the

polynomial h(x) and G or H characterize the formula used, G(x).t

essentially give the Newton formula and H(x).p represents the Grunert

formula. A matrix A can easily be found which gives the conversion

between the two types of polynomials.

Definition

➔ ➔

➔ • ➔) A 1s the matrix by which the operation G(x =
➔ ➔

H(x).A 1s achieved.

In Hemker [1971] a proof 1s given of the following statement:

Statement

➔
➔

The matrix A 1s an uppertriangular matrix the elements of
➔

which are provided by A[O,O] = 1; A[O,j] = O (j#O)
--,. ➔ ➔
➔ ➔ ➔

and A[i,j] = (x0-xj_ 1) A[i,j-1] + A[i-1,j-1J.

This implies that A is completely determined by the distribution of the

grid-points (x0 ,x1, ... ,xn+l) and does not depend on x.

The methods of Curtiss and Hirschfelder now are simply explained.

Let y(x) be an approximate solution of the differential equation

5

y' = f(x,y),

known at the n+1 grid-points x0 ,x1 , ... ,xn.

For typographical reasons we shall write

and

X n

xh = X n+1

yh = y(xh).

x2 xl XO

/
/
/

......

' \
xh

fig. 1. The method of Curtiss-Hirschfelder

We want to find a value y(xh) so that

y'(xh) = f(xh,y(xh)).

For y(x) we take a polynomial approximation by writing

➔ ➔ + +
y(x) = G(x).a + G(x).a 1 n n+

ao 0

+ a, ➔

with a = and an+1 = n

a 0
n

0 an+1

(2. 1)

(2. 2)

+
Note that a is a vector known from earlier computations because y(x)

n
is prescribed at the gridpoints x0 ,x1, ... ,xn. Furthermore, an+ 1 is

to be determined in such a way that (2.1) is satisfied. Using the
➔

. . . +
definition of A we get

6

y(x) = li(x) J ;;:n + H(x) j_ 0 }n+1 , (2.3)

• • ➔ By def1n1ng p, the Taylor coefficients of then-th degree approximation

to y(x) at the point x0 , as

+
+ ➔➔
p = A a n

➔

and defining the (n+1)st column of A as An+ 1

we may write

(2.4)

y(x) = H(x) .p + H(x) .An+ 1 .an+,· (2.6)

Finally, by defining the differential operator D = d/dx, the next

relation holds

j J·+ -+ J·+ -+
D y(x) = D H(x).p + D H(x)An+ 1.an+1 •

We are now able tQ compute a prediction of Djy(xh), i.e.

J. pred J· ➔ ➔
D y(xh) = D H(xh).p. (2.8)

(In fact, this is a Taylor series expansion of order n at the points

x 0.) This prediction has to be followed by a correction, i.e.

(2.9)

Here, an+ 1 1s unknown, but has to be determined so that (2.1) is satis­

fied. So we have the additional relation

~Dy(xh) = f(xh,y(xh)) - Dy(xh)pred_ (2.10)

By successive substitution a direct iteration process can be obtained

1n which the correction of the computed value of Dy(xh)' in the (m+1)-st

iteration step is given by

'm' 'm' = f(xh,y(xh)) - Dy(xh)

7

This relation together with (2.9) gives

j ➔ ➔
D H(xh)An+ 1 'm' 'm'

. [f(xh,y(xh) -Dy(xh)].
➔ ➔

DH(xh)An+1
(2.12)

The first factor on the right hand-side, only depending on j, n+1 and

the distribution of the grid-points, is a constant number during the

iteration process. The second factor represents the difference between

the derivative of the prediction and the prediction of the derivative

at x = xh.

Instead of the forementioned direct iteration process, we can

accelerate convergence by the use of Newton's method for solving

6Dy(xh). In this case, we replace (2.11) by

m+1
6 Dy(xh) =

m

'm' m+l 'm' = f(xh,y(xh)) + J.6m y(xh) - Dy(xh)

'm' 'm' = (f(xh,y(xh)) - Dy(xh)) +

➔ ➔

H(xh)A 1 n+
➔ ➔

DH(xh)An+ 1

=

m+1
. J . 6 Dy (xh) .

m

(2.13)

df
Here, J roughly represents dy . In the case of a system of differential

equations, where y and fare vectors, J is roughly the Jacobian matrix
m+1 af./ay .. Now 6 Dy(xh) is computed by solving the linear system

l J m

➔ ➔

H(xh)An+ 1
{I - ----- J}6m+ 1Dy(xh) =

➔ ➔ m
DH(xh)An+l

. ' ' f(xh,y(xh) m) 'm' Dy(xh) (2.14)

The same comment given for the factor in (2.12), can be made for the

factor multiplying the Jacobian. As soon as 6D (xh) has been solved
y .

from this (nonlinear) equation or system of equations, 6DJy(xh) also

can be computed by using (2.9).

8

Explicitly (2,9) yields

(2.15)

The first factor on the right-hand side only depends on j,n and the

distribution of the grid-points.

The starting point of the Adams-Moulton methods are only slightly

different from the Curtiss-Hirschfelder methods. Let y'(x) be an approx-

imation to the derivative of the solution of the differential eq_uation

n' = f(x,n).

/
/

.....
\.
\.

X x2 x, XO xh
n

fig. 2. The method of Adams-Moulton

Let y'(x) be known at the n+1 grid-points x0 ,x 1, ••• ,xn. The same

arguments as given for (2.2) - (2.5) yield

Dy(x)
+ + + + = y' (x) = G(x) .a + G(x) .a 1 n n+

+ + + +
= H(x).p + H(x)A 1a 1. n+ n+

(2.16)

Here, again the prediction is a Taylor-series expansion at the point

XO

Djy(xh)pred j-1+() + = D H xh .p. (2. 17)

The correction is given by

(2.18)

9

In order to compute Djy(xh) we again use (2.10) and we construct a

direct iteration process analogous to (2.12)

j-1 ➔ ➔
D H(xh)An+ 1 'm' 'm'

[f(xh,y(xh))-Dy(xh)].
➔ ➔

H(xh)An+l

Alternatively, we construct an iteration process by using an

estimated Jacobian matrix as in (2.13):

(2. 19)

Dj- 1H(xh)An+l m+1 'm' 'm' {I - ---___,;"-- J}L\ Dy(xh) = f(xh,y(xh)) - Dy(xh) (2.20)
➔ ➔ m
H(xh)An+l

L\y(xh) and L\Dy(xh) being computed in this way, the corrections of the

higher derivatives are easily obtained with the formula analogous to

(2.15)

(2.21)

3, Administration and realization

Multistep methods essentially carry information about the last n

performed steps. This information has to be available in one form or

another. According to Nordsieck's method we prefer to store at each

step the numbers

➔

This vector Y(x0) corresponds to the vector p introduced in (2.4), taken

into account that in Y the i-th derivative is normalized by a factor

hl/i! . For h we take the current steplength h = xh-x0 .

The prediction as described in (2.8) and (2.11) now easily becomes

a multiplication of Y by a Pascal matrix (Gear [1967]). By one of the

processes described in (2.11), (2.14) or (2.20), both L\hDy(xh) and L\y(xh)

70

are computed. When convergence has been obtained the values of

hiDiy(xh)/i: are computed with (2.15) or (2.21).
In order to make quick reference possible we define in the case

of a uniform distributed set of grid-points

hl-lD1H(xh)~

akl = l!DH(xh)Ak

in the case of C.H. methods, and

hl--1 Dl-1 H(xh)~- 1

akl = l!H(xh)~-l

in the ease of A.M. methods.

(3. 1)

These constant easily change the computed difference 6hDy(xh) into the

differences 6hjDjy(xh)/j! .

In order to change the steplength during the integration, every

element ~iDiy(x0)/i! of the vector Y(x0) is multiplied by a factor

(hnew/h)i. The vector Y(x0) preserves estimates of the Taylor coeffi­

cients at x0 . As these values contain all essential information

available, we assume that the grid-points have a uniform distribution.

Experiments by Nordsieck [1962] and Gear [1968] show that no difficulties

are to be expected at this point, provided that, after each change of

steplength, this steplength is fixed at least n times in succession.

A method implementing a fully variable steplength is discussed in

Hemker [1971 J.

The uniformity of the distribution of {x.} and the normalization
]. .

of p make it possible to represent all occurences of DJH(xh)A by
n+l

the constar-t numbers ak1 . This feature and the flexability of the step-

length make it very attractive to implement the methods in this way.

4. The control of steplength and order

The greater part of our steplength and order control mechanism is

due to Gear [1968,1971]. The basic idea is the following: after completion

of a number of steps, we look for that steplength which gives rise to a

truncation error (represented by the last term of the Taylor-series ex­

pansion taken into account) equal to a prescribed local error E. This

11

inquiry 1s done for the current n-th order formula, and, in addition,

for the (n-1)-st order and the (n+1)-st order formula, The resulting

optimal steplength is chosen together with the corresponding order. A

number of safety measures are taken in order to prevent some unwanted

effects (see section 5).

The calculation of the optimal steplength for the current order n

Since the value hnDny(x0)/n! also represents the predicted value

of hnDny(xh)/n!, it is easily shown that its first difference

n n (.6h Dy xh)/n!

represents an approximation to

The truncation error of then-th order formula 1s given by

where, 1n the case of A.M. methods, Cn+l corresponds with IY~I
(see Henrici [1962] p. 195), and

where, in the case of C.H. methods, C 1 corresponds with o n+ 0 ,n+1
(see Henrici [1962] p. 208).

(4. 1)

(4.2)

Aiming at a local error E, we obviously have to take a value of h 1n

such a way that

n n
~ C 1n!.6h D y(xh)/n! n+

= C 1n!a .6hDy(xh),
n+ nn

(4.3)

n+1
Since this truncation error is proportional to h , we have to multiply

the steplength by a factor

12

(E)n+1

C + 1 n ! a \ \ 1:i hDy (xh) I I n . nn

(4.4)

In the program this is realized by computing

error = I I hDy (xh) \ \ 2
ymax (4. 5)

tol = (E/ymax,) 2.
C 1a n. n+ nn

(4.6)

The new steplength is obtained by multiplying the old steplength by the

factor ch

ch= (tol/error)t(0,5/(n+1)). (4. 7)

Note that E/ymax represents the relative error specified by the user.

The calculation of the optimal steplength in the case of order n-1

The stored value hnDny(xh)/n! itself yields an approximation to

the truncation error of order n, i.e. C hnD y(xh). Aiming of the local
n n

error E, we have to take h in such a way that E = C hnDny(xh). Con­
n

sequently, we have to change our steplength by a factor

The actual computation is effectuated in a way analogous to (3,5),

(3.6), (3.7), i.e.

error = 11 hnD~~~h)/n! I I 2,

tol = (E/ymax)2
C n! ' n

ch = (tol/error)t(0,5/n).

(4. 8)

(4.10)

(4.11)

13

The calculation of the optimal steplength for order n+1

In the program an approximation to the truncation error of order

n+2 is not directly available. However, it is obtained from the values

LhDy(xh) and LhDy(x0). An estimation of the truncation error can be

directly derived from

= a n!(lhDy(xh)-lhDy(x0)). nn

The factor by which the steplength is to be multiplied, is again com­

puted in analogy to the expressions (3.5), (3.6) and (3.7), that is

lhDy(xh) - lhDy(xo) 2
error = II ymax II'

tol = (E/ymax)2
C a n! ' n+2 nn

ch = (tol/error)t(0.5/(n+2)).

5, The structure of the procedure MULTISTEP

A strategy for solving stiff equations

(4.12)

(4.13)

(4.14)

For high precision computation of solutions of differential equa­

tions A.M. methods are favourable because of their excellent accuracy

properties, whereas C.H. methods have superior properties with respect

to stability behaviour and are, therfore, appropriate when solving stiff

equations. Unlike the choice of steplength and order which is reversible

(i.e. a decision can be annulled by a next decision), the choice which

type of two methods will be used, is made irreversible. When, after a

call of procedure MULTISTEP with first= true, A.M. methods with a

minimal steplength do not satisfy, the equation is considered to be

14

stiff and C.H. methods are used until a next call with first= true.

Solving the differential equation by means of an A.M. method, the

decision to use Newton's method for solving equation (2.10) is made

when the iteration process (2.12) turns out to be slowly convergent.

Unless a call with first= true this decision will not be revoked.

A detailed description of the strategy will be given as an ex­

planation of the ALGOL 60 procedure MULTISTEP of section 6.
In this procedure some subprocedures are declared:

(1) procedure method.

According to the Boolean value "adams" (i.e. use A.M. methods)

this procedure stores the constants of (3.1), (4.6), (4.10) and

(4. 13):

(a. J = 0(1)n, 7/(C n!), 1/(C + 1 .a n!), 1/(C 2 .a .n!)) nJ n n nn n+ nn
in an array called "const".

(2) procedure order.

According to the integer value k (i.e. the order of the formula

that is to be used), this procedure activates the values akj and

calculates the values tol (4.6), (4.10) and (4.13). When Newton's

method is used to solve (2.14) or (2.21), a new evaluation of the

Jacobian matrix and a corresponding LU-decomposition is asked for.

Inquiry into new steplength and order is delayed for k+1 steps.

(3) procedure evaluate jacobian.

This procedure evaluates the Jacobian matrix (either by numerical

calculation or by evaluating the analytical expression given in

one of the parameters of MULTISTEP) and then performs a LU­

decomposition of the matrix (I-a0khJ).

(4) procedure calculate step and order

performs the calculations described in section 4. A suggestion for

a new order (knew) and a factor changing the steplength (ch) are

delivered. In order to prevent unnecessary changing, some safety­

margins are incorporated. Searching for a new steplength and order

is delayed for 10 steps.

15

(5) procedure set.

In order to make rejection of a computed step possible, this

procedure stores the last accepted values of the computation in

array dd.

(6) procedure reset step

restarts computation from the last accepted values and changes

steplength by multiplying by ch (see procedure calculate step and

order).

(7) procedure begin

starts integration with minimal steplength and order 1. Values of

the derivative are obtained by evaluation of the right hand side

of the differential equation.

The compound tail of the procedure body is aivided in some clear dis­

tinguishable parts.

1. Initialization.

If first= true the procedure starts integration with A.M. methods

by calling procedure begin; otherwise computation is continued

from the last accepted values.

2. Integration by steps.

2.1. prediction is performed as described in (2.8) and (2.17). See also

section 3.

2.2. correction

Maximal 3 corrector iterations are taken as described in (2.11),

(2.13) or (2.20). When

E
<

2. N. (k+2) where E: absolute error

convergence is assumed to be achieved.

2.3. if no convergence is obtained then

N: number of equations

k: order of the method

i) if a not updated Jacobian matrix was used, this matrix is

updated. The step is repeated.

16

ii) if the steplength is not minimal, the step is repeated

with steplength/4 or minimal steplength. When the Jacobian

matrix can be obtained from the parameters, Newton's method

will be used in order to accelerate convergence.

iii) if steplength is minimal then

iiia) if A.M. methods were used, C.H. methods will be used (in

order to force the use of the Jacobian matrix).

iiib) when C.H. methods were used (and so Newton's method is used

for solving (2.20)), the strong nonlinearity of the problem

prevents solution with the given minimal steplength. An

errormessage is given and integration is stopped. It is

possible to restart with first= true or first= false and

with a smaller hmin.

2.4. if the requested local error bound is exceeded, a smaller step­

length is calculated and the step is repeated.

i) when recalculation of the steplength does not satisfy two

times in succession, the step 1s restarted after a call of

procedure begin (so hmin will be used).

ii) when the minimal steplength (hmin) is used, it is not possible

to obtain the requested local error with this method. Two

possibilities arise

iia) An A.M. method is used. In this case the error might be

caused by the bad stability properties of the differential

equation: the C.H. method will be used and the step will be

repeated.

iib) The C.H. method is used but the discretisation error exceeds

the required error bound. In this case a first order method

will be used. If even this does not satisfy, strictly speaking,

the procedure would have to give an errormessage and ask for a

smaller hmin. However, experience has shown that this situation

appears when starting stiff differential equations. Here the

excessive error will be damped out in some steps and a first

order C.H. method is an optimal choice. So we will give an

errormessage (and an estimation of the real local error), but

we will continue integration, violating our local error cri­

terion by accepting this step.

17

2.5. when the step is accepted,

the vector Y(x0) (section 3) is updated.

Every ten steps a new order and steplength are calculated. Only

if improvement is worthwhile the new steplength and order are

used. After completion of a step the computed values are stored

by procedure "set".

6. The ALGOL 60-procedure MULTISTEP

In this section we give an ALGOL 60-procedure appropriate to the

integration of a system of first order differential equations. Firstly,

a description of its parameters and an example of the use of the pro­

cedure will be given.

The heading o& the µ~ocedu.t1.e ,u.,:

procedure MULTISTEP (x,xend,y,hmin,hmax,ymax,eps,first,dd,fxyi,ii,

jacij,jj,n,available,stiff);

value hmin,hmax,eps,xend,available,n;

Boolean available,stiff,first; integer ll,JJ,n;

real x,xend,hmin,hmax,eps,fxyi,jacij; array y,ymax,dd;

The actual parameters corresponding to the formal parameters are:

X

xend

y

hmin,hmax

<variable>;

the independent variable x can be used as a Jensen para­

meter in fxyi and jacij.

entry: the initial value x0 .

<expression>;

the end value of x (xend ~ x).

<array identifier>; array y[0:7,1:n];

the independent variable

entry: the initial values of the system of differential

equations y[O,i]:= Yi (x0).

exit : y.(xend) = y[O,i].
l

<expression>;

minimal respectively maximal steplength by which the in­

tegration is performed.

eps

ymax

first

dd

ll ,j j

fxyi

jacij

18

<expression>;

the relative local error bound.

<array identifier>; array ymax[1: n 7 ;

entry: the absolute local error bound divided by eps;

exit : ymax[i] gives the maximal value of abs(y[O,i]) and

the entry value of ymax[i] during integration.

<Boolean identifier>;

if first= true then the procedure starts its strategy with

the first order Adams-Moulton method and a steplength equal

to hmin. Upon completion of a call first= false.

if first= false then the procedure continues the inte­

gration.

<array identifier'; array dd[0:7,0:n];

in this array information is stored, which can be used in

a next call;

besides some messages are delivered:

dd[O,O] =

=

dd[1 , 0] =

=

dd[2,0]

dd[3,0]

0 A.M. method was used;

the procedure switched to C.H. method;

0 no error message;

with the used hmin the procedure cannot

handle the nonlinearity;

number of times that the requested local error

bound was exceeded;

if dd[2,0] ~ 0 then d[3,0] gives an estimate of

the maximal local error bound.

<integer identifier>;

are used as Jensen parameters in fxyi and JaciJ.

<expression>;

expression depending on x,y and ii~ giving the value of

dy .. /dt. ii
<expression>;

(optional) expression depending on x,y,ii and JJ and giving

the values of d(dy .. /dt)/dy ...
J.i JJ

(i.e. the Jacobian matrix of the system).

-- 7

available

stiff

n

19

<Boolean expression>;

an expression which indicates whether expression jacij

contains relevant information or not.

<Boolean expression>;

if stiff= true then the procedure directly uses Curtiss­

Hirschfelder methods, skipping an attempt with Adams­

Moulton methods.

<expression>;

the number of equations.

In procedure MULTISTEP the following library procedures are used:

sum, det, sol, elmrow and elmcolvec. (see: Dekker [1968]).

Consider the initial value problem

d
dt X = -x(1-y) + QY

d
8 dt y = x(1-y) - py

Yo ; O.

This can be programmed as follows:

p:= 1; q:= 0,99; ep:= 0.001; tend:= 25;

ymax[0,1]:= ymax[0,2]:= ymax[2]:= 1;

y[0,2]:= O; first:= true;

MULTISTEP(t,tend,y, 10-3,0,5,ymax, 10-6,first,dd,

if i=1 then -(1-y[0,2])*y[O, 1]+q*y[0,2]

else ((1-y[0,2])*y[0,1]-p*y[0,2])/ep,i,

if i=1 then (if j=l then -(1-y[0,2]) else q+y[0,1])

else (if j=1 then (1-y[0,2])/ep else -(p+y[0,1])/ep),j,

2, true, false);

The following results are delivered:

t=25, y[0,1] = .87755215, y[0,2] = .467675852 (correct digits are under­

lined), first= false, d[O,O] = 1, d[1 ,OJ= 0, d[2,0] = 12, d[3,0] = ,333,

20

procedure MULTISTEP(x,xend,yJhmin,hmax,yma.x,eps, first,dd,
fxyi,ii,jacij,jj,nJavailable,stiff); •

value hmin,hmax,eps,xend,available 1n;
boolean available,stiff,first; integer ii,jj,n;
real x,xend,hmin,hmax,eps,fxyi,JaciJ; array y ,ymax,dd;

begin own boolean with jacobian,adams,
-- o'wn integer kold, own real xold,hold;

"6'ocilean evaluate, evaiuatea, conv;
integer i,j,l,k,knew,maxorder,fails 1 same;
real h,ch,chnew,c,tolconv,tolup,tol,toldwn,errorjdi~i;
array const[1:56],a[o:7],delta,last delta,df[1:n jjac[1:n1 1:n];
integer array p[7 ~n];

procedure method;
begin with jacobian:= ladams;
- maxorder:= if adams then 7 else 6;

i~= k:= 1;
if adams then
begin forconst[i]~= 1,1,i2,2,1,~5 1 1,1.5,24,12,1,5/12,1,~75,
-- l7'6,37a89,24,2,o375;1,11/12,1/3,1/24;53.33;37o89,1,

251/720,1 ,25/24,35/72,5/48,1/120,7oco8,53033,.3158,
95/288,1,137/120,~625,17/96,,025,1/720,87097,70do8,
"07407, 1 9087 /60480, 1 , 1 ~ 225, 203/270, 49 /1 92, 7 /i i+4,
7/1440,1/5040,106.,9,87~97,,.0139 do i:= i + 1

end else -
begin for const[i]:= 1,1,3,2,1,2/3,1,1/3.,6,4.5,1,6/11,1,
-- o7T7 ,1/11 ,9~16'7,7.333;0<>5Jg48,1, 0 7,~2,.02_,12c5J

1 o.42, ~ 1667, 120/274, 1 ;225/274 ,85/274, 1 5/274, 1 /274,
1 5 .. 98 , 1 3 .. 7 , • o4 1 6 7 , 1 Bo /44 1 , 1 , 5 8 / 6 3 , 5 / 1 2 , 2 5 / 2 5 2 ,
3/252,1/1764,19~6,17015,.008333 do i~= i + 1

end
end method;

procedure order;
begin if k>max order then begin dd[1 ,O] ~= 2; goto return end;
- J:= (k-1) X (k+BT7 2-+7'; -- --

for i~= 0 step 1 until k do a[i]:= const[i+j];
tolup := (epsXconst[j+k+1TT;}-2;
tol := (epsXconst[j+k+2])i2,
toldwn~= (e-psXconst[j+k+3])tt,2;
tolconv:= eps/(2><rX(k+2));
evaluate:= with jacobian;
same:= k+1

end order;

21

procedure evaluate jacobian;
begin real r;

evaiuate:= false;
if available then
begin r:= -a[oTx h;

for ii:= 1 step 1 until n do
for jj:= 1 step until n cto jac[iiJjj]:= jacij X r;

end else --
beginreal d; array fixdy,fix y[1 :n];

:ror-ii:=1 step 1 until n do

end;

- beginflx y[ii]:= yLO,ii], fixdy[ii]:= fxyi end;
for i:=1 step 1 until n do
begin d:=--rr-eps>abs(fixy[i]) then epsXeps

end

- else epsXabs(fix yTIJj;
y[OJi]:= y[O,i] + d;
r:= - a[o] x h/d;
for ii~= 1 step 1 until n do
- jac[ir;TT:=(fxyi - fTxdy[ii]) x r;
y[O,i]:= fix y[i]

for i:= 1 step 1 until n do jac[i,i]:= jac[i,i] + 1;
det(jac ,n,IiT;
evaluated:= true

end evaluate jacobian;

procedure calculate step and order;
begin real al,a2,a3,

saiiie:= 1 o;
al:= if k<1 then O else

0:-75><(toiawn/sum(i, 1 ,n, (y[k,i]/ymax[i]),.f\2))Mo. 5/k);
a2:= Oa8ox(tol /error) t (0.5/(k+1));
a3:= if k>max order V fails+o then O else

'c)77ox(tolup /sum(i,1,n,((deirai]-iast delta[i])/
ymax[i]),.f\2))i(0.5/(k+2));

if a1>a2 A a1>a3 then begin knew:=k-1; chnew:=al end else
IT a2>a3 then begin knew~=k ; chnew:=a2 end else

-- begin knew:=k+1; chnew:=a3 end -­
end calculate step and order;

procedure set;
begin xold:= x; hold:= h; kold:= k; ch!= 1;

for i:= 1 step 1 until n do
1or j:= 0 step until k cto dd[j,i]:= y[j,i]

end se-:r;-

procedure reset step;
begin real c;

22

IT"ch < hmin/hold then ch:= hmin/hold else
if ch > hmax/hold then ch:= hmax/hold_,-­
x:= xold; h:= hold><ch; c~= 1;
for j:=O step 1 until k do
begin for i:=1 s'feplunTil n do y[j,i]:= dd[j,i] X c;
-~cxc~ --- --
end;
saiiie:= k +

end reset step;

procedure begin;
begin fails:= O, h:= hmin;

for ii:= 1 step 1 until n do y[l,ii]:= fxyi X h;
k:= 1; order; set ---

end begin;

if first then
oegin first:= false; ad.ams:= lstiff; method;

begin; for i:= 1,2,3 do dd[i,O]:= 0
end else
"6egin method; k;= kold; order; ch~= 1; reset step~;

for l:= 0 while x<xend do
begin if x+h<xend then x:= x+h else

begin chg= (xend-x)/h, reset step; x:= xend end;

comment prediction;
for i~=O step 1 until k-.1 do
for j := k-1 step -1 until ido
elmrow(1,n,j,j+l,y,y-;rn-
for i ~= 1 step 1 until n do delta[i] ~= o;

23

comment correction and estimation local error;
for l:=1 J2J3 do
begin for ii:=-=1 step 1 until n do df[ii]:= fxyiXh - y[1Jii];

IrevaluateUien evaluateJacobian;
11 with jacobian then sol(jac,n,p,df);

conv:= true;
for i:=lstep 1 until n do
'i3egin dfi:~[i];

y[O,i]~= y[O,i] + a[O]Xdfi;
y[l ,i] := y[1,i] + dfi;
delta[i]:= delta[i] + dfi;
conv:= conv A abs(dfi) < tolconv x ymax[i]

end;

end;

Tr conv then
begin error~= sum(i,1,n,(delta[i]/ymax[i])i2);

evaluated:= false; goto convergence

comment acceptance or rejection;
if lconv then no convergence:
'begin if with jacobian A 7 evaluated then else

TI h>hminX1 o 0001 then - -
begin with jacobi~ with jacobian V available;

ch:= ch/4
end else
Tradam.s then goto try curtiss else
'begin dd[,:oT: = 1 ; goto return end;

evaluate:= with jacobian; reset step
end else convergence: ----
if error>tol then error test not ok:
begin fails:= fails+ 1;

if h>hminX1o0001 then
'begin if fails>2 then

oegin k:= o; reset step; begin
end else
begin calculate step and order;

if knew-l=k then begin k:= knew; order end;
c'Fi:= chXchnew/fails; reset step

end
end else
if adams then
begin ad~
if kt1 then

try curtiss:
false; method; order; reset step end else -----

begin k:=1; order; reset step end else

begin comment violate e:ps criterion;
c:= eps X sqrt(error/tol);
if c>dd[3,o] then dd[3,o]:= c;
~[0 n] •- dd· r~ .1. 1: UU c,_ , ..,; • - , ~ C.::: , V J , ~

goto error test ok
end

end else

error test ok:
begin fails:= O,
- if k>2 then begin for i:=1 step 1 until n do

end

- eimcol1rec(~,y,y,a,delta[i]) end;
for i:= 1 step 1 until n do if abs(yT'o;i])>ymax(i]
- then ~nnax[i.i:=abs(yTo,TI),
same : = """same - 1 ;
if saJne==1 then begin for i :=1 step 1 until n do

lasta'.e!ta[iJ :=ctelta[i] end else
if sa.rne=O then
begi.n calculate step a."'1.d order;
--- if chnew>l.1 then

end;
set

oegin same:= k + 1;
--- if kne~k then

end

begin if knew>k then
--- begin for i:=1 step 1 ux1til n do

- y[knew 1 i]~= delta[i]xa[k1Jknew
end;
k:= knew; order

endj
i:fchnew> hmax/h then clmew:= bmax/h;
n:= h X clmew, c:= 1;
for j:=1 step 1 until k do
begin c:=C!X chrie'w'; -
--- for i:=1 step 1 until n do

y[j ,i] != y[j 1i]X~
end

ez1d ste-o;
return:ctd[O,O):= if adams then O else 1; dd[4,o]:= k
end lvULTISTEP;

25

7. Numerical results

A number of differential equations are selected as testproblems.

At each point x. where the solution is asked for, the following data
l.

have been delivered:

1 • used method

A Adams-Moulton methods

C Curtiss-Hirschfelder methods

C*: Curtiss-Hirschfelder methods, with disregard of the local error

bound (see section 5),

2. absolute error ly(x.)-y(x.)I or
l. l.

relative error (number of correct digits: - 101og ly(x.)-y(x.)I,
l. l.

where y(x.) is a sufficiently close approximation to the exact
l.

solution.

3. number of evaluations of the right-hand side of the differential

equation (f), counted during integration from x 0 until xi.

4. number of evaluations of the Jacobian matrix (J), counted during

integration from x0 until xi.

The results obtained for different values of the accuracy parameters

eps and hmin are given in a table. All calculations were carried out

on the EL X8 computer of the Mathematical Centre.

7.1. The differential equation

lr y' (x)

y(O)

= -y(x)

= 1

Parameters used: available= true, stiff= false.

At x = 1 the results are given in

7

26

Table 7,1.1. Correct digits of y (left) and method used (right)

~ s ,0-1 10-2 ,o-3 10_4 ,o-5 ,o-6

,0-2 1.7 A 3,4 A 3,4 A 3,4 A 3,4 A 3.4 A

,o-3 1. 7 C* 3,2 A 3,4 A 3,4 A 3,4 A 3,4 A

,o-4 1.3 C* 3,5 A 4,5 A 4.5 A 4,5 A 4.4 A

,o-5 7.3 C* 4.0 C* 4.7 A 4,7 A 4,7 A 4,7 A

Table 7,1.2. Evaluations off (left) and of J (right)

19 0 18 0 20 0 20 0 20 0 20 0

24 4 22 0 25 0 25 0 25 0 25 0

24 2 35 0 32 0 32 0 32 0 32 0

24 2 46 5 43 0 43 0 43 0 43 0

Para.met::rc us,.2d: available = true, stiff= true.

At x = 1 the results are ~

Table 7,1 ,3. Correct digits and +nethod used

~ p 10-1 10-2 10-3 ,o-4 10-5 10-6

,0-2 1.8 C 4.o C 3.0 C 2.9 C 2.9 C 2.9 C

10-3 1. 7 C* 4.o C 3.0 C 2.9 C 2.9 C 2.9 C

10
_4 1.3 C* 2.7 C 3,3 C 3,9 C 3,9 C 3,5 C

,o-5 1.3 C* 4.o C* 4.5 C 4.8 C 4.9 C 4.6 C

27

Table 7,7.4. Evaluations off (left) and of J (right)

19 3 20 5 22 5 22 5 22 5 22 5
21 4 23 5 23 5 23 5 23

21 2 35 5 47 7 34 5 34

21 2 44 5 51 5 45 5 45

7.2. The differential equation

{
Y7 = Y2

Y2_ = -y1

Y/0) = 0, y 2 (o) = 1

Parameters used: available= true, stiff= false.

At x = TI/4 the results are:

5 23 5

5 52 6

5 60 5

Table 7,2.1. Correct digits of y 2 - for y 1 the results are

similar - (left) and method '.1s ed (right)

~ s 0.05 0.02 0.01 0.005

10-2 2,7 A 3,5 A 4.4 A 3,9 A

10-3 1.8 C* 3,4 A 4.2 A 5.0 A

10 -4 1.5 C* 3,7 C* 3,9 A 4.2 A

10-5 1.5 C* 1. 6 C* 4.2 C* 5.2 C*

Table 7,2.2. Evaluations off (left) and of

78 0

26 2

36

36

18 0

24 0

41 0

84

18 0

24 0

44 o
54 4

78 0

22 0

44 o

53 4

0.002 0.001

3.8 A 3.8 A

4.5 A 4.4 A

4.3 A 3,5 A

4.9 A 5.0 A

J (right)

78 0 78 0

22 0 22 0

27 0 28 0

50 0 50 0

28

Parameters used: available= true, stiff = true.

At X = TI/4 the results are:

Table 7.2,3. Correct digits of y2 and method used

~ s 0.05 0.02 0.01 0.005 0.002 0.001

10-2 3,3 C 2.6 C 2.6 C 2.6 C 2.6 C 2.6 C

,o-3 1.8 C* 2.6 C 2.5 C 2.5 C 2.5 C 2.5 C

,o-4 1.5 C* 3,7 C* 3.9 C 3. 7 C 3.7 C 3,6 C

10-5 1.5 c* 1.6 C* 4.2 C* 5.2 C* 4.6 C 4.5 C

Table 7.2.4. Evaluations off and J.

18 3 18 3 18 3 18 3 78 3 78 3

23 2 25 3 25 3 23 3 23 3 23 3

33 39 3 39 3 39 3 37 3 37 3

33 81 51 4 51 4 51 4 51 4

7.3. The differential eguation

{ :;o~o::
log x - X -1 e y + X

= log(0.01)

parameters used: available = true, stiff = false.

At x = O. 765 the results are:

Table 7.3.1. Correct digits (left) and method used (right)

~ s 10-2 10-3 10-4 10-5

10-4 .8 C* 1.9 C* 3. 1 A 3. 1 A

10-5 .8 C* 1.8 C* l+. 7 C* 4.4 A

10-6 .8 C* 1.7 C* 4.3 C* 5,2 A

10-7 .8 C* 7.7 C* 3.0 C* 6.3 C*

Table 7.3.2, Evaluations

36
46

51

51

2

3

of

Bo
26

14

16

29

f (left)

5 59
4 113
4 147

1 321

and of J (right)

0 57 0
6 79 0

7 105 0
8 202 10

At x = 2.5 the results are

At

Table 7.3.3. Correct dig its and method used

10-2

10-4 5.3 C*

1 o- 5 2.4 C*

10-6 5.4 C*

10-1 2.5 C*

5

6

6

6

10-3

.4 C*

.7 C*

.2 C*

.2 C*

10-4 ,o-5

6.0 A 5,2 A

6.5 C* 6.8 A

7.0 C* 8.4 A

7.5 C* 7.6 C*

Table 7.3,4. Evaluations off and of J

118 7
186 9
322 9
725 13

X = 6.5 the results are

Table 7,3.5. Correct

10-2

10-4 4.3 C*

,o-5 6.4 C*

,o-6 7.8 C*

,o-7 8.9 C*

2

3

5

dig

5

7

4

10

58 9 132 0 141 2
27 1 3 211 13 177 1

85 13 283 15 226 4

47 13 569 22 401 20

its and method used

1 o-3 ,o-4 10-5

,3 C* 5, 1 A 5,7 A

.2 C* 8.2 C* 4.3 A

.4 C* 7.9 C* 6.7 A

. 1 C* 8.7 c* 8.8 c*

l
..l

30

Table 7,3.6. Evaluations off and of J

197 17

306 21

414 17

941 24

236 17

310 21

487 25

693 25

7.4. The differential equation

302 24

282 20

361 21

703 34

290 21

442 28

638 40

590 38

parameters used: available= true, stiff= false,

At x = 1 the results are

Table 7. 4. 1 . Correct digits of y1 and y2 (left) and

method used (right)

~ s 0. 1 0.05 0.02 0.01 0.005

10-1 1.6 C* 1. 2 C* 1 .2 Ck 1.2 C* 2.4 C*

,0-2 1.6 C* 2.2 C* 2.3 C* 2.3 C* 2.3 C*

,o-3 1 . 6 C* 2. 1 C* 2.9 C* 3,4 C* 3,8 c*

,o-4 1. 6 C* 1.8 C* 2.2 C* 3,5 C* 4 .1 C*

,o-5 1.6 C* 1.8 C* 2.6 C* 3,4 C* 4.o c*

Table 7,4.2. Evaluations off (left) and of J (right)

15 2 18 3 22 2 26 3 29 4

24 1 32 2 27 3 28 3 30 3
24 1 36 3 43 3 45 3 39 3
24 1 44 1 53 4 55 4 56 4
24 1 44 1 Bo 3 85 4 86 5

0.002

1.4 C

2.9 C*

3.2 c*

4. 1 C*

5. 1 c*

28 5

35 4

48 4

66 6

81 6

31

At x = 2 the results are

Table 7.4.3. Correct digits of y1 and y2 (left) and

method used (right)

~ s 0. 1 0.05 0.02 0.01 0.005 0.002

10- 1 2.0 C* 2.3 C* 1.7 C* 1.4 C* 1.5 C* 2.4 C

10-2 2.3 C* 2.6 C* 2.7 C* 2.2 C* 3.9 C* 3.4 C*

10-3 2. 1 C* 2.3 C* 2.9 C* 3. 1 C* 3.9 C* 3,8 C*

10-4 1.8 C* 2.4 C* 2.8 C* 3,7 C* 6.2 C* 5. 1 C*

10-5 1.8 C* 4.2 C* 3,2 C* 4.o C* 4.6 C* 6.2 C*

Table 7.4.4. Evaluations off and of J

21 4 28 5 28 4 35 5 37 6 34 6
34 3 42 4 38 5 39 6 38 4 45 6
40 4 53 5 60 5 61 5 51 5 58 6
44 2 72 5 72 7 71 7 71 5 89 9
44 2 86 2 106 5 106 6 111 8 106 9

At X = 10 the results are

Table 7.4.5. Correct digits of y 1 and y2 (left) and

method used (right)

~ s 0. 1 0.05 0.02 0.01 0.005 0.002

10-1 2.7 C* 3.4 C* 3.0 C* 3.2 C* 3.2 C* 3,5 C

10-2 4.o C* 3,9 C* 3.2 C* 3,3 C* 6.o C* 3,8 C*

10-3 4.3 C* 3.9 C* 3.6 C* 3.6 C* 4.4 C* 4.7 C*

10-4 5,5 C* 5. 1 C* 5.6 C* 5.0 C* 4.9 C* 5.6 C*

10-5 4.9 C* 7.6 C* 5,9 C* 6.5 C* 6.5 C* 5.8 C*

32

Table 7,4.6. Evaluations off and J

41 7 48 8 46 7 52 7 57

57 7 67 7 70 9 94 12 59

83 7 94 8 108 12 109 12 91

110 6 133 7 135 11 128 11 123

159 6 214 6 173 8 176 11 180

7.5 The differential equation

y' =
1

Parameters used: available= true, stiff= false.

At x = 0.5 the results are

10 63 9

7 68 70

7 105 9

9 155 13

13 179 13

Table 7.5.1. Correct digits of y 1, y 2 and y3 (left) and

method used (right)

~ s 0.05 0.02 0.01 0.005 0.002 0.001

10-2 2.7 A 3,9 A 2.3 A 3.5 A 2.2 A 2.2 A

,o-3 2. 1 C* 3,3 A 2.3 A 1.4 A 3.6 A 3.6 A

10-4 1.9 C* 3,4 C* 2. 1 A 3,9 A 4.1 A 1.5 A

10-5 1.9 c* 2.3 C* 4. 1 C* 4.9 C* 1 .3 A 2. 1 A

33

Table 7.5.2, Evaluations off (left) and of J (right)

17 1 20 2 22 2 23 2 20 3 19 3

18 3 22 3 23 3 35 4 22 3 22 3

24 1 28 3 31 3 32 3 28 3 40 5
24 1 54 1 53 4 53 4 46 5 43 5

At x = 1 .0 the results are

Table 7,5.3, Correct digits of y 1, y2 and y 3 (left)

and method used (right)

~ s 0.05 0.02 0.01 0.005 0.002 0.001

10-2 2.6 C 2.7 A 3.6 C 2.2 A 2.2 A 2.2 A

10-3 2. 1 C* 2.6 A 2.3 C 1. 1 A 2.6 A 3,5 A

10-4 1.6 C* 1.9 C* 2. 1 C 3.4 C* 3.8 A 1.5A

10-5 1.6 C* 2. 1 C* 4.o c* 4.5 C* 1 .3 C* 2. 1 A

Table 7.5.4. Evaluations off and of J

31 3 39 5 40 5 42 5 39 6 38 6

29 4 50 7 42 6 76 9 248 33 303 42

44 2 42 5 65 7 175 20 73 9 158 20

44 2 97 4 67 6 73 7 235 30 306 41

7.6. The differential equation

34

parameters used: available = true, stiff= false.

At x = 50 the results are

Table 7 .6.1. Correct digits of y 1 and y 2 (left) and

method used (~ight)

~ s 0.01 0.05 0.002 0.001 0.0005

1 2.6 C* 2.9 C* 2.6 C 2.5 C 2.5 C

10-1 2.7 C* 2.7 C* 2.5 C* 2.6 C* 2.6 C*

10-2 2.7 C* 2.7 C* 3.0 C* 2.6 C* 2.6 C*

10-3 *) 3.0 C* 3.0 C* 3.0 c* 3.0 C*

10_4 *) *) 3.7 C* 3,7 C* 3,7 C*

*): error message d[0,1] =

Table 7.6.2. Evaluations off (left) and of J (right)

32 4 55 9 34 5 38 5 35 5

30 3 30 3 34 3 35 4 44 4

33 3 33 3 36 4 41 4 49 5

1 1 39 3 45 4 51 5 60 6

1 1 7 1 57 6 65 1 76 5

7.7. The differential equation

{
y' -

y(O) = 10

solution:

y(x) = 10 - (10+x)e-x + 10e-200x

parameters used: available= true, stiff= false.

35

At x = 0.4 the results are

Table 7,7.1. Correct digits. Method used: C*

~ s 0.2 0. 1 0.05 0.02 0.01 0.005

10- 1 3.0 3,3 3.6 4.o 2.5 2.5

10-2 3.0 3,3 3,6 4.o 3,2 3,0

10-3 3,0 3,3 3.6 3,3 4.5 4,3

10 -4 3.0 3,3 3.6 4.9 6. 1 2.6

10-5 3.0 3,3 3.6 4.o 2.4 8.3

Table 7,7.2. Evaluations off (left) and evaluations of J (right)

8 1 11 15 1 21 2 25 2 27 2

8 1 12 1 16 22 2 30 2 37 3
8 12 20 30 2 38 3 58 5
8 12 1 20 1 35 2 4o 3 65 7
8 1 12 1 20 1 72 13 88 9 65 3

At x = 10 the results are

Table 7,7,3, Correct digits

0.2 0. 1 0.05 0.02 0.01 0.005

10- 1 5.4 6.9 6.6 6.9 4.5 6.o

10-2 4.6 4.2 4.6 4.9 'T. 1 5,5

10-3 5,5 6.o 5.2 4.3 5. 1 4.4

10-4 5,2 1.0 5.6 7.0 6. 1 6.3

10-5 7,3 5,9 6.5 7.0 'T. 1 7.2

36

Table 7.7.4. Evaluations off and of J

33 6 31 6

47 5 53 7

74 7 82 8

88 4 141 8

100 4 176 6

7.8. The differential equation

y' =
2

y' =
3

35 6 51

55 7 61

81 8 93
198 33 110

293 32 499

8 49

7 71
10 104

9 110

105 234

Parameters used: available= true, stiff= false.

At x = o.4 the results are

4 51 7
8 82 10

10 130 14

10 153 15
21 163 11

Table 7 .8.1. Correct digits of y 1 (left) and method used (right)

~ s 0. 1 0.05 0.02 0.01 0.005

,0-1 3.0 C* 3,8 C* 1.6 C* 2.8 C* 2. 1 C

,0-2 3,0 C* 3.8 C* 4.o C* 2.4 C* 2.0 C*

,o-3 3,0 C* 3.8 C* 4.o C* 4. 1 C* 4.6 C*

,o-4 3,0 C* 3.8 C* 4.4 C* 3,4 C* 5,3 C*

_ _J

-

At

37

Table 7.8.2. Absolute error of y 2 (y3 gives similar results)

. 77e-3 .44e-4 . 11 e-4 . 14e-2 -79e-2

. ne-3 .44e-4 .60e-5 . 14e-4 • 17 e-2

-77e-3 .44e-4 .22e-4 .62e-4 .24e-4

,77e-3 .44e-4 -95e-6 . 11 e-5 ,50e-6

Table 7.8.3. Evaluations off (left) and of J (right)

12 17 27 2 32 2 39 6

12 1 19 1 32 2 47 4 55 6

12 20 1 38 2 54 2 70 5
12 1 20 41 66 3 90 5

x = 10 the results are

Table 7.8.4. Correct digits of y 1 (left) and method used (right)

~ s o. 1 0.05

10- 1 .9 C* 1 . 1 C*

10-2 1.4 C* 2.0 C*

10-3 2.8 C* 2.5 C*

10_4 2.2 C* 3.3 C*

Table 7.8.5. Evaluations

27 4

34 5

39 5

59 5

28 4

34 4

50 6

59 7

0.02 0.01 0.005

,9 C* ,9 C* 1 .2 C

2.0 C* 2.3 C* 1 .8 C*

2.6 C* 2.6 C* 3. 1 C*

3.4 C* 3,6 C* 3.4 C*

off and of J

36 4
45 5

61 6

74 6

47 5 93 15

60 7 81 10

75 6 109 10

103 7 142 11

38

Appendix. Computation of the constants

In the program the following constants are used:

l=O(1)k

k = 1,2, ... ,6 (or 7 in the case of A.M. methods).

The error constants Ck are well-known from classical multistep theory,

see Henrici [1962] p,195 and p.208.

The constants akj will be calculated as an illustration of the theory

discussed in section 2.

+
A [m]

n

~
-1

0

2

3

4

~
0

2

3

4

0

h

0

0

0

0

1/2 h2

h

0

0

0

0

0

0

0 0

0 0

0 0

2 3 4

1/3 h3 1/4 h4 1/5 h5

h2 h3 h4

2h 3h2 4h2

2 6h 12h2

0 6 24h

0 0 24

2 3 4

0 0 0

h 2h2 6h3

3h2 11h2

0 6h

0 0

39

~ 0 1 2 3 4

DjH(xh)A 1 h 1/2 h2 5/6 h3 9/4 h4 251 /30 h5 -i

n

0 h 2h2 6h3 24h4

0 3h 11h2 50h3

2 0 0 2 12h 70h2

3 0 0 0 6 60h

4 0 0 0 0 24

hj- 1DjH(xh)A ~ 0 2 3 4

n
-1 DH(xh)A

n
0 2/3 6/ 11 24/50

2 0 2/3 12/11 70/50

3 0 0 6/ 11 60/50

4 0 0 0 24/50

h1- 1D1H(xk)~ ~ 2 3 4

0 2/3 6/11 24/50
l!DH(xh)Ak =

= 7'.l (C.H.)
2 0 1/3 6/11 35/50

3 0 0 1 / 11 10/50

4 0 0 0 1/50

40

hJDJH(xh)Ak ~ 0 2 3 4

-1 1/2
H(xh)~

5/12 9/24 251/720

0

0 3/2 11/6 50/24

2 0 0 12/6 70/24

3 0 0 0 60/24

4 0 0 0 0

h1- 1n1- 1H(xh)~ ~ 2 3 4 5

-1 0 1/2 l!H(xh)A 1
5/12 3/8 251 /720

k-

= a (A.M.)
kl 2 0 1/2 3/4 11 / 12 25/24

3 0 0 1 /6 1/3 35/72

4 0 0 0 1/24 5/48

5 0 0 0 0 1/120

47

References

Curtiss, C.F. and Hirschfelder, J.O.

Integration of stiff equations.

Proc. Nat. Acad. Sci. U.S. 38 (1952) 235.

Dahlquist, G.

Convergence and stability in numerical integration of ordinary

differential equations.

Math. Scand. 4 (1956) 33,

Dahlquist, G.

A special stability problem for linear multistep methods.

BIT 3 (1963) 27,

Dekker, T.J.

ALGOL 60 procedures in numerical algebra. Part 1.

Mathematical Centre Tracts 22 (1968).

Gear, C.W.

The numerical integration of ordinary differential equations.

Math. Comp. 21 (1967) 146.

Gear, C.W.

The automatic integration of stiff ordinary differential

equations.

Proc. IFIP Congr. 1968, p.187.

Gear, C.W.

The automatic integration of ordinary differential equations.

C. ACM 74 (1971) 776,

Gear, C. W.

Algorithm 407, DIFSUB for the solution of ordinary differential

equations.

C. ACM 14 (1971) 185.

Hemker, P.W.

Linear multistep methods with variable steplength.

NR 15, Mathematisch Centrum, Amsterdam (1971).

Henrici, P.

Discre~e variable methods :n ordinary differential equatior.s.

Jctn Wiley (1962).

Nordsieck, A.

Gn numerical ir.tegration of ordinary differential equations.

f,'.ath. Comp. 16 ('962) 22.

