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Abstract 

In this report a concise description is given of the Adams-Moulton 

method together with Gear's method for the solution of stiff differ­

ential equations . .An ALGOL 60-procedure is provided which selects that 

method which is in agreement with the behaviour of the differential 

equation and some prescribed accuracy parameters. A number of numerical 

experiments are reported. 
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1. Introduction 

Adams-Bashforth and Adams-Moulton methods are well-known and very 

popular in application to high-accuracy computation of slowly varying 

systems of differential eq_uations. However, difficulties occur when 

these methods are applied to systems in which the solution contains a 

rapidly varying component. These difficulties are due to the stability 

properties which force the user to take a small steplength. In 1952 

Curtiss and Hirschfelder published linear multistep methods appropriate 

to these so called "stiff" systems of differential eq_uations. Since 

then much research was done on the theory of linear multistep methods 

(e.g. Dahlq_uist [1956,1963], Henrici [1962]). Many methods were proposed; 

however, no methods were found significantly superior to those mentioned. 

In 1962 Nordsieck reported a method in order to make the administra­

tion of the multistep methods free from its rigid system of grid-points. 

In his paper he also started an investigation of automatic steplength 

and order control for Adams methods. In several publications Gear 

[1967,1968,1971] developed the same idea for methods suitable for 

stiff eq_uations. 

This paper contains a short description of the Adams-Moulton (A.M.) 

and Curtiss-Hirschfelder (C.H.) methods. An ALGOL 60-procedure is given 

which makes a choice between these two types of methods and uses auto­

matic steplength and order control. In conclusion, a number of numerical 

results will be reported. A description of the convergence and stability 

properties of the A.M. and C.H. methods is given in detail in Hemker 

[1971]. 

2. Linear multistep methods according to Adams-Moulton and Curtiss­

Hirschfelder 

Both Curtiss-Hirschfelder and Adams-Moulton methods are based on 

polynomial approximations to a function known at some grid-points. 

Several formulae can be used to obtain these approximations. In classical 

multistep theory the Lagrange formula is used. In order to give a con­

cise description of the methods we prefer the use of the Grunert and 

the Newton formula. 
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We define two sequences of polynomials 

Definition 

Definition 

Every (n+1)st degree polynomial h(x) can be written as an inproduct 

h(x) 
➔ ➔ ➔ ➔ = G(x) .a = H(x) .p. 

➔ ➔ 

Here the vectors a or p contain the coefficients characterizing the 

polynomial h(x) and G or H characterize the formula used, G(x).t 

essentially give the Newton formula and H(x).p represents the Grunert 

formula. A matrix A can easily be found which gives the conversion 

between the two types of polynomials. 

Definition 

➔ ➔ 

➔ • ➔ ) A 1s the matrix by which the operation G(x = 
➔ ➔ 

H(x).A 1s achieved. 

In Hemker [1971] a proof 1s given of the following statement: 

Statement 

➔ 
➔ 

The matrix A 1s an uppertriangular matrix the elements of 
➔ 

which are provided by A[O,O] = 1; A[O,j] = O (j#O) 
--,. ➔ ➔ 
➔ ➔ ➔ 

and A[i,j] = (x0-xj_ 1) A[i,j-1] + A[i-1,j-1J. 

This implies that A is completely determined by the distribution of the 

grid-points (x0 ,x1, ... ,xn+l) and does not depend on x. 

The methods of Curtiss and Hirschfelder now are simply explained. 

Let y(x) be an approximate solution of the differential equation 



5 

y' = f(x,y), 

known at the n+1 grid-points x0 ,x1 , ... ,xn. 

For typographical reasons we shall write 

and 

X n 

xh = X n+1 

yh = y(xh). 

x2 xl XO 

/ 
/ 
/ 

...... 

' \ 
xh 

fig. 1. The method of Curtiss-Hirschfelder 

We want to find a value y(xh) so that 

y'(xh) = f(xh,y(xh)). 

For y(x) we take a polynomial approximation by writing 

➔ ➔ + + 
y(x) = G(x).a + G(x).a 1 n n+ 

ao 0 

+ a, ➔ 

with a = and an+1 = n 

a 0 
n 

0 an+1 

( 2. 1 ) 

( 2. 2) 

+ 
Note that a is a vector known from earlier computations because y(x) 

n 
is prescribed at the gridpoints x0 ,x1, ... ,xn. Furthermore, an+ 1 is 

to be determined in such a way that (2.1) is satisfied. Using the 
➔ 

. . . + 
definition of A we get 
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y(x) = li(x) J ;;:n + H(x) j_ 0 }n+1 , (2.3) 

• • ➔ By def1n1ng p, the Taylor coefficients of then-th degree approximation 

to y(x) at the point x0 , as 

+ 
+ ➔➔ 
p = A a n 

➔ 

and defining the (n+1)st column of A as An+ 1 

we may write 

(2.4) 

y(x) = H(x) .p + H(x) .An+ 1 .an+,· (2.6) 

Finally, by defining the differential operator D = d/dx, the next 

relation holds 

j J·+ -+ J·+ -+ 
D y(x) = D H(x).p + D H(x)An+ 1.an+1 • 

We are now able tQ compute a prediction of Djy(xh), i.e. 

J. pred J· ➔ ➔ 
D y(xh) = D H(xh).p. (2.8) 

(In fact, this is a Taylor series expansion of order n at the points 

x 0.) This prediction has to be followed by a correction, i.e. 

(2.9) 

Here, an+ 1 1s unknown, but has to be determined so that (2.1) is satis­

fied. So we have the additional relation 

~Dy(xh) = f(xh,y(xh)) - Dy(xh)pred_ (2.10) 

By successive substitution a direct iteration process can be obtained 

1n which the correction of the computed value of Dy(xh)' in the (m+1)-st 

iteration step is given by 

'm' 'm' = f(xh,y(xh) ) - Dy(xh) 
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This relation together with (2.9) gives 

j ➔ ➔ 
D H(xh)An+ 1 'm' 'm' 

. [f(xh,y(xh) -Dy(xh) ]. 
➔ ➔ 

DH(xh)An+1 
(2.12) 

The first factor on the right hand-side, only depending on j, n+1 and 

the distribution of the grid-points, is a constant number during the 

iteration process. The second factor represents the difference between 

the derivative of the prediction and the prediction of the derivative 

at x = xh. 

Instead of the forementioned direct iteration process, we can 

accelerate convergence by the use of Newton's method for solving 

6Dy(xh). In this case, we replace (2.11) by 

m+1 
6 Dy(xh) = 

m 

'm' m+l 'm' = f(xh,y(xh) ) + J.6m y(xh) - Dy(xh) 

'm' 'm' = (f(xh,y(xh) ) - Dy(xh) ) + 

➔ ➔ 

H(xh)A 1 n+ 
➔ ➔ 

DH(xh)An+ 1 

= 

m+1 
. J . 6 Dy ( xh ) . 

m 

(2.13) 

df 
Here, J roughly represents dy . In the case of a system of differential 

equations, where y and fare vectors, J is roughly the Jacobian matrix 
m+1 af./ay .. Now 6 Dy(xh) is computed by solving the linear system 

l J m 

➔ ➔ 

H(xh)An+ 1 
{I - ----- J}6m+ 1Dy(xh) = 

➔ ➔ m 
DH(xh)An+l 

. ' ' f(xh,y(xh) m ) 'm' Dy(xh) (2.14) 

The same comment given for the factor in (2.12), can be made for the 

factor multiplying the Jacobian. As soon as 6D (xh) has been solved 
y . 

from this (nonlinear) equation or system of equations, 6DJy(xh) also 

can be computed by using (2.9). 



8 

Explicitly (2,9) yields 

(2.15) 

The first factor on the right-hand side only depends on j,n and the 

distribution of the grid-points. 

The starting point of the Adams-Moulton methods are only slightly 

different from the Curtiss-Hirschfelder methods. Let y'(x) be an approx-

imation to the derivative of the solution of the differential eq_uation 

n' = f(x,n). 

/ 
/ 

..... 
\. 
\. 

X x2 x, XO xh 
n 

fig. 2. The method of Adams-Moulton 

Let y'(x) be known at the n+1 grid-points x0 ,x 1, ••• ,xn. The same 

arguments as given for (2.2) - (2.5) yield 

Dy(x) 
+ + + + = y' (x) = G(x) .a + G(x) .a 1 n n+ 

+ + + + 
= H(x).p + H(x)A 1a 1. n+ n+ 

(2.16) 

Here, again the prediction is a Taylor-series expansion at the point 

XO 

Djy(xh)pred j-1+( ) + = D H xh .p. (2. 17) 

The correction is given by 

(2.18) 
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In order to compute Djy(xh) we again use (2.10) and we construct a 

direct iteration process analogous to (2.12) 

j-1 ➔ ➔ 
D H(xh)An+ 1 'm' 'm' 

[f(xh,y(xh) )-Dy(xh) ]. 
➔ ➔ 

H(xh)An+l 

Alternatively, we construct an iteration process by using an 

estimated Jacobian matrix as in (2.13): 

( 2. 19) 

Dj- 1H(xh)An+l m+1 'm' 'm' {I - ---___,;"-- J}L\ Dy(xh) = f(xh,y(xh) ) - Dy(xh) (2.20) 
➔ ➔ m 
H(xh)An+l 

L\y(xh) and L\Dy(xh) being computed in this way, the corrections of the 

higher derivatives are easily obtained with the formula analogous to 

(2.15) 

(2.21) 

3, Administration and realization 

Multistep methods essentially carry information about the last n 

performed steps. This information has to be available in one form or 

another. According to Nordsieck's method we prefer to store at each 

step the numbers 

➔ 

This vector Y(x0 ) corresponds to the vector p introduced in (2.4), taken 

into account that in Y the i-th derivative is normalized by a factor 

hl/i! . For h we take the current steplength h = xh-x0 . 

The prediction as described in (2.8) and (2.11) now easily becomes 

a multiplication of Y by a Pascal matrix (Gear [1967]). By one of the 

processes described in (2.11), (2.14) or (2.20), both L\hDy(xh) and L\y(xh) 



70 

are computed. When convergence has been obtained the values of 

hiDiy(xh)/i: are computed with (2.15) or (2.21). 
In order to make quick reference possible we define in the case 

of a uniform distributed set of grid-points 

hl-lD1H(xh)~ 

akl = l!DH(xh)Ak 

in the case of C.H. methods, and 

hl--1 Dl-1 H( xh )~- 1 

akl = l!H(xh)~-l 

in the ease of A.M. methods. 

( 3. 1 ) 

These constant easily change the computed difference 6hDy(xh) into the 

differences 6hjDjy(xh)/j! . 

In order to change the steplength during the integration, every 

element ~iDiy(x0 )/i! of the vector Y(x0 ) is multiplied by a factor 

(hnew/h)i. The vector Y(x0 ) preserves estimates of the Taylor coeffi­

cients at x0 . As these values contain all essential information 

available, we assume that the grid-points have a uniform distribution. 

Experiments by Nordsieck [1962] and Gear [1968] show that no difficulties 

are to be expected at this point, provided that, after each change of 

steplength, this steplength is fixed at least n times in succession. 

A method implementing a fully variable steplength is discussed in 

Hemker [ 1971 J. 

The uniformity of the distribution of {x.} and the normalization 
]. . 

of p make it possible to represent all occurences of DJH(xh)A by 
n+l 

the constar-t numbers ak1 . This feature and the flexability of the step-

length make it very attractive to implement the methods in this way. 

4. The control of steplength and order 

The greater part of our steplength and order control mechanism is 

due to Gear [1968,1971]. The basic idea is the following: after completion 

of a number of steps, we look for that steplength which gives rise to a 

truncation error (represented by the last term of the Taylor-series ex­

pansion taken into account) equal to a prescribed local error E. This 
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inquiry 1s done for the current n-th order formula, and, in addition, 

for the (n-1)-st order and the (n+1)-st order formula, The resulting 

optimal steplength is chosen together with the corresponding order. A 

number of safety measures are taken in order to prevent some unwanted 

effects (see section 5). 

The calculation of the optimal steplength for the current order n 

Since the value hnDny(x0 )/n! also represents the predicted value 

of hnDny(xh)/n!, it is easily shown that its first difference 

n n ( .6h Dy xh)/n! 

represents an approximation to 

The truncation error of then-th order formula 1s given by 

where, 1n the case of A.M. methods, Cn+l corresponds with IY~I 
(see Henrici [1962] p. 195), and 

where, in the case of C.H. methods, C 1 corresponds with o n+ 0 ,n+1 
(see Henrici [1962] p. 208). 

( 4. 1 ) 

(4.2) 

Aiming at a local error E, we obviously have to take a value of h 1n 

such a way that 

n n 
~ C 1n!.6h D y(xh)/n! n+ 

= C 1n!a .6hDy(xh), 
n+ nn 

(4.3) 

n+1 
Since this truncation error is proportional to h , we have to multiply 

the steplength by a factor 
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( E )n+1 

C + 1 n ! a \ \ 1:i hDy ( xh ) I I n . nn 

(4.4) 

In the program this is realized by computing 

error = I I hDy ( xh ) \ \ 2 
ymax ( 4. 5) 

tol = ( E/ymax, ) 2. 
C 1a n. n+ nn 

(4.6) 

The new steplength is obtained by multiplying the old steplength by the 

factor ch 

ch= (tol/error)t(0,5/(n+1)). ( 4. 7) 

Note that E/ymax represents the relative error specified by the user. 

The calculation of the optimal steplength in the case of order n-1 

The stored value hnDny(xh)/n! itself yields an approximation to 

the truncation error of order n, i.e. C hnD y(xh). Aiming of the local 
n n 

error E, we have to take h in such a way that E = C hnDny(xh). Con­
n 

sequently, we have to change our steplength by a factor 

The actual computation is effectuated in a way analogous to (3,5), 

(3.6), (3.7), i.e. 

error = 11 hnD~~~h)/n! I I 2, 

tol = (E/ymax)2 
C n! ' n 

ch = (tol/error)t(0,5/n). 

( 4. 8) 

(4.10) 

(4.11) 
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The calculation of the optimal steplength for order n+1 

In the program an approximation to the truncation error of order 

n+2 is not directly available. However, it is obtained from the values 

LhDy(xh) and LhDy(x0 ). An estimation of the truncation error can be 

directly derived from 

= a n!(lhDy(xh)-lhDy(x0 )). nn 

The factor by which the steplength is to be multiplied, is again com­

puted in analogy to the expressions (3.5), (3.6) and (3.7), that is 

lhDy(xh) - lhDy(xo) 2 
error = II ymax II' 

tol = ( E/ymax )2 
C a n! ' n+2 nn 

ch = (tol/error)t(0.5/(n+2)). 

5, The structure of the procedure MULTISTEP 

A strategy for solving stiff equations 

(4.12) 

(4.13) 

(4.14) 

For high precision computation of solutions of differential equa­

tions A.M. methods are favourable because of their excellent accuracy 

properties, whereas C.H. methods have superior properties with respect 

to stability behaviour and are, therfore, appropriate when solving stiff 

equations. Unlike the choice of steplength and order which is reversible 

(i.e. a decision can be annulled by a next decision), the choice which 

type of two methods will be used, is made irreversible. When, after a 

call of procedure MULTISTEP with first= true, A.M. methods with a 

minimal steplength do not satisfy, the equation is considered to be 
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stiff and C.H. methods are used until a next call with first= true. 

Solving the differential equation by means of an A.M. method, the 

decision to use Newton's method for solving equation (2.10) is made 

when the iteration process (2.12) turns out to be slowly convergent. 

Unless a call with first= true this decision will not be revoked. 

A detailed description of the strategy will be given as an ex­

planation of the ALGOL 60 procedure MULTISTEP of section 6. 
In this procedure some subprocedures are declared: 

(1) procedure method. 

According to the Boolean value "adams" (i.e. use A.M. methods) 

this procedure stores the constants of (3.1), (4.6), (4.10) and 

( 4. 13): 

(a. J = 0(1)n, 7/(C n!), 1/(C + 1 .a n!), 1/(C 2 .a .n!)) nJ n n nn n+ nn 
in an array called "const". 

(2) procedure order. 

According to the integer value k (i.e. the order of the formula 

that is to be used), this procedure activates the values akj and 

calculates the values tol (4.6), (4.10) and (4.13). When Newton's 

method is used to solve (2.14) or (2.21), a new evaluation of the 

Jacobian matrix and a corresponding LU-decomposition is asked for. 

Inquiry into new steplength and order is delayed for k+1 steps. 

(3) procedure evaluate jacobian. 

This procedure evaluates the Jacobian matrix (either by numerical 

calculation or by evaluating the analytical expression given in 

one of the parameters of MULTISTEP) and then performs a LU­

decomposition of the matrix (I-a0khJ). 

(4) procedure calculate step and order 

performs the calculations described in section 4. A suggestion for 

a new order (knew) and a factor changing the steplength (ch) are 

delivered. In order to prevent unnecessary changing, some safety­

margins are incorporated. Searching for a new steplength and order 

is delayed for 10 steps. 
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(5) procedure set. 

In order to make rejection of a computed step possible, this 

procedure stores the last accepted values of the computation in 

array dd. 

(6) procedure reset step 

restarts computation from the last accepted values and changes 

steplength by multiplying by ch (see procedure calculate step and 

order). 

(7) procedure begin 

starts integration with minimal steplength and order 1. Values of 

the derivative are obtained by evaluation of the right hand side 

of the differential equation. 

The compound tail of the procedure body is aivided in some clear dis­

tinguishable parts. 

1. Initialization. 

If first= true the procedure starts integration with A.M. methods 

by calling procedure begin; otherwise computation is continued 

from the last accepted values. 

2. Integration by steps. 

2.1. prediction is performed as described in (2.8) and (2.17). See also 

section 3. 

2.2. correction 

Maximal 3 corrector iterations are taken as described in (2.11), 

(2.13) or (2.20). When 

E 
< 

2. N. ( k+2) where E: absolute error 

convergence is assumed to be achieved. 

2.3. if no convergence is obtained then 

N: number of equations 

k: order of the method 

i) if a not updated Jacobian matrix was used, this matrix is 

updated. The step is repeated. 
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ii) if the steplength is not minimal, the step is repeated 

with steplength/4 or minimal steplength. When the Jacobian 

matrix can be obtained from the parameters, Newton's method 

will be used in order to accelerate convergence. 

iii) if steplength is minimal then 

iiia) if A.M. methods were used, C.H. methods will be used (in 

order to force the use of the Jacobian matrix). 

iiib) when C.H. methods were used (and so Newton's method is used 

for solving (2.20)), the strong nonlinearity of the problem 

prevents solution with the given minimal steplength. An 

errormessage is given and integration is stopped. It is 

possible to restart with first= true or first= false and 

with a smaller hmin. 

2.4. if the requested local error bound is exceeded, a smaller step­

length is calculated and the step is repeated. 

i) when recalculation of the steplength does not satisfy two 

times in succession, the step 1s restarted after a call of 

procedure begin (so hmin will be used). 

ii) when the minimal steplength (hmin) is used, it is not possible 

to obtain the requested local error with this method. Two 

possibilities arise 

iia) An A.M. method is used. In this case the error might be 

caused by the bad stability properties of the differential 

equation: the C.H. method will be used and the step will be 

repeated. 

iib) The C.H. method is used but the discretisation error exceeds 

the required error bound. In this case a first order method 

will be used. If even this does not satisfy, strictly speaking, 

the procedure would have to give an errormessage and ask for a 

smaller hmin. However, experience has shown that this situation 

appears when starting stiff differential equations. Here the 

excessive error will be damped out in some steps and a first 

order C.H. method is an optimal choice. So we will give an 

errormessage (and an estimation of the real local error), but 

we will continue integration, violating our local error cri­

terion by accepting this step. 
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2.5. when the step is accepted, 

the vector Y(x0 ) (section 3) is updated. 

Every ten steps a new order and steplength are calculated. Only 

if improvement is worthwhile the new steplength and order are 

used. After completion of a step the computed values are stored 

by procedure "set". 

6. The ALGOL 60-procedure MULTISTEP 

In this section we give an ALGOL 60-procedure appropriate to the 

integration of a system of first order differential equations. Firstly, 

a description of its parameters and an example of the use of the pro­

cedure will be given. 

The heading o& the µ~ocedu.t1.e ,u.,: 

procedure MULTISTEP (x,xend,y,hmin,hmax,ymax,eps,first,dd,fxyi,ii, 

jacij,jj,n,available,stiff); 

value hmin,hmax,eps,xend,available,n; 

Boolean available,stiff,first; integer ll,JJ,n; 

real x,xend,hmin,hmax,eps,fxyi,jacij; array y,ymax,dd; 

The actual parameters corresponding to the formal parameters are: 

X 

xend 

y 

hmin,hmax 

<variable>; 

the independent variable x can be used as a Jensen para­

meter in fxyi and jacij. 

entry: the initial value x0 . 

<expression>; 

the end value of x (xend ~ x). 

<array identifier>; array y[0:7,1:n]; 

the independent variable 

entry: the initial values of the system of differential 

equations y[O,i]:= Yi (x0 ). 

exit : y.(xend) = y[O,i]. 
l 

<expression>; 

minimal respectively maximal steplength by which the in­

tegration is performed. 
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ymax 

first 

dd 

ll ,j j 

fxyi 

jacij 
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<expression>; 

the relative local error bound. 

<array identifier>; array ymax[ 1: n 7 ; 

entry: the absolute local error bound divided by eps; 

exit : ymax[i] gives the maximal value of abs(y[O,i]) and 

the entry value of ymax[i] during integration. 

<Boolean identifier>; 

if first= true then the procedure starts its strategy with 

the first order Adams-Moulton method and a steplength equal 

to hmin. Upon completion of a call first= false. 

if first= false then the procedure continues the inte­

gration. 

<array identifier'; array dd[0:7,0:n]; 

in this array information is stored, which can be used in 

a next call; 

besides some messages are delivered: 

dd[O,O] = 

= 

dd[ 1 , 0] = 

= 

dd[2,0] 

dd[3,0] 

0 A.M. method was used; 

the procedure switched to C.H. method; 

0 no error message; 

with the used hmin the procedure cannot 

handle the nonlinearity; 

number of times that the requested local error 

bound was exceeded; 

if dd[2,0] ~ 0 then d[3,0] gives an estimate of 

the maximal local error bound. 

<integer identifier>; 

are used as Jensen parameters in fxyi and JaciJ. 

<expression>; 

expression depending on x,y and ii~ giving the value of 

dy .. /dt. ii 
<expression>; 

(optional) expression depending on x,y,ii and JJ and giving 

the values of d(dy .. /dt)/dy ... 
J.i JJ 

(i.e. the Jacobian matrix of the system). 

-- 7 



available 

stiff 

n 
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<Boolean expression>; 

an expression which indicates whether expression jacij 

contains relevant information or not. 

<Boolean expression>; 

if stiff= true then the procedure directly uses Curtiss­

Hirschfelder methods, skipping an attempt with Adams­

Moulton methods. 

<expression>; 

the number of equations. 

In procedure MULTISTEP the following library procedures are used: 

sum, det, sol, elmrow and elmcolvec. (see: Dekker [1968]). 

Consider the initial value problem 

d 
dt X = -x( 1-y) + QY 

d 
8 dt y = x( 1-y) - py 

Yo ; O. 

This can be programmed as follows: 

p:= 1; q:= 0,99; ep:= 0.001; tend:= 25; 

ymax[0,1]:= ymax[0,2]:= ymax[2]:= 1; 

y[0,2]:= O; first:= true; 

MULTISTEP(t,tend,y, 10-3,0,5,ymax, 10-6,first,dd, 

if i=1 then -( 1-y[0,2])*y[O, 1 ]+q*y[0,2] 

else ((1-y[0,2])*y[0,1]-p*y[0,2])/ep,i, 

if i=1 then (if j=l then -(1-y[0,2]) else q+y[0,1]) 

else (if j=1 then (1-y[0,2])/ep else -(p+y[0,1])/ep),j, 

2, true, false); 

The following results are delivered: 

t=25, y[0,1] = .87755215, y[0,2] = .467675852 (correct digits are under­

lined), first= false, d[O,O] = 1, d[1 ,OJ= 0, d[2,0] = 12, d[3,0] = ,333, 
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procedure MULTISTEP(x,xend,yJhmin,hmax,yma.x,eps, first,dd, 
fxyi,ii,jacij,jj,nJavailable,stiff); • 

value hmin,hmax,eps,xend,available 1n; 
boolean available,stiff,first; integer ii,jj,n; 
real x,xend,hmin,hmax,eps,fxyi,JaciJ; array y ,ymax,dd; 

begin own boolean with jacobian,adams, 
-- o'wn integer kold, own real xold,hold; 

"6'ocilean evaluate, evaiuatea, conv; 
integer i,j,l,k,knew,maxorder,fails 1 same; 
real h,ch,chnew,c,tolconv,tolup,tol,toldwn,errorjdi~i; 
array const[1:56],a[o:7],delta,last delta,df[1:n jjac[1:n1 1:n]; 
integer array p[7 ~n]; 

procedure method; 
begin with jacobian:= ladams; 
- maxorder:= if adams then 7 else 6; 

i~= k:= 1; 
if adams then 
begin forconst[i]~= 1,1,i2,2,1,~5 1 1,1.5,24,12,1,5/12,1,~75, 
-- l7'6,37a89,24,2,o375;1,11/12,1/3,1/24;53.33;37o89,1, 

251/720,1 ,25/24,35/72,5/48,1/120,7oco8,53033,.3158, 
95/288,1,137/120,~625,17/96,,025,1/720,87097,70do8, 
"07407, 1 9087 /60480, 1 , 1 ~ 225, 203/270, 49 /1 92, 7 /i i+4, 
7/1440,1/5040,106.,9,87~97,,.0139 do i:= i + 1 

end else -
begin for const[i]:= 1,1,3,2,1,2/3,1,1/3.,6,4.5,1,6/11,1, 
-- o7T7 ,1/11 ,9~16'7,7.333;0<>5Jg48,1, 0 7,~2,.02_,12c5J 

1 o.42, ~ 1667, 120/274, 1 ;225/274 ,85/274, 1 5/274, 1 /274, 
1 5 .. 98 , 1 3 .. 7 , • o4 1 6 7 , 1 Bo /44 1 , 1 , 5 8 / 6 3 , 5 / 1 2 , 2 5 / 2 5 2 , 
3/252,1/1764,19~6,17015,.008333 do i~= i + 1 

end 
end method; 

procedure order; 
begin if k>max order then begin dd[ 1 ,O] ~= 2; goto return end; 
- J:= (k-1) X (k+BT7 2-+7'; -- --

for i~= 0 step 1 until k do a[i]:= const[i+j]; 
tolup := (epsXconst[j+k+1TT;}-2; 
tol := (epsXconst[j+k+2])i2, 
toldwn~= (e-psXconst[j+k+3])tt,2; 
tolconv:= eps/(2><rX(k+2)); 
evaluate:= with jacobian; 
same:= k+1 

end order; 
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procedure evaluate jacobian; 
begin real r; 

evaiuate:= false; 
if available then 
begin r:= -a[oTx h; 

for ii:= 1 step 1 until n do 
for jj:= 1 step until n cto jac[iiJjj]:= jacij X r; 

end else --
beginreal d; array fixdy,fix y[1 :n]; 

:ror-ii:=1 step 1 until n do 

end; 

- beginflx y[ii]:= yLO,ii], fixdy[ii]:= fxyi end; 
for i:=1 step 1 until n do 
begin d:=--rr-eps>abs(fixy[i]) then epsXeps 

end 

- else epsXabs(fix yTIJj; 
y[OJi]:= y[O,i] + d; 
r:= - a[o] x h/d; 
for ii~= 1 step 1 until n do 
- jac[ ir;TT:=(fxyi - fTxdy[ ii]) x r; 
y[O,i]:= fix y[i] 

for i:= 1 step 1 until n do jac[i,i]:= jac[i,i] + 1; 
det( jac ,n,IiT; 
evaluated:= true 

end evaluate jacobian; 

procedure calculate step and order; 
begin real al,a2,a3, 

saiiie:= 1 o; 
al:= if k<1 then O else 

0:-75><( toiawn/sum( i, 1 ,n, (y[k,i]/ymax[ i] ),.f\2) )Mo. 5/k); 
a2:= Oa8ox(tol /error) t (0.5/(k+1)); 
a3:= if k>max order V fails+o then O else 

'c)77ox(tolup /sum(i,1,n,((deirai]-iast delta[i])/ 
ymax[i]),.f\2))i(0.5/(k+2)); 

if a1>a2 A a1>a3 then begin knew:=k-1; chnew:=al end else 
IT a2>a3 then begin knew~=k ; chnew:=a2 end else 

-- begin knew:=k+1; chnew:=a3 end -­
end calculate step and order; 

procedure set; 
begin xold:= x; hold:= h; kold:= k; ch!= 1; 

for i:= 1 step 1 until n do 
1or j:= 0 step until k cto dd[j,i]:= y[j,i] 

end se-:r;-



procedure reset step; 
begin real c; 

22 

IT"ch < hmin/hold then ch:= hmin/hold else 
if ch > hmax/hold then ch:= hmax/hold_,-­
x:= xold; h:= hold><ch; c~= 1; 
for j:=O step 1 until k do 
begin for i:=1 s'feplunTil n do y[j,i]:= dd[j,i] X c; 
-~cxc~ --- --
end; 
saiiie:= k + 

end reset step; 

procedure begin; 
begin fails:= O, h:= hmin; 

for ii:= 1 step 1 until n do y[l,ii]:= fxyi X h; 
k:= 1; order; set ---

end begin; 

if first then 
oegin first:= false; ad.ams:= lstiff; method; 

begin; for i:= 1,2,3 do dd[i,O]:= 0 
end else 
"6egin method; k;= kold; order; ch~= 1; reset step~; 

for l:= 0 while x<xend do 
begin if x+h<xend then x:= x+h else 

begin chg= (xend-x)/h, reset step; x:= xend end; 

comment prediction; 
for i~=O step 1 until k-.1 do 
for j := k-1 step -1 until ido 
elmrow(1,n,j,j+l,y,y-;rn-
for i ~= 1 step 1 until n do delta[ i] ~= o; 
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comment correction and estimation local error; 
for l:=1 J2J3 do 
begin for ii:=-=1 step 1 until n do df[ii]:= fxyiXh - y[1Jii]; 

IrevaluateUien evaluateJacobian; 
11 with jacobian then sol(jac,n,p,df); 

conv:= true; 
for i:=lstep 1 until n do 
'i3egin dfi:~[i]; 

y[O,i]~= y[O,i] + a[O]Xdfi; 
y[l ,i] := y[1,i] + dfi; 
delta[i]:= delta[i] + dfi; 
conv:= conv A abs(dfi) < tolconv x ymax[i] 

end; 

end; 

Tr conv then 
begin error~= sum(i,1,n,(delta[i]/ymax[i])i2); 

evaluated:= false; goto convergence 

comment acceptance or rejection; 
if lconv then no convergence: 
'begin if with jacobian A 7 evaluated then else 

TI h>hminX1 o 0001 then - -
begin with jacobi~ with jacobian V available; 

ch:= ch/4 
end else 
Tradam.s then goto try curtiss else 
'begin dd[,:oT: = 1 ; goto return end; 

evaluate:= with jacobian; reset step 
end else convergence: ----
if error>tol then error test not ok: 
begin fails:= fails+ 1; 

if h>hminX1o0001 then 
'begin if fails>2 then 

oegin k:= o; reset step; begin 
end else 
begin calculate step and order; 

if knew-l=k then begin k:= knew; order end; 
c'Fi:= chXchnew/fails; reset step 

end 
end else 
if adams then 
begin ad~ 
if kt1 then 

try curtiss: 
false; method; order; reset step end else -----

begin k:=1; order; reset step end else 



begin comment violate e:ps criterion; 
c:= eps X sqrt( error/tol ); 
if c>dd[3,o] then dd[3,o]:= c; 
~[ 0 n] •- dd· r~ .1. 1: UU c,_ , ..,; • - , ~ C.::: , V J , ~ 

goto error test ok 
end 

end else 

error test ok: 
begin fails:= O, 
- if k>2 then begin for i:=1 step 1 until n do 

end 

- eimcol1rec(~,y,y,a,delta[i]) end; 
for i:= 1 step 1 until n do if abs(yT'o;i])>ymax(i] 
- then ~nnax[i.i:=abs(yTo,TI), 
same : = """same - 1 ; 
if saJne==1 then begin for i :=1 step 1 until n do 

lasta'.e!ta[ iJ :=ctelta[ i] end else 
if sa.rne=O then 
begi.n calculate step a."'1.d order; 
--- if chnew>l.1 then 

end; 
set 

oegin same:= k + 1; 
--- if kne~k then 

end 

begin if knew>k then 
--- begin for i:=1 step 1 ux1til n do 

- y[knew 1 i]~= delta[i]xa[k1Jknew 
end; 
k:= knew; order 

endj 
i:fchnew> hmax/h then clmew:= bmax/h; 
n:= h X clmew, c:= 1; 
for j:=1 step 1 until k do 
begin c:=C!X chrie'w'; -
--- for i:=1 step 1 until n do 

y[j ,i] != y[j 1i]X~ 
end 

ez1d ste-o; 
return:ctd[O,O):= if adams then O else 1; dd[4,o]:= k 
end lvULTISTEP; 
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7. Numerical results 

A number of differential equations are selected as testproblems. 

At each point x. where the solution is asked for, the following data 
l. 

have been delivered: 

1 • used method 

A Adams-Moulton methods 

C Curtiss-Hirschfelder methods 

C*: Curtiss-Hirschfelder methods, with disregard of the local error 

bound (see section 5), 

2. absolute error ly(x. )-y(x. )I or 
l. l. 

relative error (number of correct digits: - 101og ly(x. )-y(x.)I, 
l. l. 

where y(x.) is a sufficiently close approximation to the exact 
l. 

solution. 

3. number of evaluations of the right-hand side of the differential 

equation (f), counted during integration from x 0 until xi. 

4. number of evaluations of the Jacobian matrix (J), counted during 

integration from x0 until xi. 

The results obtained for different values of the accuracy parameters 

eps and hmin are given in a table. All calculations were carried out 

on the EL X8 computer of the Mathematical Centre. 

7.1. The differential equation 

lr y' (x) 

y(O) 

= -y(x) 

= 1 

Parameters used: available= true, stiff= false. 

At x = 1 the results are given in 
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Table 7,1.1. Correct digits of y (left) and method used (right) 

~ s ,0-1 10-2 ,o-3 10_4 ,o-5 ,o-6 

,0-2 1.7 A 3,4 A 3,4 A 3,4 A 3,4 A 3.4 A 

,o-3 1. 7 C* 3,2 A 3,4 A 3,4 A 3,4 A 3,4 A 

,o-4 1.3 C* 3,5 A 4,5 A 4.5 A 4,5 A 4.4 A 

,o-5 7.3 C* 4.0 C* 4.7 A 4,7 A 4,7 A 4,7 A 

Table 7,1.2. Evaluations off (left) and of J (right) 

19 0 18 0 20 0 20 0 20 0 20 0 

24 4 22 0 25 0 25 0 25 0 25 0 

24 2 35 0 32 0 32 0 32 0 32 0 

24 2 46 5 43 0 43 0 43 0 43 0 

Para.met::rc us,.2d: available = true, stiff= true. 

At x = 1 the results are ~ 

Table 7,1 ,3. Correct digits and +nethod used 

~ p 10-1 10-2 10-3 ,o-4 10-5 10-6 

,0-2 1.8 C 4.o C 3.0 C 2.9 C 2.9 C 2.9 C 

10-3 1. 7 C* 4.o C 3.0 C 2.9 C 2.9 C 2.9 C 

10 
_4 1.3 C* 2.7 C 3,3 C 3,9 C 3,9 C 3,5 C 

,o-5 1.3 C* 4.o C* 4.5 C 4.8 C 4.9 C 4.6 C 
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Table 7,7.4. Evaluations off (left) and of J (right) 

19 3 20 5 22 5 22 5 22 5 22 5 
21 4 23 5 23 5 23 5 23 

21 2 35 5 47 7 34 5 34 

21 2 44 5 51 5 45 5 45 

7.2. The differential equation 

{ 
Y7 = Y2 

Y2_ = -y1 

Y/0) = 0, y 2 (o) = 1 

Parameters used: available= true, stiff= false. 

At x = TI/4 the results are: 

5 23 5 

5 52 6 

5 60 5 

Table 7,2.1. Correct digits of y 2 - for y 1 the results are 

similar - (left) and method '.1s ed (right) 

~ s 0.05 0.02 0.01 0.005 

10-2 2,7 A 3,5 A 4.4 A 3,9 A 

10-3 1.8 C* 3,4 A 4.2 A 5.0 A 

10 -4 1.5 C* 3,7 C* 3,9 A 4.2 A 

10-5 1.5 C* 1. 6 C* 4.2 C* 5.2 C* 

Table 7,2.2. Evaluations off ( left ) and of 

78 0 

26 2 

36 

36 

18 0 

24 0 

41 0 

84 

18 0 

24 0 

44 o 
54 4 

78 0 

22 0 

44 o 

53 4 

0.002 0.001 

3.8 A 3.8 A 

4.5 A 4.4 A 

4.3 A 3,5 A 

4.9 A 5.0 A 

J (right) 

78 0 78 0 

22 0 22 0 

27 0 28 0 

50 0 50 0 
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Parameters used: available= true, stiff = true. 

At X = TI/4 the results are: 

Table 7.2,3. Correct digits of y2 and method used 

~ s 0.05 0.02 0.01 0.005 0.002 0.001 

10-2 3,3 C 2.6 C 2.6 C 2.6 C 2.6 C 2.6 C 

,o-3 1.8 C* 2.6 C 2.5 C 2.5 C 2.5 C 2.5 C 

,o-4 1.5 C* 3,7 C* 3.9 C 3. 7 C 3.7 C 3,6 C 

10-5 1.5 c* 1.6 C* 4.2 C* 5.2 C* 4.6 C 4.5 C 

Table 7.2.4. Evaluations off and J. 

18 3 18 3 18 3 18 3 78 3 78 3 

23 2 25 3 25 3 23 3 23 3 23 3 

33 39 3 39 3 39 3 37 3 37 3 

33 81 51 4 51 4 51 4 51 4 

7.3. The differential eguation 

{ :;o~o:: 
log x - X -1 e y + X 

= log(0.01) 

parameters used: available = true, stiff = false. 

At x = O. 765 the results are: 

Table 7.3.1. Correct digits (left) and method used (right) 

~ s 10-2 10-3 10-4 10-5 

10-4 .8 C* 1.9 C* 3. 1 A 3. 1 A 

10-5 .8 C* 1.8 C* l+. 7 C* 4.4 A 

10-6 .8 C* 1.7 C* 4.3 C* 5,2 A 

10-7 .8 C* 7.7 C* 3.0 C* 6.3 C* 



Table 7.3.2, Evaluations 

36 
46 

51 

51 

2 

3 

of 

Bo 
26 

14 

16 

29 

f (left) 

5 59 
4 113 
4 147 

1 321 

and of J (right) 

0 57 0 
6 79 0 

7 105 0 
8 202 10 

At x = 2.5 the results are 

At 

Table 7.3.3. Correct dig its and method used 

10-2 

10-4 5.3 C* 

1 o- 5 2.4 C* 

10-6 5.4 C* 

10-1 2.5 C* 

5 

6 

6 

6 

10-3 

.4 C* 

.7 C* 

.2 C* 

.2 C* 

10-4 ,o-5 

6.0 A 5,2 A 

6.5 C* 6.8 A 

7.0 C* 8.4 A 

7.5 C* 7.6 C* 

Table 7.3,4. Evaluations off and of J 

118 7 
186 9 
322 9 
725 13 

X = 6.5 the results are 

Table 7,3.5. Correct 

10-2 

10-4 4.3 C* 

,o-5 6.4 C* 

,o-6 7.8 C* 

,o-7 8.9 C* 

2 

3 

5 

dig 

5 

7 

4 

10 

58 9 132 0 141 2 
27 1 3 211 13 177 1 

85 13 283 15 226 4 

47 13 569 22 401 20 

its and method used 

1 o-3 ,o-4 10-5 

,3 C* 5, 1 A 5,7 A 

.2 C* 8.2 C* 4.3 A 

.4 C* 7.9 C* 6.7 A 

. 1 C* 8.7 c* 8.8 c* 
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Table 7,3.6. Evaluations off and of J 

197 17 

306 21 

414 17 

941 24 

236 17 

310 21 

487 25 

693 25 

7.4. The differential equation 

302 24 

282 20 

361 21 

703 34 

290 21 

442 28 

638 40 

590 38 

parameters used: available= true, stiff= false, 

At x = 1 the results are 

Table 7. 4. 1 . Correct digits of y1 and y2 (left) and 

method used (right) 

~ s 0. 1 0.05 0.02 0.01 0.005 

10-1 1.6 C* 1. 2 C* 1 .2 Ck 1.2 C* 2.4 C* 

,0-2 1.6 C* 2.2 C* 2.3 C* 2.3 C* 2.3 C* 

,o-3 1 . 6 C* 2. 1 C* 2.9 C* 3,4 C* 3,8 c* 

,o-4 1. 6 C* 1.8 C* 2.2 C* 3,5 C* 4 .1 C* 

,o-5 1.6 C* 1.8 C* 2.6 C* 3,4 C* 4.o c* 

Table 7,4.2. Evaluations off (left) and of J (right) 

15 2 18 3 22 2 26 3 29 4 

24 1 32 2 27 3 28 3 30 3 
24 1 36 3 43 3 45 3 39 3 
24 1 44 1 53 4 55 4 56 4 
24 1 44 1 Bo 3 85 4 86 5 

0.002 

1.4 C 

2.9 C* 

3.2 c* 

4. 1 C* 

5. 1 c* 

28 5 

35 4 

48 4 

66 6 

81 6 
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At x = 2 the results are 

Table 7.4.3. Correct digits of y1 and y2 (left) and 

method used (right) 

~ s 0. 1 0.05 0.02 0.01 0.005 0.002 

10- 1 2.0 C* 2.3 C* 1.7 C* 1.4 C* 1.5 C* 2.4 C 

10-2 2.3 C* 2.6 C* 2.7 C* 2.2 C* 3.9 C* 3.4 C* 

10-3 2. 1 C* 2.3 C* 2.9 C* 3. 1 C* 3.9 C* 3,8 C* 

10-4 1.8 C* 2.4 C* 2.8 C* 3,7 C* 6.2 C* 5. 1 C* 

10-5 1.8 C* 4.2 C* 3,2 C* 4.o C* 4.6 C* 6.2 C* 

Table 7.4.4. Evaluations off and of J 

21 4 28 5 28 4 35 5 37 6 34 6 
34 3 42 4 38 5 39 6 38 4 45 6 
40 4 53 5 60 5 61 5 51 5 58 6 
44 2 72 5 72 7 71 7 71 5 89 9 
44 2 86 2 106 5 106 6 111 8 106 9 

At X = 10 the results are 

Table 7.4.5. Correct digits of y 1 and y2 (left) and 

method used (right) 

~ s 0. 1 0.05 0.02 0.01 0.005 0.002 

10-1 2.7 C* 3.4 C* 3.0 C* 3.2 C* 3.2 C* 3,5 C 

10-2 4.o C* 3,9 C* 3.2 C* 3,3 C* 6.o C* 3,8 C* 

10-3 4.3 C* 3.9 C* 3.6 C* 3.6 C* 4.4 C* 4.7 C* 

10-4 5,5 C* 5. 1 C* 5.6 C* 5.0 C* 4.9 C* 5.6 C* 

10-5 4.9 C* 7.6 C* 5,9 C* 6.5 C* 6.5 C* 5.8 C* 
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Table 7,4.6. Evaluations off and J 

41 7 48 8 46 7 52 7 57 

57 7 67 7 70 9 94 12 59 

83 7 94 8 108 12 109 12 91 

110 6 133 7 135 11 128 11 123 

159 6 214 6 173 8 176 11 180 

7.5 The differential equation 

y' = 
1 

Parameters used: available= true, stiff= false. 

At x = 0.5 the results are 

10 63 9 

7 68 70 

7 105 9 

9 155 13 

13 179 13 

Table 7.5.1. Correct digits of y 1, y 2 and y3 (left) and 

method used (right) 

~ s 0.05 0.02 0.01 0.005 0.002 0.001 

10-2 2.7 A 3,9 A 2.3 A 3.5 A 2.2 A 2.2 A 

,o-3 2. 1 C* 3,3 A 2.3 A 1.4 A 3.6 A 3.6 A 

10-4 1.9 C* 3,4 C* 2. 1 A 3,9 A 4.1 A 1.5 A 

10-5 1.9 c* 2.3 C* 4. 1 C* 4.9 C* 1 .3 A 2. 1 A 
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Table 7.5.2, Evaluations off (left) and of J (right) 

17 1 20 2 22 2 23 2 20 3 19 3 

18 3 22 3 23 3 35 4 22 3 22 3 

24 1 28 3 31 3 32 3 28 3 40 5 
24 1 54 1 53 4 53 4 46 5 43 5 

At x = 1 .0 the results are 

Table 7,5.3, Correct digits of y 1, y2 and y 3 (left) 

and method used (right) 

~ s 0.05 0.02 0.01 0.005 0.002 0.001 

10-2 2.6 C 2.7 A 3.6 C 2.2 A 2.2 A 2.2 A 

10-3 2. 1 C* 2.6 A 2.3 C 1. 1 A 2.6 A 3,5 A 

10-4 1.6 C* 1.9 C* 2. 1 C 3.4 C* 3.8 A 1.5A 

10-5 1.6 C* 2. 1 C* 4.o c* 4.5 C* 1 .3 C* 2. 1 A 

Table 7.5.4. Evaluations off and of J 

31 3 39 5 40 5 42 5 39 6 38 6 

29 4 50 7 42 6 76 9 248 33 303 42 

44 2 42 5 65 7 175 20 73 9 158 20 

44 2 97 4 67 6 73 7 235 30 306 41 

7.6. The differential equation 
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parameters used: available = true, stiff= false. 

At x = 50 the results are 

Table 7 .6.1. Correct digits of y 1 and y 2 (left) and 

method used (~ight) 

~ s 0.01 0.05 0.002 0.001 0.0005 

1 2.6 C* 2.9 C* 2.6 C 2.5 C 2.5 C 

10-1 2.7 C* 2.7 C* 2.5 C* 2.6 C* 2.6 C* 

10-2 2.7 C* 2.7 C* 3.0 C* 2.6 C* 2.6 C* 

10-3 *) 3.0 C* 3.0 C* 3.0 c* 3.0 C* 

10_4 *) *) 3.7 C* 3,7 C* 3,7 C* 

*): error message d[0,1] = 

Table 7.6.2. Evaluations off (left) and of J (right) 

32 4 55 9 34 5 38 5 35 5 

30 3 30 3 34 3 35 4 44 4 

33 3 33 3 36 4 41 4 49 5 

1 1 39 3 45 4 51 5 60 6 

1 1 7 1 57 6 65 1 76 5 

7.7. The differential equation 

{ 
y' -

y(O) = 10 

solution: 

y(x) = 10 - (10+x)e-x + 10e-200x 

parameters used: available= true, stiff= false. 
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At x = 0.4 the results are 

Table 7,7.1. Correct digits. Method used: C* 

~ s 0.2 0. 1 0.05 0.02 0.01 0.005 

10- 1 3.0 3,3 3.6 4.o 2.5 2.5 

10-2 3.0 3,3 3,6 4.o 3,2 3,0 

10-3 3,0 3,3 3.6 3,3 4.5 4,3 

10 -4 3.0 3,3 3.6 4.9 6. 1 2.6 

10-5 3.0 3,3 3.6 4.o 2.4 8.3 

Table 7,7.2. Evaluations off (left) and evaluations of J (right) 

8 1 11 15 1 21 2 25 2 27 2 

8 1 12 1 16 22 2 30 2 37 3 
8 12 20 30 2 38 3 58 5 
8 12 1 20 1 35 2 4o 3 65 7 
8 1 12 1 20 1 72 13 88 9 65 3 

At x = 10 the results are 

Table 7,7,3, Correct digits 

0.2 0. 1 0.05 0.02 0.01 0.005 

10- 1 5.4 6.9 6.6 6.9 4.5 6.o 

10-2 4.6 4.2 4.6 4.9 'T. 1 5,5 

10-3 5,5 6.o 5.2 4.3 5. 1 4.4 

10-4 5,2 1.0 5.6 7.0 6. 1 6.3 

10-5 7,3 5,9 6.5 7.0 'T. 1 7.2 



36 

Table 7.7.4. Evaluations off and of J 

33 6 31 6 

47 5 53 7 

74 7 82 8 

88 4 141 8 

100 4 176 6 

7.8. The differential equation 

y' = 
2 

y' = 
3 

35 6 51 

55 7 61 

81 8 93 
198 33 110 

293 32 499 

8 49 

7 71 
10 104 

9 110 

105 234 

Parameters used: available= true, stiff= false. 

At x = o.4 the results are 

4 51 7 
8 82 10 

10 130 14 

10 153 15 
21 163 11 

Table 7 .8.1. Correct digits of y 1 (left) and method used (right) 

~ s 0. 1 0.05 0.02 0.01 0.005 

,0-1 3.0 C* 3,8 C* 1.6 C* 2.8 C* 2. 1 C 

,0-2 3,0 C* 3.8 C* 4.o C* 2.4 C* 2.0 C* 

,o-3 3,0 C* 3.8 C* 4.o C* 4. 1 C* 4.6 C* 

,o-4 3,0 C* 3.8 C* 4.4 C* 3,4 C* 5,3 C* 

_ _J 
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Table 7.8.2. Absolute error of y 2 (y3 gives similar results) 

. 77e-3 .44e-4 . 11 e-4 . 14e-2 -79e-2 

. ne-3 .44e-4 .60e-5 . 14e-4 • 17 e-2 

-77e-3 .44e-4 .22e-4 .62e-4 .24e-4 

,77e-3 .44e-4 -95e-6 . 11 e-5 ,50e-6 

Table 7.8.3. Evaluations off (left) and of J (right) 

12 17 27 2 32 2 39 6 

12 1 19 1 32 2 47 4 55 6 

12 20 1 38 2 54 2 70 5 
12 1 20 41 66 3 90 5 

x = 10 the results are 

Table 7.8.4. Correct digits of y 1 (left) and method used (right) 

~ s o. 1 0.05 

10- 1 .9 C* 1 . 1 C* 

10-2 1.4 C* 2.0 C* 

10-3 2.8 C* 2.5 C* 

10_4 2.2 C* 3.3 C* 

Table 7.8.5. Evaluations 

27 4 

34 5 

39 5 

59 5 

28 4 

34 4 

50 6 

59 7 

0.02 0.01 0.005 

,9 C* ,9 C* 1 .2 C 

2.0 C* 2.3 C* 1 .8 C* 

2.6 C* 2.6 C* 3. 1 C* 

3.4 C* 3,6 C* 3.4 C* 

off and of J 

36 4 
45 5 

61 6 

74 6 

47 5 93 15 

60 7 81 10 

75 6 109 10 

103 7 142 11 
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Appendix. Computation of the constants 

In the program the following constants are used: 

l=O( 1 )k 

k = 1,2, ... ,6 (or 7 in the case of A.M. methods). 

The error constants Ck are well-known from classical multistep theory, 

see Henrici [1962] p,195 and p.208. 

The constants akj will be calculated as an illustration of the theory 

discussed in section 2. 

+ 
A [m] 

n 

~ 
-1 

0 

2 

3 

4 

~ 
0 

2 

3 

4 

0 

h 

0 

0 

0 

0 

1/2 h2 

h 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

2 3 4 

1/3 h3 1/4 h4 1/5 h5 

h2 h3 h4 

2h 3h2 4h2 

2 6h 12h2 

0 6 24h 

0 0 24 

2 3 4 

0 0 0 

h 2h2 6h3 

3h2 11h2 

0 6h 

0 0 
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~ 0 1 2 3 4 

DjH(xh)A 1 h 1/2 h2 5/6 h3 9/4 h4 251 /30 h5 -i 

n 

0 h 2h2 6h3 24h4 

0 3h 11h2 50h3 

2 0 0 2 12h 70h2 

3 0 0 0 6 60h 

4 0 0 0 0 24 

hj- 1DjH(xh)A ~ 0 2 3 4 

n 
-1 DH(xh)A 

n 
0 2/3 6/ 11 24/50 

2 0 2/3 12/11 70/50 

3 0 0 6/ 11 60/50 

4 0 0 0 24/50 

h1- 1D1H(xk)~ ~ 2 3 4 

0 2/3 6/11 24/50 
l!DH(xh)Ak = 

= 7'.l (C.H.) 
2 0 1/3 6/11 35/50 

3 0 0 1 / 11 10/50 

4 0 0 0 1/50 
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hJDJH(xh)Ak ~ 0 2 3 4 

-1 1/2 
H(xh)~ 

5/12 9/24 251/720 

0 

0 3/2 11/6 50/24 

2 0 0 12/6 70/24 

3 0 0 0 60/24 

4 0 0 0 0 

h1- 1n1- 1H(xh)~ ~ 2 3 4 5 

-1 0 1/2 l!H(xh)A 1 
5/12 3/8 251 /720 

k-

= a (A.M.) 
kl 2 0 1/2 3/4 11 / 12 25/24 

3 0 0 1 /6 1/3 35/72 

4 0 0 0 1/24 5/48 

5 0 0 0 0 1/120 



47 

References 

Curtiss, C.F. and Hirschfelder, J.O. 

Integration of stiff equations. 

Proc. Nat. Acad. Sci. U.S. 38 (1952) 235. 

Dahlquist, G. 

Convergence and stability in numerical integration of ordinary 

differential equations. 

Math. Scand. 4 (1956) 33, 

Dahlquist, G. 

A special stability problem for linear multistep methods. 

BIT 3 (1963) 27, 

Dekker, T.J. 

ALGOL 60 procedures in numerical algebra. Part 1. 

Mathematical Centre Tracts 22 (1968). 

Gear, C.W. 

The numerical integration of ordinary differential equations. 

Math. Comp. 21 (1967) 146. 

Gear, C.W. 

The automatic integration of stiff ordinary differential 

equations. 

Proc. IFIP Congr. 1968, p.187. 

Gear, C.W. 

The automatic integration of ordinary differential equations. 

C. ACM 74 (1971) 776, 

Gear, C. W. 

Algorithm 407, DIFSUB for the solution of ordinary differential 

equations. 

C. ACM 14 (1971) 185. 

Hemker, P.W. 

Linear multistep methods with variable steplength. 

NR 15, Mathematisch Centrum, Amsterdam (1971). 



Henrici, P. 

Discre~e variable methods :n ordinary differential equatior.s. 

Jctn Wiley (1962). 

Nordsieck, A. 

Gn numerical ir.tegration of ordinary differential equations. 

f,'.ath. Comp. 16 ( '962) 22. 


