RA

stichting

mathematisch

centrum MC
REKENAFDELING MR 136/72 AUGUST

G. TEN VELDEN
SIMPLIFICATION PROCEDURES FOR ABC ALGOL
pe

A

2e boerhaavestraat 49 amsterdam

BIBLIOTHEEK MATHEMATISEH CENTRUM
AMSTERDAM

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsiterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
profit institution aiming at the promotion of pure mathematics and Ats
applications. 1t is sponsored by the Netherlands Governmment through the
Netherlands Onganization for the Advancement of Pure Research (Z.0W.0),
by the Municipality of Amsterdam, by the University of Amsterdam, by
the Free University at Amsterdam, and by industries.

Acknowledgement

The author is grateful to R.P, van de Riet for his stimulating
remarks and his critically reading of the preliminary text. This
led to several improvements concerning the clearness of the
ALGOL 60 program, and to a more exact definition of the notions,
used in the accompanylng comments,

Table of contents.

Introduction.

Chapter 1 Recapitulation of the garbage collection system
garbage and non garbage formulae.
the procedures DE and ERASE.
the procedures ASSIGN and V.
the procedures INT NUM, AV, S, P and INT POW.
the procedures LHS, RHS and TYPE,
the output procedures.
program.

Chapter 2 The simplification procedure *SIMPLIFY®.,

1. definitions. ' -

2. preparation.

3, simplification of a term.
3.1, stratification of a term.
3.2, simplification of a stratified product.
determingtion of order of proper factors.
simplification of a sum of terms.
determinstion of place in the simplified part.
the actual simplification of an arbitrary formula.
test of procedure 'SIMPLIFY!,
results test of 'SIMPLIFY®.

(I)—Q.O\\H-P‘

Chapter 3 The simplification procedure *POLYNOMIAL®.
1. definition of a 'polynomisal’.
2. modification of procedure ‘put beforet.
3. simplification procedure °‘POLYNOMIAL®.
4, test of procedure 'POLYNOMIAL®.
results test of *POLYNOMIAL'.

Chapter L Application of procedure 'SIMPLIFY'.
results simplification of determinant,

References,

ye]
&
- (D

O O FLWWWMPMDNDMND

begin comment

Simplification procedures for ABC ALGOL.

Introduction.

Simplification procedures for formula manipulation have been described
in section 2.1 of [1] for a system without automatic garbage collection.
There, a second internsl representation of a formula has been introduced,
using two auxilisry srray's 'a' and 'L°.

The purpose of this report is to describe simplification procedures
for the garbage collection formula manipulation system with a free list
technique, to be used as a basis for the new programming language called
'ABC ALGOL' ('ABC' standing for: ‘Algebraische Bewerkingen met behulp van
de Computer', dutch for: *Algebraic Operations by means of the Computer').

For storing formulae, this system, described in [2], makes use of one
array 'C! (replaced in this report by the linear arrays Cl1, C2 and Ctype)
only, which is under the supervision of the garbage collection process.

For considerations concerning the need and realisation of automatic
garbage collection it suffices to refer to [2].

The special purpose of this report is to perform the simplification of
arbitrary formulae, using the storage space for formulae efficiently,
possibly at the cost of time efficiency. We want to avoid the situation
that two different representations of the same formula have been stored at
the same time, one before and one after the simplification, because we are
interested in the simplified formula only.

It will become evident that we have to follow a simplification strategy,
quite different from the strategy of [1], but we want the result to be
the same, i.e. the form of the resulting formula has to be a standard
form, satisfying several conditions. In chapter 2 the standard form
Isimplified sum' is described, satisfying equivalent conditions as
described in section 2 of [1]. (Exponential functions are not considered.)

In chapter 3 another standard form (called ‘polynomial') is introduced,
illustrating the suitability of these simplification procedures in a
system like [3].

Chapter 1 -Recapitulation of the garbage collection system.

In this chapter the system of [2], using the free 1list technique, is
described, extended with the two formula types 'integral number® and
'integral power', and changed at several places, t0 be compared with the
system of [3]. Next follows a brief description of those procedures of
the system, used in the simplification process, which have to be known
by the uninitiated reader, who is not interested in the particular
garbage collection process. For understanding of the simplification
process, described in the chapters 2 and 3, he may confine himself to
this description. '

Garbage and non — garbage formulae.

Since the garbage collector has to determine which formulae may be
considered as ‘garbage', for 'non—garbage' formulae a linked list of
so—called names is introduced, growing and shrinking according to a
stack mechanism, which is consulted by the garbage collector whenever
garbage has to be collected., This stack mechanism involves a block
structure and a scope of a name 'f', which do not have to coincide
with the block structure of the —ALGOL 60— program and the scope of
the —ALGOL 60— variable °'f°,

If the formula manipulator wants to know how much free space is
available, i.e. the space containing the free list and the garbage
formulae, he can call the auxiliary procedure *free gpace', delivering
the number of available storage cells for formulae.

The procedures DE and ERASE.

Introduction and erasure of names is organised in a block structure.
The beginning of each block contains the declaration of an integer
'fan', The first statement of the block is: fnn:=gnn, where ‘gnn'
serves as a formula stack pointer, indicating the number of names
introduced. The final statement of the block is: ERASE(fnn), which
erases all names introduced in the block.

The introduction of a name 'f' is performed through the statement:
DE(f,F,next), where 'F! iIs the initial value of 'f' and ‘'next! is
either O (ZERQ) or DE(f1,F1,nextl), for introducing another name °*f1°?
with initial value *F1', etc.

The procedures ASSIGN and V.

Given a name f, we can (only within the scope of f of course):

1. make f the name of the formula F (a value), performed by procedure
ASSIGN: ASSIGN(f, F), -

2, ask for the formula F (the value), whose name is f, performed by the
procedure V: V(f), delivering F.

The procedures INT NUM, AV, S, P and INT POVW.

To construct formulae of the types 'integral number', ‘algebraic
variable', 'sum', 'product! or 'integral power', we have to write the
formulee in Polish prefix, i.e. in functional notation. Here we use the
function designators INT NUM, AV, S, P and INT POW, respectively, for
those procedures which have to construct the internal representation of
the formulae of the sbove mentioned types. '

As the evaluastion of an argument of one of these functions could give
rise to a garbage collection, this argument is interpreted by the garbage
collector as non—garbage, and the arguments which are evaluated already
are connected temporarily to the name list. Evaluating a formula
expression, this formula is automatically saved during garbage collection.

The procedures LHS, RHS and TYPE.

Calling these procedures with a value as (first) parameter, the
components of the formula, i.e. the quantities left-hand—side and
right-hand—side as well as its type are retrieved.(For the internal
representation of formulae we refer to section 1 of chapter 2).

A call TYPE(F,A,B), moreover, delivers the left and right component
of the formula F, assigned to the parameters A and B respectively.

The output procedures.

The output is performed by a line printer and a tape punch together,
The basic procedures are:
PR string(s) for printing and punching a string 'st,
PR nlcr for printing and punching a 'new line carriage return symbol?,
PR int num(a) for printing and punching an integral number 'a',
PR sym(a) for printing and punching a symbol 'a?;
(N.B. for the internsl representation of symbols we refer to [4]),
The main output procedure is procedure 'OUTPUT' for printing and punching
a formula. The call OUTPUT(f) causes the printing and punching of the
value of the name f, without superfluous parentheses.

program: ;
integer free cell, last free cell, last name, max of C, snn, gnn,
integral number, algebraic variable, sum, product, integral power,
one, zero, ONE, ZERO;

max of C:= read;

begin integer array C1, C2, Ctype[1:max of C];
T Boolean array traced[1:max of cl;

integer procedure STORE(A,t,B); value A,t,B; integer A,t,B;
Pegin integer k; k:=C1[free cell];
Cllfree cell]:=A; C2[free celll:=B; Ctype[free celll:=t;
STORE:=free cell};
free cell:=if free cell % last free cell then k else
COLLECT GARBAGE(free cell)
EEQ STORE;

integer procedure TYPE(F,A,B); value F; integer F,A,B;
begin TYPE:=if F > O then Ctype[F] else ERROﬁT_fue,%error in TYPE});

TTAi=C1[F]; Br=C2[F]
259 TYPE;

integer procedure LHS(F); value F; integer F; LHS:=C1[F];

integer procedure RHS(F); value F; integer F; RHS:=C2[F];

integer procedure SAVE(F); value F; integer F;
begln Integer k; BRROR(F < 0,ferror in SAVEF);
:=C1[free celll; Ci[free cell] =F; C2[free cell]:=last name;
SAVE =last name:=free cell; gnn:=gnn + 13
free cell:=if free cell % last free cell then k else
COLLECT GARBAGE(O)
end SAVE;

integer procedure DE(f,F,next); integer f,F,next;
begin f3= — SAVE(F); DE:=next end;

procedure ERASE(n); value n; integer n;
for ni:=n while n < gnn do
begln Jjoin to free spac—Tlast name); gnni=gnn — 1;
T 1ast name:=C2[last name]; ERROR(gnn < snn,ferror in ERASE})
gag ERASE}

procedure join to free space(k); value k; integer k;
Cillast free cell]l:=last free cell:=k;

integer procedure ASSIGN(f,F); value f,F; integer f,F;

ASSIGN:=Ci1l— fl:=if f < O A f > = max of C Then F else

ERROR(true, *error in ASSIGN});™

integer procedure V(f); value f; integer f;
Vi=if £ <O then C1[- f] else ERROR(true,*error in V});

integer procedure COLLECT GARBAGE(st); value st; integer st;

begin integer i; last free cell:=0;
if st # O then TRACE(st);
Ti=last name; for i:=i while i k0 do
begln TRACE(C1[i]); traced[il: -true, 1:=C2[1] end;
for i:=1 step 1 until mex of C do
If 1 traced[i] then
begln if last free cell + O then join to free space(i) else
T COLLECT GARBAGE:=last free cell:=i
end else traced[i]:=false;
ERROR(1ast free cell = O,fno space left})
end COLLECT GARBAGE;

procedure TRACE(F); value F; integer F;
if T traced[F] then
begln integer t,A,B; t:=TYPE(F,A,B);
if t = sum V t = product then
begin TRACE(A); TRACE(B) end else
if t = integral power then TRACE(B);
Traced[F]:=true
end TRACE;

integer procedure free space;
begin integer fec,n; '
for free cell: ~-free cell while free cell % last free cell do Av(0, 100);
comment The next statement causes a garbage~collection;
AV(0,100); n:=1; fc:=free cell;
for fe: —C1[fc] while fc L 1ast free cell do n:=n + 1;
Free space:=n + 1
329 free space;

integer procedure INT NUM(i); value i; integer i;
INT NUM:#EE i = 0 then ZERQ else Eﬁ i = 1 then ONE else
STORE(0, integral number, i);

1nteger procedure AV(l T); value 1,r; integer 1,r;
AV:=STORE(1, algebraic variable, r),

integer procedure S(A,B); integer A,B;
begin integer Al1,B1,fnn; fnon:=gnn;
~ A1:=A; SAVE(A1); B1:=B; ERASE(fnn);
St=if A1 = ZERO then B1 else if B1 = ZERO then Al else

STORE(A1, sum, B1)
end S;

integer procedure P(A,B); integer A,B;
begin integer A1,B1,fnn; frn:=gnn;
AT:=A; SAVE(A1); B1:=B; ERASE(fnn);
P:=if A1 = ZERO V Bl = ZERO then ZERO else
iT A1 = ONE then Bl else if Bl = ONE then Al else
STORE(A1, product, B1)
end P;

integer procedure INT POW(B,exp); value B,exp; integer B,exp;
INT POW:=1if B = ZERO then ZFRO else if exp = 1 then B else

if B = ONE V exp = O then ONE else
STORE(exp, integral power, B);

procedure INITIALIZE;

begin integer i; free cell:=1; last free cell:=max of C;
for is=free cell step 1 until last free cell do
Pegin C1[i]:=1 + T; tracedli]:=false end; -
Tast name:=0; . -
integral number:=1; algebraic variable:=2;
sum: =33 product:=b; integral power:=5;
DE(zero, STORE(O, integral number,0),
DE (one, STORE(O, integral number,1),0));
ZERO:=V(zero); ONE:=V(one); snn:=gnn

end INITIALIZE;

integer procedure ERROR(b,s); Boolean b; string s;

if b then |

begin ERROR:=1; PR nlecr; PR string(s); PR nlcr;
for last name:=last name while last name {: 0 do

Pegin PR nler; OUTPUT(— Tast name); last name:=C2[last

EXIT
end ERROR;

name] end;

procedure OUTPUT(f); value f; integer f;
begin procedure OP(F,type); value F,type; integer F,type;
begin integer t, A, B;
procedure LBR; if t < type then PR string((
procedure RBR; if t < type Then PR string(f)
YPE(F,A,B);
1f t = 1ntegral number then
begin type:—lf B< O then © + 1 else t; LBR, PR int num(B); RBR end
else if t = algebraic variable then
begin integer 1, d; l:=A : 10; d:=A — 1x10; PR sym(1);
if d > O then PRsym(d) —
end else
Iif t = 1 integral power then
Pegin OP(B,t); PR string(§A}); PR int num(A) end else
begin LBR, OP(A,t); if t = sum then PR string(¥+b) else
Tif t = product then PR string) else
begln PR str1ngf¥error in OUTPUT), EXIT end,
OP(B,t); RER
end
end OP;
Gr(v(£),0)

end OUTPUT;

procedure PR string(s); string s;
begin PRINTTEXT(s); PUTEXI(s) end; _

irocedure PR nlcr; PR strlng({
2

procedure PR int num(a); value a; integer a;
begin integer b; 1f a < O then begin PR str1ng(*—$), a:=—a end;
if a < J then FR R sym{a) else
begin bi=a : 10; ai=a — b X 10; PR int num(b); PR sym(a) end
end PR int num,
procedure PR sym(a); value a; integer a;
begin PRSYM(a); PUSYM{a) end;

comment

Chapter 2 The simplification procedure 'SIMPLIFY?'.

algorithm:;

integer procedure SIMPLIFY(formula); value formula; integer formula;
begin comment

1. definitions.

An important part of the simplification process consists of changing
the tree, which represents the formula to be simplified. To indicate
these different tree structures, we shall use syntactic rules with a
special notation: (<lhe>,<type>,<rhs>), indicating the internal
representation of a formula.

The correspondence between a mathematical formula and its internal
representation needs some attention. The left—hand-side and right—hand-
side guantities of the dyadic types 'sum' and 'product' denote the left
and right operand of the operator of that type. In case of an ‘integral
power', the base of the integral power is stored as right—hand—-side
quantity and the integral exponent is stored as left~hand—-side quantity
(see def. 1.3).

A ‘number! and an ‘algebraic variable' are stored with their necessary
information (i.e. the numerical value of a number or the hierarchy number
of an algebraic variable as right—hand—-side quantity, and the output code
of an algebraic variable as left-hand-side quantity, see also def. 1.11
and def, 1.12).

1.1 <formula>::=<term>|(<formula>,<sum indication>,<formula>)

1.2 <term>::=<factor>|(<formula>,<product indication>,<formula>)

1.3 <factor>::=basic factor>](<exponent>,<int pow indication>,<formula>)
1.4 <basic factor>::=<integral number>|<algebraic variable>

1.5 <prepared sum>::=<term>|(<term>,<sum indication>,<formuls>)

1.6 <prepared product>::=<factor>|

(<factor>,<product indication>,<formula>)

1.7 <stratified sum>::=<simplified product>|

(<simplified product>,<sum indication>,<stratified sum>)
1.8 <stratified product>::=<prcper factor>|

(<proper factor>,<product indication>,<stratified product>)

1.9 <proper term>::=<proper factor>!

(<proper term>,<product indicatiorn>,<proper term>)
1.10 <proper factor>::=<basic factoﬁ>[

(<exponent>,<int pow indication>,<basic factor>)

. <integral number>::=(0,<int num indication>,<integer>)
1.12 <algebraic variable>::=(<output code>,<alg var indication>,
<hierarchy number>)

1.13 <hierarchy number>::=<integer> (‘positive')
1.14 <output code>::=<integer> (*internal representation of symbols?®)
1.15 <exponent>::=<integer> ('non-negative')

1.16 <int num indication>::=1
1.17 <alg var indication>: ;=2
1.18 <sum indicatiom>::=3

1.19 <product indication>::=l
1.20 <int pow indication>::=5

The definitions of 'simplified sum' and 'simplified product' are given in
the sections 5 and 3.2, respectively.

2, Preparation.

When we have to simplify a formula, which is generally a sum of terms,
we are interested at first in the first term of that formula. Moreover, we
want to know the sum of the remaining terms explicitly. For that reason we
change the formule into the sum of its first term and the remaining terms.
Mathematically this means application of the associative law for the adding
operator. For instance: ,

(x1 + y1) + (22 + y2) =x1 + (y1 + (x2 + y2))

The latter formula is called a 'prepared sum® (def. 1.5).

Besides this associative law also an associative law is available for the
multiplying operator. Application of the latter changes a formula into

a prepared product (def. 1.6).

"Preparation’ can be applied to formulae with an arbitrary tree structure
(see def. 1.1).

algorithm:;

procedure prepare(type, formula);value type,formula; integer type,formula;
begin integer A,B,LA,RA;
it T““E(V(formulai A,B) ¥ type then goto OUT;
if TYPE(A,LA,RA) ¥ type then goto OUT;
T type = sum then ASSIGN({formula,S(LA,S(RA,B))) else
Iif type = product then ASSIGN(formula,P(LA,P(RA,B))) else
ERROR(true, ftype not appropriate in prepare});
prepare (type, formula);
OuT':
339 prepare;

10

comment

3. Simplification of a term.

The simplification of a term, named 'term', is performed in two stages,
namely a so—called ‘stratification' followed by a ‘proper simplification?,
executed by the procedures ‘'stratify product' and 'simplify stratified
product!, respectively.

During the stratification all numerical factors (factors of type ‘'integral
number') of the term are retained in a global integer 'coefficient'. So a
stratified product (def. 1.8) actually has no factors which are integral
numbers except when the term is an integral number itself, in which case the
stratified product will become ONE.

At the end of the simplification of the stratified term (i.e.
simplification of the non—numerical part of the term) this coefficient is
connected again to the term, which completes the simplification of the term.

For the stratification as well as the proper simplification we need some

auxiliary names for saving formulae which are still of interest.
In the following procedures they have not been declared as names, because
they are used also in other parts of the program. The declaration of all
auxiliary names can be found in section 7.

The auxiliary names we use in this section are called ‘*handles®.

algorithm:;
integer handle one,handle two,term,coefficient;
comuent

3.7, Stratification of a term.

During the stratification we determine by means of a global integer
'next wanted' how we have to start the proper simplification process.
next wanted® indicates for which algebraic varisble we want to look
at first, i.e. the algebraic variable with the lowest hierarchy
(see section 4).

The stratification is performed by procedure ‘stratify product', which
makes use of one auxiliary name ‘handle one' only.
 After the stratification this 'handle one' has as value the product,
just stratified, while 'term' has as value 1 (ONE).

11

algorithm:;
integer next wanted;

procedure stratify product;

begin integer t,A,B; prepare(product,term);
next wanted:=0; coefficient:=1;

L:for t:=IYPE(V(term),A,B) while t = product do
take factor(A)in handle one and assign to term the prepared rest:(B);
comment Due to the construction with a for statement we have to trest
the lasgt factor explicitely; '
take factor(V(term))in handle one and assign to term:(ONE);
comment We have to check now whether new factors have been appeared
as a possible side—effect of procedure 'stratify product', which
effect is discussed below;
if V(term) f ONE then goto L

end stratify product;

comment

If the term to be stratified is a proper term (def. 1.9), its factors
are proper factors (def. 1.10), and when we have taken these proper factors
consecutively in handie one, the latter will be a stratified product, which
is our purpose,

But if the term to be stratified is not a proper term, i.e, if one of the
factors is not a proper factor, one of the following situations occurs:

1: If the considered factor is a sum of terms, the term we are simplifying
can be written as two other terms by applying the distributive law.

2: If the factor is an integral power of a sum or of a product or of an
other integral power, the factor can be written as two or more factors.

In the first case we have to get rid of one of the two new terms somehow,
because we can stratify actuslly one of them only,

At this point we have to know something about the procedure *simplify sum'
of section 5, which calls procedure ‘stratify product®.

In 'simplify sum® the 'formula® to be simplified is modified at first
into a prepared sum (def. 1.7), in this case into the sum of the term we
are simplifying now, assigned to 'term', and remaining terms. Henceforward
the value of 'formula'® consists of these remaining terms only.

The solution of how to get rid of one of the two terms, appearing after
application of the distributive law, without loosing it during a possible
garbage collection will be clear now:

We simply add this term to the value of ‘formula' (i.e. We assign to
'formula'® the sum of this term and the original value of ‘formula').

These actions are performed by procedure ‘take factor'.

12

We give some examples of the possible modifications performed by 'take
factor?:

1. x X (y + 2) becomes x Xy + X X z ,where x X 2 will be added to
the value of 'formula', and
X X ¥y becomes the value of
'term',

2, (x + y)A5 vecomes (x + y) x ((x + y) x (x + y)))\2,
where the second factor will
be modified later according

: to example 3,
3. (x X y)A3 vecomes xA3 x yA3,
L. ((x + y)A3)A2 vecomes (x + y)A6.

Only if the first actual parameter of *take factor' is a proper factor
we shall actually take it in handle one (by means of a jump to label *L! in
procedure ‘'take factor!) or in ‘coefficient' when the proper factor is an
integral number, otherwise we only modify the considered term in a suitable
way without taking any factor in handle one (by means of a jump to label
'0UT* in procedure 'take factor').

algorithm:;

procedure take factor(F)in handle one and assign to term
the prepared rest:(R); value F,R; integer F,R;
begin integer t,A,B; t:=TYPE(F,A,B);

if t = integral number then coefficient:=coefficient X B else
if t = algebraic variable then goto L else
if ©* = sum then

Pegin ASSIGN(formula,
S(P(INT NUM(coefficient),P(V(handle one),P(B,R))),V(formula)));
R:=P(A,R) "
end else
If t = integral power then
begin integer t1,LB,RB; t1:=TYPE(B,LB,RB);

if t1 = integral number then coefficient:=coefficient X RB $ A else
i{ t1 = algebraic variable then goto L else
1f t1 = sum then

Rr=P(if A:2xP=A then ONE else B,P(INT POW(P(B,B),A:2),R)) else
if t1"= product Then R:=P{INT POW(LB,A),P(INT POW(RB,A),R)) else
if t1 = integral power then R:=P(INT POW(RB,LB X A),R) i
end else ERROR(t = product,?ﬁ not appropriate in "take factor'$);
goto OUT;
L:ASSIGN(handle one,P(F,V(handle one))); det next variable(F);
OUT : ASSIGN(term,R); prepare(product,term)
Eﬂé take factor;

13

comment

3.2, Simplification of a stratified product.

Definition:
A Tsimplified product' is a stratified product satisfying the following
conditions: ‘
1: Only the first factor may be a numerical factor i.e. an ‘'integral
number?,
Each two other proper factors have a different hierarchy,
The order of the proper facors is unique, prescribed by the
hierarchy of the algebraic variables (see section 4).

2
3

For the proper simplification process, performed by procedure ‘simplify
stratified product', we need both handles:
'handle one' initially contains the stratified product we want to
simplify, and *handle two' is used to save factors which we decided to
join not yet to the value of 'term'. We noticed already that the initial
value of 'term' (i.e. the final value of 'term' in 'stratify product')
is 1 (ONE).
(Remark: the value of 'term® is a simplified product during the whole
process).
The algorithm is as follows:
wanted: =next wanted
Treat consecutively all proper factors of the stratified product
(i.e. join the factor to the value of ‘term' or take it in ‘handle two®
dependent on whether we are looking for the algebraic variable of
that proper factor (see section L) or not) and choose at the same
time the 'next wanted' variable (i.e. the algebraic variable with
the lowest hierarchy) from the proper factors which are taken in
"handle two'. The determination which algebraic Yariable will be
treated next, is performed by procedure 'det next variable! of
section b,
3: assign to 'handie one® the value of ‘handle two!
I i1f the value of 'handle one'! is unequal to ONE then goto 1 else
5: We are ready.

1
2

26 ow

Remark:

"term' is not directly accessible for each proper factor we want to join
to it, but only through a kind of buffer consisting of the integers
‘exponent' and 'BASE', which combines the proper factors to be joined to
the value of 'term', to one proper factor, which will be joined actually
to the value of 'term', after all factors of the stratified product have
been treated (between step 3 and 4).

For example: M3 X x X xA2 will be combined to 6.

The result is that the value of 'term' remains a stratified product,
mathematically equivalent to the original stratified product, but in the
first one each two proper factors have a different hierarchy and the
order of the factors is prescribed uniquely by the hierarchy of the
algebraic variables, determined in procedure 'det next variable'.

&

1l

algorithm:;
integer wanted,exponent,BASE;

procedure simplify stratified product;
begin integer t,A,B;
T:ASSIG iﬁgﬁdle two, ONE),wanted =next wanted; next wanted:=0;
exponent:=0; BASE:=0ONE; -
for t:=TYPE(V(handle one),A,B) while t = product do
treat proper factor(A)and assign to handle one:(B);
treat proper factor(V(handle one))assign to handle one:(V(handle two));
ASSIGN(term, P(INT POW(BASE, exponent), V(term)));
if V(handle one) ¥ ONE then goto L;
ASSIGN(term, P(INT NUM(coefficient),V(term)))
end simplify stratified product;

procedure treat proper factor(F)and assign to handle one:(R);
value F; integer F,R;
begin integer t,A,B; t:=TYPE(F,A,B);
if © = algebraic variable then
begin if B = wanted then buffer for term(1,F) else
take in handle two(F)
end else
if t = integral power then
begin if RHS(B) = wanted then buffer for term(A,B) else
Take in handle two(F)
end else ERROR(F % ONE *F not approprlate in treat proper factor}),
ASSIGN(handle one,R)
end treat proper factor;

procedure buffer for term(exp,B);value exp,B;integer exp,B;
begin exponent:=exponent + exp; BASE:=B end;

procedure take in handle two(F);value F;integer F;
begin det next variable(F); ASSIGN(handle two,P(F,V(handle two))) end;

comment

L, determination of order of proper factors.

As a proper factor of a stratified product actually cannot be an integral
number (integral numbers are retained in ‘'coefficient®) this proper factor
is either an algebraic variable or an integral power of an algebraic
variable (see def. 1.10), and for the determination of order of proper
factors we use the integral number which is stored as right—hand-side
quantity 'r' of this algebraic variable. The algebraic variables are
ordered according to increasing value of ‘r?,

In future this might be changed. Perhaps we want to have an alphabetic
ordering or we want the user of the system to specify the hierarchy of the
algebraic variables himself.

15

algorithm: ;

procedure det next variable(F);value F;integer F;
begin integer t, A, B;
integer procdure max(a,b);value a,b; integer a,b;

max:= if a < b then b else a3
t:<TYPE(F, A, B);
next wanted:= if t = algebraic variable then max(B,next wanted) else
Tt = 1nteiFal power then max(RHS(B),next wanted) else

ERROR(true,{F not approprlate in det next variabled]
EEQ det next variable;
comment
5 simplification of a sum of terms.
Definition:

A 'simplified sum' is a stratified sum satisfying the following
conditions:

1: Each two terms (which are simplified products) are different in
their non—numerical parts,
23 The order of these terms is unique.

Actually this order will be determined by procedure ‘put before'.
At this point we shall not specify this order because we want to have
the possibility to change the ordering- of the terms by changing the
procedure 'put before'!,

Application of the same strategy as used in section 3, namely a proper
simplification preceded by a stratification, will be much more complicated
here because of the complex structure of a simplified product (in comparison
with a proper factor in section 3). This complex structure implies a rather
difficult determination of order for the simplified products (performed by
procedure ‘put before').

For the simplification of a sum of terms we shall use two guxiliary names,
namely 'simplified part?! and 'handle two',

The strategy is as follows:
prepare the considered sum (named ‘formula'),
assign the first term of this prepared 'formula® to "term'® and assign
the remaining terms to *‘formula’,
3 simplify the first term by means of the procedures 'stratify product?®
and *simplify stratified product' of section 3.
bs join the product, Jjust simplified and named ‘'term', to the *simplified
part’ at such a place that the order of the terms remsins the correct
order (prescribed in procedure 'put before').
5: if the value of ‘formuls' is unequal to ZERO then goto 1
else
6: we are ready.

1¢
2

16

algorithm:;
integer simplified part;

procedure- simplify sum;
begin integer t,FIRST TERM,REST;
L:prepare(sum,formla);
for t:=TYPE(V(formula),FIRST TERM,REST) while t = sum do
begin ASSIGN(term,FIRST TERM); ASSIGN(formula,REST);
stratify product; simplify stratified product;
join term to simplified part; prepare(sum,formula)
end;
ASSIGN(term, V(formula)); ASSIGN(formula,ZERD);
stratify product; simplify stratified product;
Jjoin term to simplified part;
if V(formula) $ ZERO then goto L
end simplify sum;

comment

6. determination of place in the simplified part.

We suppose that 'simplified part' has as value a sum of terms,
unequal to ZERD (If the value of 'simplified part' is equal to ZERO ,
the place of the term, just simplified and named "term', is trivial).

At first we find out if we can put-the simplified term before the first
term of the simplified part by means of procedure ‘try to put the term
before'. When we have been successfull, we assign to ‘term' the value
ZERO (in procedure 'try to put the term before') in order to recognize
our successfull attempt in procedure 'join term to simplified part'.
When we did not have success in 'try to put the term before', we shall
take the first term from the simplified part and add it temporarily to
the value of ‘'handle two'. Then we try again to put the simplified term
before the first term of the simplified part. We shall go on removing
terms from the simplified part until we have found the right place for
the simplified term or until no terms have been left.

At last we have to connect the terms of the 'handle two' to the
simplified part again, in such a way that the order of the terms in
'simplified part' remains the correct order (by applying the principle:
Last in,first out).

17

algorithm:;

procedure Jjoin term to simplified part;
begin integer t,A,B; ASSIGN(handle two,ZERD);
~ for t: JTYPE(V(Slmpllfled part),A,B) while t = sum A V(term) § ZERO do
Try to put the term before(A)next terms: (B);
if V(term) % ZERO then .
Try to put the term before(V(simplified part))next terms: (ZERD) ;
if V(term) £ ZERD then ASSIGN(simplified part,V(term));
For t:=TYPE(V(handle two),A,B) while t = sum do
begin ASSIGN(simplified part,S(A,V(simplified part)));
T ASSIGN(handle two,B)
end;
ESSIGN(simplified part,S(V(handle two),V(simplified part)))
EEE Jjoin term to simplified part;

procedure try to put the term before(FIRST)and next terms:(REST);

value FIRST,REST; integer FIRST,REST;

if put before(FIRST) then

begin ASSIGN(simplified part,S(V(term),V(simplified part)));
ASSIGN(term, ZERO)

end else

begin ASSIGN(handle two,S(FIRST,V(handle two)));
ASSIGN(simplified part,REST)

329 try to put the term before;

comment

In procedure 'put before' the actual comparison of simplified terms is
performed. If these terms happen to be equivalent (apart from numerical
factors) we have to change the coefficient of 'term' only.

Procedure ‘try to put the term before' actuslly joins the simplified
term to the simplified part.

If the formula to be simplified is a ‘simplified sum' already, we have
to put each next term after all terms of the simplified part. In this
way we have to make much comparisons of terms. The algorithm is more
efficient when we invert the order of the terms of the ‘simplified part®.
Then, simplifying a (partly) simplified sum, we can put (almost) each
next term directly before the first term of the simplified part, while
the simplification of arbitrary formulae 1s not affected essentially.

At the end of the simplificstion process we have to invert the order
of the terms of the simplified part again, in order to obtain the rlght

'simplified sum', (see section T.).

algorithm: ;

Boolean procedure put before(F),value F; integer F;
begin integer d,dF,dTERM,F1,TERM,c1,c2; Fl:=F; TERM:=V(term);
d: =dF:=degree of(F1)COeff1c1ent (c1),
dTERM: =degree of (TERM)coefficient:(c2);
if dF § dTERM then put before:= dF > dTERM else
‘Pegin integer hF, hTERM dis; d1:=0;
L:hF:=hierarchy of(F])w1th degree: (dF);
hTERM: =hierarchy of (TERM)with degree:(dTERM);
d1:=d1 + dF; '
if hF £ hTERM then put before:= hF < hTERM else
if dF + ATERM then put before:= dF > dTERM else
if d1 = 4 then -
ngin integer A,B; put before:=true;
ASSIGN(term,
P(INT NUM(c1 +c2),if c2 = 1 then V(term) else
if TYPE(V(term),A,B) = product then B else ONE));
ASSIGN(simplified part,
if TYPE(V(simplified part),A,B) = sum then B else ZERD)
end else
Pegin F1:=RHS(F1); TERM:=RHS(TERM); goto L end
329 ggg put before; -

comment

Next, the auxiliary procedures of 'put before' follow.
In procedure 'degree of' the first parameter 'F' is supposed to be a
stratified product (it will be a simplified product actually).

As a side—effect, a possibly attached numerical factor (necessarily the
first factor) is removed from 'F' and retained in the second parameter ‘c'.

In procedure 'hierarchy of! the first actual parameter 'F' is also
supposed to be a stratified product. In the last two procedures the actual
parameters are supposed to be proper factors.

algorithm:;

integer procedure degree of(F)coefficient:(c); integer F,c;
begin integer t,A,B,F1,n; n:-O, Fi:=F; c:=1;

for T:=TYPE(F1,4,B) while t = product do

begin add to(n ‘the degree of: (A),

if n = O then begin c:=RHS(A) ; F:=B end; F1:=B

end;

add to(n)the degree of:(F1);

if n = O then begin c:=RHS(F1) ; F:=ONE end;

degree of t=n -
:29 degree of;

19

integer procedure hierarchy of (F)with degree:(d);value F; integer F, d,

begin integer A,B;

hierarchy of:=if TYPE(F,A,B) = product then
hierarchnumb of (A)with degree:(d) else
hierarchnumb of(F)w1th degree:(d) —

end hierarchy of;

procedure add to(counter)the degree of:(F)jvalue F; integer counter,F;

begin integer t,A,B; t:=TYPE(F,A,B);

if t = algebraic variable then counter:=counter + 1 else
if t = integral power then counter:=counter + A else
ERROR(t + integral number,{F not appropriate in add to})

end add to;

integer procedure hierarchnumb of (F)with degree:(d);value F; integer F,d;

begin integer t,A,B; t:=TYPE(F,A,B);

if t = integral number then hierarchnumb of :=d:=0 else

Ef t = algebraic variable then begin hierarchnumb of:=B; d:=1 end else
if t = integral power then beg begin n hierarchnumb of: =RHS(B);d:=A end else
ERRDR(true,iF not appropriate in hierarchnumb of})

end hiergrchnumb of;

comment

T the actual simplification of an arbitrary formula.

As a formula is defined as a term or a sum of terms (def. 1.1) the

simplification of an arbitrary formula can be performed by procedure
'simplify sum' of section 5.

algorithm:;

begin integer t,;A,B,fnn; fnn:=gnn;

DE(simplified part,ZERO, DE(term,ONE,

DE(handle one,ONE, DE(handle two,ONE, 0))));

simplify sum;

comment finally we have to invert the order of the terms of the
simplified part again,

Remark: At this point the value of 'formula' is equal to ZERO ;

for t:=TYPE(V(simplified part),A,B) while t = sum do

begin ASSIGN(formula,S(A, V(formula))5 ASSIGN(simplified part,B) end;
SIMPLIFY:=ASSIGN(formula,S(V(simplified part) V(formula)));
ERASE(fnn)

end

end SIMPLIFY;

20

comment

8. Test of procedure 'SIMPLIFY'.

In the next following block, procedure SIMPLIFY is applied to two
formulae in the algebraic variables: 'a, b, ¢, d, e, f'. The available
storage space (fixed by 'max of C') is chosen rather small, to demonstrate
that procedure SIMPLIFY uses the storage space efficiently.

algorithm:;

begin integer a,b,c,d,e,f,A,B,C,D,E,F, f£1,f2, fnn;

procedure SIMPL(f); value f; integer f;
begin PR nlcr; PR string(fformula = }); OUTPUT(f); PR nler;
PR string(fnumber of available storage cells: 3);
PR int num(free space); :
SIMPLIFY(£);
PR nlcr; PR string(fsimplified formula = }); OUTPUT(f); PR nler;
PR string({number of available storage cells: });
PR int num(free space);
PR nler
end SIMPL;

PR nler; PR string({Results test of 'SIMPLIFY'}); ,

L:PR nler; PR nler; PR string(fmax of C = }); PR int num(max of C);
INITIALIZE; fnn:=gnnj
DE(a, AV(100,1),DE(b, AV(110,2),DE(c,AV(120,3),DE(d, AV(130,4),
DE(e, AV(140,5),DE(f,AV(150,6),DE(f1,ZERD,DE(f2,ZERG,0))))))));
A:=V(a); B:=V(b); C:=V(c); D:=V(d); E:=V(e); F:=V(f);
ASSIGN(f 1, s(InT Pow(s(P(P(P(C,A),D),B),P(P(INT NUM(-1),F),E)),4),

P(P(P(P(P(P(P(F,E),D),C),B),A), INT NUM(L)),
s(p(InT POW(F,2),INT POW(E,2)),
P(P(P(INT POW(D,2),INT POW(C,2)), INT POW(A,2)),

ASSIGN(f2, P(INT NUM(-1),
INT POW(S(P(P(P(INT POW(A,2), INT POW(B,2)),INT POW(C,2)),
INT POW(D,2)),
P(INT POW(E,2),INT POW(F,2))

3

n
S

)))
SIMPL(f1); SIMPL(f2)
ASSIGN(f1,S(V(£1),V(f2))); SIMPL(f1);

ERASE(fnn); PR nler; PR string(fend of example}); PR nler;
mex of C:=max of C — 13 goto L
end

we wa

end end

T T

&

21

Results test of 'SIMPLIFY!

max of C = 143
formula = (cxaxdxo+(—1)Xfxe)NerExexdxexbxaxtix(EA2xef2+dhexehexa\oxo)2)
82

number of available storage cells:

simplified formula = a/{\hxb)(\hxed\hxdj\h+6Xa/{\2xb,{\2xc4\2xd/f\2><e/\\2><f‘/t\2+e,{\hxf/{\l&

number of available storage cells:

formula = (- 1)X(a/[\2XbA\2Xc;f\2Xd/‘\2+e/l\2xf/{\2)/|\2

number of available storage cells:

simplified formula = (—1)xa/}\HXb/}\AXCﬁ\hde{\hﬂ—e)Xa)(\2xb4\2><czf\2><d}(\2><e4\2xf/}\2+
(=1)xeNsxEN:

number of available storage cells: T0

formula = afsxXoNixcNixdNi+Exahexpioxehexafoxehex e reix e+
(- 1)Xa/t\hxb)f\uxul\udi\M(—e)><a4\2xb4\2><c4\2><dzt\2><e4\2xf}(\2+(1) XeAbxEN:
number of available storage cells:
simplified formula = th/l\Exb/{\EXcMXd/f\EXe}{Qﬁ/]\Q
number of available storage cells:

end of example

max of C = 142

formula = (cxaxdxb+(—1)XExe) Ni+fxexaxexoxaxlx(fAxe2+rahexci\oxafoxpie)
number of available storage cells: 81-

no space left

T
exeXaXdxXbXexaxdxXbxexaxdxb
echadechXaxdbecxaxdxb

(-1)><a><c><d>< 3xeA3+3xahexbhoxchexafexelexehor
3XOAIXAIXANI e xE+aNrxpMexe AN
WL oy N S Ay
(-1) XboxdxaxexXbxdxaxeXexex{—1)xfxe+(—1)xbxdxaxexexfX(—1)xExex(exaxdxo+
(=1)xfxe)+(—1) xextx(~1 ><f><ex(c><a><d><b+(-1)><f><e) +ExexdxeXbxaxlix

(£EAexefo+apexchaxalex

O =0 T 0 @0+

ee

comment

Chapter 3 The simplification procedure 'POLYNOMIAL®.

In chapter 2 we have described a simplification procedure, modifying
an arbitrary formula into a certain standard form. There, we have
defined such a standard form called ‘simplified sum', but we have
noticed that this standard form easily could be changed, merely by
changing the procedure 'put before'.

In this chapter we give an example of such an other standard form
called 'polynomial', illustrating the connection with the system of
[3] and the possibility to use these simplification procedures in
that system.

Ts definition of a 'polynomial'.

A 'polynomial! is defined as a formula of the form (as used in

mathematical textbooks) :

a[n] + aln — 1] xx + aln —-2] x xp\2 + +a[0] X %jn ,
where the a[il's are called the 'coefficients' and x the 'main variable!
of the polynomial, The coefficients are defined to be 'numbers' or other
'polynomials'! with as main variable an algebraic variable, having a
lower hierarchy (see section 5 of chapter 2) than x.

A 'polynomial® is stored as a sum of terms, while the left operand of
each sum ‘is the product ' a[i] X xbi ' (the product of the coefficient
'al[i]' as left operand and the i'th integral power of the main variable
'xAi' as right operand).

If some coefficient 'a[i]' is equal to ZERD, the term ' ali] X xji !
igs interpreted by procedure ‘P' ag number ZERO, and terms equal to ZERO
are not stored by procedure 'S?!. These considerstions imply that a
number may be interpreted as a 'polynomial’ in any algebraic variable
with a lower hierarchy than all the variables which are used.

2. modification of procedure 'put before'.

Changing procedure ‘put before' is not sufficient to medify an arbitrary
formula into a 'polynomial', but may deliver an other standard form,
henceforward called 'semi—polynomial', which easily can be modified
into a 'polynomial! by another simplification procedure (actually
procedure 'POLYNOMIAL' of the next section).

A 'semi~polynomial® has the same structure as a ‘simplified sum® of
chapter 2, but the order of the terms (actually ‘simplified products!)
is determined now by the modified procedure ‘put before', reproduced below.
The order of the terms is chosen in such a way that terms, belonging to
the same coefficient (each of which containing as a factor the same
integral power of the main variable) are successive terms in the
'simplified part'. Terms belonging to the coefficient 'ai’ of the i'th
integral power of the main variable are 'put' before terms, belonging
to the coefficient 'aj' of the j'th integral power of the main variable,
if and only if i > j.

&

23

remark:

The order of the terms of the 'simplified part' is inverted at the end
of procedure *'SIMPLIFY' (see chapter 2). As this is the very inefficient
way in case we want to modify 'polynomials® into 'polynomials' (possibly
changing the hierarchy of the variables), we release this inversion in
procedure ‘put before', and change the piece of program reproduced in
section 7 of chapter 2 asccordingly.

algorithm:

Boolean procedure put before(F); value F; integer F;
begin integer dF,dTERM,h¥,hTERM,nl,n2,c1,c2,F1,TERM;
F1:=F; TERM:=V(term);
dF:=degree of(F1)coefficient:(c1);
ATERM: =degree of (TERM)coefficient: (c2);
L:hF:=hierarchy of(F1)degree:(nl);
hTERM: =hierarchy of (TERM)degree: (n2);
if hF { hTERM then put before:=hF > WIERM A hTERM % O V hF = O else
if nl § n2 Then put before:=nl < n2 else
begin dF:=dF — ni; JdTERM:=dTERM — n2;
Tif aF £ O A GTERM £ O then
begin F1:=RHS(F1); TERM: M: =RHS(TERM); goto L end else
if ar % then put before:=false else
if dTERM % 0 Then put before:=true else
begln 1nteger A,B; put before: —true,
" ASSIGN (term
P(INT NUM(c1 + c2),1f c2 = 1 then V{term) else
if TYPE(V(term),A,B) = product then B else ONE));
ASSIGN(simplified part,
if TYPE(V(simplified part),A,B) = sum then B else ZERQO)
end end end put before;

ACTUAL SIMPLIFICATION:

begin integer fnn; fnn:=gnn;

T DE(simplified part,ZERO, DE(term,ONE,
DE(handle one,ONE, DE(handle two,ONE, 0))));
simplify sum;

SIMPLIFY:=ASSIGN(formula, V(simplified part));
ERASE(fnn)
end

end SIMPLIFY;

ol

comment

3. simplification procedure 'POLYNOMIAL'.

The simplification procedure 'POLYNOMIAL' modifies a !semi~polynomial®
into a 'polynomial'. The properties of this procedure are discussed now.

The integral power of the main variable 'xij', as factor of the
termg belonging to the same coefficient 'aj' has to be 'divided out'.
For this reason we introduce an auxilisry formula name ‘'handle’,
to which we consecutively add terms, consisting of those factors,
which remain after omitting the factor 'x¢d' from the terms. -

This addition of terms to the 'handle' has inverted the order of the
terms. Having re—ordered the terms, the resulting formula is referred to
by the formula name ‘coefficient', introduced in procedure YPOLYNOMIAL®.
As this coefficient 'aj'! itself is not yet of the desired standard form
'polynomial' (actually ‘semi-polynomial'), we have to modify it into
a 'polynomial', by means of a recursive call of procedure 'POLYNOMIAL'.

After that, the product ' aj X x¢J ' has to be formed and added to the
'polynomial part'!, i.e. a third auxiliary formula name, consisting of
those terms ' ak X x\k ', which are treated already (this means k > j).

Next, the following terms (if any) of the 'semi-polynomial'’, belonging
to the next coefficient 'ai' (i < j and 1 > 0) are treated in the same
way. The last occuring coefficient 'al' is treated apart, because in
this case any integral power of the main variable fails as a factor of
these terms, so needs not to be ‘'divided out?,

Having treated all terms of the 'semi—-polynomial’, our desired
standard form has been left in the 'polynomisl part®. At last, this
result is assigned to the actual parameter of procedure ‘POLYNOMIAL', the
formula nsme 'semi polynomiall.

algorithm:;

procedure POLYNOMIAL(semi polynomial); value semi polynomial;
integer semi polynomial;
begin integer VAR, V1,V2,powl,pow2,c1,c2,R1,R2,REST,
1, A, B,polynomial part,coefficient,handle, fnn;
if TYPE(V(semi polynomial),A,B) = integral number then goto OUT;
Ton: =gnn; DE(polynomial part,ZERQ,DE(coefficient,ZERG,0));
VAR:=VAR of (FIRST TERM of(V(semi polynomial))
remaining terms: (B))
power: (pow1)
numerical factor of term:(c1)
remaining factors:(R1);
for V1:=VAR of (FIRST TERM of (V(semi polynomial),B),powl,c1,R1)
while V1 = VAR do
begin ASSIGN(coefficient,P(INT NUM(c1),R1)); ASSIGN(semi polynomial,B);
next term: V2:=VAR of (FIRST TERM of(B,REST),pow2,c2,R2);
if V1 = V2 A powl = pow2 then
begin ASSIGN(coefficient,S(P(INT NUM(c2),R2),V(coefficient)));
B:=ASSIGN(semi polynomial,REST); goto next term
end else

£

25

begin integer fnnil1; fonl:=gnn;
DE(handie, V(coefficient),0); ASSIGN(coefficient,ZEROD);
for t: JTYPE(V(handle) A, B) while t = sum do
begin ASSIGN(coeff1c1ent S(B,V(coefficient))); ASSIGN(handle,B) end;
ASSIGN(coefficient, S(V(handle) V(coefficient)));
ERASE(fnn1);
POLYNOMIAL(coefficient);
ASSIGN(polynomial part,
S(P(V(coefficient), INT POW(V1,powl)),V(polynomial part)))
end end;
POLYNOMIAL(semi polynomial);
ASSIGN(semi polynomial,S(V(semi polynomial),V(polynomial part)));
ERASE(fnn) ;
ouT:
end POLYNOMIAL;

comment
Next follow the auxiliary procedures of procedure *'POLYNOMIAL®.
algorithm:;

integer procedure FIRST TERM of (F,REST); value F; integer F,REST;
begln integer A,B:

Tif TYPE(F,A B) = sum then .

begin FIRST TERM of:=A; REST:=B end else

begin FIRST TERM of :=F; REST:=ZERU end
end FIRST TERM of; T

integer procedure VAR of (F, pow, num fact, rem fact), value F;
integer F, pow, num fact, rem fact;
bsgiaflnteger t,A,B,LA,RA, VAR; t:=TYPE(F, A,B);
if t = product then
begin if TYPE(A,IL,RA) = integral number then
begin VAR of:=VAR of (B, pow, num fact, rem fact);
num fact:=RA; goto QUT
end else :
begin VAR:=A; rem fact:=B; num fact:=1 end
end else -
if t = integral number then
begin VAR:=rem fact: =ONE; num fact:=B end else
if T + sum then :
begin VAR:=F; rem fact:=0ONE; num fact:=1 end else
ERROR(true, *error in VAR of.}); -
if TYPE(VAR, A, B) L integral power then
begin VAR of :=VAR; pow:=1 end else”
begin VAR of:=B; pow:=A endj
Qutr:

end VAR of;

26

comment

L, Test of procedure 'POLYNOMIAL®'.

algorithm:;

begin integer a,b,c,d,e,f,A,B,C,D,E,F,1, formula, fnn;

procedure POL(f,i,n,variable); value f,n; integer f,i,n,variable;
begin PR nler; PR string({hierarchny of variables: });
T for i:=1 step.1 until n do ‘
begin C2[V(variable)]:=1i; OUTPUT(variable); PR string(¥, }) end;
SIMPLIFY(f); POLYNOMIAL(T); ' -
PR nler; PR string({polynomial = $); OUTPUT(f); PR nlecr;
PR string({:number of available storage cells: :H,
PR int num(free space);
PR nlecr
end POL;

PR nler; PR string({Results test of "POLYNOMIAL' });

L:PR nler; PR nler; PR string(fmax of C = }); PR int num(max of C);
INTTIALIZE; fnn:=gnn;
DE(a, AV(100,0),DE(b, AV(110,0),DE(c, AV(120,0),DE(4, AV(130,0),
DE(e, AV(140,0),DE(F, AV(150,0) ,DE(formula, ZERD,0)))))));
A:=V(a); B:=V(b); C:=V(c); D:=V(d); E:=V(e); F:=V(f);
ASSIGN(formula,S(INT POW(S(P(P(P(C,A),D),B),P(F,E)),L),

p(InT NuM(-1), INT POW(S(P(P(C,E),A),P(P(D,B),F)),k4))

H
PR nler; PR string(fformula = }); OUTPUT(formula); PR nlcr;
PR string(fnumber of available storage cells: });PR int num(free space);

POL(formula,i,6, if i = 1 then a else if i = 2 then b else

if i = 3 then c else if 1 = 4 Then d else
if 1 =5 Then e else if i = 6 then f else 0);
PR nler; PR strin.g_ﬂiNext we change the hierarchy of the variables.:});
PR nlcr;
POL(formula,i,6, if i = 1 then f else if i = 2 then e else
if i =3 Then d else if i = 4 Then c else
if 1 = 5 Then b else if i = 6 then a else 0);
PR nler; PR string(401d hierarchy of variables sgain.});
PR nlcr;
POL(formula,i,6, if i = 1 then a else if i =2 then b else

if i = 3 Then c else if i = 4 Then 4 else
if 1 =5 then e else if i = 6 then f else 0);

ERASE(fnn); PR nlcr; PR string(dend of example}); PR nlcr;
max of Ci=max of C — 1; goto L
end

end end

7T

&

27

Results test of 'POLYNOMIAL'

max of C = 137

formula = (cxaxdxb+exe)Nu+(—1)x(cxexa+dxoxe)\

number of available storage cells: 104

hierarchy of variables: a, b, e, 4, e, T,

polynomial = fJ\uxe,{\u+(—1)xf/{\l;xdj\uxb/l\hﬂ1+>cf‘/l\3><e/f\3xdxcxb+(—h)xf4\3><ex 3%
eXbA3) Xa+((—L) xExeA3xAXCAIXD+UxEXeXANIXNIXON3) xaf\3+((—1)xeflx
cNE+HIAEXC AL) Xa Nt

number of available storage cells: 53
Next we change the hierarchy of the variables.

hierarchy of variebles: f, e, 4, ¢, b, a,

polynomial = afNixbALXeAxAN+(—1)XapixchixeA+ (bxaA3xoA3xeA3xah3xe+
(=L) xa\3XoxcA3xAXeN3) XE+((—U) xaxbA3xexdA3xe +HixaxbXexdxeN3) XEN3+
((=1) xoNExAN-reNE) XEN '

number of avallable storage cells: 53
01d hierarchy of variables again.

hierarchy of variables: a, b, c, 4, e, T,

polynomisl = fAkxefd+(—1)XE uxdj\umt\u+(u><:f)|\3xe4\3xd><c><b+(—u) XEAIXeXAN3X
exA3) Xa+ ((L) XExeN3xAxcA3XD+ixExexAN3XCAIXON3) xah3+((=1) xefx
cA+ANEXCNEXONE) xa Nt

number of available storage cells: 53

end of example

max of C = 136

formula = (cxaxdxb+fxe)Ni+(—1)X(cxexa+dxoxt) N+
number of available storage cells: 103
hierarchy of variables: a, b, ¢, d, e, £,

no space left

f
dXbXcXeXaXeXeXaxXexexXa,
dXbXeXexXaxXeXexaxeXeXa

1

aNsoNixe NN (=1) xafuxeNixeN-+1xaA3XNIxeA3XAN3XexE+(~3) Xaf\3XbxeA3X

dxe3xf+3 xehexaNexeA2XENC+(—1) xaxXbA3xexaNIxeXEN3 +ixax
bXeXAXeNIXEN3+eNIXEN :

(—1) xaxexexaxeXCXEXbXAXAXbXE+(—1)XaxeXexEXOXAXAXbXEX(exexa+dXbXE) +(—1)XEX
XAXAXOXEX(exexa+dxXbxE) A2

O=-=P T OO H

28

begin comment

Chapter 4 Application of procedure 'SIMPLIFY'.

As a non—trivial example for procedure 'SIMPLIFY' we have chosen the
computation of a formula determinant, i.e. the determinant of a matrix
of formulae.

The problem will be, to prove the next equality:

0 0 0 22+b3 al+b2 —a2-b2
Q 0 al+b3 —a3-b3 O a3+b2
0 al1+b3 0 0 —2a1-b1 a2+b1
a2+b3 —a3-b3 0 0 a3+b1 0 =
al+b2 0 —al-=b1 a3+b1 0 0

—a2-b2 a3+b2 a2+bl 0 0 0

—(a1xb1x(a2+b3—-a3-b2)+a2xbeX(a3+b1~a1-b3)+a3xb3x(al+b2~a2-b1) JA2 .

To evaluate a determinant we use the following procedure 'SOLDET', whose
first parameter is an integral procedure (with two parameters 'i' and 'j'),
delivering the values of the elements of the matrix (A(i,j), 1 <1< n and
1< j<n), and whose second parameter is the size (n) of the (‘square)
matrix.

algorithm: ;

integer procedure SOLDET(A,n); value n; integer procedure A; integer n;
begin integer column;
integer procedure cofactor(iO,j,colj); value i0; integer i0,j,colj;
begin integer fnn,result, jO,j1,auxj; Boolean even,
integer procedure coljl;
begin integer col; Jj:=j1; col:=colj;
if col > JO then begin j:=j1+1; col:=col]j end;
colJ1 =col
end coljl;
Fnn: =gnn; DE(result,ZERD,0); even: =true;
for auxj:=1 step 1 until n — i0 + 1 do
begln Je=auxj; JO:=colj; even:= 7] even;
T cofactor:=ASSIGN(result, S(V(resu.lt),
P(if even then MINONE else ONE,
PTla(i0, jOJ, if i0 = n then ONE else
cofactor(lo + 1, 31, coLg1) MV))

end;
ERASE(fnn)
end cofactor;
SOLDET:=cofactor(1, column, column)
end SOLDET;

60

29

comment

Actually the elements of our matrix are delivered by the procedure

'DET', so computation of the determinant of this matrix and assignation
to the formula name 'determinant' is caused by the call:

DE(determinant, SOLDET(DET,6), O)

algorithm:;

integer procedure DET(i,J); value i,J; integer i,J;

DET:=if 1 > j ohen DET(j,i) else

if 1 = j then ZERQ else

If 1 =1 Then (if j = [then S(V(a2),V(b3)) else

- if 3 =5 then s(v(a1),v(p2)) else
iITj=6% P(MINDN’E s(v(a2),V(1v2)))
else ZERD) else

if i = 2 then (if J = 3 then 35(V(a1),V(b3)) else

— if j = 4 Then P(MINONE,S(V(a3},V(b3))) else
if 3 =6 then S(V(a3) v(©v2)) -
else ZERO

if 1 =3 then (If J =5 'then P(MINONE s(v(a1),v(b1))) else

- if j = 6 then s(V(a2),V(b1)) '
else ZERO) else

if 1 = 4 then (If j = 5 then 5(V(a3),V(b1))

- else ZERD}

else ZERO; .

integer al,a2,a3,bl,b2,b3, minone, MINONE, determinant,formuls,fnn;

INITIALIZE; fnn:=gnn; DE(minone, INT NUM(—1),0); MINONE:=V(minone);

DE(a1,Av(101,1), DE(a2,Av(102,2), DE(a3,AV(103 3), 0)));

DE(b1,Av(111,4), DE(b2,AV(112,5), DE(b3,AV(113,6), 0)));

DE(determ:Lnan‘t SOLDET(DET, 6), DE(formula,

INT POW(S(S(P(P(V(a1),V(b1)),s(s(V(a2),V(b3)),P(MINONE,S(V(a3),V(b2))))

P(P(V(a2),v(1v2)),5(s(v(a3),V(b1)), P(MINONE, S(V(a1),V(13))))))
E)P(Pé\)/’§a3),V(b3)),S(S(V(aﬂ),V(bE)),P(MINUNE,S(V(aE),V(bT))))))
3 Ed

PR nler; PR string(fresults simplification of determinant }); PR nlecr;

PR nlcr; PR nlcr; PR string(dmex of C = });PR int num(max of C);PR nlcr;

PR nlcr; PR nler; PR string({determinant = }); OUTPUT(determinant);

PR nlcr; PR nler; PR string({determinant (simplified) =3); PR nlcr;

SIMPLIFY(determinant); OUTPUT(determinant);

PR nlcr; PR nlcr; PR string(fformula = $); OUTPUT(formula);

PR nlcr; PR nler; PR string({formula (simplified) = $); PR nlcr;

SIMPLIFY(formula); OUTPUT(formula);

PR nler; PR nler; PR string(fdeterminant + formula = });

ASSIGN(formula, S(V(determinant),V(formula)));

SIMPLIFY(formula); OUTPUT(formula) F

ERASE(fmn); PR nler; PR nler; PR string(fend of example})

)s
2
2

end

end

00

end

&

30

results simplification of determinant
max of C = 8000

determinant = (—1)Xx(a2+b3)x((a1+b3)x(—1)x(a2+b1)Xx(a3+b1)x(a1+b2)x(a3+b2)+
(a3+02)x((—=1)x(a1+b3)x(a3+b1)x((a1+b2)x(a2+b1) +(~1)x(=1)x(a1+b1)x
(=1)x(22+02))+(=1)X(=1)x(a1+01)x((22+b3)x(—=1)X(~1)X(a1+b1)x(a3+b2) +
(=1)x(=1)x(a3+b3)x((a1+b2)x(a2+b1) +(~1)X(=1)x(a1+b1)x(~1)x(a2+b2)
1))+ (a1+02)x((a1+b3)x(~1)x(a2+b1)x((a2+b3)x(~1)X(a3+b1)x(a3+b2) +
(=1)x(=1)x(a3+13)x(~=1)x(a3+b1)x(~1)x(a2+12)) +(~1)x(~1)x(a3+b3)x
(=1)x(22+101)x((22+b3)X(~=1)x(=1)x(a1+b1)x(a3+02)+(—1)x(=1)x(a3+b3)X
((a1+12)x(a2+01) +(=1)x(=1)x(a1+b1)X(~1)x(a2+b2))) +(a3+b2) X (—1)X
(a1+03)x(a2+03)x(=1)x(a3+b1)x(a2+b1))+
(=1)x(=1)x(a2+02)x((a1+03)x((—=1)x(a1+b3)x(a3+b1)X(~1)x(a3+b1)X
(=1)x(a2+02) +(=1)x(=1)x(a1+b1)X((a2+b3)x(=1)x(a3+b1)x(a3+b2) +(—1)x
(=1)x(a3+13)x{—1)x(a3+b1)x(=1)x(a2+b2)))+(—=1)x(~1)x(a3+b3)x((~1)x
(a1+03)x(a3+b1)x((a1+b2)x(a2+b1)+(~1)x(~1)x(a1+b1)x(=1)X(a2+b2))+
(=1)x(=1)x(21+b1)x((22+b3)x(=1)x(=1)x(a1+b1)x(a3+b2) +(=1)X(=1)X
(a3+b3)x((a1+b2)x(a2+b1)+(=1)X(~1)x(a1+b1)x(-1)x(a2+b2) }) })

determinant (simplified) =
(—1)xa1\2xa2h2xb 1\2+2xa 1A2xa2h\Xb 1X02+ (—1) Xa 1 A2xa2\2xXoNa+
2xa 1 \2xa2xa3xb1A2+(~2)xa 1\2xa2xa3xb1Xb2+(—2) Xa 1 \2xa2xa3Xb 1Xb3+
Oxa 1\2xa2xa3xXbexb3+2xa1A2xa2xb 1A2Xb2+(—2) Xa1A2xa2xb 1\2xb3+
(—2) xa 1/2xa2xb 1xbeA2+2Xa 1 A2xa2xb 1X02xb3+(—1) Xa 1 Aexa3N\exb 12+
2xa 1 \exa3Nexb1X03+(—1) a1 \2xa3\2xb 32+ (—2) Xa 1 Aexa3 xb 1A2x02+
2xa1\2xa3xb1 \2Xb3+2xa 1 A2xa3xDb 1X02Xb3 +(—2) Xa1A\2xa3xb Ixb3h2+
(=1)xa 1 \2xp1A2xp2p2 +2xa 1A2XD 1 A2XbEXD3+(—1) Xa 1 A2Xb 12X 032+
(—2) xa1xa2pexa3xb1Xb2+2xal Xxa2A2xa3xb1Xb3+2xa 1 xa2\2xa3xbeA2+
(—2) xa 1xa22xa3xbexXb3+(—2) Xa 1 Xa2N\2xXb 1A2Xb2+2Xa1Xa 22X 1Xb2\2-+
2Xa,1X82N2Xb 1 Xb2X03+(—2) X8, 1xa2N2Xb2A2Xb3+2Xa 1 Xa2Xa3N2Xb 1 Xb2+
(—2) xa1xa2xa3\2xb1xb3+(—2) Xa.1 xa2xa3\2Xb2Xb3+2xa 1 xa2xa3\xXb3A2+
2Xa1Xa2xa3Xb IN2Xb2+2Xa 1Xa2xa3Xb 1 \2Xb3+2Xa 1Xa2xa 3xb 1Xb2N2+
(=12)xa1xa2xa3xb 1Xb2xXb3+2xa.1 Xa2xa3xXb 1Xb3N2+2xa 1Xa2xa3Xb2N2Xb3 +
2Xa1xa2Xa3Xb2Xb3N2+2xa1 Xa2xb 1AXb2N2+(—2) Xa 1Xa2Xb 1A2Xb2Xb3 +
(—2) xa1xa2xb 1Xb2A2Xb3+2xa 1 xa2Xb 1Xb2Xb3N2+(~2) xa 1xa3A2Xb 1A2Xb3+
2xa1xa3\2xb1xb2xb3+2xa 1Xa3 \2xXb 1Xb3A2+(—2) Xa 1 xa3\2xbexb3N+
(—2)xa 1Xa3Xb1N\2Xb2XDb3+2xa 1 Xa3xb 1A2Xb3N2+2Xa 1xa3 X0 1 Xb2N2Xb3+
(~2)xa 1xa3x01x02xb3A2+(—1) xa2\2xa3Nexbe2 +2xa2h2xa3 NoXb2xb3 +
(~1) xa2h2xa3p2xo3Ne+(—2) xa2hoxa3xb 1Xb2p2+2xa2\2xa3Xb 1Xb2Xb3+
2 Xa.3XbN2X03+(~2) Xa3XbEX03N2+(—1) xa2A2xb 1 \expp-+
2 Xb1Xb 3+(—1)xa2h2xuNexb3p2+2xa2xa3\2xb1 Xb2xXb3+
(—2) xa2xa3\2xb 1032+ (~2) Xa2xa3NxbeA2X 03 +2xa2xa3 \eXbexXbIN+
2xa2xa3xb 1A2Xb2Xb3+(~2) Xa2xa3xXb1Xb b3+(—2)Xa2xa3xb 1Xb2Xb3N2+
OXa2xa3Xb 302+(—1) Xa3\2Xb 1 A2Xb3N2+2xa3N2Xb 1Xb2Xb3N2+
(=1)xa3hexbeiexb3ne

31

formula = (a1xbi1x(a2+b3+(—1)x(a3+b2))+a2xbex(a3+b1+(—1)x(a1+b3))+
a3xb3x{a1+b2+(~1)x(a2+b1)))

formula (simplified) =
alj\ex 142+(—2)xa 1 \2xa2h2xb 1 xb2+a1 \exacexvpe+
(—2) xa1)2xa2xa3Xb142+2Xa 1 \2Xa2xa3Xb 1 Xb2+2xa 1 \2xa2xa3xb1Xb3+
(—2) xa1\2xa2xa3Xb2x03 +(~2) Xa 1\2Xa2Xb 1 \2Xb2+2xa 1 A2Xa2Xb 1 \2Xb3+
2Xa,1\2xa2xb 1X02 N2+ (—2) Xa 1/\2xa2xb 1Xb2xb3+a.1A2xa3\2xb 12+
(—2)xa1/2xa3h2Xb 1Xb3+a1\2xa3A2Xb3N2+2xa 1 \2xa3x0 1 \2Xo2-+
(—2)xa1h2xa3xb1A2X03+(—2) xa 3Xb 1Xb2Xb3+2Xa 1A2Xa3Xb1Xb3N2+
a1h2xb pexpepe+(—2) xa 1 h2xb1A2xb2x03+a1 \2xb 1A2Xb3N+
2xal Xa.3Xb1Xb2+(—2)Xa 1Xa2\2xa3Xb 1X03+(—2)Xa 1 xa2h2xa3xba2+
2xa Xa3Xb2X03+2xa1X82N2xX0 1 \2Xb2+(—2) Xa.1xa2\2xb 1 X2+
(—2)xa1x TXb2X03+2Xa 1X 2Nexp3+(—2)xa 1xa2xa3N2xb 1 X02+
2Xa.1Xa2xa3\2xXb1Xb3+2xa1Xa2xa3N2XboXb3+(~2) Xa. 1Xa2xa3A2xXb 32+
(—2)xa1xa2xa3xb 1A2X02+(~2) Xa1xa2Xa3Xb 1A2Xb3+(—2) Xa 1 Xa2xa3Xb1Xb2o+
12xa1xa2xa3Xb 1Xb2xb3+(—2) Xa1Xa2xa3xb 1Xb3p2+(—2) Xa 1 xa2Xxa3Xb2A2Xb3+
(—2)><a1><a2><a3xb2><bs/§\2+(—2)xa1><a2><b14\2><b2}\2+2xa1><a2xb1 2Xb3+
2Xa,1X82Xb1Xb2A2Xb3+(—2) Xa1Xa2xb 1 Xb2Xb32+2xa 1 Xa3N2Xb 1\2Xb3+
(—2)xa1xa3\2xXb1xXb2Xb3+(~2) xa 1xa3\xb 1Xb3N2+2xa 1Xa3N2Xb2xb 32+
2xa1xa3xb1 2xb3+({—2)xa1xa3xb1 32+ (~2)xa1xa3xb IXb2N2Xb3+
2xa1xa3xb1xb2xXb3N2+a2exa3\expepe+ (~2) xa2h2xa3N2xo2xo3 +
a2\2xa3N2xp3A2+2xa2hoxa3xb 1Xb2N2+(—2) xa2N2xa3Xb 1Xb2Xb3+
(-2) 83Xb22Xb3+2xa2N2xa3xbexb3N2+a2hexXb 1 N2X 2N+
(—2)xa2\2xb1xb 3+a2 XD N2 XO3N2+(—2) Xa2xa3N2XD 1 Xb2X03 +
2xa2Xa3 TXD3N2+2Xa2Xa3N2Xb2A2XD3+(~2) Xa.2xa3N2Xb2Xb3 N2+
(—2) xa2xa3xXb1N2Xb2Xb3+2Xa2xa3xb IXb2N2XDb3 +2Xa2xa3xXb 1 Xb2X03 N2+
(~2)xa2xa3xboA2x03M2+a3N2XD IN2XD3N+ (2) Xa3A2XD 1 Xb2xb 3N+
a3h2xb2p\2xb

determinant + formula = O

end of example

References

[1] R.P. van de Riet, Formula manipulation in ALGOL 60, part 1,
Mathematical Centre Tracts nr. 17,
Mathematisch Centrum.

[2] R.P. van de Riet, Garbage collection methods for ABC in ALGOL 60,
TW report 110, Mathematisch Centrum.

[3] W.P.* de Roever, An exact rational function system with garbage
collection in ALGOL 60,
MR 119/70 september, Mathematisch Centrum.

[L] D. Grune, Handleiding Milli-systeem voor de EL X8,
IR 1.1, april 1971, Mathemstisch Centrum.

