
REKENAFDEL I NG

stichting

mathematisch'

centrum

J.W. DE BAKKER and W.P. DE ROEVER
~CALCULUS FOR RECURSIVE PROGRAM SCHEMES

MR 131/72

RA

~
MC

FEBRUARY

2e boerhaavestraat 49 amsterdam

SISLIOTHEEK MATHEMATlS!:!:PI CENTRi::YM

AMSTERDAt'I

P«nted _a;t. :the Ma.thematic.al. CentJLe, 49, 2e BoeJLhaave6:tJr.a.at 49, Am6teJl.dam.

The Ma;thema.ti.c.ai. CentJLe, fiound.ed :the 11-th ofi Febll.U.CVl.y 1946, ,v., a. n.on.
p1w fiU .ln6.ti.;tut.i,o n. a..lm.lng a;t :the pMmo.:Uo n o 6 pWLe ma.thema.ti.et> a.n.d .l.t6
a.pplic.a.ti.on.6. It ,v., -6pon6oned by :the Ne:theur.i..a.nd6 GoveJl.nment thJiough the
Ne:theur.i..a.nd6 Onga.n.lza;tfon fion :the Adva.nc.ement ofi PWLe Re6ea.Jic.h (Z.W.O.),
by :the Mun.lc..lpa.Uty ofi Am6teJl.dam, by :the Un.lveM.lty ofi Am6te.Jl.dam, by
:the fnee Un.lveM.lty a;t Am6teJl.da.m, a.nd. by .lndU6.tJue6.

.ABSTRACT

Scott's analysis of the semantics of recursive program schemes, leading

to their characterization as minimal fixed points of continuous trans

formations, is presented. Tarski's axioms for a relation algebra are

then combined with an induction rule due to Scott into a calculus for

such schemes, in which properties such as equivalence, termination and

correctness can be stated and proved formally. Various applications of

the calculus are exhibited, including examples on while statements, a

formal justification of Floyd's inductive assertion method, and an

analysis of data structures - integers and trees - which can be charac

terized inductively.

CONTENTS

1 . INTRODUCTION

2. RELATIONS AND RELATION ALGEBRAS

3. RECURSIVE PROGRAM SCHEMES

4. A CALCULUS FOR RECURSIVE PROGRAM SCHEMES

5. APPLICATIONS TO WHILE STATEMENTS

6. FLOYD'S INDUCTIVE ASSERTION METHOD

7. RECURSION AND INDUCTION: INTEGERS AND TREES

8. CONCLUSIONS

BIBLIOGRAPHY

4

10

19

37

44

51

58

59

1. INTRODUCTION

1.1. General

The present paper is devoted to a study of the mathematical foundations

of techniques for proving program correctness, in particular with refe

rence to programs involving recursion.

We are concerned not so much with specific programs for solving indivi

dual problems, but with an analysis of techniques which are applicable

to classes of programs. Technically speaking, we are interested in pro

gram schemes, and we derive results which hold for all interpretations

of the components of these schemes.

Our paper has a number of predecessors. First of all, the unpublished

notes by Dana Scott [26], partly describing joint work with the present

first author. In these notes, a mathematical characterization of recur

sive program schemes as minimal fixed points of continuous transforma

tions is presented; moreover, an induction rule for proving properties

of such schemes is proposed. These notes formed the basis for the mono

graph by J.W~ de Bakker: "Recursive procedures" [2] and the related pa

per [3], In both these papers, Scott's theory was developed and then

applied to examples on and further investigation of equivalence of pro

grams.

The present paper extends the methods of the previous ones, in the

sense that now various formulations of correctness and tenrrination are

also studied. The main new tool is the use of the calculus of relations

in the sense of Tarski [31]. (Similar use of relations first appeared

in unpublished work by Milner [21] and Park [24], who do not, however,

use Tarski's axiom system.) Combination with Scott's induction rule

then yields a system which has a richer power of expression than that

of [2, 3].

The relevant results on the calculus of relations, formulated in the

framework of relation algebras, are summarized in section 2. In section

3, the characterization of recursive program schemes as minimal fixed

points of continuous transformations is presented. This section is

essentially the same as the corresponding one in [3]. Next, in section

2

4 the ideas of sections 2 and 3 are combined into a calculus for recur

sive program schemes, and the correspondence of constructs in the cal

culus with various programming concepts is discussed. E.g., McCarthy's

axioms for conditionals [20] are now derivable; moreover, a new opera

tor is introduced which expresses that a program P yields, for input x,

a result y which satisfies property p. This operator is applied in

several examples in section 5, dealing with conditions satisfied upon

termination of while statements. As another example, a question which

at first sight appeared to be a tree-searching problem, is shown to be

an instance of a much more general equivalence on schemes. Section 6

contains a formal justification of Floyd's inductive assertion method.

A precise formulation of the method in our calculus, and a proof in

which Scott's induction rule plays the main role, 1s given. In section

7, the calculus is applied to an investigation of two data structures

which can be characterized inductively. First a set of axioms is given,

expressing properties of the successor function S, which characterize

the domain of non-negative integers. The main axiom is a formulation of

the counterpart of mathematical induction in our framework. Various ex

amples of properties of function over the non-negative integers are

then discussed, including a proof of termination of (a generalization

of) the factorial functions, and a formulation of Julia Robinson's

"general recursion 11 [25], Next, it is shown how a variation of the

axioms for non-negative integers leads to a characterization of tree

structures, where inductive arguments can be given in two directions:

properties of the "father" nodes in terms of its "sons", and vice versa.

Section 8 contains some conclusions, and an indication of possible ex

tensions of our work.

1.2. Related work

The first proof technique for showing equivalence of recurs1ve proce

dures was McCarthy's recursion induction [20]. (Study of this classi

cal paper 1s recommended for the reader who is not familiar with the

problem area dealt with in our paper.)

3

Characterization of recursive procedures as minimal fixed points and

proof techniques based thereupon appear in some or other form in work

by Bekic [4], Morris [22] and Park [23]. Related results in a different

setting have been obtained by Blikle [6] and Leszczylowski [16].

A systematic development of the notion of continuity in the mathemati

cal theory of computation has been given by Scott. For an introductory

exposition see [27]; the mathematical background is to be found in

[29], specific applications in [28] and [30].

Correctness proofs usually have as a starting point the method of Floyd

[11], as elaborated in a number of papers by Manna (see e.g. [18]) and

others.

Additional references may be found in De Bakker [2].

4

2. RELATIONS AND RELATION ALGEBRAS

In this section we summarize the basic notions on relations and rela

tion algebras that we need in the se~uel.

A relation R with respect to a set Vis a subset of the cartesian pro

duct V x V. For (x,y) ER we usually write xRy.

The following operations on relations will be used:

a. Binary operations

(i) Composition

R1 ; R2 = {(x,y) I :3 z[xR1 z and zR2y:;}

(ii) Union

R1 u R2 = {,(x,y) I xR1y or xR2y}

(iii) Interseation

R1 n R2 = {(x,y) I xRjy and xR2y}

b. Unary operations

(i) Conversion
V

{ (x,y) I yRx} R =

(ii) Complementation

R = {(x,y) I (x,y) 1 R}

c. Nullary operations

(i) The empty relation

n =~(the empty subset of V x V)

(ii) The identity relation

E = {(x,x) I XEV}

(iii) The universal relation

"'
u = V XV

5

Example 1. A relation R is an equivalence relation iff the following

three conditions are satisfied:

1 •

2.

3.

Example 2.

E C R

V

R = R

R; R C R

V
1. Risa funation iff R; R c E

(R is refleu:ive)

(R is syrronetria)

(R is transitive)

2. R is total, i.e., Vx3y[xRy], iffE.::_R; R.

Example 3.
'V

R; Rn E = {(x,y)
'V

xEy and xR; Ry}

= {(x,y) x = y and 3z[xRz and zRy]}

= { (x,x) I 3y[xRy]}

V • • • Hence, R;R n E determines that subset of E which consists of all pairs

(x,x) such that there exists some y with xRy. This indicates a corres

pondence with a predicate expressing the termination of a program for

given input, an idea which will be pursued in section 4. Note also

that R; Rn E = R; Un E.

A aonarete relation algebra over a domain Vis a family of subsets of

V x V, together with the above mentioned operations and closed with re

spect to these. In [31], Tarski has proposed what amounts to the no

tion of an abstraat relation algebra. This is an algebraic structure

over a given set, with operations as above, but the elements of which

are not necessarily subsets of a pair set. Cf. the notion of a boolean

algebra, which in a similar way is an abstraction of the algebra of

subsets of a given set.

An abstract relation algebra RA is a structure

<R,

where

'--' ,, u, n,

6

, Q, E, U>

1. R is any set.

2a. ,, u, n are binary operations,

b. are unary operations,

c. Q, E, U are nullary operations.

3. <R, u, n, , Q, U> is a boolean algebra with 0-element Q and

1-element U.

4. ;,'-', E satisfy the following five postulates:

T
5

: If (R;S) n T = Q, then (S;T) n R = Q.

(For an alternative introduction of the notion of relation algebra, as

a specialization of a lattice-ordered monoid, see Birkhoff [5],

pp. 343, 344.)

In the sequel, we shall omit parentheses in our formulae, based on the

associativity of the binary operations and on the convention that

has priority over "n", which has in turn priority over "u".

11. II

'

It is straightforward to verify that (the postulates of a boolean alge

bra and) T
1

to T
5

are satisfied in a concrete relation algebra. Consid

er for example T
5

• Assume R; Sn T = Q, and suppose that S; T n R ~ Q,

Then there exist x, y, z such that xSz, zfy, and xRy. Hence, xSz, yTz

and yRx hold, from which y(R;SnT)z follows. Contradiction.

In [31], Tarski has investigated the converse problem: he has shown how

to derive from the postulates of an abstract relation algebra a number

7

of fundamental properties of a concrete relation algebra. These proper

ties are collected in

Lemma 2.1

1.

2.

4.

5,

6.

If R 5:. S, then R 5:. S', R;T 5:_ S;T and T;R 5:. T;S

Q;R = R;Q = Q

E;R = R

Q= Q, E= E, U= u

R;(SuT) = R;S u R;T

(SuT);R = S;R u T;R

RtTS=RuS
R'-ns = If n S

:::,,
R = R

Proof. See [31].

Lemma 2.1, part 1, expresses the monotonicity of 11

11 and";". Together

with the (obvious) monotonicity of "u" and "n", this will play an im

portant part in the analysis of recursion, to be given in sections 3

and 4.

Caution: It 1s not true that all properties of a concrete relation

algebra are derivable in an abstract relation algebra. For a counter

example see Lyndon [17].

In the sequel, we shall need various additional properties of abstract

relation algebras. Their proofs will usually be based on

Lemma 2.2 R;S n T = R;(R;TnS) n T.

Proof

R;S n T = R;(UnS) n T

= R;{(R;T u R;T)ns} n T

= {R;(R;TnS)nT} u {R;(R;TnS)nT}.

Also,

R; (tf;TnS) n T =

(R;TnS) ;T n t(=

T;R n :i:f;T n S =

-:::::::-- '-'
T;R n T ;R n S =

Q •

8

Thus, R;S n T = R;(~;TnS) n T follows.

The first applications of lemma 2.2 follow in the proof of lemma 2.3,

in which a number of useful properties of relations and functions are

derived formally. E.g., statement 2.3.4b. can be read as: If R.::. S, if

Sis a function (hence Risa function), and R is total, then R = S.

Lemma 2.3

1. If R;R.::. E, then R;(SnT) = R;S n R;T

2. If R.::. E, then R = R

3a, R = (R;UnE);R

b. R;U = (R;UnE) ;U
.....

c. R;U n E = R;R n E

4a. If R.::. S, 'S° ;S .'.:. E' then R =
-...,

(R;UnE) ;S

b. If R.::. S7 ~;S .'.:. E, E.::. R;R then R = S .

Proof

1. c: Clear

~· By lemma 2.2 and the assumption,

R;S n R;T = R;(if;R;TnS) n T.::. R;(TnS).

9

2. R =Rn E = (lemma 2.2) R;(:t=r;EnE) n E .=. R;tf .=. E;R = R. Thus, R .=. 'l:t'
and from this~.=. R = R, whence the result.

3a. ~=Rn U = (lemma 2.2) l:t';(R;UnE) n U = R;(R;UnE). Thus, by T
3

,

R = (R;UnE);R = (R;UnE);R, by part 2.

b. Clearly, U;U = U. Using this and replacing, in part 3a, R by R;U,

we obtain

R;U = (R;U;UnE);R;~ .=. (R;UnE);U.:: R;U;U = R;U.

c. Direct from lemma 2.2.

4a. ~= We have successively

R C s

~-R c S'·s c E ' - ' -

R·l·s c R ' ' -

The result now follows from part 3c.

c: Follows from part 3,

b. Immediate from part 4a.

10

3. RECURSIVE PROGRAM SCHEMES

A class of structures called recursive program schemes is introduced,

and it is indicated how a program scheme can be interpreted as a

relation over a given domain. This section follows closely [3],

In the composition of program schemes, the following classes of symbols

are used

a. A: The class of elementary statement symbols, with elements

A, A1' A2 , • • • •

b. B: The class of boolean symbols, with elements p, p 1 , q, r,

c. C: The class of constant symbols, with the two elements Q and E.

d. P: The class of procedure symbols, with elements P, P1 , P2 , .•..

The intended correspondence between these classes and their counter

parts in an ALGOL-like programming language should be clear. In partic

ular, Q will correspond to the undefined statement (L: goto L, say),

and E to the dummy statement.

Next, we give the definition of the class of statement schemes:

a. Each element of A, C or Pis a statement scheme.

b. If s
1

, s
2

are statement schemes, and p € B, then s
1
;s

2
and (p+s 1,s

2
)

are statement schemes.

The notation (p+S 1,s2) is short for the ALGOL-notation if p then s
1

else s
2

.

S, s1 , ... , T, T1 , ... will stand for arbitrary statement schemes.

When we want to indicate that T possibly contains one or more occurren

ces of S, we write T = T(S). The result of substituting s1 for all

occurences of Sin Tis then written as T(S 1).

Besides the statement schemes we have declaration schemes: A declara

tion scheme is a pair (P,T(P)), with P € P, and T(P) a statement scheme.

Such a pair will usually be denoted in the sequel by the more familiar

notation procedure P;T(P).

11

A program scheme is again a pair (D,T), where Dis a finite set of

declaration schemes, and Tis a statement scheme.

Examples of program schemes are

or

(procedure P; (p➔A;P,E)

p)

(procedure P 1 ; (p➔A 1 ;P
1

,E) ;

procedure P
2

; (q➔A2 ;P2 ,(r➔A3 ;P 1 ,A4));
p 1 ; (r➔P 2 ,Q) ;A5) •

For the reader who is more accustomed to a functional notation, we

give a definition scheme corresponding to the procedures P
1

and P
2

of

the, second example. Using the notation 11
4=

11 for "is recursively defined

by", we have

P
1

(x) ~ (p(x) ➔ P 1 (A1 (x)) ,x)

-
P

2
(x).,. (q(x) ➔ P

2
(A

2
(x)),(r(x) ➔ P1(A

3
(x)),A4 (x))).

Program schemes cannot be "executed11 as such. First, a rule has to be

given to attribute a meaning to the statement symbols, boolean symbols

and constant symbols occurring in it. Secondly, we then must define how

to provide a meaning for the various constructs in the program scheme,

in terms of the meaning of their constituent symbols.

An interpretation I of a program scheme (D,T) consists of a pair <V,h>,

where

a. Vis any domain.

b. h maps symbols to relations or partial functions as follows:

1. To each statement symbol A occurring in (D,T), (i.e., either in

Tor in one of the elements of D) a relation Ah c V x Vis
assigned.

2. To each boolean symbol p occurring in (D,T) a partiaZ function

ph: V ➔ {0,1} is assigned.

12

3, To the constant n the empty relation nh 5:. V x Vis assigned,

and to Ethe identity relation Eh= {(x,x) I xEV} is assigned,

Given an interpretation I= <V,h> of the symbols in a program scheme

(D,T), we next define how to obtain the relation (D,T)h 5:. V x V. For

this definition, we need the definition of a "computation sequence

with respect to D and I":

Let xi EV, 1 .::_ i .::_ n+1, and let Si' 1 .::_ i .::_ n, be statement schemes.

A computation sequence is a finite sequence

such that for each i, <]. < n - -
then i (i.e.'

h
a. If S. = E, = n and xn+ 1 = X X E xn+1).]. n n

h r A x. 1
b. If S. = A;S then i i+

].
8 i+1 = s

xi+1 = x.
].

(p+S' ,s") ;S then s I ;S, if
h

c. If S. = s. 1 = p (x.) = 1
]. ·J.+].

8i+1 = S";S, if ph(x.) = 0
].

xi+1 = x.
d.

].

If Si = P;S then 1
8i+1 = T(P) ;S where (P,T(P)) E D.

Observe that

1. Each computation sequence has E as its last statement scheme. This

is a convention which simplifies the definition. In the sequel, we

shall assume that conventional occurrences of E have been added,

where necessary, without, however, explicitly indicating these

occurrences. E.g., we shall write

,instead of

13

2. Clause c corresponds to the usual meaning of conditionals, with

1(0) corresponding to true (false).

3, Clause d corresponds to the usual copy rule for procedures: In

order to elaborate a procedure call P, replace P by its body T(P)

and elaborate the result.

The following notion on computation sequences will be used below: Let

F e: AuCuP. We say that F occurs exeautabZe in a computation sequence

iff it occurs in the form

Clearly, no computation sequence contains executable occurrences of n.
The notion of computation sequence is used as follows:

Given a program scheme (D,T) and an interpretation I= <V,h> of the

symbols in D and T, we define the relation (D,T)h .=. V x V by:

For each x,y e: V,

x(D,T)hy iff there exists a computation sequence with

respect to D and I: x
1

s
1

x
2

s
2

with x 1 = x, s
1

= T, and xn+ 1 = y.

X S X n n n+1

In the sequel, we shall omit explicit mentioning of the set of declara

tions D, if no confusion can arise. We then write simply Th instead of

(D,T)h. Some simple consequences of its definition are:

a.
h h h x(T 1 ;T2

) y iff there exists z e: V such that x T
1

z .and z T
2

y.

Hence, the relation (T
1

;T
2

)h is indeed the composition of the
. h d Th relations T

1
an

2
•

b. x(p+T
1

,T
2

)hy iff either ph(x) = h and x T
1

y or p (x) = 0 and x T2 y.

· V ()I . h h For given I=< ,h>, we say that T15:.T2 holds iff T1 .'.:, T2 holds. If,

for ~11 I, (T 15:.T2)I holds, we write T1 .'.:, T2 . Similarly, equivalence of

14

two program. schemes under all interpretations is denoted by T1 = T2 .

We now apply the notions introduced so far in an analysis of the seman

tics of recursive procedures. The first result to be noted about proce

dures is the fixed point property, stated in

Lemma 3, 1. If (T 1 ,D1) is a program scheme, and (P,T(P)) E D1, then

(3,1) P = T(P).

Proof. Follows easily from the definitions, in particular from the use

of the copy rule in the definition of a computation sequence.

In general, (3.1) does not determine the procedure uniquely. E.g., con

sider the procedure P1 determined by procedure P1 ; (p+P 1,E). Each S of

the form (p➔A,E), for arbitrary A, satisfies S = (p+S,E), as can easily

be seen from the equivalence (p+A,E) = (p+(p+A,E),E). We can express

this fact also by saying that the transformation T(X) = (p+X,E) has an

infinity of fixed points, i.e., for all S of the form (p+A,E), we have

T(S) = S. This example illustrates the need for a further analysis of

the semantics of recursive procedures, in order to determine which,

among all possible fixed points, is the one we need.

The first step is to observe the monotonicity property of program·

schemes:

Lemma 3,2. I I
For all interpretations I, if (S 1.=.s2) , then (T(s 1) .=. T(S2)) .

Proof. This a.mounts to a straightforward application of the definitions

of computation sequence and of interpretation of schemes, and is

omitted here.

The next lemma expresses the following familiar property of recursive

procedures: If a recursive procedure terminates for a given argument,

it terminates after a finite number of "inner calls" of the procedure.

At the innermost level, Pis not needed again, so it may be replaced by

wha¼~ver statement we choose, without influencing the further execution.

The reason for our choice of Q for this statement will follow presently.

15

Lemma 3,3. If I= <V,h>, and if, for x,y EV, x Phy holds, then there
i h exists i > 0 such that x T (~) y holds.

Proof. (This proof is due to P. van Emde Boas, who observed that the

original proof in [3] is incorrect.) The proof uses the relationship

"to identify" between occurrences of symbols in a computation sequence:

Let

be a computation sequence. We say that an occurrence of a symbol

FE AuCuP, where F occurs in some S contained in Si' directly identifies

the corresponding occurrence of Fin S, contained in Si+ 1 , in each of

the following three cases:

a. s. = A;S and S.
1 = s . 1 1+

b. s. = (p-+S ,s I) ;S" and Si +1 = S ;S", or
1

s. = (p-+S' ,S) ;S" and si+1 = S;S", or 1

s. = (p-+S' ,S") ;S and either si+1 = S' ;S or si+1 = S" ;S
' 1

c. s. = P;S and s. 1 = T(P) ;S. 1 1+

The relationship to identify is then defined to be the reflexive and

transitive closure of the relationship to identify directly.

We now introduce the following transformation on computation sequences:

Let

(3.2)

be a computation sequence.

Step 1. Consider all occurrences of Pin ~3.2) which are identified by

an occurrence of Pin s 1(P).

16

Step 2. Mark all those considered occurrences of P which are executable.

Step 3. Replace all other considered occurrences of P by T(P).

Step 4. Replace all combinations

* where P is an occurrence of P, marked as a result of step 2, by

It can be verified that the result of applying this transformation to

the computation sequence (3.2) is again a computation sequence which

has at least one executable occurrence of Pless than (3.2). In fact,

at least the left-most executable occurrence of Pin (3.2), if at all

present, has been deleted, Observe that this transformation may be

viewed as follows: The calls of Pat the outermost level vanish and

the calls at recursion depth 1 become outermost. By iterating the

transformation upto the maximal recursion depth, all calls have become

outermost and all recursion has vanished.

We use the transformation to obtain the proof of the lemma as follows:

By assumption, there is a computation sequence

(3,3)

with x1 = x, xn+l = y. Repeatedly applying the transformation to (3.3)
yields eventually, for some integer i > O, the computation sequence

(3.4)

where (3.4) contains no executable occurrences of P.

Finally, we apply the following property of computation sequences:

Let, for FE AuCuP

(3,5)
ffe

17

be a computation sequence. Consider all occurrences of Fin (3,5) which

are identified by some occurrence of Fin s1(F). If none of the consid

ered occurrences is executable, then the result of replacing all consid

ered occurrences of F by some arbitrary Sis again a computation

sequence.

Applying this property to (3.4), taking Q for S, yields the computation

sequence

Thus, x Ti(Q)y holds, and the proof of the lemma is completed.

From lemma 3.3 we immediately obtain

Lemma 3.4
00

p C u Ti(Q).
i=O

We are now near to the desired charac~erization of recursive procedures.

The last step is

Lemma 3.5. If Q = T(Q), then
00

u
i=O

Proof. R .=. Q is clear. From this, by monotonicity (lemma 3.2),

T(Q) .=. T(Q) = Q follows. Repeating the argument, we have, for each

00 -- . i
i > O, T (Q).::. Q. Thus, u Ti(Q) .=. Q is established.

i=O

The first main result of this section follows:

Theorem 3.1. If (T 1 ,D1) is a program scheme and (P,T(P)) E D
1

, then P

is the minimal fixed point of T, i.e.,

p = n{X: X = T(X)}.

00

Moreover, p = u Ti (Q) .
i=O

18

Proof. From lemma 3.1, 3,4 and 3,5,

We conclude this section with the introduction of the continuity proper

ty of the transformations T, which in fact contains their monotonicity

as a special case:

Theorem 3.2
00

T(u
i=O

s.) =
i

00

u
i=O

T(S.).
i

Proof. ~ is a direct result of monotonicity: For each i,
00 00 00

T(S.) c T(u s.); hence, u T(S.) ~ T(u S.). The proof of the
i - i=O i i=O i i=O i

reverse inclusion, which is omitted here, proceeds by an inductive

argument on the complexity of the T concerned. E.g., if T(S) has the

simple form T(S) = A;S, we have to verify whether

00 00

A; u S. c u (A;S.). From the definitions ot follows that this is
i=O i - i=O i

indeed the case.

The fundamental property of continuity, as express~d by theorem 3.2,

was first noted by Scott, and plays an essential role in much of his

further work on the theory of computation, see e.g. [27, 28, 29, 30].

A direct consequence of theorem 3.2 is the fact that for each S,T

co

S(u Ti (n)) =
i=O

co

This will be used in the next section in the justification of the rule

of inference of the formal system to be introduced there.

19

4. A CALCULUS FOR RECURSIVE PROGRAM SCHE:MES

4.1. Introduction

The results obtained in the previous section on the semantics of recur

sive procedures, i.e., their characterization as minimal fixed points

of continuous transformations, are now exploited in the development of

a formal system in which properties of programs involving recursive

procedures can be stated and proved formally. This system incorporates

two main ideas. Firstly, it uses the axioms of a relation algebra, as

given in section 2. Secondly, it features a rule of inference for re

cursion, which may be considered as a generalization of McCarthy's rule

of recursion induction [20]. The justification of this rule is based on

the continuity result (theorem 3,2).

Before we proceed with the precise definitions of the formal language

and its axioms and rule of inference, to be given in the next subsec~·

tion, we first discuss some points taken into account in these defini

tions, in particular dealing with the unification of the notions of

sections 2 and 3 into one system, and with the way in which concepts

from relation algebra are used to state and prove properties of pro

grams.

In section 3, we introduce three ways of constructing schemes, starting

from the elementary statements and the two constants: composition,

selection and recursion (via declaration and call of recursive proce

dures).

a. Composition. As was remarked above, the first construct corres

ponds directly to composition of relations; hence, its incorporation

into the formal system requires no special measures.

b. Selection. As to the conditionals, there is no immediate corres

pondence between the construct (p+S 1,s2) and a concept from relation

algebra. Therefore, we have to analyze this notion somewhat further:

Remember that the boolean symbol pis interpreted as a partial function

from the domain of interpretation V to {0,1}. Thus, we can partition V

into three subsets: ,,

20

v1 = {x p(x) = 1}

v2 = {x p(x) = O}

v3 = {x I p(x) lS undefined}.

With this partition we associate a partition of the identity relation

E c V x V, E =pup' up, with
w

p = {(x,x) p(x) = 1} = v1 X v
1

p' = { (x,x) p(x) = O} = v2 X v2
p = w

{ (x,x) p(x) lS undefined} = V X V
3 3

(No confusion should be caused by the double use of the symbol p, once

as a predicate, and once as a relation.) Using these three relations,

we can now write for (p+s 1,s2):

where we have used the fact that, if pis undefined, then the whole

conditional (p+S 1,s2) is undefined. Thus, if we introduce as counter

part of the partial function p the pair of relations <p,p'>, character

ized by

p .'.:. E, p' C E

P n p' = Q

then we can model the conditional in the calculus of relations.

(Remark: This way of looking at predicates as pairs of subsets of the

identity is usually attributed to Karp [13], cf. also Milner [21] and

Park [24].)

21

As another application of this idea, we indicate how to phrase a forma

lism due to Hoare (see e.g. [12]) in our system. Hoare is interested in

constructs of the form "p{Q}r", where Q is a program, and p and r are

conditions satisfied upon entrance and exit of the program, respective

ly. Thus, p{Q}r can be formulated in predicate calculus as

Vx,y[p(x) A xQy-+ r(y)J

which in turn can be transliterated into our formalism as

p;Q .=- Q;r

where, as always from now on, small letters stand for subsets of E.

c. Recursion. Let (T 1 ,D1) be a program scheme, and let (P,T(P)) E D1.

As shown in theorem 3,1, we have for P: P = n{X:X = T(X)}. For this

minimal fixed point of T(X) we now introduce a new notation, by means

of the so-called µ-operator (µ-for minimal): we write

µX[T(X)] = n{X:X = T(X)}.

This notation emphasizes that the µ-operator is a variable-binding

operator: all occurrences of X in µX[T(X)] are bound occurrences, and

an occurrence of some Yin a formula is free iff it is not bound. As a

first consequence of this, we need the rule of rewriting of bound

variables: µX[T(X)] = µY[T(Y)], provided that Y does not occur free in

T.

The reader should note that with the introduction of the µ-notation,

the distinction between declaration and call is done away with. E.g.,

the program scheme

(procedure P;(p-+A1;P,A2)

A3;P;A4;P)

in the new language is written as ,,

22

or, using the new notation for conditionals, as

In our formal language, we shall allow as constructs for building up

the transformations T, besides the three mentioned in section 3, also

the operations of intersection and conversion. It can be verified that

the monotonicity and continuity results of section 3 go through for

this extended class of transformations. On the other hand, complemen

tation is not a monotonic operation, and has to be excluded from the

· construction of the transformations T; hence, the restriction to posi

tive terms in definition 4.1 below.

In [2, 3], we have discussed how to deal with systems of recursive

procedures. E.g., we showed that if one has the two declarations

then

procedure P1; T
1

(P
1

,P2-)

procedure P2 ; T2 (P 1,P2)

Moreover, it was shown that

and similarly for P2 . Using the µ-notation, this can be written as

and similarly for P2 . For the justification of these results we refer

to [2, 3], where the monotonicity and continuity of the new type of

transformation is also shown. (Note, however, that the section of [3]

which is devoted to systems of recursive procedures will have to be

modified along the lines of the proof of lemma 3.3. In particular, the

transformation introduced in this proof has to be extended by dealing

23

simultaneously with all procedures of the system.)

This completes our preliminary discussion how to incorporate the con

structs of composition, selection and recursion into the formal system

to be given presently.

It will not have escaped the reader's attention that a number of oper

ations in a relation algebra have no direct counterparts as a program

ming concept: This holds for the operations of intersection, conversion,

complementation, and for the universal relation. Our use of these oper..:

ations is indirect: They play a part in the statement and proof of cer

tain properties of programs, of which we now give some examples:

a. Termination. As mentioned in section 2, the fact that a program P

terminates for all input, i.e., Vx ~y[xPy], can be phrased rela

tionally as

EC P;P

b. Determinism. In general, we allow non-deterministic programs,

i.e., programs which, for given input, may give more than one out

put. When we want to state that a program Pis deterministic, this

can be expressed as

P;P CE.

c. Termination with a certain property. One may be interested in the

following question: Given a program P, a predicate p, and input x,

is the following predicate true: dy[xPy A p(y)J. This predicate

will be abbreviated to: P O p, i.e., we have as definition

Vx[(P 0 p)(x) - 3y[xPy A p(y)JJ.

It can be verified that in a relation algebra we can define P O p

as

pop= P;p;U n E.

24

Thus, we see an application of the intersection operation and of

the universal relation in the statement of a certain property of P.

The "o''-operation will be applied in particular in the examples of

section 5.

For our use of the operation of complementation, we refer to section 7.

After these introductory remarks, we are now ready for the precise de

finition of our formal system.

4.2. The calculus

We begin with the definition of the well-formed formulae of our formal

language. As a starting point, we take the following classes of sym

bols:

a. The class of relation variables, divided into three subclasses:

(i) Possibly indexed capital letters, with the exception of the

three elements of class b:

A ,A
1

, ••• , B, ••• , X, Y, Z ,

(ii) Possibly indexed small letters:

P,P 1 , .. , , q, r,

(iii) Possibly indexed small primed letters:

P l pl q', r',
' 1 ' ••• '

b. The class of relation constants, consisting of the three symbols

Q, E, U.

From these classes of symbols, terms are formed by the operations of

section 2, and by the µ-operator which is restricted to apply only to

positive terms.

25

Definition 4.1

1. Each relation variable or relation constant is a term.

2. If T1 and T2 are terms, then T1;T2 , T1uT 2 and T1nT 2 are terms.

3, If Tis a term, then T and Tare terms.

4. If Tis a term which is positive with respect to the variable X

(def. 4.2) then µX[T] is a term.

Definition 4.2

1. Xis positive w.r.t. X.

2. If T does not contain X free, then Tis positive w.r.t. X.

3, If T1 ,T
2

are positive w.r.t. X, then T
1

;T2 , T1uT2 and T1nT 2 are

positive w.r.t. X.

4. If Tis positive w.r.t. X, then Tis positive w.r.t. X.

5. If Tis positive w.r.t. X and Y, then µY[T] is positive w.r.t. X.

As before, we write T(X) instead of just T, when we want to indicate

that we are especially interested in possible free occurrences of the

variable X in T. The result of substituting a term i 1 for all free

occurrences of X in Tis then written as T(T 1).

The well-formed formulae of the language have the form of assertions,

defined as follows:

Definition 4.3

1. An atomic formula is an expression of the form T1 c T2 or T1 = T2 ,

where T1,T 2 are terms.

2. A formula is a list of zero or more atomic formulae.

3. An assertion is an expression of the form 1 ~~'with 1, ~ formulae.

Examples of assertion are

1. x c Y ~x;z .=. Y;Z, Z;X .=. Z;Y, x c Y, xuz c Yuz, xnz c YnZ .
•

2. ~ pnq = p;q.

3, ~ µX[X] = ~.

26

4. ~ µX[p;A;Xup'] = p;A;µX[p;A;Xup'] up'.

In the preceding sections, we have already covered most of the rules

for interpreting assertions, which are now summarized in

Definition 4.4
An interpretation I of an assertion a: ~ ~ w consists of a pair <V,h>

such that

1. Vis an arbitrary set.

2. his a mapping from relation symbols to relations over V such that

a.

b. h assigns to each free variable A occurring in a an arbitrary

· h V V relation A c x ;

h assigns to each free variable p or p' in a a relation ph .=. Eh

(p, h.::.Eh) .

3, his extended to terms as follows:

4

a.

b.

c.

a.

h h h
(,1;,2) = ,,;•2

h h h
(, 1 UT2) = '1u'2

h h h
(,1n-r2) = ,,n,2

-h 'ii T = T

-h n: T = T

For each atomic formula

holds; similarly for , 1

I h h
, 1 .=. '2, (, 1-=-'2) holds iff , 1 .=. '2

= '2 .

b. If~ is a list of atomic formulae,~= ~1 , ~2 , ... , ~n' then

~I holds iff each of~: holds, i = 1, 2, ... , n.
i

27

c. (~~$)I holds iff the implication ~I j I/JI holds,

Definition 4.5
As assertion ~ f-- 1/J is called valid iff (~~$)I holds for all interpreta

tions I.

Note that the examples after definition 4.3 are all valid assertions.

We now give the axioms of the formal system. They are divided into

three groups:

1. The axioms for a relation algebra (section 2), formulated as asser

tions. E.g., T
5

is now formulated as:

R;SnT = Q ~S;TnR = Q,

2. Two axioms corresponding to our treatment of predicates as disjoint

subsets of the identity:

p1: ~ p .'.:. E, p' C E

3, An axiom for the µ-operator

M : ~ L (µXh (X) J) C µX[T (X) J.

As rule of inference we have the so-called µ-induction rule:

~ ~ 1/i(Q)

I ~,l/J(X) ~l/Jh(X))

~ t $ (µX[T (X)])

where~ is any formula which does not contain X free.

The validity of the axioms should be clear. In particular, M expresses

one-half of the fixed point property of procedures. The other half, and

28

the minimality property are derivable, as will be shown in lemma 4.1.
As an explanation of the µ-induction rule I, we observe that it can be

described informally as having the following inductive pattern: Suppose

one wants to prove an assertion a(P) about a procedure P = µX[T(X)]. I

then states the following: If one has shown that

a. a(Q) holds,

b. if a(X) holds, then a(T(X)) holds,

one may infer that a(µXCT(X)]) = a(P) holds. Consider as an example an

assertion a(P) of the form I- T 1 (P) £. T2 . Since from the corresponding

instances of a·and b we have.successively that I-T 1(Q) .=. T2 ,

~ T1(T(Q)) .=. T2 , ... , ~ T1(Ti(Q)) .=. T2 , ... , each hold, we obtain that
00 •

~ ·.u T1(Ti(Q)) .=. T2 holds, Then, by continuity(theorem 3.2)
i=O

00 •

~T 1(.u Ti(n)) .=. T2 follows, and the result I-T 1(P) .=. T2 then is ob
i=O

tained from theorem 3.1. Justification of I in the general case is an

easy extension of this example.

4.3. Basic lemmas

As a first application of the formal system, we prove lemma 4.1, which

shows that monotonicity and the (minimal) fixed point property are

derivable.

Lemma 4.1

1. If T(X,Y) is monotonic in X and Y, then µX[T(X,Y)J is monotonic in

Y:

x1 -=- x2 ~ T (x
1

, Y) -=- T (x2 , Y)

Y1 .=. Y2 I- T(X,Y 1) .=. T(X,Y2)

Y1 .=. Y2 I- µX[T(X,Y 1)J .=. µX[T(X,Y2)J.

2. If T(X) is positive w.r.t. X, then T(X) is monotonic in X, i.e.,

,then

29

3. µX[T(X)] is a fixed point of T(X):

~ µX[T (X)] = T (µX[T (X)]) .

4. µX[T(X)] is the minimal fixed point of T(X), or, even stronger:

T(Y) cy ~µX[T(X)]~Y.

Proof

1. Asswne the two premises. We apply I to show that the conclusion

then follows. We use the following instance of I: For~ we take

Y1 ~ Y2 , for ~(X): X ~ µX[T(X,Y2)J, and for T(X): T(X,Y1). Thus,

we have to verify

which is clear, and

(4. 1)

which established as follows: By the monotonicity of T(X,Y) in X

and Y we have

(4.2)

By M,

(4.3)

Combining (4.2) and (4,3), (4.1) follows.

2. This follows by induction on the complexity of T, using lemma 2.1

,and part 1.

30

3. c: We use I, with~ empty, and for ~(X) we take X c ,(X). We then

have to show that

which is clear, and

which follows by the monotonicity result of part 2.

~: This is the same as axiom M~

4. The proof of this, which is a straightforward application of mono

tonicity and I, is left to the reader.

After thus having established that these basic properties of procedures

are derivable in the formal system, we now show how the usual axioms

for conditionals (McCarthy [20]) are derivable. This follows as a

corollary from

Lemma 4.2

2. j-p;q=pnq.

Proof

1. Follows by lemma 2,3, part 2, and axiom P1 .

2. c: Since ~ p .=. E, q .=. E, by monotonicity we have that t- p;q c q,

p;q .=. p. Thus, by properties of boolean algebra, ~ p;q .'.:. pnq.

~: By lemma 2.2, t pnq = p;(lf;qnE) n q. Hence,

t pnq .=. p; (p;qnE) .'.:. p;l5";q = p;p;q .'.:. p;q .

Corollary (cf. Engelfriet [10])

Using the notation (p+X,Y) = p;Xup';Y we have

31

t (p+(p+X,Y),Z) = (p+X,Z),

(p+X,(p+Y,Z)) = (p+X,Z),

(p+(q+X,Y),(q+V,W)) =

(q+(p+X,V),(p+Y,W)) .

Proof. Immediately from lemma 4.2, using P1 and P2 .

Remark: Note that another standard axiom:

t (p+X,Y);Z = (p+X;Z,Y;Z)

follows from lemma 2.1, part 5,

In section 4.1 we already mentioned the II 11 • o -operator, defined by

X O p = X;p;U n E.

The basic properties of this operator are collected in

Lemma 4.3

1. ~ (X;Y) 0 p = X o (Yop)

2. ~ (XuY) 0 p = xop U yop

3. ~ X;p .=. (X0 p) ;X

4. X;p .=. q;X ~ xop .=. q.

Proof

1. By the definition of 110 11-operation,

(X;Y) 0 p = X;Y;p;U n E

X O (Y 0 p) = X;(Y;p;UnE);U n E.

Since, by lemma 2.3, part 3b,

32

~ Y;p;U = (Y;p;UnE) ;U

the desired result follows.

2. Immediate from the definitions.

3, Applying lemma 2.3, part 3a, we obtain

~ X;p = (X;p;UnE) ;X;p .=. (X;p;UnE) ;X = (X 0 p) ;X.

4. Assume X;p .=. q;X. Then

~ X0 p = X;p;UnE C q;X;UnE.

Using lemma 2.2, one easily verifies that, for any Y,

t q;YnE c q,

whence ~ X0 p C q follows.

Observe that from parts 3 and 4 of lemma 4.3 we obtain that the follow

ing equality holds in all interpretations:

Xop = n{q I X;p .=. q;X}.

We conclude this subsection with a first discussion of another construct,

viz. the so-called while statement while p do A. We shall use for this

the abbreviation p * A. It is easily seen that we can define this state

ment in our formalism as

p*A = µX[(p➔A;X,E)]

or, alternatively,

p*A = µX[p;A;Xup'].

33

We shall also use

and

As a first basic property of while statements we mention

which is a special case of

Lemma 4.4

Proof. Call the left-hand side P1 and the right-hand side P2 •

a. P1 .=. P2 . Left to the reader.

b. P2 ,=. P1. By I it is sufficient to show X;A2 .=. P1 ~ (A1;XuE);A2c,=. P1.

By the fixed point property (lemma 4.1, part 3), t-P1 = A1;P1 u A2 ;

hence, we have to show X;A2 .=. P 1 I- (A1 ;XuE) ;A2 .=. A1 ;P 1 u A2 which

follows by monotonicity (lemma 4.1, part 2).

Further properties of while statements are treated in section 5, More

over, many other examples, in particular dealing with equivaZenaes be

tween statements, can be found in [2], in which also the aorrrpZeteness

of a restricted part of the calculus (roughly, with only the operators

" . " ' ' "u", and the µ-9perator restricted to regular procedures, i.e. ,

procedures corresponding to flow diagrams) is shown in the following

sense': For two such restricted terms, an assertion t-, 1 = , 2 is provable

34

in the calculus iff it is valid, i.e., it holds in all interpretations.

4.4. A first ex8Jllple of progr8Jll equivalence

The following problem, which at first sight appeared to be a problem of

tree searching, was suggested to us as a candidate for application of

our calculus by J.D. Alanen.

Suppose one wishes to perform a certain action A in all nodes of all

trees of a forest (in the sense of Knuth [14], pp. 305-307), Let, for

x any node, s(x) be interpreted as "has x a son?", and b(x) as "has x a

brother?". Let S(x) be: "visit the first son of x", B(x): "visit the

first brother of x", and F(x): "visit the father of x". The problem

posed to us can then be formulated as:

Let

Show that then

T1 = µX[A;(s-+S;X;F,E); (b-+B;X,E)J

T2 = µX[A;(s+S;X; b*(B;X);F,E)].

We shall not exhibit the proof of this, since it soon appeared that

this equivalence is only a special case of the following more general

result:

Lemma 4.5. Define

35

Then

Remark. Observe that if we take

then

and

T
1

(X)

'2(X)

Po

p 1 (Y)

p2

=

=

=

= (b+B;X,e)

= A; (s➔S ;X;F ,E)

µX[A;(s➔S;X;F,E); (b+B;X,E)J

µX[(b+B;Y;X,E)] = b*(B;Y)

µX[A;(s+S;X;b*(B;X);F,E)] =

= T1

T2

hence, the tree searching result is indeed an instance of our general

result, which we now prove:

Proof

a. c: From (4.5) and (4.6) respectively

r P1(P2) = , 1(,0(P1(P2),P2))

~ p2 = '2(TO(P1 (P2) ,P2)) ·

Hence,

from which, by (4.4) and the minimal fixed point property of P0 ,

we obtain

b. ~: From (4.4) it follows that

(4.8)

Hence,using (4.5),

By the µ-induction rule I, in order to show ~ , 0 (P1(P2),P2).::. P
0

,

it is sufficient to show

i.e., it is sufficient to show

which follows from (4.4) and (4.8).

37

5. APPLICATIONS TO WHILE STATEMENTS

5,1. First example

Our first result shows how to reduce a certain procedure which itself

does not have the form of a while statement to a combination of while

statements. (Note that this is not possible in general, see e.g.

[7, 1, 15] for a precise statement of this fact and relevant results.)

We assert that

(5. 1)

We use two auxiliary results

(5.2)

the proofs of which are omitted.

We rewrite the left-hand side of (5.1):

Thus, the proof of (5.1) is completed.

(by (5, 3))

(by lemma 4.4)

(def.)

(by (5.2))

(def.)

Remark: (5.1) is easily generalized to the following result:

38

Let

= E

a.= a.
1

; p.*(A.;a.
1
),

1 1- 1 1 1- 1=1,2, ... ,n.

Then

5.2. Second example

a
n

Our second example is taken from Dijkstra [9], p. 31, 32, Consider the

following two programs, which determine whether the elements of two

arrays x[1:n], y[1:n] are equal:

P
1

1S

i:= 1; equal:= true;

while i < n do begin equal:= equal A x[i] = y[i];

i:= i+1

end

P
2

1S

i:= 1; equal:= true;

while i < n A equal do

begin equal:= equal A x[i] = y[i];

i:= i+1

end

Our aim 1s to show the following two assertions:

If P
1

terminates with the value true for equal, then so does P
2

;

If P
1

terminates with the value false for equal, then so does P
2

.

We first have to formulate this as an assertion 1n our calculus.

Let A correspond to begin equal:= equal A x[i] = y[i];

~p1 ,p~> correspond to 1 < n

<p2 ,p~> correspond to equal

i:= i+1

39

We observe that

1. equal is a total predicate, expressed by

2. If equal is true after execution of A, then. it was also true before

execution of A. This can be expressed by

Remembering that we have as interpretation for the "o"-operator:

(Xop)(x) ~ ~y[xXy A p(y)J and using the notation for while statements

of section 4.3, we see that we can formulate our assertion as

(5.4)

which we now proceed to derive, using a sequence of auxiliary results:

Proof. By lemma 4.3.4.

2. A;p .=. p;A ~ (q*A) 0 p .=. p.

Proof. By I, it is sufficient to show that

A;p -=- p;A, X0 p -=- p ~ (q;A;Xuq I) 0 p -=- p.

Clearl~, ~ q 10p .=. p. Also,

~ (q;A;X)op = (q;A) o (Xop) c (q;A)op = qo(Aop) .=_ qop .=_ p

where we have applied lemma 4.3.1, the assumption, lemma 4.3.1, and

auxiLiary result 1.

The proof is then completed by applying lemma 4.3.2.

40

3, quq' = E ~ pAq*A; p*A = p*A.

Proof. Left to the reader. If necessary, he may invoke the completeness

theorem of [2 J.

Proof. By result 2, ~ (p1*A) 0 p2 .=. p2 . Hence,

and the result follows from 3.

5,

Proof. Let

By I, it is sufficient to show that -

Assume the two hypotheses. We then have~ applying lemma 4.3:

The desired result then follows, since it is easily verified that

I- (p •p 1 •A•P) op 1 C p •p' = (p •p') op 1

1' 2' ' 2 - 1' 2 1' 2 2 .

The proof of (5.4) now immediately follows from results 4 and 5,

41

5,3. Third example

We introduce the following notion: Let A be a statement, and suppose

we know that pis true upon entrance of A. We are interested in the

least predicate which is satisfied upon exit from A, denoted by £A(p):

Thus, we have as definition

From this definition, we see that

Comparison with the result (section 4.3)

X0 p = n{q I X;p.::. q;X}

yields: £A(p) = A0 p, Thus, using lemma 4.3, we obtain

We now consider the problem of expressing £q*A(p) in terms of EA(p).

We assert that

This formula can be understood intuitively as follows: First of all,

upon termination of q * A, we are certain that q' holds. Moreover, we

know that A has been executed zero or more, say n times, resulting in
. . ·t· ~(n) h h . a termination condi ion u , for eac n .:_ O; t us, we write

42

where we have

1. o(O) = p: If A is not performed at all, then pis still true.

2.

3,

etc.

o(1
) = iA(pn4): If A is performed once, then, upon entrance of A,

Q was true; hence, the result £A(pn4).

(2)
o = £A(4n£A(pn4)): Upon entrance of the second execution of A,

the condition satisfied upon exit from the first execution of A is

true; moreover, Q is true again.

Thus, we see that

from which, using theorem 3,1, we infer that

00

u o(i) = µX[p u £A(4nX)].
i=O

Using this, the assertion we have to prove can be formulated as

(5.5) ----------- . ~ µX[4;A;Xu4 1
] 0 p = Q1 n µX[puA 0 (4nX)].

The proof of this uses two auxiliary results.

1. ~ µX[A;XuE] 0 p = µX[A 0 Xup].

2. ------t µX[A;XuE] = µX[A;XuE].

Result follows by a straightforward application of I.

Result 2 can be derived from

and

43

4. ~ µX[A;XuE] = µX[X;AuE]

the proofs of which are left to the reader.

The proof of (5.5) can now be given as follows:

= (lemma 4.4)

~
µX[q;A;XuE];q' op =

---==------= (q'; µX[q;A;XuE]) 0 p = (result 2)

(q'; µX[q;A;XuE]) o p = (result 1)

q I O µX[q;A,0 Xup] =

q' o µX[.Ao(qoX)up] =

q' n µX[.Ao(qnX)up]

where the justification of the last step is again left to the reader.

44

6. FLOYD'S INDUCTIVE ASSERTION METHOD

In [11], Floyd has proposed a method for proving correctness of pro

grams, which is usually called the "inductive assertion method". We

first give an informal description of the method, and then a formal

justification of it in terms of our calculus. (For another proof which

uses category-theoretical techniques, see Burstall [8].)

Let P be a program in the form of a flow diagram. Associate with appro

priate points in the program "assertions", i.e. , predicates expressing

properties of one or more of the variables manipulated by P. (Note that

the term "assertion" here has a different meaning from def. 4.3.) This

association may be visualized by labelling the corresponding edges of

the graph representing P with the assertions concerned. Let

p 1, p
2

, ••• , pn be a set of assertions for P, where p
1

labels its en

trance and pn its exit. The p 1 , p
2

, ••• , pn are said to have been

"verified", if the following condition has been proved:

For each "execution path", leading from entrance to exit, the following

holds: Let p
1

= p. , p. , ... , pi = pn be the assertions encountered
11 12 m

on this path. For each s, s = 1, 2, •.. , m-1, let S be the statement

executed between the points labelled by p. and p., (Smay be (a sub-
1s 1s+1

set of) the dummy statement E, cf. ourtreatment of conditionals). Then,

if p.
1

s
1s true upon entrance of S, upon exit from S, if at all, p. 1s+1

is true.

Floyd's theorem now states that, if p 1 , p2 , ... , pn 1s a verified set

of assertions for P, and if Pis entered with p 1 true, then upon exit

from P, if at all, p is true. n
Our formulation and proof of this theorem yields a slight extension of

Floyd's result in the sense that it also covers the case of recursive

procedures which are not representable as flow diagrams.

The notion of a verified set of assertions is not defined directly, but

it occurs implicitly in our definition of the set of "inductive asser

tion patterns" for a term T:

Definition 6. 1

1. An inductive assertion pattern (i.a.p.) is a list of inclusions of

the form

2. An i.a.p. of this form is called fuZZy expanded with respect to a

variable X, iff, for each i, 1 = 1, 2, ... , n, either T. contains
1

no free occurrences of X, or T. = X.
1

3. The set of all inductive assertion patterns for a term T with

entrance assertion p and exit assertion q, denoted by A(p,T,q) is

defined inductively as follows:

a. The one-element list

is an element of A(p,T,q).

b. If T has the form T = T1UT2' if a, E A(p,,T,,q,),

a2 E A(p2,T2,q2), then the list

is an element of A(p,t,q).

c. If T has the form T = <1;<2' if a, E A(p,,T,,q,),

a2 E A(p2,T2,q2), then the list

is an element of A(p,T,q).

d. If T has the form T = µXCT 1 J, if a
1

E A(p
1

, T
1

,q1) and if a
1

is

fully expanded w.r.t. X, then the list a is an element of

A(p,t,q), where a is constructed as follows:

Since a 1 is fully expanded w.r.t. X, it can be written as

a 1 =a',~, where a',~ are i.a.p. 's such that

46

(i) None of the elements in a' contains free occurrences of X.

(ii) ~ is of the form

. . . ,

with 1 .::_ is < n for s = 1, 2, ... , m.

p. ;X C X;q .
i - i m m

Let 11
1

, 11
2

, 1T be i. a. p. 's of the form (see comment below)

111: p. ~ P1' n. ~ P1' • • 0 '
p. ~ P1

~1 - 12 i m

112: q1 C q. ' q1 C q. , q1 C q.
i, - 12

... , - i
m

Then a is the list

a a' , 11
1

, 11
2

, 1T.

(The definitions of 11 1 and 11
2

may be understood intuitively as follows:

Consider an occurrence of X in , 1 , with entrance assertion pi and exit
s

assertion q. , i.e., p. ;X c X;q. is an element of C "Execution" of
i i - i s s s

this X may be seen as a jump back to the beginning of T
1

, which has

entrance assertion p 1; hence, the requirement pi .::. p 1. Similarly, corn
s

pletion of the execution of , 1 , with exit assertion q1 , implies comple-

tion of the "execution" of X; hence, q1 c q. is required.)
- i

s

Example (see also figure 1)

Consider the term T = µX[A 1;X;A2 u A
3

;A4J.

A possible i.a.p. for this term is the following list of inclusions

(where we have indicated by a, b, c, d the corresponding clause of

definition 6.1, part 3):

I
I
I
I
I

I
I
I
I
I
I

I

I

I
I

I
I

I

I I

P7 -

I

I
I

I
I

I
l- --

p -5

L ___ _
I
I
I

L_

A1

X

I I
I

- q6 I
I

I

I

I I -q
7

---l
- q4

I
-q I
__ 5 _ _l

47

"X"
p -

p -1

--------1

-q
1 -

-q

Figure 1

I
I

P3 - ,.

A3; A4

-q
3

I

I
--- __ J

48

(d,n) p C p ' - 1 q1 _::.q,

(b) P1 .::. P2, P1 C p ' - 3 <12 .'.:. <11 ' <13 .'.:. <11 '

(c) P2 .::. P4, % .::. P5, <15 .'.:. <12'

(c) P4 .'.:. p6, q6.::. P7, <17 .'.:. <14'

(a) p6;A1 -=. A1 ;q6, P5;A2-=. A2;q5'

(d,n 1) P7 .'.:. P1,

(d, n2) <11 .'.:. <17'

(a) P3;A3;A4 .'.:. A3;A4;q3

Theorem 6.1. Let A(p,T,q) be the set of inductive assertion patterns

for T with entrance condition p and exit condition q, and let

a E A(p,T,q_). Then

Proof. The proof proceeds by induction on the complexity of the term

T •

a. If a is defined by def. 6.1, clause 3a, we have nothing to prove.

b. Let T = T1uT 2 , and let a, a 1 , a2 be as in def. 6.1, clause 3b.

Then, by the induction hypothesis,

Hence,

c.

d.

Thus

follows.

Similar to case b.

Let T = µX[,1], and let a., a. 1 ' a I' s, n 1 ' n2' '1T be as in def 6.1,

clause 3d.

By the induction hypothesis,

i.e.,

From this we immediately obtain

a ' ' s 'n 1 'n 2 ~ P 1 ; ' 1 -=- ' 1 ; q 1 ' Pi ; ' 1 -=- ' 1 ; qi ' · · · " Pi ; ' 1 -=- ' 1 ; qi
1 1 m m

Hence, observing that a.' does not contain X free, and applying the

µ-induction rule, we infer

... '

pi ;µX[,1].::. µX[,,J;qi
m m

Hence,

follows. From this

a ' , n
1

, n
2

, '1T +- p; µXh 1 J c µX[T
1
J ; q

50

is immediate; therefore, we have completed the proof of

in this case and, thus, of theorem 6.1.

51

7, RECURSION AND INDUCTION: INTEGERS AND TREES

The considerations of the preceding sections have all been of a rather

general nature, in the sense that the underlying domains of interpre

tation were completely arbitrary. We now want to specialize our general

theory to provide characterizations of two special domains, viz. those

of natural numbers and trees. In other words, we look for some special

constants, and axioms characterizing these, which we add to the general

system of section 4.2. In our paper [2], we did this for natural num

bers by the introduction of the constants S, M, AO, Po and p0, with in

tended interpretation over the domain of natural numbers N:

s = { (x,x+1) xe:N}

M = {(x,x ... 1) xe:N\{O}}

AO = { (x,O) I xe:N}

Po = {(O,O)}

p' = { (x,x) I xe:N\{O}}.
0

These constants were then characterized by the following axioms (based

on unpublished work by Scott):

S1: S;M = E

S2: AO;M = Q

S3: S;Ao = Ao

S4: µX[(po+Ao,M;X;S)] = E.

Observe that axiom s
4

can be formulated as: Let the function f{x) be

recursively defined by (denoted by 11
~ ")

f(x) .,. (x=O+O, f(x-1)+1)

52

then, for all non-negative integers x:

f(x) = x.

In [2], we showed that s
4

gives us the notion of mathematical induction,

in the sense that it can be used to prove the following rule of inference

X·F c X·G I X;S;F _c X;S;G ' - ' r

f-F.=.G

The proof of this follows easily from s4 , using the µ-induction rule I.

As an example of applying s1 to s4 , we showed in [2] that McCarthy's

result on the 91-function (see e.g. [19]) is derivable, i.e., we gave

a formulation and proof of the following result: If

f(x) <t=(x>1OO➔x-1O, f(f(x+11)))

then

f(x) = (x>tOO➔x-1O, 91).

Using the additional formalism of the calculus of relations, it appears

that~ constant, viz. the successor function S, suffices, since for

the other constants we can write

M = Ef

'-'

Po = S;S

,~-·--•~<

Po = S·S n E
'

(remember that - denotes complementation)

A
0

= µX[(S;SnE) u ~;XJ.

53

As new axioms we now introduce

Ll: l- S;S .::. E

I2: f- S;S.::. E

I3: ~ E.::. S;S

I4: f- E .::. µX[(S;SnE) u S;X;S].

As first consequences of I 1 to I 4 we have

which follows from I
2

and I
3

, and

(7.2) j- E = µX[(S;SnE) u S;X;SJ

which follows by I 4 and the fact that, since, by I 1 ,

j- (S;SnE) u 'S';E;S.::. E, lemma 4.1.4 yields l- µX[(S;S,nE) u S;X;S] c E.

It is not difficult to show that s1 to s4 follow from I 1 to I
4

:

1. s1 follows by (7.1).

2. Proof of s2 • We have to show

I- µX[(S;SnE) u S';XJ; s c Q,

The proof of this is direct by the µ-induction rule, provided we

have shown that

f- ('S';SnE) ;S-_::. rl.

Since Sis a function (I1), application of lemma 2.3.1 yields

~ (S;SnE) ;S = s ;S ;S n S

54

and the desired result then follows by applying (Tarski's axiom) T
5

•

3. Proof of s
3

• Left to the reader.

4. Proof of s
4

• It can be verified that l-p
0

;A
0

= p
0

, and 1-Pb;M = g',

The result then follows by (7.2).

We now illustrate the new axiom system by some further examples.

Exo.mple 1. "All natural numbers are different", i.e, writing Si for

"S ;S; y' . ;S 2 we have

i times

Proof

1. We first show that, for each k > 1,

By (7.2) and the µ-induction rule, it is sufficient to show that

k k -s nx c Q ~s n{ (S;SnE) u S;X;S} c Q.

(i) k -
~ S n s; S nE = Q.

We have

1 sk,s s E sk ' r n ; n = ;po n Po·

Since it is easily derived, using lemma 2.2, that, in general,

I- X;p,1 vlp = Q,

the result follows.

55

By lemma 2.2,

~
..... k s·x•sns
' '

2. By part 1, for i ~ j,

3,

The proof of this is omitted.

4. ~Ao;Si n Ao;Sj = (lemma 2.3,1 and part 3)

A
0

; (sinsj) = (part 2)

Q

Example 2. Termination of the factorial function.

It is not difficult to verify that the factorial function f(x), defined

by

f(x) .,._ (x=0➔ 1, x*f(x-1))

can be viewed as an instance of the general procedure

for suitable choice of A1 , A2 . We now assert that, if A1 , A2 are total,

then Fis total, i.e., that

Using (7.2) and the µ-induction rule, it is sufficient to show that

which is easy to verify.

Example 3, General recursion.

Following Julia Robinson [25] (see also Wright [32]) we say that Xis

defined by general recursion from A0 , S, Hand K, where A0 and Sare

the relations introduced above and Hand Kare arbitrary relations, if

1.

2. S;X = X;K.

We assert that, if X satisfies 1 and 2, then

The proof of this follows directly from 1 and 2, using I 4 and the

µ-induction rule.

This completes our illustrations of the treatment of natural numbers

in our calculus, as characterized by I 1 to I 4 . Another look at these

axioms suggests that one consider possible combinations of axioms

from the following extended set:

(=I) 1

57

J3: I- E
....,

C S·S - '

J4: f-E ~ S·S - ' (=I)
3

J5: ~ E ~ µx[(S;SnE) u S·X·S] ' ' (=I)
4

J5: ~ E ~ µX[(S ;SnE) u S ;X;S-].

We assert that the set {J
2

, J
5

, J
6

} characterizes tree structures:

Let, for nodes x and yin a tree, xSy hold iff xis the father of y.

Clearly, then, Sis a function, as expressed by J
2

• Observe that,

neither Sis a function (J1 does not hold), nor are Sor Stotal: for

terminal nodes in the tree, Sis undefined, and for the root of the

tree, Sis undefined. J
5

then expresses that, for each node x, if we

go up in the tree until we are at the root, and then down again the

same number of times, we may arrive at the same node x. J
6

asserts a

similar property for going down in the tree until a terminal node is

met, and then upwards again. Observe that, in combination with J
2

, one

sees that one must arrive at the same node.

A further analysis of the tree structures will also need, besides the

father-son relationship, introduction of the brother-relationship. This

idea is not pursued further in this paper. Also, we do not deal with

other combinations of J
1

to J
6

which may be of interest. (Clearly,

there are also some uninteresting ones, e.g., if we assume J
3

, then J
5

reduces to E c Q.)

For a treatment of a very similar axiom system for symbol manipulation

we refer to [3]. A characterization of list structures and proofs of

properties based thereupon are currently studied by the second author.

58

8. CONCLUSIONS

We have presented a calculus for recursive program schemes in which

properties of such schemes can be formulated and proved. The calculus

has been illustrated by both specific examples on while statements in

which the 11
0

11 operator was a useful tool, by an investigation of the

foundation of Floyd's inductive assertion method, and by a characteri

zation of two special domains: integers and trees.

Of course, we are aware of the fact that for a number of problems in

the theory of programs our calculus is not the most convenient vehicle.

E.g., for proving properties of individual programs, say a specific

sorting algorithm, a less formal approach may well be preferable.

Our main justification for the development and use of the calculus is

the framework it provides for the investigation of properties of pro

grams (the proof of) which would not easily or concisely be expressible,

or would not arise naturally otherwise. We hope that our applications

of the calculus have served their purpose in convincing the reader of

its usefulness in these respects .

.An important restriction in our calculus is its limitation to monadia

schemes only. However, a number of ideas, developecr by W.P. de Roever,

are available on extensions to poZyadia functions, using projection

functions and an axiomatic characterization of these. E.g., a first

version of a proof of the correctness of the well-known recursive solu

tion of the Towers of Hanoi problem has been derived. A publication on

this extension is in preparation.

59

BIBLIOGRAPHY

[1 J Ashcroft , E. & Z. Manna, The translation of "goto" programs to

"while" programs, Proc. IFIP Congress 71, Booklet TA-2,

pp. 14 7-152 (1971).

[2 J De Bakker, J. W. , Recursive Procedures, Mathematical Centre Tracts

24, Mathematical Centre, Amsterdam (1971).

[3] De Bakker, J.W., Recursion, induction and symbol manipulation,

in Proc. MC-25 Informatica Symposium, Mathematical Centre

Tracts 37, Mathematical Centre, Amsterdam (1971).

[4] Bekic, H., Definable operations in general algebra, and the theory

of automata and flow charts, to appear.

[5] Birkhoff, G., Lattice Theory, Third edition, American Math. Soc.,

Providence (1967).

[6] Blikle, A., Equations in a space of languages, Report 43, Computa

tion Centre Polish Academy of Sciences (1971).

[7] Bohm, C. & G. Jacopini, Flow diagrams, Turing machines, and lan

guages with only two formation rules; Comm. ACM, .2.,
pp. 366-372 (1966).

[8] Burstall, R.M., An algebraic description of programs with asser

tion, verification and simulation, in Proc. of the Con

ference on Proving assertions about programs, ACM (1972).

[9] Dijkstra, E.W., Notes on structured programming, T.H. Report

70-WSK-03, Technological University Eindhoven, Second Ed.

(1970).

[10] Engelfriet, J., Abstract program schemes, unpublished memorandum,

Technological University Twente (1971).

[11] Floyd, R.W., Assigning meanings to programs, in Proc. of a Sympo

sium in Applied Mathematics, Vol. 19, Mathematical

Aspects of Computer Science, pp. 19-32 (ed. J.T. Schwartz),

American Math. Soc., Providence (1967).

60

[12] Hoare, C.A.R., An axiomatic basis for computer programming, Comm.

ACM 12, pp. 576-583 (1969),

[13] Karp, R.M., Some applications of logical syntax to digital compu

ter programming, Thesis Harvard University (1959).

[14] Knuth, D.E., The Art of Computer Programming, Vol. 1, Fundamental

Algorithms, Addison Wesley, Reading (1968).

[15] Knuth, D.E. ·& R.W. Floyd, Notes on avoiding "goto" statements,

Information Processing Letters, j_, pp. 23-31 (1971).

[16] Leszczylowski, J., A theorem on resolving equations in the space

of languages, Bull. Acad. Polan. Sci., Ser. Sci. Math.

Astron. Phys., to appear.

[17] Lyndon, R.C., The representation of relational algebras. Ann. of

Math., .2.l, pp. 707-729 (1950).

[18] Manna, Z., The correctness of programs, J. Comp. Syst. Sci.,].,

pp. 119-127 (1969).

[19] Manna, Z. & A. Pnueli, Formalization of properties of functional

programs, J. ACM, 17, pp. 555-569 (1970).

[20] McCarthy, J., A basis for a mathematical theory of computation,

in Computer Programming and Formal Systems, pp. 33-70

(eds. P. Braffort and D. Hirschberg), North-Holland,

Amsterdam (1963).

[21] Milner, R., Algebraic theory of computable polyadic functions,

Comp. Science Memorandum no. 12, University College of

Swansea (1970) .

[22] Morris Jr., J.H., Another recusion induction principle, Comm. ACM,

.J..!!., pp. 351-354 (1971)

[23] Park, D., Fixpoint induction and proofs of program semantics,

in Machine Intelligence, Vol. 5, pp. 59-78 (eds.

B. Meltzer and D. Michie), Edinburgh University Press,

Edinburgh (1970).

61

[24] Park, D., Notes on a formalism for reasoning about schemes, un

published notes, University of Warwick (1970).

[25] Robinson, Julia, Recursive functions of one variable, Proc. AMS,

19, pp. 815-820 (1968).

[26] Scott, D. & J.W. de Bakker, A theory of programs, unpublished

notes, IBM Seminar, Vienna (1969).

[27] Scott, D. Outline of a mathematical theory of computation, Proc.

of the Fourth Annual Princeton Conference on Information

Sciences and Systems, pp. 169-176, Princeton (1970).

[28] Scott, D., The lattice of flow diagrams, in Symposium on Semantics

of Algorithmic Languages, Lecture Notes in Mathematics,

Vol. 188, pp. 311-364 (ed. E. Engeler), Springer-Verlag,

Berlin (1971).

[29] Scott, D., Continuous lattices, in Proc. Dalhousie Conference,

Springer• ~ecture Notes,-to appear.

[30] Scott, D. & C. Strachey, Toward a mathematical semantics for comput

er languages, in Proc. of the Symposium on Computers and

Automata, Microwave Research Institute'Symposia Series Vol.

21, PoJytechnic Institute of Brooklyn, to appear.

[31] Tarski, A., On the calculus of relations, J. Symbolic Logic,

.2., PP· 85-97 (194 1) .

[32] Wright, J.B., Characterization of recursively enumerable sets,

Report RC 3419, IBM Research Center, Yorktown Heights

(1971) .

