
REKENAFDEL I NG

G. TEN VELDEN

stichting

mathematisch

centrum

RA

~
MC

MR 136/72 AUGUST

SIMPLIFICATION PROCEDURES FOR ABC ALGOL

2e boerhaavestraat 49 amsterdam

B!3UOTHEEK MATHEMATISfi:H CENTRUM
AMSTERDAM

PJu..nted a;t .the Ma.:thema.:ti.c.a.l Cent.!te, 49, 2e BoeJLhaa.veJ.dJz.aat, Am.o.teJLdam.

The Ma.thematic.al CentJte, 6ou.nded .the 11-.th 06 Feb)(,u.aJLy 1946, MJ a. non
p)(,o6U .lMti..tution a..lm.lng a;t .the p)(,omo:Uon 06 pull.e ma.:thema.:ti.c.-6 a.nd Lt6
a.pp-Uc.a.:ti.on-6. I.t MJ .opon-60)(,ed by .the Ne.theJz1..a.nd6 GoveJLnment .tMou.gh .the
Ne.thvci.a.nd6 0)(,ga.n.lza.:ti.on 60)(, .the Adva.nc.ement 06 Pull.e Re.oeMc.h (Z.W.O),
by :the Mu.n.lc..lpa.lUy 06 Am.o.teJLdam, by .the Un.lveMUy 06 Am.o:te,)(,dam, by
:the f)(,ee Un.lveMUy a.t Am-6.te,)(,dam, a.nd by .lnd111.d1ue.o.

Acknowledgement

The author is grateful to R.P. van de Riet for his stimulating
remarks and his critically reading of the preliminary text. This
led to several improvements concerning the clearness of the
ALGOL 60 program, and to a more exact definition of the notions,
used in the accompanying comments.

Table of contents.

Introduction.
page

1

Chapter 1 Recapitulation of the garbage collection system 2
garbage and non garbage formulae. 2
the procedures DE and ERASE. 2
the procedures ASSIGN and V. 2
the procedures INT NUM, AV, S, P and INT POW. 3
the procedures LHS, RHS and TYPE. 3
the output procedures. 3
~~am. 4

Chapter 2 The simplification procedure 'SIMPLIFY'. 8
1. definitions. 8
2. preparation. 9
3. simplification of a term. 10

3.1. stratification of a term. 10
3.2. simplification of a stratified product. 13

4. determination of order of proper factors. 14
5. simplification of a sum of terms. 15
6. determination of place in the simplified part. 16
7. the actual simplification of an arbitrary formula. 19
8. test of procedure I SIMPLIFY• • 20
results test of 'SIMPLIFY'. 21

Chapter 3 The simplification procedure 'POLYNOMIAL'. 22
1. definition of a 'polynomial'. 22
2. modification of procedure 'put before'. 22
3. simplification procedure 'POLYNOMIAL'. 24
4. test of procedure 'POLYNOMIAL'. 26
results test of 'POLYNOMIAL'. 27

Chapter 4 Application of procedure 'SIMPLIFY'. 28
results simplification of determinant. 30

References. 31

begin comment

Simplification procedures for ABC .ALGOL.

Introduction.

Simplification procedures for formula manipulation have been described
in section 2.1 of [1] for a system without automatic garbage collection.
There, a second internal representation of a formula has been introduced,
using two auxiliary array's 'a' and 'L'.

The purpose of this report is to describe simplification procedures
for the garbage collection formula manipulation system with a free list
technique, to be used as a basis for the new programming language called
'ABC ALGOL' ('ABC' standing for: 'Algebraische Bewerkingen met behulp van
de Computer', dutch for: 1 Algebraic Operations by means of the Computer').

For storing formulae, this system, described in [2], makes use of one
array 'C' (replaced in this report by the linear arrays C1, C2 and Ctype)
only, which is under the supervision of the garbage collection process.

For considerations concerning the need and realisation of automatic
garbage collection it suffices to refer to [2].

The special purpose of this report is to perform the simplification of
arbitrary formulae, using the storage space for formulae efficiently,
possibly at the cost of time efficiency. We want to avoid the situation
that two different representations of the same formula have been stored at
the same time, one before and one af~er the simplification, because we are
interested in the simplified formula only.

It will become evident that we have to follow a simplification strategy,
quite different from the strategy of [1], but we want the result to be
the same, i.e. the form of the resulting formula bas to be a standard
form, satisfying several conditions. In chapter 2 ~he standard form
'simplified sum' is described, satisfying equivalent conditions as
described in section 2 of [1]. (Exponential functions are not considered.)

In chapter 3 another standard form (called I polynomial 1) is introduced,
illustrating the suitability of these simplification procedures in a
system like [3].

2

Chapter 1 -Recapitulation of the garbage collection system.

In this chapter the system of [2], using the free list technique, is
described, e4tended with the two formula types 'integral number 8 and
'integral power', and changed at several places, to be compared with the
system of [3]. Next follows a brief description of those procedures of
the system, used in the simplification process, which have to be known
by the uninitiated reader, who is not interested in the particular
garbage collection process. For understanding of the simplification
process, described in the chapters 2 and 3, he may confine himself to
this description.

Garbage and non - garbage formulae.

Since the garbage collector has to determine which formulae may be
considered as 'garbage', for 1 non-garbage 8 formulae a linked list of
so-called names is introduced, growing and shrinking according to a
stack mechanism, which is consulted by the garbage collector whenever
garbage has to be collected. This stack mechanism involves a block
structure and a scope of a name 'f', which do not have to coincide
with the block structure of°the -ALGOL 60- program and the scope of
the -ALGOL 60- variable 'f'.

If the formula manipulator wants to know how much free space is
available, i.e. the space containing the free list and the garbage
formulae, he can call the auxiliary procedure 'free space', delivering
the number of available storage cells for formulae.

The procedures DE and ERASE.

Introduction and erasure of names is organised in a block structure.
The beginning of each block contains the declaration of an integer
1 fnn' • The first statement of the block is: fnn: =gnn, where 'gnn 8

serves as a formula stack pointer, indicating the number of names
introduced. The final statement of the block is: ERASE(fnn), which
erases all names introduced in the block.

The introduction of a name 1f' is performed through the statement:
DE(f,F,next), where 'F' is the initial value of 'f 1 and 'next' is
either O (ZERO) or DE(f1,F1,next1), for introducing another name 'f1 1

with initial value 'F1', etc.

The procedures ASSIGN and V.

Given a name f, we can (only within the scope of f of course):
1. make f the name of the formula F (a value), performed by procedure

ASSIGN: ASSIGN(f, F),
2. ask for the formula F (the value), whose name is f, performed by the

procedure V: V(f), delivering F.

3

The procedures INT NUM, AV, s, P and INT row.

To construct formulae of the types 'integral number', 'algebraic
variable', • sum 1 , 'product' or 'integral power 1 , we have to write the
formulae in Polish prefix, i.e. in functional notation. Here we use the
function designators INT NUM, AV, S, P and INT POW, respectively, for
those procedures which hE;l.ve to construct the internal representation of
the formulae of the above mentioned types.

As the evaluation of an argument of one of these functions could give
rise to a garbage collection, this argument is interpreted by the garbage
collector as non-garbage, and the arguments which are evaluated already
are connected temporarily to the name list. Evaluating a formula
expression, this formula is automatically saved during garbage collection.

The procedures IJIS, RIIS and TYPE.

Calling these procedures with a value as (first) parameter, the
components of the formula, i.e. the quantities left-hand-side and
right-hand-side as well as its type are retrieved.(For the internal
representation of formulae we refer to section 1 of chapter 2).

A call TYPE(F,A,B), moreover, delivers the left and right component
of the formula F, assigned to the parameters A and B respectively.

The output procedures.

The output is performed by a line-printer and a tape punch together.
The basic procedures are:
PR string(s) for printing and punching a string 's',
PR nlcr for printing and punching a 'new line carriage return symbol',
PR int num(a) for printing and punching an integral number 'a',
PR sym(a) for printing and punching a symbol 'a',
(N.B. for the internal representation of symbols we refer to [4]),
The main output procedure is procedure 'OUTPUT' for printing and punching

a formula. The call OUTPur(f) causes the printing and punching of the
value of the ~ f, without superfluous parentheses.

4

program:;

integer free cell, last free cell, last name, max of C, snn, gnn,
integral number, algebraic variable, sum, product, integral power,
one, zero, ONE, ZERO;

max of C : = read;

begin integer array C1, C2, Ctype[1:max of C];
Boolean array traced[1:ma.x of C];

integer procedure STORE(A,t,B); value A,t,B; integer A,t,B;
begin integer k; k:=C1[free cell];

C1[free cell]:=A; C2[free cell]:=B; Ctype[free cell]:=t;
STORE:=free cell;
free cell:=if free cell t last free cell then k else
COLIECT GARBAGE(free cell)
~ STORE;

integer procedure TYPE(F,A,B); value F; integer F,AlB;
begin TYPE:=if F > 0 then Ctype[F] else ERROR(true,ferror

A:=C1[F]; B:=C2[F] -- -- -
~ TYPE;

integer procedure LHS(F); value F; integer F; LHS:=C1[F];

integer procedure RHS(F); value F; integer F; RHS:=C2[F];

integer procedure SAVE(F); value F; integer F;

in TYPE});

begin integer k; ERROR(F < o,ferror in SAVE:j,);
k:=C1[free cell]; C1[free cell]:=F; C2[free celi]:=last name;
SAVE:=last name:=free cell; gnn:=gnn + 1;
free cell:=if free cell t last free cell then k else
COLIECT GARBAGE(O)
~ SAVE;

integer procedure DE(f,F,next); integer f,F,next;
begin f:= - SAVE(F); DE:=next end;

procedure ERASE(n); value n; integer n;
for n:=n while n < gnn do
"5'egin join to free space{"last name); gnn:=gnn - 1;

last name:=C2[last name]; ERROR(gnn < snn,terror in ERASE})
end ERASE;

procedure join to free space(k); value k; integer k;
C1[last free cell]:=last free cell:=k;

5

integer procedure ASSIGN(f,F); value f,F; integer f,F;
ASSIGN:=C1[- f]:=if f < 0 A f > - max of C then F else
ERROR(~,ferrorin ASSIGN:f>);-

integer procedure V(f); value f; integer f;
V:=if f < 0 ~ C1[- f] else ERROR(true,{error in v,f.);

integer procedure COIJ..ECT GARBAGE(st); value st; integer st;
begin integer i; last free cell:=O;

if st t O then TRACE(st);
i: =last name; for i: =i while i ~ 0 do
begin TRACE(Clffi); traced[i]:=true;i:=C2[i] end;
furi:=1 step 1 until max of C a:o-
if 7 traced[i] then -
begin if last free cell r O then join to free space(i) else
~Ll..ECT GARBAGE:=last free'cell:=i
end else traced[i]:=false;
ERROR(last free cell= o,tno space left})

end COLLECT GARBAGE;

procedure TRACE(F); value F; integer F;
if 7 traced[F] then
begin integer t,A,B; t:=TYPE(F,A,B);

if t = sum Vt= product then
begin TRACE(A); TRACE(B) end else
if t = integral power then TRACE(B);
traced[F]:=true --

end TRACE; --

integer procedure free space;
begin integer fc,n;

for free cell:=free cell while free cell r last free cell do AV(0,100);
comment The next statement causes a garbage-collection;
AV(0,100); n:=1; fc:=free cell;
for fc:=C1[fc] while fc ~ last free cell do n:=n + 1;
free space:=n + 1

end free space;

integer procedure INT NUM(i); value i; integer i;
INT NUM:=if i = 0 then ZERO else if i = 1 then ONE else

illORE(O, integral number-,-i);

integer procedure AV(l,r); value l,r; integer l,r;
AV:=STORE(l, algebraic variable, r);

6

integer procedure S(A,B); integer A,B;
begin integer A1,B1,fnn; fnn:=gnn;

A1:=A; SAVE(A1); B1:=B; ERASE(fnn);
S:=if A1 = ZERO then B1 else if B1 = ZERO then A1 else

STORE(A1, sum, B1) - -
ends;

integer procedure P(A,B); integer A,B;
begin integer A1,B1,fnn; fnn:=gnn;

A1:=A; SAVE(A1); B1:=B; ERASE(fnn);
P:=if A1 = ZERO V B1 = ZERO then ZERO else

if Al = ONE then B1 else if B1 = ONE then A1 else
SI'ORE(A1, product, B,Y- -

end P;

integer procedure INT POW(B,exp); value B,exp; integer B,exp;
INT POW: =if B = ZERO then ZERO else if exp = 1 then B else

if B = ONE V exp = 0 thenONE else
STORE (exp, integral power, B); -

procedure INITIALIZE;
begin integer i; free cell:=1; last free cell:=max of C;

for i:=free cell step 1 until last free cell do
begin C1[i]:=i + 1; traced[i]:=false end; -
Iast'" name: =0; -
integral number:=1; algebraic variable:=2;
sum:=3; product:=4; integral power:=5;
DE(zero,STORE(O,integral number,O),
DE(one,STORE(O,integral number,1),0));
ZERO:=V(zero); ONE:=V(one); snn:=gnn

end INITIALIZE,;

integer procedure ERROR(b,s); Boolean b; strings;
if b then
begin7fil.u'fOR:=1; PR nlcr; PR string(s); PR nlcr;

for last name:=last name while last name f Odo
begin PR nlcr; OUTPur(- last name); last name:=C2[1ast name] end;
EXIT

end ERROR;

7

procedure OUI'PUI'(f); value f; integer f;
begin procedure OP(F,type); value F,type; integer F,type;

begin integer t,A,B;
procedure LBR; if t < t.ype ~ PR string({(});
procedure RBR; if t < type then PR string(f):l,);
t:=TYPE(F,A,B);- --
if t = integral number then
begin type:=if B < 0 thent + 1 else t; LBR; PR int num(B); RBR end
else if t = algebraic'"'"iiariable ti:iei:1"
begin-integer 1, d; l:=A : 10; d:=A - 1X10; PR sym(l);

if d > 0 then PRsym(d) -
endelse --
if t = integral power then
begin OP(B,t); PR stri~); PR int num(A) end else
begin LBR; OP(A, t); if t = sum then PR string Tfi==t Terse

if t = product thenPR string"'(txf) else --
begin PR string "{Terror in OUI'PUI'}) ; EXIT end;
OP(B,t); RBR -

end
endOP;
OP{V(f),o)
~ □urPur;

procedure PR string(s); strings;
begin PRINTTEXT(s); PUTEXT(s} end;
$rocedure PR nlcr; PR string(f- -

) ; .

procedure PR int num(a); value a; integer a;
begin integer b; if a< 0 then begin PR string({-}); a:=--a end;

if a< 9 then PRsym(a) else ,
begin-b: =a:10; a:=a - b><10; PR int num(b); PR sym(a) end

end PR int num;
procedure PR sym(a); value a; integer a;
begin PRSYM(a); PUSYM(a) ~;

8

comment

Chapter 2 The simplification procedure 'SIMPLIFY'.

algorithm:;

integer procedure SIMPLIFY(formula); value formula; integer formula;
begin comment

1. definitions •

.An important part of the simplification process consists of changing
the tree, which represents the formula to be simplified. To indicate
these different tr~e structures, we shall use syntactic rules with a
special notation: (<lhs>,<type>,<rhs>), indicating the internal
representation of a formula.

The correspondence·between a mathematical formula and its internal
representation needs same attention. The left-hand-side and right-hand
side quantities of the dyadic types 'sum' and 'product' denote the left
and right operand of the operator of that type. In case of an 'integral
power', the base of the integral power is stored as right-hand-side
quantity and the integral exponent is stored as left-hand-side quantity
(see def. 1.3).

A 'number• and an 'algebraic variable' are stored with their necessary
information (i.e. the numerical value of a number or the hierarchy number
of an algebraic variable as right-hand-side quantity, and the output code
of an algebraic variable as left-hand-side quantity, see also def. 1.11
and def. 1.12).

1.1 <formula>::=<term>l(<formula>,<sum indication>,<formula>)
1.2 <term>::=<factor>l(<formula>,<product indication>,<formula>)
1.3 <factor>::=<basic factor>l(<exponent>,<int pow indication>,<formula>)
1.4 <basic factor>::=<integral nurnber>l<algebraic variable>

1.5 <prepared sum>::=<term>l(<term>,<sum indication>,<formula>)
1.6 <prepared product>::=<factor>l

(<factor>,<product indication>,<formula>)

1.7 <stratified sum>::=<simplified product>!
(<simplified product>,<sum indication>,<stratified sum>)

1.8 <stratified product>::=<proper factor>!
(<proper factor>,<product indication>,<stratified product>)

1.9 <proper term>::=<proper factor>!
(<proper term>,<product indication>,<proper term>)

1.10 <proper factor>::=<basic factor>!
(<exponent>,<int pow indication>,<basic factor>)

9

1.11 <integral number>::=(O,<int num indication>,<integer>)
1.12 <algebraic variable>::=(<output code>,<alg var indication>,

<hierarchy number>)

1.13 <hierarchy number>::=<integer> ('positive')
1.14 <output code>::=<integer> ('internal representation of symbols')
1.15 <exponent>::=<integer> ('non-negative')

1. 16 <int num indication>:: =1
1.17 <alg var indication>::=2
1.18 <sum indication>::=3
1.19 <product indication>::=4
1.20 <int pow indication>::=5

The definitions of 'simplified sum' and 'simplified product' are given in
the sections 5 and 3.2, respectively.

2. Preparation.

When we have to simplify a formula, which is generally a sum of terms,
we are interested at first in the first term of that formula. Moreover, we
want to know the sum of the remaining terms explicitly. For that reason we
change the formula into the sum of its first term and the remaining terms.
Mathematically this means application of the associative law for the adding
operator. For instance:

(x1 + yl) + (x2 + y2) = xl + (y1 + fx2 + y2))
The latter formula is called a 'prepared sum' (def. 1.5).
Besides this associative law also an associative law is available for the
multiplying operator. Application of the latter changes a formula into
a prepared product (def. 1.6).
'Preparation I can be applj_ed to formulae with an arbitrary tree structure
(see def. 1 • 1) •

algoritbm:;

procedure prepare(type,formula);value type,formula; integer type,formula;
begin integer A,B,LA,RA;

if TYPE{V(formula), A, B) ~ type ~ goto OUT;
if TYPE(A,LA,RA) f type then goto OUT;
if type = sum then ASSIGN(formiiia,S(LA,S(RA,B))) else
if type= product'""then ASSIGN(formula,P(LA,P(RA,B~else
ERROR(true,ftype not appropriate in prepare}); -
prepare{type,formula);

OUT:
end prepare;

10

comment

3. Simplification of a term.

The simplification of a term, named 'term', is performed in two stages,
namely a so-called 'stratification' followed by a 'proper simplification',
executed by the procedures 'stratify product' and 'simplify stratified
product', respectively.

During the stratification all numerical factors (factors of type 'integral
number') of the term are retained in a global integer 'coefficient'. So a
stratified product (def. 1.8) actually has no factors which are integral
numbers except when the term is an integral number itself, in which case the
stratified product will become ONE.

At the end of the simplification of the stratified term (i.e.
simplification of the non-numerical part of the term) this coefficient is
connected again to the term, which completes the simplification of the term.

For the stratification as well as the proper simplification we need some
auxiliary names for saving formulae which are still of interest.
In the following procedures they have not been declared as names, because
they are used also in other parts of the program. The declaration of all
auxiliary names can be found in section 7.

The auxiliary names we use in this section are called 'handles'.

algorithm:;

integer handle one,handle two,term,c6efficient;

comment

3.1. Stratification of a term.

During the stratification we determine by means of a global integer
'next wanted' how we have to start the proper simplification process.
'next wanted' indicates for which algebraic variable we want to look
at first, i.e. the algebraic variable with the lowest hierarchy
(see section 4) •

The stratification is performed by procedure 'stratify product', which
makes use of one auxiliary name 'handle one' only.

After the stratification this 'handle one' has as value the product,
just stratified, while 'term' has as value 1 (ONE).

11

algori tbm.:;

integer next wanted;

procedure stratify product;
begin integer t,A,B; prepare(product, term);

next wanted:=0; coefficient:=1;
L:for t:dl'YPE(V(term),A,B) while t = product do

t'ake factor(A)in handle one and assign to term the prepared rest:(B);
comment Due to the construction with a for statement we have to treat
the last factor explicitely;
take factor(V(term))in handle one and assign to term:(ONE);
comment We have to check now whether new factors have been appeared
as a possible side-effect of procedure 'stratify product', which
effect is discussed below;
if V(term) :j= ONE then goto L

end stratify producr;- --

comment

If the term to be stratified is a proper term (def. 1.9), its factors
are proper factors (def. 1.10), and when we have taken these proper factors
consecutively in handle one, the latter will be a stratified product, which
is our purpose.

But if the term to be stratified is not a proper term, i.e. if one of the
factors is not a proper factor, one oY the following situations occurs:
1 : If the considered factor is a sum of terms, the term we are simplifying

can be written as two other terms by applying the distributive law.
2: If the factor is an integral power of a sum or of a product or of an

other integral power, the factor can be written as two or more factors.
In the first case we have to get rid of one of the two new terms somehow,

because we can stratify actually one of them only.

At this point we have to know something about the procedure 'simplify sum'
of section 5, which calls procedure 'stratify product'.

In 'simplify sum' the 'formula' to be simplified is modified at first
into a prepared sum (def. 1.7), in this case into the sum of the term we
are simplifying now, assigned to 'term', and remaining terms. Henceforward
the value of 'formula' consists of these remaining terms only.

The solution of how to get rid of one of the two terms, appearing after
application of the distributive law, without loosing it during a possible
garbage collection will be clear now:

We simply add this term to the value of 'formula' (i.e. We assign to
1 formula 1 the sum of this term and the original value of I formula 1) •

These actions are performed by procedure 'take factor'.

12

We give some examples of the possible modifications performed by 'take
factor':

,. XX (y + z) becomes XX y +XX z ,where XX z will be added to
the value of 'formula', and
x X y becomes the value of
'term',

2. (x + y),1'5 becomes (x + y) x ((x + y) x (x + y)),1'2,

3.
4.

(x x y),1'3 becomes x,1'3 x y,1'3,
((x + y),1'3),1'2 becomes (x + y),t6.

where the second factor will
be modified later according
to example 3,

Only if the first actual parameter of 'take factor' is a proper factor
we shall actually take it in handle one (by means of a jump to label 1L1 in
procedure 'take factor') or in 'coefficient' when the proper factor is an
integral number, otherwise we only modify the considered term in a suitable
way without taking any factor in handle one (by means of a jump to label
'OUT' in procedure 'take factor').

algorithm:;

procedure take factor(F)in handle one and assign to term
the prepared rest:(R); value F,R; integer F,R;
begin integer t,A,B; t:=I'YPE(F,A,B);

if t = integral number then coefficient:=coefficient X B else
if t = algebraic variable then goto L else
if t = sum then -- - --
begin ASSIGN(formula,

S(P(INT NUM(coefficient),P(V(handle one),P(B,R))),V(formula)));
R: =P{A,R) .

end else
lit= integral power then
begin integer t1,LB,RB; t1:=I'YPE(B,LB,RB);

if t1 = integral number then coefficient:=coefficient X RB ,1' A~
if t1 = algebraic variablethen goto L else
if t1 = sum then -- - --
R:=P(if A:2~then ONE else B,P(INT POW(P(B,B),A:2),R)) else
if tl--; product then R:=P(INT POW(LB,A),P(INT POW(RB,A),R)Tefse
if t1 = integral power then R:=P(INT POW(RB,LB X A),R) -

endelse ERROR(t = product,"fF not appropriate in 'take factor'});
goto OUT;

L:ASSIGN(handle one,P(F,V(handle one))); det next variable(F);
OUT:ASSIGN(term,R); prepare(product,term)
end take factor;

13

conrrnent

3.2. Simplification of a stratified product.

Definition:
A 'simplified product' is a stratified product satisfying the following

conditions:
1: Only the first factor may be a numerical factor i.e. an 'integral

number',
2: Each two other proper factors have a different hierarchy,
3: The order of the proper facors is unique, prescribed by the

hierarchy of the algebraic variables (see section 4).

For the proper simplification process, performed by procedure 'simplify
stratified product', we need both handles:
'handle one' initially contains the stratified product we want to
simplify, and 'handle two' is used to save factors which we decided to
join not yet to the value of 'term'. We noticed already that the initial
value of 'term' (i.e. the final value of 'term' in 'stratify product')
is 1 (ONE).
(Remark: the value of 'term' is a simplified product during the whole

process).
The algorithm is as follows:

1: wanted:=next wanted
2: Treat consecutively all proper factors of the stratified product

(i.e. join the factor to the value of 'term' or take it in 'handle two'
dependent on whether we are looking for the algebraic variable of
that proper factor (see section 4) or not) and choose at the same
time the 'next wanted' variable (i.e. the algebraic variable with
the lowest hierarchy) from the proper factors which are taken in
'handle two'. The determination which algebraic variable will be
treated next, is performed by procedure 'det next variable' of
section 4.

3: assign to 'handle one' the value of 'handle two•
4: if the value of 'handle one I is unequal to ONE ~ goto 1 else
5 : We are ready.

Remark:

'term' is not directly accessible for each proper factor we want to join
to it, but only through a kind of buffer consisting of the integers
'exponent' and 'BASE', which combines the proper factors to be joined to
the value of 'term', to one proper factor, which will be joined actually
to the value of 'term', after all factors of the stratified product have
been treated (between step 3 and 4).

For example: XJf\3 x x X x,t2 will be combined to x.f-6.
The result is that the value of 'term' remains a stratified product,

mathematically equivalent to the original stratified product, but in the
first one each two proper factors have a different hierarchy and the
order of the factors is prescribed uniquely by the hierarchy of the
algebraic variables, determined in procedure 'det next variable'.

14

algorithm:;

integer wanted,exponent,BASE;

procedure simplify stratified product;
begin integer t,A,B;
L:ASSIGN{handle two, ONE) ;wanted: =next wanted; next wanted: =O;

exponent:=O; BASE:=ONE;
for t:=TYPE(V(handle one),A,B) while t = product do
treat proper factor(A)and assign to handle one:(BT;
treat proper factor(V(handle one))assign to handle one:(V(handle two));
ASSIGN(term,P(INT POW(BASE,exponent),V(term)));
if V(handle one) t ONE then goto L;
ASSIGN(term,P(INT NUM(coefficTe'iit),V(term)))

end simplify stratified product;

procedure treat proper factor(F)and assign to handle one:(R);
value F; integer F,R;
begin integer t,A,B; t:=TYPE(F,A,B);

if t = algebraic variable then
begin if B = wanted then buffer for term.(1,F) else

take -in handle two "('i1"";
end else
IT""t--;;;-"Integral power then
begin if RHS(B) = wanted then buffer for term(A,B) else

take-in handle two(F) - -
end else ERROR(Ft ONE,fF not appropriate in treat proper factor});
ASSIGN{handle one,R)

end treat proper factor;

procedure buffer for term(exp,B);value exp,B;integer ~xp,B;
begin exponent:=exponent + exp; BASE:=B ~;

procedure take in handle two(F);value F;integer F;
begin det next variable(F); ASSIGN{handle two,P(F,V(handle two))) end;

comment

4. determination of order of proper factors.

As a proper factor of a stratified product actually cannot be an integral
number (integral numbers are retained in 'coefficient') this proper factor
is either an algebraic variable or an integral power of an algebraic
variable (see def. 1.10), and for the determination of order of proper
factors we use the integral number which is stored as right-hand-side
quantity 'r' of this algebraic variable. The algebraic variables are
ordered according to increasing value of 'r'.

In future this might be changed. Perhaps we want to have an alphabetic
ordering or we want the user of the system to specify the hierarchy of the
algebraic variables himself.

15

algori thrn: ;

procedure det next variable{F);value F;integer F;
begin integer t,A,B;

integer procdure max{a,b);value a,b; integer a,b;
max:= if a< b then b else a;

t:=!I'YPE(F,A,B); -- -
next wanted:= if t = algebraic variable then max(B, next wanted) else

if t = inte~ral power then?iiax{RHS(B),next wanted) else
ERROR(true,~ not appropriate in det next variable}Y-

end det next variable;

comment

simplification of a sum of terms.

Definition:
A 'simplified sum' is a stratified sum satisfying the following
conditions:
1: Each two terms (which are simplified products) are different in

their non-numerical parts,
2: The order of these terms is unique.

Actually this order will be determined by procedure 'put before'.
At this point we shall not specify this order because we want to have
the possibility to change the ordering-of the terms by changing the
procedure 'put before'.

Application of the same strategy as used in section 3, namely a proper
simplification preceded by a stratification, will be much more complicated
here because of the complex structure of a simplifiefr product {in comparison
with a proper factor in section 3). This complex structure implies a rather
difficult determination of order for the simplified products (performed by
procedure 'pat before').

For the simplification of a sum of terms we shall use two auxiliary names,
namely 'simplified part' and 'handle two'.

The strategy is as follows:
1 : prepare the considered sum (named 'formula') ,
2: assign the first term of this prepared 'formula' to 'term' and assign

the remaining terms to 'formula',
3: simplify the first term by means of the procedures 'stratify product'

and 'simplify stratified product' of section 3.
4: join the product, just simplified and named 'term', to the 'simplified

part' at such a place that the order of the terms remains the correct
order (prescribed in procedure 'put before').

5: if the value of I formula' is unequal to ZERO ~ goto 1
else

6: we are ready.

algorithm:;

integer simplif'ied part;

procedure simplif'y sum;
begin integer t,FIRST TERM,REST;
L:prepare(sum,f'ormula);

f'or t: =11YPE(V(f'ormula), FIRST TERM,REST) while t = sum do
begin ASSIGN(term,FJRST TERM); ASSIGN(f'ormula,REST);

stratif'y product; simplif'y stratif'ied product;
join term to simplif'ied part; prepare(sum,f'ormula)

end;
ASSIGN(term,V(f'ormula)); ASSIGN(f'ormula,ZERO);
stratif'y product; simplif'y stratif'ied product;
join term to simplif'ied part;
if' V(f'ormula) + ZERO then goto L

end simplif'y sum; - --

comment

6. determination of' place in the simplif'ied part.

We suppose that ' simplif'ied part' has as value a sum of' terms,
unequal to ZERO (If' the value of' 'simplif'ied part' is equal to ZERO ,
the place of' the term, just simplif'ied and named 'term', is trivial).

At f'irst we f'ind out if' we can put-the simplif'ied term bef'ore the f'irst
term of' the simplif'ied part by means of' procedure 'try to put the term
bef'ore•. When we have been successf'ull, we assign to 'term' the value
ZERO (in procedure 'try to put the term bef'ore') in order to recognize
our successfu.11 attempt in procedure 'join term to simplif'ied part'.
When we did not have success in 'try to put the term bef'ore 1 , we shall
take the f'irst term f'rom the simplif'ied part and add it temporarily to
the value of' 'handle two' • Then we try again to put the simpl if'ied term
bef'ore the f'irst term of' the simplif'ied part. We shall go on removing
terms f'rom the simplif'ied part until we have f'ound the right place f'or
the simplif'ied term or until no terms have been lef't.

At last we have to connect the terms of' the 'handle two' to the
simplif'ied part again, in such a way that the order of' the terms in
1 simplif'ied part' remains the correct order (by applying the principle:
Last in,f'irst out).

17

algorithm:;

procedure join term to simplified part;
begin integer t,A,B; ASSIGN(bandle two,ZERO);

for t::dl'YPE(V(simplified part),A,B) while t = sum A V(term) t ZERO do
try to put the term before(A)next terms: (B); -
if V(term) t ZERO then .
try to put the termbefore(V(simplified part))next terms:(ZERO);
if V(term) t ZERO then ASSIGN(simplified part,V(term));
fur t: :dl'YPE(V(handletwo), A, B) while t = sum do
begin ASSIGN(simplified part,S(A,V{simplified:part)));

ASSIGN(bandle two,B)
end;
ASSIGN(simplified part,S(V(handle two),V(simplified part)))
~ join term to simplified part;

procedure try to put the term before(FIRST)and next terrns:(REST);
value FIRST,REST; integer FIRST,REST;
if put before(FIRST) then
begin ASSIGN(simplified part,S(V(term),V(simplified part)));

ASSIGN(term,ZERO)
end else
beginABSIGN(handle two,S(FIRST,V(handle two)));

ASSIGN(simplified :part,REST)
end try to put the term before;

comment

In procedure 'put before' the actual comparison of simplified terms is
performed. If these terms happen to be equivalent (a:Qart from numerical
factors) we have to change the coefficient of 'term' only.

Procedure 'try to put the term before' actually joins the simplified
term to the simplified part.

If the formula to be simplified is a 'simplified sum' already, we have
to put each next term after all terms of the simplified part. In this
way we have to make much comparisons of terms. The algorithm is more
efficient when we invert the order of the terms of the 'simplified part'.
Then, simplifying a (partly) simplified sum, we can put (almost) each
next term directly before the first term of the simplified part, while
the simplification of arbitrary formulae is not affected essentially.

At the end of the simplification process we have to invert the order
of the terms of the simplified part again, in order to obtain the right
'simplified sum', (see section 7.).

algorithm:;

Boolean procedure put before{F);value F; integer F;
begin integer d,dF,dTERM,F1,TERM,c1,c2; Fl:=F; TERM:=V{term);

d::::d.F:=degree of(Fl)coefficient:(cl);
dTERM:=degree of(TERM)coefficient:(c2);
if dF f dTERM then put before:= dF > dTERM else
begin integer hF, hTERM, d 1 ; d 1 : =O; -
L:hF:=hierarchy of(Fl)with degree:(dF);

hTERM:=hierarchy of(TERM)with degree:(dTERM);
d 1: =d 1 + dF;
if hF f hTERM then put before:= hF < hTERM else
if dF f dTERM.then put before:= dF > dTERM else
i:f d 1 = d then--
beg in integerA,B; put before:~;
--XSSIGN{ term,

P(INT NUM(cl +c2),if c2 = 1 then V(term) else
if TYPE(V(term),A,BJ = product then B else□NE));

ASSIGN(simplified part, - -
if TYPE(V(simplified part),A,B) = sum~ B ~ ZERO)

end else
beginFl: =RHS(F1); TERM: =RHS(TERM); goto L end

~ end put before;

comment

Next, the auxiliary procedures of 'put before' follow.
In procedure 'degree of' the first parameter 'F' is supposed to be a
stratified product (it will be a simplified product actually).

As a side-effect, a possibly attached numerical factor (necessarily the
first factor) is removed from 'F' and retained in the second parameter 'c'.

In procedure 'hierarchy of' the first actual parameter 'F' is also
supposed to be a stratified product. In the last two procedures the actual
parameters are supposed to be proper factors.

algorithm:;

integer procedure degree of(F)coefficient:(c); integer F,c;
begin integer t,A,B,F1,n; n:=O; F1:=F; c:=1;

for t::::!11YPE(F1,A,B) while t = product do
begin add to(n)the degree of: (A); -

if n = 0 then begin c:=RHS(A); F:=B end; Fl:=B
end; ---
add to(n)the degree of:(Fl);
if n = 0 then begin c:=RHS(Fl) ; F:=ONE end;
degree of:=n

end degree of;

19

integer procedure hierarchy of(F)with degree:(d);value F; integer F,d;
begin integer A,B;

hierarchy of:=if TYPE(F,A,B) = product then
hierarchnumb of(A)with degree:(d) else
hierarchnumb of(F)with degree:(d)

~ hierarchy of;

procedure add to(counter)the degree of:(F);value F; integer counter,F;
begin integer t,A,B; t:=TYPE(F,A,B);

if t = algebraic variable then counter:=counter + 1 else
if t = integral power then'"coiinter:=counter + A else-
ERROR(t f integral number,{:F not appropriate in add to})

end add to;

integer procedure hierarchnumb of(F)with degree:(d);value F; integer F,d;
begin integer t,A,B; t:=TYPE(F,A,B);

if t = integral number then hierarchnumb of: =d: =O else
if t = algebraic variablethen begin hierarchnumb ~B; d:=1 end else
if t = inte~ral power thenl>egin hierarchnumb of: =RHS(B);d: =A end else
ERROR(true,fF not appropriate in hierarchnumb o:q>)

end hierarchnumb of;

comment

7. the actual simplification of an arbitrary formula.

As a formula is defined as a term or a sum of terms (def. 1.1) the
simplification of an arbitrary formula can be performed by procedure
'simplify sum' of section 5.

algorithm:;

begin integer t,A,B,fnn; fnn:=gnn;
DE(simplified part,ZERO, DE(term,ONE,
DE(handle one,ONE, DE(handle two,ONE, O))));
simplify sum;
comment finally we have to invert the order of the terms of the
simplified part again.
Remark: At this point the value of 'formula' is equal to ZERO ;
for t:=TYPE(V(simplified part),A,B) while t = sum do
begin ASSIGN(formula,S(A,V(formula))); ASSIGN(simplified part,B) ~;
SIMPLIFY:=ASSIGN(formula,S(V(simplified part),V(formula)));
ERASE(fnn)

end

end SIMPLIFY;

20

cormnent

8. Test of procedure 'SIMPLIFY'.

In the next following block, procedure SIMPLIFY is applied to two
formulae in the algebraic variables: 'a, b, c, d, e, f'. The available
storage space {fixed by 'max of c•) is chosen rather small, to demonstrate
that procedure SIMPLIFY uses the storage space efficiently.

algorithm: ;

begin integer a,b,c,d,e,f,A,B,C,D,E,F, f1,f2, fnn;

procedure SIMPL(f); value f; integer f;
begin PR nlcr; PR string(fforrnula = :I,); ourPU'l'(f); PR nlcr;

PR string(fnumber of available storage cells: t);
PR int num{free space);
SIMPLIFY(f);
PR nlcr; PR string(fsimplified formula=}); OUTPUT(f); PR nlcr;
PR string(fnumber of available storage cells:});
PR int num(free space);
PR nlcr

end SIMPL;

PR nlcr; PR string(fResults test of 'SIMPLIFY'});
L:PR nlcr; PR nlcr; PR string(fmax of C = }); PR int num(max of C);

INITIALIZE; fnn: =gnn;
DE(a, AV(100, 1) ,DE(b, AV(110, 2) ,DE(c,AV(120, 3) ,DE(d, AV(130, 4),
DE(e,AV(140,5),DE(f,AV(150,6),DE(f1,ZERO,DE(f2,ZERO,O))))))));
A:=V(a); B:=V(b); C:=V(c); D:=V(d); E:=V(e); F:=V(f);
ASSIGN(f1,S(INT POW(S(P(P(P(C,A),D),B),P(P(INT NUM(-1),F),E)),4),

P(P(P(P(P(P(P(F,E),D),C),B),A),INT NUM(4)),
S(P(INT POW(F,2),INT POW(E,2)),

P(P(P(INT POW(D,2),INT POW(C,2)),INT POW(A,2)),
INT POW(B,2)

)))));
ASSIGN(f2,P(INT NUM(-1),

INT POW(S(P(P(P(INT POW(A,2),INT POW(B,2)),INT POW(C,2)),
INT POW(D,2)),

2
))) ;

P(INT POW(E,2),INT POW(F,2))
),

SIMPL(f1); SIMPL(f2);
ASSIGN(f1,S(V(f1),V(f2))); SIMPL(f1);

ERASE(fnn); PR nlcr; PR string(fend of example}); PR nlcr;
max of C: =max of C - 1 ; goto L

end -

end end m-

Results test of 'SIMPLIFY'

max of C = 143

21

formula = (c><axdxb+(-1)xfxe)~4+fXexdxcXb><ax4x(f,t.2Xe,f\2+d,f\2Xc,f'2X~Xb,f\2)
number of available storage cells: 82
simplified formula= ~4xb{\4xc,t--4xd4'4+6><af,2Xb,f0<cf,2Xd4'2Xe,f\2Xf,f\2+e,f\4Xf,f\4
number of available storage cells: 85

formula = (-1)x(a4',2Xbf,2xc,t-2Xd,f\2+e,f\2Xf,f\2)~
number of available storage cells: 85
simplified formula= (-1)x~4Xb,f\4Xc,f\4xa,{\4+(-2)xa¼xbf\2xc,f\2x~xe,f\2Xf~+

(-1)Xe,f\4Xf,f\4
number of available storage cells: 70

formula= ~4Xb,f\4x~4xa,j\4+6xa,¼xb~Xcf,2Xdf,2Xe,f\2Xf,f\2+e,f\4Xf,f\4+
(-1)x~4xhf\4xc,t--4xd4'4+(-2)X~Xb,f\2Xc~Xd,f\2Xe~Xf,f\2+(-1)Xe,f\4Xf,f\4

number of available storage cells: 69
simplified formula = 4x~Xb,f\2Xc,f\2xa,{\2xe,f\2Xf,f\2
number of available storage cells: 82

end of example

max of C = 142
formula = (cXaXdXb+(-1) xfxe) ~4+ fXexdXcxbxax4x (f ~Xe,f\2+d,f\2Xc,f\2~xb,f\2)
number of available storage cells: 81-
no space left

f
exc><axdXbxcxaxdxbxcxaxdXb
excxaxdXbxcxaxdXbxcxaxdxb
1
(-1)xaxbxcxdXe~3Xf,f\3+3xa,1\2Xh{\2Xc,f\2Xd,f\2Xe~f,f\2+

(-3) Xa,f\3Xb,f\]Xct\'0Xd4\3XeXf +*4xb,f\4Xc,f\4XC4'4
(-1) x(~Xb{\2Xc,f\2Xd,t.2+e,f\2Xf,f\2)~
(-1)xbxdxaxcXbxdxaxcxeXfx(-1)xfxe+(-1)xbxdxaxcxexfx(-1)Xfxex(cxaxdXb+

(-1)Xfxe)+(-1)xeXfx(-1)Xfxex(cxaxdXb+(-1)Xfxe),t2+fxexdXcxbxax4x
(f1'2Xe,f\2+df'2XC,f\2Xa,f\2Xb,fl2)

f
e
d
C

b
a
1
0

22

comment

Chapter 3 The simplification procedure 'POLYNOMIAL'.

In chapter 2 we have described a simplification procedure, modifying
an arbitrary formula into a certain standard form. There, we have
defined such a standard fo:rm called 'simplified sum', but we have
noticed that this standard form easily could be changed, merely by
changing the procedure 'put before'.

In this chapter we give an example of such an other standard form
called 'polynomial', illustrating the connection with the system of
[3] and the possibility to use these simplification procedures in
that system. ·

1. definition of a 'polynomial'.

A I polynomial I is defined as a formula of the form (as used in
mathematical textbooks) :

a[n] + a[n - 1] Xx+ a[n - 2] x x,f\2 + •.•• +a[O] X xt,n,
where the a[i]'s are called the 'coefficients' and x the 'main variable'
of the polynomial. The coefficients are defined to be 'numbers' or other
'polynomials' with as main variable an algebraic variable, having a
lower hierarchy (see section 5 of chapter 2) than x.

A 'polynomial' is stored as a sum of terms, while the left operand of
each sum 1s the product' a[i] x x{\i' (the product of the coefficient
'a[i]' as left operand and the i'th integral power of the main variable
1 x{\i' as right operand) •

If some coefficient 'a[i]' is equal to ZERO, the term I a[i] X x{\i 1

is interpreted by procedure 'P' as number ZERO, and terms equal to ZERO
are not stored by procedure •s•. These considerations imply that a
number may be interpreted as a 'polynomial' in any algebraic variable
with a lower hierarchy than all the variables which are used.

2. modification of procedure 'put before'.

Changing procedure 'put before' is not sufficient to modify an arbitrary
formula into a 'polynomial', but may deliver an other standard form,
henceforward called 'semi-polynomial', which easily can be modified
into a 'polynomial' by another simplification procedure (actually
procedure 'POLYNOMIAL' of the next section).

A I semi-polynomial' has the same structure as a 'simplified sum' of
chapter 2, but the order of the terms (actually 'simplified products')
is determined now by the modified procedure 'put before', reproduced below.
The order of the terms is chosen in such a way that terms, belonging to
the same coefficient (each of which containing as a factor the same
integral power of the main variable) are successive terms in the
'simplified part'. Terms belonging to the coefficient 'ai' of the i'th
integral power of the main variable are 'put' before terms, belonging
to the coefficient 'aj 1 of the j 1th integral power of the main variable,
if and only if i > j •

23

remark:
The order of the terms of the 'simplified part' is inverted at the end

of procedure 'SIMPLIFY' (see chapter 2). As this is the very inefficient
way in case we want to modify 'polynomials' into 'polynomials' (possibly
changing the hierarchy of the variables), we release this inversion in
procedure 'put before', and change the piece of program reproduced in
section 7 of chapter 2 accordingly.

algori tbm: ;

Boolean procedure put before(F); value F; integer F;
begin integer dF,dTERM,hF,hTERM,n1,n2,c1,c2,F1,TERM;

F1:=F; TERM:=V(term);
dF:~egree of(F1)coefficient:(c1);
dTERM:~egree of(TERM)coefficient:(c2);

L:hF:=hierarchy of(F1)degree:(n1);
hTERM:=hierarchy of(TERM)degree:(n2);
_!! hF r hTERM then put before: =hF > bTERM /\ bTERM :f= 0 V hF = 0 else
if n1 } n2 then put before:=n1 < n2 else
begin dF:=dF - n1; dTERM:~TERM - n2; -

if dF r O /\ dTERM r O then
begin F1 :=RHS(F1); TE~S(TERM); goto L end else
if dF r O then put before:=false ""else - -
If dTERM r O then put before: =true else
begin integer A,B; put before:~e; -

ASSIGN{term, -
P(INT NUM(c1 + c2),if c2 = 1 then V(term) else
if TYPE(V(term), A, BJ= productthen B else 7JNE));

ASSIGN(simplified part, - -
if TYPE(V(simplified part),A,B) = sum then B else ZERO)

~ end end put before;

ACTUAL SIMPLIFICATION:

begin integer fnn; fnn: =gnn;
DE{sim.plified part,ZERO, DE(term,ONE,
DE(handle one,ONE, DE(handle two,ONE, O))));
simplify sum;
SIMPLIFY:=ASSIGN(formula,V(sim.plified part));
ERASE(fnn)

end

~ SIMPLIFY;

24

comment

3. simplification procedure 'POLYNOMIAL'.

The simplification procedure 'POLYNOMIAL I modifies a I semi-polynomial'
into a 'polynomial'. The properties of this procedure are discussed now.

The integral power of the main variable '4,j', as factor of the
terms belonging to the same coefficient 1 aj 1 has to be 'divided out'.
For this reason we introduce an auxiliary formula name 'handle',
to which we consecutively add terms, consisting of those factors,
which remain after omitting the factor 'XJN' from the terms.

This addition of terms to the 'handle' has inverted the order of the
terms. Having re-ordered the terms, the resulting formula is referred to
by the formula name 'coefficient', introduced in procedure 'POLYNOMIAL 1 •

As this coefficient 1aj 1 itself is not yet of the desired standard form
'polynomial' {actually 'semi-polynomial'), we have to modify it into
a 'polynomial', by means of a recursive call of procedure 'POLYNOMIAL'.

After that, the product ' aj x XJN ' has to be formed and added to the
'polynomial part', i.e. a third auxiliary formula name, consisting of
those terms' ak X 4k ', which are treated already (this means k > j).

Next, the following terms (if any) of the 'semi-polynomial', belonging
to the next coefficient 1ai 1

(i < j and i > 0) are treated in the same
way. The last occuring coefficient 'aO' is treated apart, because in
this case any integral power of the main variable fails as a factor of
these terms, so needs not to be 'divided out'.

Having treated all terms of the 'semi-polynomial', our desired
standard form has been left in the 'polynomial part'. At last, this
result is assigned to the actual parameter of procedure 'POLYNOMIAL', the
formula name ' semi polynomial' •

algorithm:;

procedure POLYNOMIAL(semi polynomial); value semi polynomial;
integer semi polynomial;
begin integer VAR,V1,V2,pow1,pow2,c1,c2,R1,R2,REsr,

t,A,B,polynomial part,coefficient,handle, fnn;
if TYPE(V(semi polynomial),A,B) = integral number then goto OUT;
fun:=gnn; DE(polynomial part,ZERO,DE(coefficient,ZERO,Ojj';"
VAR: =VAR of(FIRST TERM of(V(semi polynomial))

remaining terms:(B))
power: (pow1)
numerical factor of term:(c1)
remaining factors:(R1);

for V1:=VAR of(FIRST TERM of(V(semi polynomial),B),pow1,c1,R1)
while V1 = VAR do
begin ASSIGN(coefficient,P(INT NUM(c1),R1)); ASSIGN(semi polynomial,B);
next term: V2:=VAR of(FIRST TERM of(B,REST),pow2,c2,R2);

if V1 = V2 A pow1 = pow2 then
begin ASSIGN(coefficient,S\PfINT NUM(c2),R2),V(coefficient)));

B:=ASSIGN(semi polynomial,REST); goto next term
end else --

25

begin integer fnn1; fnn1:=gnn;
DE(handle,V(coefficient),o); ASSIGN(coefficient,ZERO);
for t:=TYPE(V(handle),A,B) while t = sum do
begin ASSIGN(coefficient,S(A,V(coefficientJ")); ASSIGN(handle,B) ~;
ASSIGN(coefficient,S(V(handle),V(coefficient)));
ERASE(fnn1);
POLYNOMIAL(coefficient);
ASSIGN(polynomial part,

S(P(V(coefficient),INT POW(V1,pow1)),V(polynomial IJ0,rt)))
end end;
POLYNOMIAL(semi polynomial) ;
ASSIGN(semi polynomial,S(V(semi polynomial),V(polynomial part)));
ERASE(fnn);

OUT:
end POLYNOMIAL;

conunent

Next follow the auxiliary procedures of procedure 'POLYNOMIAL'.

algorithm:;

integer procedure FIRST TERM of(F,REST); value F; integer F,RESI';
begin integer A,B;

if TYPE(F,A,B) = sum then
begin FIRST TERM of:=A; REST:=B end-else
begin FIRST TERM of:=F; RESI':=ZERO e~
~ FIRST TERM of; -

integer procedure VAR of(F, pow, num fact, rem fact); value F;
integer F, pow, num fact, rem fact;
begin integer t,A,B,LA,RA,VAR; t:=TYPE(F,A,B);

if t = product then
begin if TYPE(A,LA,RA) = integral number then

beg:inVAR of:=VAR of(B, pow, num fact, reiii"°"fact);
num fact: =RA; goto OUT

end else -
beginVAR:=A; rem fact:=B; num fact:=1 end

end else
U-t--;;;--"integral number then
begin VAR:=rem fact:=ONE; num fact:=B end else
ifttsumthen -
begin VAR:=F; rem fact:=ONE; num fact:=1 end else
ERROR(true,terror in VAR of.}); - -
if TYPE(VAR,A,B) t integral power then
begin VAR of:=VAR; pow:=1 end else-
begin VAR of:=B; pow:=A end; -

OUT:
~ VAR of;

26

comment

4. Te st of procedure 'IDLYNOMI.AL ' •

algorithm: ;

begin integer a, b,c,d,e,f,A,B,C,D,E,F, i, formula, fnn;

procedure POL(f,i,n,variable); value f,n; integer f,i,n,variable;
begin PR nlcr; PR string(fhierarchy of variables:});

for i:=1 step.1 until n do
begin C2[V(variable)] :=i;OUTPUT(variable); PR string('f, }) ~;
SIMPLIFY(f); POLYNOMIAL(f);
PR nl er; PR string (f polynomial = }) ; OUTPUT (f) ; PR nlcr;
PR string('fnumber of available storage cells:});
PR int num(free space);
PR nlcr

~POL;

PR nlcr; PR string(-fResults test of 'POLYNOMIAL'});
L:PR nlcr; PR nlcr; PR string(tmax of C = }); PR int num(max of c);

INITIALIZE; fnn: =gnn;
DE(a,AV(1OO,o),DE(b,AV(11O,o),DE(c,AV(12O,o),DE(d,AV(13O,o),
DE(e,AV(14o,o),DE(f,AV(15O,O),DE(formula,ZERO,O)))))));
A:=V(a); B:=V(b); C:=V(c); D:=V(d); E:=V(e); F:=V(f);
ASSIGN(formula,S(INT POW(S(P(P(P(C,A),D),B),P(F,E)),4),

P(INT NUM(-1),INT POW(S(P(P(C,E),A),P(P(D,B),F)),4))
));

PR nlcr; PR string(fformula = }); OUTPUT(formula); PR nlcr;
PR string('fnumber of available storage cells: })~PR int num(free space);

POL(formula,i,6, if i = 1 then a else if i = 2 then b else
if i = 3 then c else if i = 4 then d else
TI i = 5 then e else if i = 6 tiieri f else O) ;

PR nlcr; PR stringffNext we change thehierarchy of the""variables.});
PR nlcr;
POL(formula,i,6, if i = 1 then f else if i = 2 then e else

if i = 3 then d else if i = 4 then c else
if i = 5 tiieri b else if i = 6 then a else O) ;

PR nlcr; PR string('fDld hierarchycif°"variables again.;!,;;
PR nlcr;
POL(formula,i,6, if i = 1 then a else if i = 2 then b else

if i = 3 tiieri c else if i = 4 then d else
if i = 5 then e else if i = 6 tiieri f else O);

ERASE(fnn); PR nlcr; PR string(-fendofexample}J;PR nlcr;
max of C:=max of C - 1; goto L

end

end end
137-

27

Results test of 'POLYNOMIAL'

max of C = 137
formula = (cxaxdxb+fxe)4'4+(-1)x(cxeXa+d.XbX:f)4'4
number of available storage cells: 104
hierarchy of variables: a, b, c d, e, f,
polynomial= f4'4xe4'4+(-1)xf4'4x~4xb4'4+(4Xf,t0xe4'3xdxcXb+(-4)Xf4'3XeXd,f\3x

c>_<b43) Xa + { (-4) Xfxe,NXd.Xc4'3Xb+4XfxeXd,f\3Xc,f0Xht,3) X*3+ ((-1) Xe4'4X
~4-ta,t.4xct,4xhf\4)xaf\4

number of available storage cells: 53

Next we change the hierarchy of the variables.

hierarchy of variables: f, e, d, c, b, a,
polynomial= ~4xht,4xc4'4x~4+(-1)xa{\4x~4xe4'4+(4xa43xht,3xc4'3Xdf\3Xe+

(-4)xat,3XbX~3xd.Xe,f\3)Xf+((-4)xaxb43XcXd4'3Xe+4xaxbxcXd.Xe,f\3)Xf,f'0+
((-1)xhf\4)<df\4+e4'4)Xft,4

number of available storage cells: 53

Old hierarchy of variables again.

hierarchy of variables: a, b, c d, e, f,
polynomial= f4'4xet4+(-1)Xf4'4x~4Xbt4+(4Xf,f'0X~3Xd.XcXb+(-4)xf,{'0XeXd,f\3X

cxb4'3)xa+((-4)xfxet3Xd.XC4\3Xb+4X:fxe><d,f\3Xct3xbt3)X*3+((-1)xet4x
4444xe,f.4xb,j\4)xaf\4

number of availal:>le storage cells: 53-

end of example

max of C = 136
formula = (cxaxdXb+fXe),t4+(-1)x(cxexa+d.Xbxf),t4
number of available storage cells: 103
hierarchy of variables: a, b, c, d, e, f,
no space left

f
dXbxcxexaxcxexaxcxexa
dXbxcxexaxcxexaxcxexa
1
844xht,4x~4x<144+(-ixa4'4x~4xe,t4+4X?4',3X~3Xc4'3Xd1'3XeXf+(-3)Xa,f\3XbX~3X

dxe,t3xf+3 ><btJ',2xc{\2xd42xe~f4'2+(-1)xaxb4'3xcx$xexft3+4xax
bXcXdXe4'3Xf 3+e,f\4Xf t,4

(-1)xaxexcxaxexcXfxbxdXd.XbXf+(-1)xaxexcXfxbxd.XdXbXfx(cxexa+dxbXf)+(-1)xfx
bXd.XdxbX:fx(cxeXa+d.XbXf),t,2

f
e
d
C

b
a
1
0

28

begin comment

Chapter 4 Application of procedure 'SIMPLIFY'.

As a non-trivial example for procedure 'SIMPLIFY' we have chosen the
computation of a formula determinant, i.e. the determinant of a matrix
of formulae.

The problem will be, to prove the next equality:

0 0 0 a2+b3 a1+b2 -a2-b2
0 0 a1+b3 -a3-b3 0 a3+b2
0 a1+b3 0 0 -a1-b1 a2+b1
a2+b3 -a3-b3 0 0 a3+b1 0 =
a1+b2 0 -a1-b1 a3+b1 0 0

-a2-b2 a3+b2 a2+b1 0 0 0

-(a1Xb1X(a2+b3-a3-b2)+a2Xb2X(a3+b1-a1-b3)+a3Xb3X(a1+b2-a2-b1))t}2.

To evaluate a determinant we use the following procedure 'SOIDET', whose
first parameter is an integral procedure (with two parameters 'i' and 'j'),
delivering the values of the elements of the matrix (A(i,j), 1 < i < n and
1 < j < n), and whose second parameter is the size (n) of the (square)
matrix:

algori tbm: ;

integer procedure SOIDET(A,n); value n; integer procedure A; integer n;
begin integer column;

integer procedure cofactor(iO,j,colj); value iO; integer iO,j,colj;
begin integer fnn,result,j0,j1,auxj; Boolean even;

integer·procedure colj1;
begin integer col; j:=j1; col:=colj;

if col> jO then begin j:=j1+1; col:=colj end;
colj1: =col -

end colj 1;
fnn:=gnn; DE(result,ZERO,O); even:=true;
for auxj: =1 step 1 until n - iO + 1"'"cio"'
begin j:=auxj; jO:=colj; even:= 7 even;

cofactor:=ASSIGN{result,S{V(result),
P(if even then MINONE else ONE,

P('A(io,jor:;-if iO = nthen ONE else
cofactor(io+ 1, j1,colj1) mY

end;
ERASE(fnn)

end cofactor;
soThET:=cofactor(1, column, column)

end SOIDET;

29

comment

Actually the elements of our matrix are delivered by the procedure
'DEI'', so computation of the determinant of this matrix and assignation
to the formula name 'determinant' is caused by the call:

DE(determinant, SOIDEI'(DEI',6), 0) •

algori tbm: ;

integer procedure DEI'(i,j); ~ i,j; integer i,j;
DEI':=if i > j then DEI'(j,i) else

if i = j then ZERO else--
if i = 1 then (if j--;--rj'. then s(v(a2), V(b3)) else

-- if j = 5 then s(v(a1), V(b2)) eise
TI' j = 6 then P(MINONE,S(V(a2T,'V[b2)))
else ZERO'J'eise

if i = 2 then (if j = 3 thenS(V(a1),V(b3)) else
if j = 4 then P(MINONE, s(v(a3T,'V{'b3))) else
if j = 6 then S(V(a3),V(b2))
else ZERO'J'eise

if i = 3 then (if j = 5 then P(MINONE,S(V(a1),V(b1))) else
- -- TI' j = 6 then S(V(a2), V(b1)) -

else ZERO'J'eise
if i = 4 then (if j_ = 5 then S(V(a3),V(b1))

else ZEROr--
else ZERO;

integer a1,a2,a3,b1,b2,b3, minone, MINONE, determinant,formula,fnn;

INITIALIZE; fnn: =gnn; DE(minone, INT NUM(-1), 0); MINONE: =V(minone);
DE(al,AV(101,1), DE(a2,AV(102,2), DE(a3,AV(103,3), o)));
DE(b1,AV(111,4), DE(b2,AV(112,5), DE(b3,AV(113,6), 0)));
DE(determinant, SOIDET(DET,6), DE(formula,
INT POW(S(S(P(P(V(a1),V(b1)),s(s(v(a2),V(b3)),P(MINONE,S(V(a3),v(b2))))),

P(P(V(a2),V(b2)),s(s(v(a3),V(b1)),P(MINONE,S(V(a1),V(b3)))))),
P(P(V(a3),V(b3)),s(s(v(a1),V(b2)),P(MINONE,S(V(a2),V(b1)))))),

2) ,o));
PR nlcr; PR string(fresults simplification of determinant}); PR nlcr;
PR nlcr; PR nlcr; PR string(~ax of C = :});PR int num{max of C);PR nlcr;
PR nlcr; PR nlcr; PR string(determinant=:}); OUTPUT(determinant);
PR nlcr; PR nlcr; PR string(determinant (simplified) =});PR nlcr;
SIMPLIFY(determinant); OUTPUT(determinant);
PR nlcr; PR nlcr; PR string(fformula = :}); OUTPUT{formula);
PR nlcr; PR nlcr; PR string(fformula (simplified) =});PR nlcr;
SIMPLIFY(formula); OUTPUT(formula);
PR nlcr; PR nlcr; PR string(fdeterminant +formula=});
ASSIGN(formula,S(V(determinant),V(formula)));
SIMPLIFY(formula); OUTPUT(formula);
ERASE(fnn); PR nlcr; PR nlcr; PR string(fend of example})

end

end end
8000 - '

30

results simplification of determinant

max of C = 8000

determinant= (-1)X(a2+b3)x((~1+b3)x(-1)X(a2+b1)X(a3+b1)x(a1+b2)x(a3+b2)+
(a3+b2)x((-1)x(a1+b3)X(a3+b1)x((a1+b2)x(a2+b1)+(-1)x(-1)x(al+b1)x
(-1)X(a2+b2))+(-1)X(-1)x(a1+b1)x((a2+b3)X(-1)x(-1)X(a1+b1)X(a3+b2)+
(-1)x(-1)x(a3+b3)x((a1 +b2)x(a2+b1) +(-1)x(-1)x(a 1+b1)x(-1)x(a2+b2)
))))+(a1+b2)x((a1+b3)x(-1)X(a2+b1)x((a2+b3)X(-1)x(a3+b1)X(a3+b2)+
(-1)x(-1)x(a3+b3)x(-1)x(a3+b1)x(-1)x(a2+b2))+(-1)x(-1)x(a3+b3)x
(-1)x(a2+bl)x((a2+b3)X(-1)x(-1)x(a1+bl)X(a3+b2)+(-1)x(-1)x{a3+b3)X
((a1+b2)x(a2+b1)+(-1)x(-1)x{a 1 +bl)x(-1)x(a2+b2)))+(a3+b2)x(-1)x
(a1+b3)x(a2+b3)X(-1)X(a3+b1)x(a2+b1))+
(-1)x(-1)X(a2+b2)x((a1+b3)x((-1)X(a1+b3)x(a3+b1)X(-1)X(a3+bl)X
(-1)x(a2+b2)+(-1)x(-1)x(a1+b1)x((a2+b3)x(-1)x(a3+b1)x(a3+b2)+(-1)x
(-1)X(a3+b3)X(-1)x(a3+b1)X(-1)X(a2+b2)))+(-1)x(-1)x(a3+b3)x((-1)X
(a1+b3)x(a3+b1)x((al+b2)x(a2+b1)+(-1)x(-1)x(a1+b1)x(-1)x(a2+b2))+
(-1)x(-1)x(a1+b1)x{(a2+b3)x(-1)x(-1)x(a1+b1)x{a3+b2)+(-1)x(-1)x
{a3+b3)x{{a1+b2)x(a2+b1)+(-1)x(-1)X(a1+bl)X(-1)X(a2+b2)))))

determinant (simplified) =
(-1)Xa1~Y~Xb1,j\2+2Xa1{',?xa.2,fl2Xb1Xb2+(-1)Xa1,j\2Xa2,f-,2Xb2{\2+
2Xa1,1\2Xa2Xa3Xb1~+(-2)xa1,j\2xa2xa3xb1Xb2+(-2)Xa1,j\2Xa2Xa3Xb1Xb3+
2Xa1,j\2xa2xa3Xb2Xb3+2Xa1,j\2Xa2Xbl¼xb2+(-2)Xa1,j\2xa2xb1,j\2xb3+
(-2)Xa1~Xa2Xb1Xb2{\2+2Xa1,l\2Xa2Xb1Xb2Xb3+(-1)Xa1,l\2xa3{',?Xb1,j\2+
2xa1,1\2xa3~1Xb3+(-1)xa1,t\2xa3~Xb3{\2+(-2)Xa1~Xa3Xb1~Xb2+
2Xa1,j\2Xa3Xb1,l\2Xb3+2Xa1~Xa3Xb1Xb2Xb3+(-2)Xa1~Xa3Xb1Xb3,l\2+
(-1) Xa 1 ,j\2xb 1,j\2Xb*+2Xa 1 ,j\2xb 1,f'2Xb2Xb3+ (-1) xa 1 ~Xb 1 ~Xb3{'?+
(-2)Xa1X~Xa3Xb1Xb2+2Xa1X~Xa3Xb1Xb3+2Xa1xa~Xa3Xb21'2+
(-2)Xa1X~Xa3Xb2Xb3+(-2)xa1xa2,j\2xbl1'2Xb2+2Xa1Xa2,f\2Xb1Xb*+
2xa1xa2,j\2xb1Xb2Xb3+(-2)xa1xa2,j\2xb*Xb3+2Xa1Xa2Xa3,t\2xb1Xb2+
(-2)Xa1Xa2Xa3,f'2Xb1Xb3+(-2)Xa1Xa2Xa3,j\2xb2Xb3+2Xa1Xa2Xa3,f'2Xb3,j\2+
2Xa1Xa2Xa3Xb1,j\2xb2+2xa1Xa2Xa3Xb1~Xb3+2Xa1Xa2Xa3Xb1Xb2,f\2+
(-12)Xa1xa2xa3Xb1Xb2Xb3+2xa1Xa2Xa3Xb1Xb3,j\2+2xa1Xa2Xa3Xb2{'2Xb3+
2Xa1Xa2Xa3Xb2Xb3,j\2+2Xa1Xa2Xb1,j\2xb2{'2+(-2)Xa1Xa2Xb1{',?Xb2Xb3+
(-2)Xa1Xa2Xb1Xb2,t.2Xb3+2Xa1Xa2Xb1Xb2Xb3,j\2+(-2)xa1xa3,j\2xb1,j\2xb3+
2Xa1Xa3,j\2Xb1Xb2Xb3+2Xa1Xa3~Xb1Xb3~+{-2)Xa1Xa3,j\2Xb2Xb3,i\2+
(-2)Xa1Xa3Xb1,j\2xb2Xb3+2xa1Xa3Xb1~Xb3,i\2+2Xa1Xa3Xb1Xb2{\2Xb3+
(-2)Xa1Xa3Xb1Xb2Xb3,j\2+(-1)x~a3,l\2Xb*+2Xa2,j\2Xa3,j\2Xb2Xb3+
(-1)Xa.2{\2Xa=b3,j\2+{-2)><?21'2Xa3Xb1Xb*+2~Xa3Xb1Xb2Xb3+
2xa.2,j\2Xa3Xb Xb3+(-2)xa.2,1\2Xa3Xb2Xb3,j\2+(-1)><a?t,2Xb1{\2Xb2,j\2+
2Xa2,j\2Xb1Xb 3+(-1)xa2,j\2xb2{',?Xb:3¼+2Xa2Xa3,i\2Xb1Xb2Xb3+
(-2)Xa2xa=Xb1Xb3,i\2+(-2)Xa2Xa3,j\2Xb*Xb3+2Xa2xa3,j\2Xb2Xb3,j\2+
2Xa2Xa3Xb1 Xb2Xb3+(-2)xa2Xa3Xb1Xb2,f\2Xb3+(-2)Xa2Xa3Xb1Xb2Xb3,1\2+
2Xa2Xa3Xb 31'2+(-1)Xa3~Xb1,1\2Xb3,t.2+2xa3{\2xb1Xb2Xb3,j\2+
(-1)Xa3,l\2xb2tf,2Xb3,l\2

31

formula= (a1Xb1X(a2+b3+(-l)X(a3+b2))+a2Xb2x(a3+bl+(-1)X(a1+b3))+
a3Xb3X(al+b2+(-1)X(a2+b1)))1'2

formula (simplified) =
a1~~1~+(-2)Xal.{\2~b1Xb2+al~Xb*+
(-2)Xal xa2xa3Xb11'2+2Xa1,t0<a?xa3Xb1Xb2+2Xa11',2Xa2xa3Xb1Xb3+
(-2)xa1 xa2xa3Xb2Xb3+(-2}xa1,f\2><a2Xb1~2+2Xa11'2Xa2Xb1.{\2Xb3+
2Xa1.{\2xa2Xb1xb$+(-2)xa1~Xa2Xb1Xb2Xb3+a1~a31'?)<b1~+
(-2)sffia1 a3.{\2Xb1Xb3+a1.{\2xa3,l\2Xb*+2xa1~xa3xb1,j\2Xb2+
(-2)Xa1 xa3Xb1.{\2Xb3+(-2)Xa1~3Xb1Xb2Xb3+2xa1,t,?xa,3Xb1Xb3,f\2+
a11'2Xb1 b2,j\2+(-2)xal4'2Xb1~Xb2Xb3+a1.{\2Xb1,j\2Xb3.{\2+
2Xa1 xa3Xb1Xb2+(-2)Xa1Xa.24'2><a3Xb1Xb3+(-2)Xa1xa.21'2xa3xb$+
2xa1 xa3xb2Xb3+2xa1xa$xb1,j\2Xb2+(-2)xa1xa.21'2Xb1Xb$+
(-2)xa1xa.2,t2Xb1xb2Xb3+2Xa1X~$Xb3+(-2)Xa1Xa2Xa3,t2Xb1Xb2+
2Xa1Xa2xa31',2Xb1Xb3+2xa1xa2xa3,f\2Xb2Xb3+(-2)Xa1xa2Xa3,t2><b3.{\2+
(-2)Xa1xa2xa3Xb1~2+(-2)xa1xa2Xa3Xb1~3+(-2)Xalxa2xa3Xb1Xb2,j\2+
12xa1Xa2Xa3Xb1Xb2Xb3+(-2)Xa1Xa2Xa3Xb1Xb3~+(-2)Xa1xa2xa3Xb~3+
(-2)Xa1Xa2Xa3Xb2Xb3.{\2+(-2)xa1xa2Xb1~2,f\2+2Xa1Xa2Xb1.{\2Xb2Xb3+
2Xa1Xa2Xb1Xb~b3+(-2)xa1xa2Xb1Xb2Xb3.{\2+2Xa1xa3,f,2?<b1.{\2Xb3+
(-2)Xa1Xa3,l\2Xb1Xb2Xb3+(-2)Xa1Xa31'2Xb1Xb3.{\2+2xa1xa3.{\2Xb2Xb*+
2Xa1xa3Xb1.{\2Xb2Xb3+(-2)xa1xa3Xb1.{\2Xb3~+(-2)Xa1Xa3Xb1Xb2,l\2Xb3+
2Xa1Xa3Xb1Xb2Xb3.{\2+a*xa3.{\2Xb?1'2+(-2)xa?,j\2xa3.{\2Xb2Xb3+
a2.{\2X~3 31',2+2xa.21',2xa3Xb 1 Xb2,t.2+(-2)x9*-xa3xb 1 Xb2Xb3+
(-2) a3Xb Xb3+2~xa3Xb2Xb3~+a2tt,2Xb1 Xb2.{\2+
(-2)x Xb1Xb~~3+a21',2Xb2,l\2Xb3,l\2+(-2)xa2Xa3f,;~,xb2Xb3+
2Xa2Xa3 1 Xb~~xa2Xa3,l\2Xb2{2Xb3+(-2) xa2xa3~2Xb3.{\2+
(-2)Xa2Xa3Xb1.{\2Xb2Xb3+2Xa2Xa3Xb1Xb2,1\2Xb3+2xa2Xa3Xb1Xb2Xb34\2+
(-2)xa2xa3Xb?,t.2Xb3.{\2+a3,j\2Xb1,t2Xb3.{\2+(-2)Xa3.{\2Xb1Xb2Xb3.{\2+
a3,i\2Xb2{'2Xb}1\2

determinant+ formula= 0

end of example

References

[1] R.P. van de Riet,

[2] R.P. van de Riet,

[3] W.P.' de Roever,

[4] D. Grune,

Formula manipulation in .ALGOL 60, part 1,
Mathematical Centre Tracts nr. 17,
Mathematisch Centrum.
Garbage collection methods for ABC in .ALGOL 60,
TW report 110, Mathematisch Centrum.
An exact rational function system with garbage
collection in .ALGOL 60,
MR 119/70 september, Mathematisch Centrum.
Handleiding Milli-systeem voor de EL x8,
LR 1.1, april 1971, Mathematisch Centrurn.

"

