
REKENAFDEL I NG

C.H.A. KOSTER

stichting

mathematisch

centrum

MR 129/72 JANUARY

TOWARDS A MACHINE-INDEPENDENT ALGOL 68 TRANSLATOR

~
MC

2e boerhaavestraat 49 amsterdam

bib1.i.t1nt:1:t(MATHEMATISCH CENTf\UM

AMSTERDAM

0. Introduction

The purpose of this paper is to point out some problems encountered, and

some techniques used in our attempt to construct a machine-independent

ALGOL 68 translator.

The main tool used is a compiler compiler [1], based on "a_ffixgrammars",

a two-level extension of Context-Free grammars not unlike the grammar used in

the ALGOL 68 Report itself, and furthermore equipped with a macro mechanism

allowing the incorporation of primitive actions and functions. The input lan

guage of the compiler, called "Compiler Description Language", CDL for short,

can be seen as a high-level language whose syntax and semantics are extremely

simple, and which is well suited for describing in a machine-independent

fashion the parsing and listprocessing which takes place in a translator.

In order to give some flavor of the application of this compiler de

scription language to ALGOL 68, in section 2 a possible treatment of decla

rers is worked out.

1.0. Some problems

In this section we mention some of the problems encountered in applying syn

tax-directed methods to the syntax of ALGOL 68 as given in the Report.

1.1. The type of grammar used

The syntax of ALGOL 68 is given in the form of a two-level grammar, which is

equivalent to a Context-Free grammar with an infinite number of rules, for

which classical parsing methods fail. The report defines how to apply the

syntax rules generatively, i.e. how to generate a program. Application of

those rules in reverse leads to a parsing process which is at best hi~hly

complicated and inefficient, while it is doubtful whether it even terminates.

The solution usually taken is to reduce the parsing problem to the well

known and understood parsing problem for Context-Free languages, and take the

context-sensitive aspects into account by other means.

From the syntax of the Report is distilled a smallest Context-Free syn

tax S such that

1) The language of S includes ALGOL 68 properly;

2) The nonterminals occurring in S bear some useful relationship to the

notions of ALGOL 68.

2

A rough approximation is reached by striking from each rule all metanotions,

and those parts concerned with mode, and therefore such a syntac S is termed

a "mode-independent II syntax of ALGOL 68.

The mode-independent syntax of ALGOL 68 is by no means uniquely deter

mined by those two requirements, and several implementors have each construc

ted their own mode-independent syntax [2, 3, 4, 5], as we did.

To this mode-independent syntax the actions and functions that comprize

the context-sensitive part must then be appended in some way. How this can be

done in a clean and elegant way is exempfified in Section 2.

1.2. Incompleteness of the syntax

In the Report, under the heading of Syntax, is given the syntax of the

"strict language". In order to treat the full language, one has to incorpo

rate the following into the syntax:

a) Extensions.

The Report defines the strict language, and then proceeds to define ex

tensions, which allow one to write other forms for specific language con

structs. This extends the range of meaningful constructs, and sometimes en

larges the power (e.g., the "case clauses" are introduced in this way) but

paradoxically most extensions have the character of allowing a contraction.

Thus,

may be shortened

to

and

to

real x

real x., real y

real x., y

Pragmatically indispensable, these extensions are a headache for the imple

mentor, because of the curious interactions between various extensions, which

give rise to a number of local ambiguities, small, but irritating because

they lengthen the syntax and make it less transparant.

Example:

· struat a = ('i'eaZ a).,

stru.at a= (real, a).,

stPU.at a= (real, a).,

b) Context conditions

3

· ('i'eaZ b) b

b = (real b)

b b

The context conditions may be seen as a collection of syntactical re

strictions which have not been included in the syntax itself. To give an ex-

ample, the identification conditions assure the correspondence in mode be

tween defining and applied occurrences. They might have been included in the

syntax of the Report by the addition to a number of rules of an appropriate

metanotion to make it aware of the block- and scope-structure of the program.

This might have led to an interesting formalization of what is now a number

of semantic remarks scattered throughout the Report, but it would· alsq have

reduced its readability even further.

A syntax of the full language must include an explicit taking into

account of these context conditions. To this end not only an identifier

table must be kept, but also some tables specific to ALGOL 68: mode-indicant

table, operator-indicant-table and declarer-table.

Rather than let the updating of those tables happen by magic outside the

syntactic realism, we have chosen to make use of a syntactic formalism which

allows one to define the treatment of those tables as syntax-directed trans

duction, just like the parsing of the program itself.

c) Some of the Semantics

Some of the semantics of the Report have to be included in the syntax,

because they have a direct bearing on the compilation phase, rather than on

the run phase.

An example is the semantics of "protection" (R6.O.2.d), a concept needed

for the description of the identification process which is followed during

compilation; it is not normally a process performed at run time.

From these three points it should be clear that the syntax of ALGOL 68 is by

no means a complete basis for syntax-directed translation.

1.3. Removal of backtracking

Because we want to apply top-to-bottom parsing techniques efficiently, the

4

grammar must satisfy certain restrictions, the most important being that it

has to be free from backtracking.

A look-ahead of at least one symbol is necessary, as can be seen from:

begin l m

begin l :

begin l 9.l. t
begin l +

Upon reading begin l, Z. might be either a label-identifier, a field-selector

or a mode-identifier,or the first symbol of one of these. The first symbol

following it resolves this local ambiguity.

The long-symbol may begin a declarer (R7.1.1.d), a denotation (R5.1.0.1b and

R5,2.1.b), a mode-indication (R4.2.1.b) or an operator-indication (R.2.1.e,f).

Thus, upon meeting begin long: one is rather uncertain about the kind

of construction one is about to meet. Especially, another long-symbol might

follow, and it is the first symbol following which is not a long-symbol that

resolves the local ambiguity. In this case there is no harm in looking ahead

past the long-symbols: even though there is no limit to the number of long

symbols, no appreciable efficiency is lost by leaving this local ambiguity

in, and backtracking when the occasion arises.

Quite another matter is the local ambiguity exemplified by:

begin [1 : 10]. real x= Zoa [1 : 10] real
begin [1 . 10] reaZ. y := (1, 2, 3, 4, 5, 6, 7, 8, 9, 0) .
begin [1 : 10] reaZ. := (1, 2, 3, 4, 5, 6, 7, 8, 9, 0)

begin [: J real . (1, 2, 3, 4, 5, 6, 7, 8, 9, 0) .
After the begin-symbol, one does not know whether a unit or a declaration

st~rts. Upon meeting a declarer like, e.g., [1: 10] real, this might be a

formal-declarer, beginning a strict identity-declaration, an actual-declarer

beginning a contracted identity-declaration, an actual-declarer serving as

generator or a virtual-declarer beginning a cast.·certainly one is not en

titled to look ahead beyond the declarer or to backtrack across it, since

the declarer may again contain a whole program.

It is possible to split and rearrange the mode-independent syntax in such a

way that these four cases are recognized without backtracking, at the cost

5

of making the syntax differ more and more from that of ALGOL 68, so that it

becomes very difficult to prove afterwards that the language recognized is

indeed ALGOL 68.

The most striking example of local ambiguity is the uncertainty one is

in after an open parenthesis • .An open parenthesis may begin a collateral

clause (R6.2), closed-clause (R6.3), conditional-clause (R6.4), case-clause

(R9.4c,d), conformity-case-clause (R9.4.g), not to mention the incredible

complication that it also serves as alternative representation of the sub

symbol. In some cases this gives less problem that one might suppose, viz.,

when the semantics coincide. Thus, if one meets:

(real x; x:= y + 17

one can open a new block, declare x and translate an assignment statement

without being bothered by the fact that one does not know whether one has

embarked upon a closed-, conditional- or case-clause: it makes no difference,

for the time being, as regards the semantic actions to be taken; only upon

later meeting with a then-symbol or a close-symbol one has to proceed dif

ferently.

The real trouble is given by a case where the semantics differs marked

ly from that of closed-clauses, e.g. the parameters-pack:

ma = (real a, b, (J) real : skip

ma = (real a, b, (J ; 3.14)

In the first case a, b, and c envelop the mode 'real' whereas in the second

case they envelop the mode 'reference-to-real'. It is not easy to reconcile

semantics so different; therefore one likes to know beforehand what open

symbols are the beginning of a formal-parameter-pack. Rather than performing

some look-ahead or backtrack, we let a prescan of the ALGOL 68 translator

mark those open-symbols, as one of its tasks.

From these few examples it should be clear that the syntax used has to

be closely scrutinized, restructured and refined in order to make it suffi

ciently deterministic.

1.4. Treatment of errors

One is forced to take into account that the translator will be faced

6

with incorrect programs; to all probability this will be the rule instead of

the exception.

We want to translate programs written in a very large sublanguage of

ALGOL 68, and to give errormessages for every deviation from that sublan

guage. The parser is not a "permissive" one, which accepts, besides correct

strings, also whole lots of rubbish without warning: a full syntax check is

made. Errors must be reported in as sensible and informative a manner as

possible; the poor programmer must get all possible assistance and not be

sent into the woods with the information that at the second symbol of the

thirtieth line the parser has given up in disgust. Incorrectness has to be

reported at the appropriate syntactic level, an attempt at recuperation has

to be made, and great care must be taken that no error can wreck the struc

ture or contents of the various tables. If, e.g., we meet ref x; we must

report that the symbol ref is not followed by a declarer; then we may give

to the abortive declarer ref some special mode 'erroneous' and declare x

with the mode 'reference-to-erroneous'.

The whole of this error treatment has to be included explicitly in the

syntax used .

.An example of this will occur in section 2.

The consideration of error treatment again causes differences between

the syntax in the Report and the syntax actually used.

2 • .An annotated example: declarers

Rather than give a formal description of CDL, the input language of

the compiler, an example is given together with some explanation, viz., the

treatment of declarers (R7,1).

The semantics of 7. 1 tells that "a given declarer specifies the mode

enveloped by its original". This semantics we will have to put into the

syntax: parsing a declarer must yield, as a side effect, its mode. We will

record the modes in the declarer-table by (head, tail) pairs, and represent

a mode by a numerical key to the recording of a declarer specifying it.

For the declarer int we record (int, 0) and similarly for other primitive

declarers. Lettingµ stand for the key to the recording of the declarerµ,

we enter into the declarer-table the following:
'

and

Zangµ
ref µ

[J µ

7

is recorded as (long,~)
as · (ref , ii)
as (row , µ)

struat (µ1-r1:, µ2-r2:, ••. , µn-rn) is recorded as

(struat~)
.- ~ ~~

~ ,) (,) . • • (, 0)

({µ1, -r1) 6, -r2) ~-, rn)

union (µ1, µ2, ... , µn) is recorded as

(union1/)
4r:- <"\ - ~ ~ -(µ1,) (µ2,) ..• (µn, 0)

Furthermore, a mode-indicantµ, standing in a range with range number v, is

recorded as (µ,v). Thus, a primitive declarator is treated as a mode-indi

cant with range number zero.

Pairs are added to the declarer-table by the action enter, giving as

result a key, taking care that no pair is entered twice, in that case giving

the key of the old pair as result. It can easily be shown that declarers

which are recorded as the same pair specify the same mode; thus, automati

cally, some of the equivalent declarers get the same key.

We will show how the syntax of declarers (R7.1) looks when written in

Compiler Description Language. The first rule is:

declarer+ mode - key:

mode indication+ key, enter+ key+ rangenumber + mode;

primitive declarator+ mode;

rows declarator+ mode;

long declarator+ mode;

structure declarator+ mode;

reference declarator+ mode;

procedure declarator+ mode;

union declarator+ mode.

8

This rule says that, in order to find a declarer, a number of alternatives

are to be tried one after the other; if a mode indication is present, then

the pair (key, rangenumber) is entered and a key obtained, which is then the

resulting mode of the declarer; otherwise, a primitive declarator is sought,

and so on, until some alternative is succesful, or even the last fails; if

that is the case, then no declarer was present. On the one hand, this can be

seen as a syntactic rule in Van Wijngaarden notation(+ and - being separa

tion marks,·mode and key being metanotions); on the other hand, it can be

seen as a declaration for a boolean procedure declarer, with a para.meter

mode and a local variable key. It lends itself to both interpretation as

syntax and automatic translation to a procedure, performed by a compiler

compiler.

More rules:

primitive declarator+ mode:

integral symbol, enter+ int+ 0 + mode;

real symbol, enter+ real + 0 + mode;

boolean symbol, enter+ bool + 0 + mode;

character symbol, enter+ char+ 0 + mode;

format symbol, enter+ format+ 0 + mode.

Here, int, real, bool, char, format and Oare terminal symbols, i.e., con

stants.

rows declarator+ mode - m1:

subsymbol, rower, rest rows declarator+ ml, enter+ row+ ml + mode.

Here, row is terminal, ml a local variable.

rower:

bound,

(up to symbol, bound option;

error+ "up to symbol expected", skip rest I ist elem);

up to symbol, bound option; .

9

We will not here define error and skip rest I ist elem, but only state that

the first causes an errorrnessage to be printed, the second skips symbols

until a comma or closing symbol is met.

The notation with the brackets in the rule means the grouping together of a

number of alternatives into one; thus, error is only called when a bound is

not followed by an up to symbol and a bound option.

bound:

tertiary, (flexible symbol; either symbol;).

The tertiary is optionally followed by a flexible symbol or either symbol.

Note the inclusion in the syntax of R9.2,f.

bound option : bound; .

rest rows declarator+ mode - ml:

comma symbol, rower, rest rows declarator+ ml, enter+ row+ m1 + mode;

bus symbol, must be declarer+ mode;

error+ "incorrect row-of- •.. declarator", skip rest I ist elem,

rest rows declarator+ mode.

must be declarer+ mode:

declarer+ mode; error+ "declarer expected", make+ mode+ erroneous.

long declarator+ mode - ml:

I ong symbo I,

(integral symbol, enter+ int+ 0 + m1, enter+ long+ ml + mode;

real symbol, enter+ real + 0 + m1, enter+ long+ ml + mode;

long declarator+ m1, enter+ long+ ml + mode;

backtrack, omega).

The procedure backtrack backtracks over one symbol, the boolean procedure

omega always yields faZse.

structure declarator+ mode - m1:

structure symbol, rest structure declarator+ m1,

enter+ struct + ml + mode.

10

rest structure declarator+ mode - m1 ~ m2 - m3 - tag:

open symbol, field+ ml + tag, enter+ m1 +tag+ m2,

fields+ m1 + m3, enter+ m2 + m3 + mode;

error+ "incorrect structured-with- •.• declarator",

make+ mode+ erroneous.

field+ mode+ tag:

must be declarer+ mode,

(identifier+ tag;

error+ "missing fieldselector", make+ tag+ 0).

fields+ ml + mode - m2 - m3 - tag:

comma symbo I ,

(identifier+ tag, enter+ ml +tag+ m2,

fields+ ml+ m3, enter+ m2 + m3 + mode;

field+ ml + tag, enter+ ml +tag+ m2,

fields+ ml + m3, enter+ m2 + m3 + mode);

close symbol, make+ mode+ O;

error+ "incorrect field pack", skip til I closed, make+ mode+ erroneous.

The procedure skip til I closed skips symbols up to and including the first

closing bracket at the correct bracketlevel.

Notice how extension R9.2.c has been incorporated in the rule for fields.

reference declarator+ mode - ml:

reference to symbol, must be declarer+ ml, enter+ ref+ ml + mode.

procedure declarator+ mode - ml:

procedure symbol, plan+ ml, enter+ proc + m1 + mode.

plan+ mode - ml - m2:

parameters+ ml, result+ m2, enter+ ml + m2 + mode.

parameters+ mode:

declarer list pack+ mode; make+ mode+ d.

The primitive action make assigns the second para.meter to the first, i.e.,

assigns Oto the para.meter mode.

11

declarer I ist pack+ mode - ml ~ m2:

open symbol, mu$t be declarer+ ml, rest decl I ist pack+ m2,

enter+ ml + m2 + mode.

rest decl I ist pack+ mode - ml - m2:

comma symbol, must be declarer+ ml, rest decl I ist pack+ m2,

enter+ ml + m2 + mode;

close symbol, make+ mode+ O;

error + "incorrect dee I arer I i st pack", skip ti 11 c I osed,

make+ mode+ erroneous.

result+ mode:

declarer+ mode; make+ mode+ void.

union declarator+ mode - ml:

union of symbol, rest union declarator+ mode,

enter+ union+ ml + mode.

rest union declarator+ mode - ml:

declarer I ist pack+ ml;

error+ "incorrect union-of- ... declarator",

make+ mode+ erroneous.

Finally, we will show that the procedure enter itself can also be de

fined by a rule in CDL, making use of a number of primitive actions and

boolean procedures. In CDL, one can add definitions for primitives in the

form of macro-definitions. We will use the following primitives:

incr + a

lseq +a+ b

make+ a+ b

equal +a+ b

get head+ p + d

get tai I + p + d

put head+ p + d

put ta i I + p + d

must increment a by one

must yield tPUe if a .::_ b, and false otherwise

must assign the value of b to a

must yield true if a= b

must put the value of the head of the pair indexed

by p, into d

idem for the tail of the pair

must put the value of d into the head of the pair

indexed by p

idem for the tail of the pair.

12

The latter four are the means of access for the declarer~table, the

others provide the little calculation capability necessary to define the

action enter.

We assume global variables min decl and pdecl to point to the first

and last pair in the declarer-table respectively.

enter+ d1 + d2 + mode - x - y - wy:

make+ x + pdecl, incr + pdecl, put head+ pdecl + d1,

put tai I + pdecl + d2, make+ y + min decl,

nxy (get head+ y + wy, equal + wy + d1,

get tai I + y + wy, equal + wy + d2,

(lseq + y + x, make+ pdecl + x, make+ mode+ y;

make+ mode+ pdecl);

incr + y,: nxy).

The notation nxy: stands for the label nxy, and: nxy for goto nxy. We

allow labels and jumps as a means to replace some recursion by the more

efficient iteration. Local variables are y, wy and x.

A possible translation into ALGOL 60 is:

procedure enter (dl, d2, mode); integer dl, d2, mode;

begin integer y, wy, x;

x:= pdee"l; pdee"l:= pdee"l + 1;

head [pdee"l]:= dl; tai"l [pdee"l]:= d2; y:= mindee"l;

nxy : wy:= head [y]; :!:t. -, (wy=dl) then goto 1;

wy := taii [y J; :!:t. -, (wy=d2) then goto 1;

:!:t. --, (y<x) then goto 2;

pdee"l:= x; mode:= y; goto end;

2 : mode:= pdee"l; goto end;

1: y:= y + 1; goto nxy;

end:

end· __ ,
This is indeed very near to the translation our compiler _compiler makes

for it.

13

3. The compiler compiler

The compiler compiler used accepts input in Compiler Description Lan

guage, and gives output in one out of a number of object languages. For ex

perimentation puposes we use ALGOL 60 as an object language, whereas other

versions will have as object language PL/360 (which runs on some IBM compu

ters), Compass (assembler for some CDC computers) and ELAN (assembler for

the Electrologica X8). We will not go here into the properties or workings

of the compiler compiler (described in [6]), but only state that it is ac

tively being used in the study and development of compilers for ALGOL 68 by

a number of groups. It is our intention to allow other interested groups

full access to our tools and results, and contribute in this way to a future

widespread availability of good ALGOL 68translators,which make special

purpose languages like CDL superfluous.

14

References

[1] J.E.L. Peck (Editor), "Proceedings of a conference on ALGOL 68

implementation", North Holland publishing company, 1969.

[2] H.J. Bowlden, "ALGOL 68 structural flowchart 11
, Westinghouse

Research Laboratories, Research Report 69-1c4-comps-R2,

October 1969.

[3] G.S. Hodgson, "ALGOL 68 extended syntax", University of Manchester,

March 1970.

[4] M. Simonet, "Une grammaire context-free d'Algol 68", Rapport IMAG,

Grenoble, June 1969.

[5 J P. Branquart, J. Lewi and J.P. Cardinael, "A context-free syntax of

ALGOL 68 11
, Technical Note N66 of MBLE, Brussels, August 1970,

[6] C.H.A. Koster, "A compiler compiler", MR 127, Mathematisch Centrum,

Amsterdam, ~ovember 1971.

