
REKENAFDELING

stichting

mathematisch

centrum

J.W. DE BAKKER and L.G.L.Th. MEERTENS

SIMPLE RECURSIVE PROGRAM SCHEMES AND
lNDUCTIVE ASSERTIONS

MR 142/72

RA

~
MC

DECE!VJBER

2e boerhaavestraat 49 amsterdam

MATHEMATIS~H
AMS'fERDAN

Cli:NikUM

PJunte.d a.t .the. Ma.thema..t..i..c.a.1. Ce.n;tJte., 49, 2e. Boe11.haave6.t.'1.aa.t, Am-6.te.Jt.dam.

The. Ma.thematic.a.£. Ce.n;tJte., 6ou.n.de.d .the. 11-.th 06 Fe.b1tu.aJty 1946, -lo a. non
p1to 61.:t .i..n-6.ti..tu.:ti..o n cu.ming a.t .the. pll.omo.t..i..o n o 6 pUll.e. ma.thema..t..i..C6 a.nd w
a.pp.U.c.a..t..i..on-6. I.t -lo .6pon-601te.d by :the. Ne..the.ll.f..a.nd6 Gove11.nme.n:t .thll.ou.gh .the.
Ne..the.ll.f..a.nd6 01tga.n.ization 601t .the. Adva.nc.eme.n:t 06 PUite. Re6e.a.1tc.h (Z.W.O),
by .the. Mu.n.ic..ipa.U:ty 06 Am.6.te/1.dam, by .the. Un.ive.Jt,61.:ttj 06 Am.6.te11.dam, by
.the. F1te.e. Un.ive.Jt,61.:ty a.t Am.6.te11.dam, a.nd by .i..ndu..6.tJue6.

ABSTRACT

By an unpublished result of Scott, the inductive characterization of the

while statement (due to Hoare) is equivalent to its minimal fixed point

characterization. In order to obtain a generalization of this result for

recursive procedures, a refinement of Floyd's technique of inductive asser

tions is proposed. The new technique features the use of assertions depend

ing upon the history of the computation. Technically, this is achieved by

indexing the assertions with expressions representing the stack of currently

active procedures.

The investigation is set in the framework of program schematology. Proofs

about simple - i.e., one-variable only - schemes are given by means of

Scott's induction rule which is stated and proved somewhat more abstractly

and rigorously than before. The main tool is the regularization theorem

stating, roughly, that for each "context free" program scheme an equivalent

(infinite) "regular" scheme can be constructed. The inductive assertion

theorem then provides the above mentioned generalization.

CONTENTS

1. Introduction

2. Origin of the problem

3. Simple recursive program schemes

3.1. Language and interpretation

3.2. The union theorem

3.3. The induction theorem

4. Inductive assertions

4.1. Attempts that failed

4.2. The regularization theorem

4.3. The inductive assertion theorem

Appendix: Derivatives and traces

References

4

8

9

14

20

23

24

25

33

38

40

"

1. INTRODUCTION

Our paper reports an investigation of the foundations of simple recursive

program schemes and their associated inductive assertions.

Simple recursive program schemes were first introduced in Scott and

De Bakker [16]. In that paper, the notion of minimaZ fixed point structure

of recursive procedures - used synonymously, there and here, for simple

recursive program schemes- was developed, and a powerful rule of proof,

Scott's fixed point induction rule, was derived from it. The variety and

multitude of applicationsofthis rule have shown it to be a worthy successor

to McCarthy's classical rule of recursion induction [12].

Proofs based on the minimal fixed point characterization were proposed in

dependently by Bekic [4], Morris [13] and Park [15]. In subsequent work

De Bakker [1,2], De Bakker and De Roever [3], Hitchcock and Park [6], Manna

and Cadiou [8], Manna, Ness and Vuillemin [9], Manna and Vuillemin [11],

Milner [14] and others have been concerned with the development of formal

systems in which Scott's rule can be embedded, with the completeness of such

systems, with application to correctness and termination proofs about pro

grams, with the relationship between the fixed point characterization and

various rules of computation, with the implementation of the rule in an in-

teractive program proving system, and with other appltcations.

Our study of simple recursive program schemes in relation to inductive asser

tions arose out of a problem inspired by work of Hoare [7]. Incidentally,
*) so did the original paper by Scott and De Bakker. The problem is ex-

plained in section 2. Roughly, we became interested in the relationship

between the inductive characterization of the while statement and its mini

mal fixed point characterization. The equivalence of these two character

izations was shown by Scott (unpublished). The question then arose how to

generalize this result for recursive procedures. The answer to this ques

tion is the main achievement of the present paper, beside a number of tech-

*) The reader who takes this reminder as a gentle admonition to the prac-
tical program correctness provers, the advocates of structured program
ming, their company and followers, that there is more to Hoare 1 s axiom
system than meets the eye, is right.

~

2

niques used in the proof which may have some independent interest. In par

ticular, we develop a strategy for proving properties of programs by means

of inductive assertions depending upon the history of the computation.

In the course of our investigations we were led to a new development of part

of the material contained in the papers Scott and De Bakker [16], and

De Bakker and De Roever [3]. The novelty consists mainly in a more abstract

and general version of the previous expositions. In particular, we state

our results throughout for infinite systems of declarations (this will be

needed in section 4), our statement of the union theorem, yielding the con

struction of the minimal fixed point by means of successive approximations,

has a more general form than before, and the induction theorem, justifying

Scott's induction rule, is proved without an explicit appeal to continuity.

The main new results follow in section 4. There we prove the equivalence

between the inductive assertion - and the minimal fixed point characteriza

tions of sytems of recursive procedures. The central tool is a certain in

dexing technique used first in the proof of the so-called regularization

theorem which states that for each recursive program scheme an equivalent

(but always infinite) scheme can be constructed which is regular in struc

ture (in the sense that the grammar which is associated with the scheme in

a rather natural way is regular). Half of the inductive assertion theorem

may be viewed as a justification of a generalization.of Floyd's technique

[5] of proving global properties of a program from a collection of local

properties. This generalization is twofold. Firstly, as minor point, we

have that the technique applies to systems of recursive procedures and not

to flow charts (cf. the - different - generalization of Manna and Pnueli

[10]). Secondly, and more importantly, we construct a system of inductive

assertions consisting, in a sense, of the minimal set of assumptions about

local properties needed to prove the global assertions. The minimality is

obtained by introducing assertions which depend upon the stage of the com

putation: Let A be an elementary component of the program. Usually one re

quires that, for some pre-(post)condition p(q), if A is entered with input

x for which p(x) is true, q(y) is true for output y from A. In our system,

however, we use an indexed set p ,q, cr reflecting the stack of currently
cr ~

active procedures, and require that, for each relevant cr, p, q and A
cr cr

3

satisfy the relationship described for p, q and A above. We first prove for

this highly structured collection of inductive assertions that Floyd's

theorem holds. But, moreover, we can now also prove the converse, i.e.,

that each system of relations satisfying the collection necessarily coin

cides with the recursive procedures as declared by the scheme. Thus- we ob

tain the generalization of the result for while statements we set out to

prove.

As remarked above, the proofs in section 4 rely heavily on a certain strat

egy of indexing procedures in various auxiliary systems in such a way that

the history of the computation leaves its trace in the index; also, we

introduce segments of initial computation, preceding an inner call of a

procedure at a given level of recursion depth. The relationship between

this notion and the notion of derivative introduced by Hitchcoc,k and Park

[6] is settled (without proof) in the Appendix.

For the reader who is not happy with our restriction to simple schemes only,

we announce work in progress by W.P. de Roever in which, among other re~

sults; section 3 of the present paper is generalized to polyadic relations.

Our paper is rather abstract and mathematical in nature. Another unhappy

reader, who wants to see what can be done with these techniques in practical

programming situations, is referred to the literature mentioned above, e.g.

De Bakker [1], De Bakker and De Roever [3], Manna and Vuillemin [11], or

Milner [14].

We acknowledge many helpful discussions with P. van Emde Boas. In partic

ular, we are indebted to him for lemma 3.5.

4

2. ORIGIN OF THE PROBLEM l)

Let P be a program. The computation prescribed by P maps input x to output

y, with x, y elements of some domain V of state vectors, information struc

tures, internal objects, or whatever one chooses to call them. Articulating

the structure of the objects in Vis not of our concern here at all; that of

Pis analysed only in a highly global manner, abstracting from most of the

properties of its constituent components. In fact, we study only the essen

tial flow of control structure of P, and investigate it from a mathematical

as opposed to an operational or implementation-oriented point of view.

The mapping Pis a partially defined (programs may be nonterminating)

function from V to V, or, rather, taking non-deterministic programs into

account, a binaY>y relation over V. We write (x,y) E P, or, more often,

xPy. Thus, xPy 1 , xPy 2 and y
1

::/- y
2

may coexist.

Many correctness assertions on programs can be formulated as: If x satis

fies property p, than y satisfies property q, i.e., Vx,y[p(x) A xPy ➔ q(y)J.

Concepts of the programming language used for the writing of P can be

characterized semantically by correctness assertions. As an example, we

consider the while statement while p do A, with pa boolean expression, A

a program. As short-hand we use p*A. Hoare l 7 J has proposed what amounts

to the following characterizing properties:

(2. 1) Vu[Vx,y[u(x) A p(x) A xAy ➔ u(y)J ➔

Vx,y[u(x) Ax p*A y ➔ u(y)JJ

(2.2) Vx,y[x p*A y ➔ ,p(y)J

In words, (2.1) expresses an induction property: If performing A once (for

input with p true) does not change property u, then performing it zero or

more times (by p*A) does not change it either. Observe that (2.1) is a

1) The considerations of this section are mostly informal in nature. In
a more precise form they return in the sequel of the paper.

5

formula in second order predicate logic. (2.2) is clearly valid, since the

very termination of the while statement implies that its controlling

expression is no longer satisfied.

Formulae such as (2.1), (2.2) can be written more concisely by using a

number of abbreviations together establishing a transliteration from predi

cate - to relational calculus. The predicate P(x,y) is true iff (x,y) is an

element of the relation P. Thus, for Vx,y [xP
1
y + xP

2
yJ we write P

1
~ P

2
•

The meaning of P1 = P2 , P1 rt P2 and P1 u P2 should be clear. xP1;P2y is

short for 3z [xP
1
z A zP

2
yJ; i.e., "; 11 denotes the operation of relational

composition. For the identity (empty) relation we write E(Q), i.e., xEy iff

x=y, and xQy for no x,yE V. Moreover, with each unary predicate p (possibly

partial) we associate two subsets of E, viz. p and p, such that p u p .=. E,

p n p .=. Q, with the following intended correspondence: p(x) holds iff

(x,x) E p, 'p(x) holds iff (x,x) E p, and p(x) is undefined iff (x,x) E

EE\ (pup). Using these abbreviations we can write for (2.1), (2.2):

(2.3) Vu [If p;u;A ~ A;u then u;p*A ~ p*A;u]

(2.4)

These two formulae are not yet. the whole story about the while statement.

Clearly, there is at least one other essential fact to be noted, expressed

by

(2.5)

or, in perhaps more familiar terms, p*A is equivalent with (in fact, may be

said to be defined recursively by) if p then begin A;p*A end else E, where

Eis nothing but the "dummy statement". However, (2.5) is not the whole

truth either. This will be brought out by consideration of the special case

p*E, where we have taken for the as yet unspecified program A, the dummy

statement E. We know that, if pis true of the input, then p*E loops

infinitely (the relation between input and output being empty in this case),

6

i.e., p*E = if p then Q else E = p;Q up -= p, However, this fact is not

contained in the corresponding instance of (2,5}. Specifically, (2.5) only

expresses that p*A is a solution of the functional (or, rather, relational)

equation X = p;A;X up, whereas our example emphasizes that we need its

minimal solution: We have to require

(2.6) VS[If p;A;S u :p = S, then p*A 5:: S] 1)

One is now confronted with the question: What is the relationship between

(2.3), (2.4) on the one hand, and {2.6) on the other hand. The answer is

provided by the following theorem:

-THEOREM 2.1 (Scott). Let R satisfy: R

{2.7a,b) are equivalent with (2.8):

= p;A;R up. Then the two assertions

(2.7a) Yu[If p;u;A 5:: A;u then u;R 5:: R;u]

(2.7b) R 5:: R;p

(2.8) VS[If p ;A; S u p = S, then R 5:: S] •

In words, for fixed points R of the while statement ·characteristic equation,

the inductive characterization (2.7) and the minimality characterization (2.8)

are equivalent, i.e.; imposing either (2.7) or (2.8) upon such R implies

that R = p*A.

PROOF

1. (2.7) =" (2.8).
* df. First we show the following: Let A = E u A u A ;A u ... , and let X be an

arbitrary relation over V satisfying: Vu[If u;A 5:: A;u, then u;X 5:: X;u].
* * * Then X 5:: A • Proof: Choose a fixed xO EV. Define u

O
(s) ~ Vt[sA t+x

O
A t].

1) A (generalized) theorem to this effect is proved in section 3.2

7

* '* It is easily verified, using A;A .s A, that u
0

;A 5 A;u
0

• Hence by

assumption, u
0
;x .s X;u

0
, or, Yx,y[u

0
(x) A xXy + u

0
(y)J. Assume x

0
Xy.

Clearly,· u
0

(x
0

) is true. Thus, u
0

(y)., i.e., Vt[yA*t + x
0
A*t] holds.

. . . * * . Taking t = y we obtain,• since E EA , . the result that x
0

Xy + x
0
A y. Since

x
0

was arbitrary, the proof of X _sA* is completed. Using this aux:iliary

result the proof of (2.7) ~ (2.8) is easily established as follows:

From (2,7a), Vu[If u;(p;A) 5 (p;A);u, then u;R E R;u]. Therefore,

R 5 (p;A)*, whence, R;p E (p;A)*;p, from which, by (2.7b), R 5 (p;A)*;p

is obtained. Now suppose that S = p;A;S up. In order to show that then

RES, it is sufficient to show that each of E;p, p;A;p, p;A;p;A;p, ••• ,

(p;A)i;p, ••• is included in S. This follows by: S?. p;A;S?. ... ?.

?. (p;A)i;S_= (p;A)i;(p;A;Sup) ?_ (p;A)i;p.

2. (2.8) ==> (2.7).

By the Kn.aster-Tarski theorem [18 J, as mentioned e.g. in de Bakker [1 J

or Park [15], we have that (2.8) is equivalent with

VS[If p;A;S up ES, then R c SJ.

Let R satisfy (2.8) and, hence, (2.9). Let u be such that p;u;A E A;u.

We show that then u;R .s R;u, or, equivalently, that·

Vx,y[xRy + [µ(x) + u(y)JJ. Let xSy <df> [u(x) + u(y)J. By (2.9), it will

be sufficient to show p;A;S up .s S. Clearly, p .s S. Also, in order to

show p;A;S .s S, we must prove Vx,y,z[p(x) A xAy A [u(y) + u(z)J +

+ [u(x) + u(z)JJ. Assume p(x), xAy, u(y) + u(z), and u(x). Since

p;u;A 5 A;u, we have u(y). Thus, u(z) follows from the assumption, as

desired .. This completes the proof of (2.8) ~ (2,7a). That of (2.8) ==:::>

(2.7b) is left to the reader.

We can now state the origin of the investigation leading to the present

paper: We wanted to solve the problem: Generalize theorem 2.1 for recursive

procedures.

8

3. SIMPLE RECURSIVE PROGRAM SCHEMES

A simple recursive program scheme is an abstract form of a program contai

ning a system of declarations of recursive procedures. In an ALGOL-like

language the structure of such a program might be

begin

procedure P 1 ; <statement 1 >;

procedure P
2

;<statement 2>;

procedure p ;<statement n>;
n

<statement>

end

where <statement 1>, ... , <statement n>, and <statement> each may contain

occurrences (i.e; "calls") of P1 ,P2 , ••• ,Pn.

In section 3.1 we first give a preci~e description of the language in which

the abstract statements, i.e., statement sahemes are written. Informally,

the language allows construction from certain elementary statements - either

"atomic" actions or procedure calls - by means of c9mposition, denoted by

the go-on operator";", or by means of the union operator "u". For our use

of "u" compare the previous section, where it was indicated how the condi

tional statement if p then s1 else s2 is represented by p;S1 u p;S2 •

For the moment, we do not yet bring these p's into the fonnal language.

They can wait till section 4.

After the introduction of the formal language, we define how a program

scheme written in it can be interpreted as prescribing a aomputation.

Starting with an initial interpretation of the atomic actions and the

constants (n and E) as mappings (relations) over some domain, we construct

from this initial interpretation the interpretation of the scheme as a

whole, using the notion of computation sequenae, the definition of which

embodies, among others, the "copy rule" for procedures.

Finally, after having prescribed the form of the assertions we shall be

9

interested to make about program schemes, we define the notion of validity

of assertions. The fundamental theorems about program schemes are then

derived in sections 3.2 and 3.3.

3.1 Language and interpretation

The basic components of program schemes are the two classes of symbols

introduced in

DEFINITION 3,1 (Basic symbols)

a. The class of relation syrriboZs R ==Au Xu C, where A= U 1 ,A2, ... },

X = {X1,x2 , •.. }, and C = {Q,E}. Arbitrary elements of R (A,X) are deno

ted by R,R 1,R
2

, ... , (A,A
1

,A
2

, •.• ,x,x1,x
2

, •.• }. The elements of Care

denoted by Q and E respectively.

b. The class of procedure syrribols P = {P1 ,P2 , ... } with arbitrary elements

denoted by P ,P 1 ,P 2 , .•.

Remark: The distinction between A and-Xis introduced only for the technical

reason of making available a convenient substitution mechanism; as to their

interpretation, A and X a.re treated·in the same way.

From the classes Rand P we construct the classes of.statement schemes SS,
of declaration schemes VS, and of program schemes PS.

DEFINITION 3.2 (Schemes)

a. The class of statement schemes SS (arbjtrary elements s,s1, •.. ,S' , .•.):

1.RuP~SS

2. If s
1
,s2 E SS, then (s

1
;s

2
) and (s

1
us2) E SS.

b. The class of declaration sehemes VS (arbitrary elements D, D1 , ...):

A declaration scheme is a set of pairs {P ,s } , with 'IT a (not p p PE'IT
necessarily finite) index set, and, for each pEn, P E P, S E SS. . p p

c. The class of program schemes PS (arbitrary elements T,T
1

, .•• ,T', .••):

A program scheme is a pair (D,S) with DE VS, SE SS.

10

A program scheme T = (D,S) = ({P ,S } · ,s)' will usually be displayed as
p p p€7r

p <== s
p p

s

e.g., for 7r = {1,2} we might have

P
1

<== A
1

;P
1

;A
2

;P
2

;A
3

u A
1

;P
2

u E

P
2

¢== A
2

;P
1

;P
2

;A4 u n;P
1

u A
5

p1 ;A2;P2

p € 'Tl"

where we have dropped the parentheses of definition 3.2, clause a2. These

may be restored by using "associativity" and the convention that

priority over "u": s1;s
2

u s
3

is restored as ((s
1
;s

2
)us

3
).

II• II , has

Often, for a program scheme T = (D,S), we shall identify T and S when it is

clear from the context which Dis meant. s,s1 , ••• ,T,T1 , ••. will then each

range both over SS and PS.

The language allows us to state certain facts about program schemes in the

form of assertions:

DEFINITION 3.3 (Assertions)

a. An atomic formula is of the form T1 ~ T
2

, with T1 ,T
2

E PS.

b. A forrrrula is a set of atomic formulae: {T1 r ~ T
2

} , with pa, not
, ,r rEP

necessarily finite, index set.

c. An assertion is of the form ~ f- 1/J, with ~,1/J formulae.

11

Examples:

1. X
2

;A
2

s_P
1

f- (A
1

;X
2

uE);A
2

s_P1
2. { X c X } ~ {A ; X c A ; X }

1 ,r - 2 ,r rEp 1 1 ,r - 1 2 ,r rEp

(No confusion should be caused by the - unavoidable - mixture of object

language and metalanguage in the second assertion).

Remark: T
1

= T
2

will be used as abbrevation for T
1

.::. T
2

, T
2

.::. T
1

•

The following notation will be used for substitution: For s,s
1

E SS, and

XE X, s
1
[s/X] denotes the result of substituting S for all occurrences of

X in s
1

• Also, for 'IT any index set, S, S E SS (pE'IT), and X E X (pE'IT), p p
S[S /X J denotes the result of simultaneously substituting, for each p p pE'IT
pE'IT, SP for all occurrences of Xp in S. The notation is extended in an

obvious way to atomic formulae, formulae and assertions. E.g.,

(T
1

.::_T
2

) [S/X] is short for T
1
[S/X] 5. T

2
[S/X], and (<li~l/J)[S/X] for

<li[S/X] ~ iµ[S/XJ. We emphasize that substitution in a program scheme

T = (D,S) takes place only in Sand not in D. Without explicit mentioning,

use will be made of the chain rule· for substitutions: (S[S/XJ) [S
2

/X] =

S[8
1
[S

2
/X]/X].

We now relate the program schemes as formal objects to their intended meaning.

A program scheme TE PS prescribes a class of computations. By choosing first

ly a domain over which the computation is to ta.ke place, and secondly the

concrete realizations of the relation symbols in Rover this domain, an

interpretation - depending upon these choices - is assigned to T. The pre

cise definitions follow in definitions 3.4 to 3.6.

DEFINITION 3.4 (Initial interpretation)

An initial interpretation c0 is given ty its domain V (an arbitrary non

empty set) and a mapping (also denoted by c0) from the elements of R to

binary relations over V satisfying the condition that c
0

(Q) is the empty

relation over V and c0 (E) the identity relation.

12

The extension of an initial interpretation c
0

to an (extended) inter

pretation c needs the notion of a computation sequence.

DEFINITION 3.5 (Computation pequence)

A computation sequence with respect to the declaration scheme

D = {P ,S} and the initial interpretation c
0

with domain Vis a finite p p pE1T
sequence

(3. 1)

with n ~ 1, xi EV (12,.i<n+1), Si E SS (12,.i<n), satisfying the condition:

For each i, 1 < i 2,. n, one of the following six cases applies:

a1. s. = R. Then l = n, and (x. ,x.
1

) E c
0

(R).
l l l+

2. s. = S' u S". Then s. 1 = S' or 8i+1 = S" and xi+1 = x .• l 1+ ,
l

3. s. = p • Then s. 1 = 1+ s p' where (P ,S) E D, and x.
1

= X. • l p p p
b1. s. = R;S I. Then s. 1 = S' and (X. ,x.

1
) E

l 1+ l · 1+
2. s. = (S'us");s. Then si+1 :;: S' ;S or s. 1 l 1+
3. s. = p ;S. Then s. 1 = s ;S, where (P ,s

l p 1+ p p p

Example: Let D be

p1 ¢= A1 ;P1 ;A2 u A3;P2

P
2

¢== A4;P2 u E.

1+ l
c

0
(R).

;:: s";s, and x. 1 1+
) E D, and x. 1 = 1+

= x .. l
x ..

l

A possible computation sequence with respect to D and a given c0 is

(S1=A5;P1):

x1 A5;P1 x2 p1 x3 A1 ;P1 ;A2 u A3;P2 x4 A1 ;P1 ;A2 x5 p1 ;A2

x
6

(A
1

;P
1

;A
2

uA
3

;P
2

);A
2

x
7

A
3

;P
2

;A
2

x8 P
2

;A
2

x
9

(A4 ;P
2

uE);A2 x
10

A4;P
2

;A
2

x
11

P
2

;A2 x 12 (A4;P
2
uE);A

2

x13 E;A2 x14 A2 x15
with (x1,x

2
) E c

0
(A

5
), x

2
= x

3
, x

3
= x

4
, (x

4
,x

5
) E c

0
(A

1
), etc •.

Remarks:

1. The definition of computation sequence 1s an elaboration of a proposal

by Scott t.1 TJ.

13

2. A computation sequence such as (3.1) may be viewed as follows: Each S.,
l

1~i~n, is the program which remains to be executed, at stage i, with

current "state" x .. The execution is completed when the last statement
l

- which is necessarily an element of R - is performed (clause a 1) . Clauses

a2 and b2 describe a choice between two potential continuations. Clauses

a3 and b3 give the copy rule for procedures: replace the procedure iden

tifier by its body, and continue with the thus modified program. Clauses

b1 to b3 contain the usual meaning of fl • "

'
prescribing continuation.

We are now sufficiently prepared to define the interpretation of a program

scheme.

DEFINITION 3.6 (Interpretation)

Let T = (D,S) be a program scheme and let c
0

be an initial interpretation.

Then the interpretation c (which is said to extend c
0

) is defiried by:

For each x,y € V, (x,y) € c(T) iff there exists a computation sequence

x 1 s1 x2 s2 .•• xn Sn xn+1 with respect to D and c
0

such that x 1 = x,

xn+ 1 = y, and s1 = S.

Usually, we are interested in assertions about program scnemes which hold

for aU interpretations, i.e., which are valid:

DEFINITION 3.7 (VaJ.idity)

a. An atomic formula T 1::. T2 satisfies an interpretation c, iff

c(T1) ~c(T2) holds. If T1 ::. T2 satisfies all c, it is called valid.

b. A formula¢, satisfies c (is valid) iff all its elements satisfy c (are

valid).

c. An assertion <!> ~ 1/; such that, for all c, if <!> satisfies c then tl,, satis

fies c, is called valid.

Remarks:

1. Note the distinction between definition 3.7c and the alternative:

<l>.r tl,, is called valid iff validity of<!> implies validity of~- The

14

alternative is not adopted.

2. From the definitions it follows that if~ ~~ is a valid assertion,

for arbitrary S, (~ ~ ~) [S/X] is also valid.

Examples of valid assertions

a. With respect to D = {P1 <=- P
1

}

p = Q
1

b. With respect to D = {P1 ~ A1
;P

1
u A

2
P 2 ~ A

1
;P

2
u E}

P1 = P2 ;A2 , and

x1 .::. P2 ;A2 ~ A1 ;X1 u A2 .::. P2 ;A2

The main result of section 3 is a rule for proving validity of assertions

(Scott's induction rule) . .An important tool in the proof of this rule is

the union theorem, dealt with in the next subsection.

3,2 The union theorem

We begin with a simple le~.ma stating some direct consequences of the

definition of interpretation.

LEMMA 3,1 l)

a. If TE R, then cO(T) = c(T)

b. c(T
1

;T
2

) = c(T
1

);c(T
2

)

c. c(T1uT2) = c(T1) u c(T
2

)

d. c(P) = c(S), for each p En.
p p

PROOF. We prove only part d.

1. c Assume (x,y) E c(P). Then there is a computation sequence
p

x 1 s1 x2 s2 ••• xn Sn xn+l' with x 1 = x, xn+l = y, and s1 =Pp.By defi-

nition 3.4, then s2 = SP, and x2 = x 1. Therefore, x2 s2 ••• xn Sn xn+l

is also a computation sequence; hence, (x,y) = (x2 ,xn+l) E c(Sp) = c(S~).

1)The lemmas of this and the following subsections always refer to suitably
defined statement, declaration, or program schemes. In particular, we al
ways•assume given the declaration scheme D = {P ,S} such that none of the
S contains any occurrence of an X E X. P P pEn

p

15

2. ~- Assume (x,y) E c(S). Thus, there is a computation sequence
p

x1 s1 x2 S •.. x S x 1' with x1 = x, x 1 = Y, and s1 = 2 n n n+. n+
sequence x' S 1 x' S' x' S' x' with m = n+1, S' = P,

1 1 2 2 · · · m m m+ 1 ' 1 p
l. = 2 3 m x' = x , x! = x. , i = 2,3, •.• ,m+1, is also ' , ..• , ' 1 1 l .. l-1
tion sequence, whence (x,y) E c(P) follows.

p

Remarks.

S. Then the
p

S!=S. 1 ,
l l-

a computa-

1. The result of lemma 3.1 d, is not as obvious as it may seem. In fact, it

does not necessarily hold in certain treatments of the non-monadic case,

as has been pointed out by Manna and Cadiou [8].

2. From the definitions and lemma 3.1, the validity of standard properties

of program schemes, such as Q 5.. T, (s1;s2);s
3

= s 1;(s2 ;s
3

), E;T = T, if

s 1 5.. s 2 then S;S1 ~ S;S2 etc., easily follows. These and similar

properties will be used in the sequel without explicit mentioning. We do

mention separately the monotonicity property in its two most used forms:

LEMMA 3.2 (Monotonicity)

a. s1 5.. s2 I- scs, /XJ c S[S/XJ

b. {S C s } I- S[S /X J C S[S /X J
1,r - 2,r rEp 1,r r rEp - 2,r r rEp

but we omit its proof, which proceeds by an inductive argument on the

complexity of the statement schemes concerned.

We now come to the more interesting part. First we introduce some

auxiliary concepts and notation.

DEFINITION 3.8.

a. A statement scheme Sis called closed if it contains no occurrences of

any XE X.

b. Let S be a statement scheme. S denotes the result of replacing, in S,

all occurrences of a procedure symbol P by X for each p En.
p p

16

LEMMA 3.3

a. For closed T, T[P /X J = T p p pE7T
b. For arbitrary T: ,,.,-,----____,

{S c P } ~ T[P /X] [S /X] c T[S /X]
p - p PE7T p p PE7T p p pE7T - p p pE7T

PROOF. Follows from the definitions, properties of substitution and

monotonicity.

. . [k]
Next we need, for each T, two sequences of substitution results T and

(k)
T ,k=0,1,2,

DEFINITION 3.9

a. T[oJ = T

T[k+1]=T

b. T(O) = Q

T(k+1) ~ = T

[ik] /X] ,
p p pE7T

[S(k)/X]
p p pE,r'

We immediately have

LEMMA 3.4

k=0,1,2, ...

k = 0, 1 , 2_, ...

a. P(k+1) = 8(k)
p ~k=0,1,2, ...

b. T(k+1) = T[k] [Q/X] , k = 0,1,2, ...
p PE1f

c. T[k+1] = (T[k])[1J.

PROOF. a and care left to the reader.

b. We use induction on k.

(i) k = o. T(1) = T[S(O)/X] = T[Q/X]
p p PE1f p pE7T
~

= T[O J[Q/X J •
p PE'IT

17

(ii) Assume the result for k-1. We have
,,.--..___,.

T[kJrn;x J
p pE1T -T [S·[k-1 J /X]

p p pE1T [n/X J =
p PE1T -----T [S[k-1][Q/X] /X] =(ind.hypothesis)

p p pE1T p pE1T

T [S·(k) /X] = T(k+1).
p p pE1T

The next two definitions are preparatory to the three main lemmas of this

section, lemmas 3.5 to 3.7. The definitions are of a technical nature and

are used only in the proofs of these lemmas.

DEFINITION 3.9 (Executable occurrence)

A procedure symbol P is said to occur exeautahle in a computation sequence
p

x 1 s 1 x
2

s 2 x S x 1, if, for some i, 1 < i ~ n, S. = P ors. = p ;S. n n n+ 1 p 1 p

DEFINITION 3.10 (to Identify)

x S x +1 be a computation sequence. We say that a
n n n

procedure symbol P occurring in some S contained in S., 1sisn, directly
p l

identifies the corresponding occurrence of Pp in S cqntained in Si+1, in

each of the following cases

a. s. = s u S' and s. 1 - s, or s. = S' u s, and 8 i+1 = s.
l 1+ l

b. s. = R;S and 8 i+1 = s.
l

c. s. =
l

(S'uS");S and 3i+1
= S1 ;S or S";S, or s. = (sus');s"

l

and S. 1 = S;S", or S. = (S'uS);S" and S.
1

= S;S". 1+ l l+

d. S. = P ·,Sand S. = S ,·S, for some q E 1T.
l q 1+1 q

The relationship to identify is defined as the reflexive and transitive

closure of the relationship to identify directly.

18

LEMMA 3. 5 (Van Emde Boas)

Let

(3.2) X 8 X
n n n+1

be a computation sequence with o > 0 executable occurrences of a procedure

symbol. Moreover, we assume that s
1

(and, therefore, each S., i>2) is a
l -

closed statement scheme. Then there exists a computation sequence
1 S 1 ' S1 1 S' x' uh that ' - 1 - S1 - s[

1] d x1 1 x2 2 • • • xm m m+1' s c x1 - x1' xm+1 - xn+1' 1 - 1 ' an '
moreover, such that for the number o' of executable occurrences of a pro-

cedure symbol in this sequence we have o' < o-1.

PROOF. We introduce the following transformation on the computation

sequence (3. 2) :

Step 1. Consider~ for each p E ir, all occurrences of the procedure symbol

P in (3.2) which are identified by an occurrence of P in s
1

•
p p

Step 2. Mark all those considered occurrences which are executable.

Step 3. Replace all other considered occurrences of P by S, for each
p p

p E 1T.

* Step 4. Replace, for each p E ,r, all combinations ••• ~. P ; S x .
1

S ; S x • +2 • ••
* * J p J+ p J

or ••. x. P x.
1

S x.
2

••• , where P is an occurrence of P,
J p J+ p J+ p p

marked as a result of Step 2, by ••• x .S ;S x · +2 ••• , or by
J p .J

x. S x.
2

.•. , respectively.
J p J+

It can be verified that the result of applying this transformation to (3.2)

is again a computation sequence which has at least one executable occur

rence of some P less than (3.2). In fact, at least the left-most execut
p

able occurrence of this P has been deleted. Moreover, it is clear that for

the resulting sequence wephave, by step 3 or 4 that S' =S [S /X J =S[1J.
' 1 1 p p PE1T 1

LEMMA 3.6

Let x
1

s1 x2 s2 •.• xn Sn xn+ 1 be a computation sequence with closed Si,

1 < i 2-. n, and without any executable occurrence of a procedure symbol.

Then, for arbitrary R ER, p E ir, we have that
p

19

x
1
s

1
[R /X] x

2
S

2
[R /X J X

n
S [R /X] x

n p p PETI n+1 p p pETI p p PETI

is also a computation sequence.

PROOF. Since none of the P is executable, each of its occurrences may be
p

replaced by an arbitrary R without changing the computation.
p

LEMMA 3.7

Let T be a closed statement scheme, and let (x,y) E c(T). Then there exists

k > 6 such that (x,y) E c(T(k)).

PROOF. By assumption, there is a computation sequence x 1 s
1

x
2

s
2

•••

••• xn Sn xn+l' with x 1 = x, xn+l = y, and s
1

= T. Since s
1

=Tis closed,

each S. is closed. Repeatedly applying lemmas 3.5 and 3.4c yields, for some
i . , s[kJ • , , s• , , k > 0, a computation sequence x 1 1 .x ••• xm m xm+l, such that x 1 = x 1 ,

x' = y, and such that this computation sequence does not contain any exe-m+1 ·
cutable occurrence of a procedure symbol. Then, by lemma 3.6, we have that

,,......__,,
x' s[k][n/x J x'

1 1 p pETI 2

~

XI -s 1 rn/x J
m m p pETI

x' m+1

is also a computation sequence. By lemma 3.4, part b,

() C(s
1
(k+1)). Thus, we have shown that x,y E

LEMMA 3.7 provides the main result for the proof of

THEOREM 3.1 (Union theorem)

Let T be a closed statement scheme. Then, _for all c,

PROOF.

a,

c(T) = U
k=O

a.~- This follows directly from lemma 3.7.

~

s[kJrn;x J
1 p pm

. (k)
b. ~- First we show that, for each p En, and each k, P ~ P. We use

p p
induction on k.

20

(i) k = O. Clear.

(ii} Assume the result fork. Then: P(k+1) = (lemma 3.4)
p

~ (ind. hypothesis) S [P /X] = S = (lemma 3.1) P. p p p pETT p p

Next, we show that T(k) s T: T(k) = T[S(k)ix J = T[P(k+1)/X J s
p p PETT p p

c T[P /X J = (lemma 3. 3) T. Thus, U T(k) c T follows, whence the proof
- P P k=O
of part b.

Re:rnark: In the _sequel we shall abbreviate the statement "For all c,

c(T) = U c(T(k))" to: T = U T(k).
k=O k=O

As~ corollary to theorem 3.1, we immediately obtain the minimal fixed

point property of procedures:

COROLLARY 3.1

{S [S' /X J ~ s I} . ~ {P C s I} •
p P p pETT p pEIT p - p PEIT

oo (k)
PROOF. We use P = U P

P k=O P
(i) p(O) ~ S1 is clear.

p p
(ii) Assume the result fork.

and induction on k.

Then for each p E TT P(k+1) = s(k) =
, ' p p

S [S(k+1)/X] ~(ind.hypothesis) S [S'/X] c S'.
p p p pEIT p p p pEIT - p

Finally, we are now in a position to prove the induction theorem, the

importance of which justifies devoting a separate section to it:

3.2. The induction theorem

THEOREM 3.2 (Scott's induction theorem)

Let~ be a closed formula. Then:

21

If

~ ~ ljJ[Q/X J p pE'lf

and

~, 'l' ~ 'l'[S /X]
P P PE'lf

are valid, then

. ~ r 'l'[P /X] .
p p pE'lf

is valid.

PROOF. It is sufficient to show the following:

If(*) (T 1cT
2

)[Q/X] , and(**) T
1

c T
2

. I- (T1~T
2

)[S /X J are valid,
- p PE'lf - p p PE'lf

then (T
1
cT

2
)[P /X J. is valid. Observe that the T

1
,T

2
may contain occur--. p p PE'lf -

rences of the P; in other words, we do not necessarily have that

T:[P/XJ = ~. , i = 1 ,2,.. . • The proof proceeds in four steps:
l p p pE'lf l

a. We show that T
1
[S(k)/X] c T

2
[S(k)/X] , k = 0,1,2, ••• , by induc-

p p pE'lf - p p PE'lf
tion on k. The case k = 0 follows from(*). Next, assume as induction

hypothesis that T
1
[S(k)/X] ~ T

2
[S(k)/X] holds. By(**) we have

p p pE'lf p p pE'lf ,

that {T
1

c T
2

r (T
1
cT

2
)[S /X] }[g(k) /X] • From this,

- - p p PE'lf p p PE'lf

(T
1
~T

2
)[S(k)/X] r(T

1
~T

2
)[Sp(k+ 1)/X] E'lf follows. Combination with

p p pE if P P (k+ 1)
the induction hypothesis yields that (T

1
~T2)[S /X J holds • . p p pE'lf

(k+1) (k) b. Fork= 0,1,2, ••• , and any T, we have (T[P /X]) ~ T[S /X] ,
P P PE'lf p p PE'lf

since (T[P /X] l+1 = ~ [S(k) /X] c T[S(k) /X] by
p p PE'lf p p pE'lf p p PE'lf - p p PE'lf'

lemma 3.4.

c. By b, L) (T[P /X])(k+1) c lJ T[S(k) /X] c T[P /X] • Also,
k=O P P PE'lf - k=O P P PE'lf - P P PE'lf

by theorem 3.1, which applies since T[P /X J is closed, we have that
p p PE'lf

00 (k+1) U (T[P /X]) = T[P /X] • Thus, we obtain that
k=O P P PE'lf P P PE'lf

U T[S(k) /X] = T[P /X] •
k=O P p pE 'If . P p PE 'If

22

d. Combination of parts a and c completes the proof of the induction

theorem.

Example: Let ,r = {1,2} and D={P1 .;::= A
1

;P1 u A
2

,

P
2

<== A
1

;P
2

u E}.

We show that P1 = P
2

;A
2

(this standard example was used first in [16]).

1. E· Take for~ the empty list and for ijJ: x1 E P2 ;A2• Then, for this ijJ,

1jJ[Q/Xp]pE{ 1 , 2} is the assertio~ Q E P2 ;A2 , which is clel;LI"ly valid. Next,

we have as instance of 1jJ r ijJ[S /X] : p p p 1T

X1 E P
2

;A2 r A1 ;X1 u A
2

E P
2

;A
2

•

Since, by lemma 3.1.d, P2 = A1;P2 u E, we must prove

which is valid by monotonicity. We conclude that ijJ[P /X] {1 2}, i.e.,
p P PE ,

P1 E P
2

;A
2

, holds.

2. ~.Take~ again empty and for ijJ: X2 ;A2 E P1 • Validity of 1jJ[Q/Xp]pE{ 1 , 2}

is clear. Also, 1jJ L ijJ[S /X] {1 2} takes the form I p p pE ~ . .

and the desired result follows again by monotonicity, implying, by

theorem 3.2, the validity of 1jJ[Pp/Xp]pE{ 1 , 2}, i.e., of P2 ;A
2

E P1•

A large number of examples, in varying degrees of difficulty, of applying

the rule, is contained in the papers mentioned at the end of the intro

duction. Section 4 will provide another - more advanced - application.

23

4. INDUCTIVE ASSERTIONS

In this section we introduce the notion of a system of inductive assertions

associated with a simple recursive program scheme, and we prove the main

theorem about them which states the equivalence of characterizing recursive

procedures in terms of inductive assertions, and ~n terms of the minimality

of fixed points.

Our terminology is derived from the "inductive assertion method" of Floyd

[5], ;which may be viewed as a technique for deriving global properties of a

program from local properties of its components. The form in which this

method is presented here is more abstract and general than the usual one.

Observe that our description of it in the framework of recursive program

schemes has the flow chart definition as a special case (each flow chart

can be described by a (regular, see section 4.2) system of recursive pro

cedures). Note also that the usual requirement of having at least one as

sertion "breaking each loop" for the flow chart case has no counterpart

here, since it is dealt with automatically if a system of recursive pro

cedures is associated in the usual waY- with a flow chart.

One half of the main theorem (theorem 4.2, part 1) is a generalization of

theorem 6.1 from De Bakker and De Roever [3].

Our formal treatment of Floyd's method needs an extension of our formal

language in order to deal with the entrance - and exit conditions of the

program and its components.

Therefore, we extend the formal language by adding to Ra special class of

relation symbols, the class A = {p1 ,p2 , ... } of predicate symbols, arbitrary
p .

elements of which are denoted by p,p1, .•. ,q,q1 , ••.• This extension of R

needs an extension of the definition of initial interpretation (definition

3.4): We require that, for each p E AP, c
O

(p) ~ c
O

(E); i.e., each pis

interpreted as a subset of the identity relation. In this way we can find,

for each inductive assertion formulated as a sentence in predicate calculus:

Vx,y[p(x) A xAy ➔ q(y)J an equivalent formula in our language: p;A ~ A;q,

with the property that, for each model in which this sentence is true, we

can find an initial interpretation c
O

with extension c such p;A ~ A;q

satisfies c, and vice versa.

24

With section 4.1 we hope to provide the reader with some feeling for the

problem of proving the second half of our main theorem (theorem 4.2, part 2).

4.1. Attempts that failed

In section 2, we considered the while statement p*A = p;A;p*A up. In terms

of program schemes, the characterizing theorem for while statements (theo

rem 2. 1) can be reformulated as: Let P be declared by: P 4== A
1

;P u A
2

•

Then for each T, the following assertion

p;A1 .S. A1;p

p;A2 .S. A2;q
~ p;T .s, T;q

is equivalent with T .s. P. Now for its generalization. Let us consider P
1

declared by P1 <== A1;P1;A2 u A
3

. One might, as first attempt, try to prove

the equivalence of T .s. P1 and

p;A1 .s. A1 ;p

~ p;T S T;q q;A2 .s. A2;q

p;A3 .s. A3;q

but this fails. E.g., T = A1;A
2

;A
3

;A2 satisfies the inductive assertions

requirement, but it is not true that T .s. P1• As next trial we use an in

finity of p.,q., i = 0,1,2, ••• , each i reflecting the current recursion
l l

depth:

pi ;A1 .S. A1 ;pi+1

qi+1 ;A2 .S. A2;qi

pi ;A3 .S. A3 ;qi i=O, 1 ,2, •••

{p. ;T .S. T;q.}.
l l i=0,1,2, •••

and, indeed, T .s. P1 is now valid. How t9 generalize this once more? Con

sider P2 <:== A1;P2 ;A2 ;P2 ;A3 u A4 • Directly taking over the {pi,qi}i=0, 1 , •••

approach is easily seen to fail. One soon realizes that one has to dis

tinguish the,two occurrences of P2 at the right hand side, and one might

25

try to use two systems {p. ,q.}. _
0 1 , and {r. ,s.} ._

0 1 , with
l l l-, ,••• l l l-, ,••~

assertion

ri ;A1 -~ A1 ;pi+1

qi+1;A2 ~ A2;ri+1

si +1 ;A3 ~ A3 ;qi

si+1 ;A3 ~ A3;si

pi ;A4 c A4 ;qi

i=O, 1 , •••

This does not work either. Counterexample: T = A1 ;A4 ;A2 ;A
4

;A
3

;A
3

;A
3

;A2 ;A
1

;A
4

•

So far for the attempts that failed. The reader may have developed some

understanding for the complexity of the remaining sections, in particular

for the need to refine the indexing strategy for the predicates in order to

keep a closer eye on the history of the computation.

The successful attempt begins with the development of the important auxil

iary theorem of the next subsection.

4.2. The regularization theorem

Consider the declaration scheme D = {P ,S} , with each S a statement
p p PETI p

scheme over {P} u R. There is a natural correspondence between D and a
p pETI

(infinite, if TI is infinite) context free gramm,ar G, established as follows:

R is the class of terminal symbols of G, {P} is the class of non-
p PETI

terminals, D' is its set of production rules, where D' is obtained from D

by rewriting s1 ;(s2us
3

) as s1;s2 u s1,s
3

, by dropping everywhere the ";"s,

and by replacing, e.g., P ¢= s1 u s2 by the two production rules P + s
1

,
. . p . p

Pp + s2 , etc •• As designated nonterminal of G any Pp may be selected.

Clearly, the typology of grammars carries over to declaration schemes. In

particular, this gives us the notion of a regula:l' scheme: Dis regular, iff

its corresponding grammar G is regular. E.g., with reference to subsection

26

4.1, the scheme for Pis regular, but those .for P1 and P
2

are not.

The theorem of this subsection tells us, roughly speaking, that for each

(finite or infinite) context free declaration scheme an equivalent (but

always infinite) regular declaration scheme can be constructed. This theorem

will be the main tool in our proof of the inductive assertion theorem below.

THEOREM 4.1 (The regularization theorem)

Let n be an index set, and let D = {P ,S} be a closed declaration n , p p pEn
scheme, with each S a statement scheme over {P} u R. Then there is an

P P PEn
index set panda closed declaration scheme D = {P ,S} , each S a p r r rEp r
statement scheme over {P} u R, such that r rEp

a. D is regular.
p

b. There is a mapping A from n into p such that PA(p) =

p En.

P, for each
p

(The last equivalence should be understood as stating equivalence under all

interpretations based upon computation_sequences with respect to the decla

ration scheme D = D u D .)
n P

PROOF. By, if necessary, repeatedly applying S;(S 1 uS") = S;S' u S;S", we

may assume that, for each p E n, S has the form
p

(4. 1) u s p,M p

where M is some integer> 1, and where, for each p En, 1 < j < M, S .
p - - - p P,J

f 1) (. . . f .) has the orm raising subscripts or typographical reasons :

(4.2) S(p,j) = R(p,j,O);P(p,j,1);R(p,j,1); ••• ;P(p,j,K .);R(p,j,K .)
P,J P,J

with K . some integer> O, with R(p,j,k) ER, 0 < k < K ., and
P,J . - - P,J

P(p,j,k)E{P} ,1<k<K .•
p pEn P,J

1)
Observe that it may be necessary to insert
declared as E, in the originally given S, p

some E's or auxiliary P's
in order to obtain this form

27

Let us put

< k < K .}
P,J

and let us define the function h: L + 1T by h(p,j,k) = q iff P(p,j,k) = q.
0

Observe that each occurrence of a procedure symbol P in some S is unique-
q p

ly identified by the index triple (p,j,k).

Example: Let D be: {P
1

<:::= A
1

;P1;A2 ;P
2

;A
3

u A4;P
2

;A
5

,

p 2 ¢= A6; p 1 ;A7 u A8}

Then LO= {(1,1,1),(1,1,2),(1,2,1),(2,1,1)}, and h(1,1,1) = 1, h(1,1,2) = 2,

* h(1,2,1) = 2, and h(2,1,1) = 1. Let L
0

. be the set of all finite sequences

of elements of L0 , including the empty word e:. We define the language L,

consisting of words in L;, by means of a context free grammar with produc

tions

CY ➔ e:

{cr+cr}
p pE1T

* Eis the collection of all words in LO produced by er. er will also be used

to denote an arbitrary element of L.

Example: For the D just mentioned, .possible er are: e:, (1,1,1),

(1,1,1)(1,1,2)(2,1,1), or (2,1.,1)(1,2,1)(2,1,1), etc.

Observe that each er EL, produced with an application of the rule er+ er
p

as first step, may be viewed as defining a path in the tree of incarnations

of the procedures of the system with P as root, or, alternatively, er re-
p

presents the stack of currently active procedures, each triple in er repre-

senting one procedure call. Compare the following figure (with respect to

D again)

28

The sequence o = (1,1,1)(1,1,2)(2,1,1) represents the calling structure

indicated by the drawn lines, where the first component of the first triple

in o - here 1 - is the index of the root of the tree.

Eis used in the construction of the index set p we are looking for in the

following manner: pis defined as:

p = ~ x Ex {1,2}

i.e., each Pr, r E p, is of one of the two forms P(1), or P(2), p,o, p,o,
with p E ~, o EE, and 1,2 E {1,2}.

Moreover, we define, for each p E ~, A(p) as: A(p) = (p,£,2) E p. For

easier readibility, we use the notation pP for P and Qp for P(
2

).
o (p,o~1)' o p,o,

Thus, in this notation

We now have to define, for each r E p, the statement scheme S , and to
r

prove that the

that P = ,;/.

system {P ,S} has the desired properties, in particular, r r rEp

p £
The definition of the S, for r

r = (p,o,1), is given inductively on the

length of the o:

(4.3)

pP <= E
£

ph(p,j,1)
o(p,j,1)

¢:= P~;R(p,j,O)

ph(p,j ,k+1) Qh(p,j ,k) R(. k)
o(p,j,k+1) ¢:= o(p,j,k); P,J, ' for 1 < k < K .-1

- P,J

29

and for r = (p,cr,2) by

~;R(p,j,O)

(4.4) 0
j=1 h(p,j ,K .)

Q (• KP,J);R(p,j,K .)
a P,J, · P,J

P,J

if K . = 0
P,J

if K ·. > 0
p ,J

Example: Let~= {1,2}, and let P be declared by P ¢::= A1;P;A2 ;P;A
3

u A4.
We have, omitting complications in the indices which are unnecessary for

this simple scheme, and taking r = {0,1}*, as regular scheme:

p ¢:= E
E

P,..
0

<== P ·,A
u cr 1

From these definitions we have:

This suggests that Q = P, as will indeed follow by the theorem we are in
E

the process of proving.

30

Remarks:

1. Observe the distinction between the notation h(p,j,k) denoting the

result of applying the function h to (p,j,k) E L
0

, yielding an element

of~, and a(p,j,k) denoting the result of concatenating the elements

a EL and (p,j,k) E Lo·

2. For each p E ~,.a EE, P~ has the following intuitive meaning. Let, for

some s ~ O, a= (p
0
,j

0
,k

0
) ••• (p ,j ,k), with p = h(p ,j ,k). As we s . s s s s s

saw above, a keeps track of a specific path through the tree of incarna-

tion with P as root, leading to the inner call of P. Then the com-
% p

putation prescribed by~ is precisely the computation starting with the

outermost call of P , and up to, but not including, this inner call.
Po

Example: Referring to the figure on page 28 we have

p1 =
(1 , 1 , 1) (1 , 1 ,2) (2, 1 , 1)

3. (As we shall show below) Qp = pP;P, so with pP equivalent to the com-a a p a
putation preceding the inner call of P with history a, Qp is equivalent

P . a
to this computation but incZuding tlie innercall of P.

p

Once we have shown

the special case a

obtain

Qp = pP ;P , we will have obtained our goal, a a p
= E, Qp = pP;P; hence, by the definition of

E E p

since, for

pP as E we E ,

Moreover, from (4.3) and (4.4). it is immediate that D is regular.
p

The next step is the definition of another system of procedures over the

same index set p: D
p

For r = (p,cr,1), the

s :
r

= {P ,S} , as follows: r r rEp

S are (apart from the procedure symbols) the same as
r

31

(4.5) P-h(p,j,1) -p (.)
(. 1) ¢:= p ;R P,J ,O

a P,J, a

ph(p,j,k+1)
cr(p,j,k+1)

-Qh(p,j ,k). R(. k)
cr(p,j,k); P,J, , < k < K .-1

- P,J

but for r = (p,cr,2) we have different definitions:

(4.6) -Qp <= 'fiP,•P •
(J (J p

We shall show that, for each r E p, P = P, i.e., for each p E ~, cr EL,
r r

~P = p-P r ,
(J (J

Combining this with (4.6) will yield Qp

Par>t 1. {P c P} . r - r rEp

= ~;P, as desired.
p

By the corollary of theorem 3.1, it is_sufficient to show that {P}
r rEp

satisfies

{S [P /X J ~ p}
r r r rEp r rEp

a. If r = (p,cr,1), this is immediate, since, by definitions (4.3) and (4.5),

S = S; hence
r r

{S [P /X J r r r rEp = s [P /X J r r r rEp
= p }

r rEp'

where the last equivalence follows by the fixed point property (lemma

3.1c).

b. Let r = (p,cr,2). For each j, 1 _< j < M, we distinguish two cases:
- p

b1. K . = O. Then, by (4.1), (4.2), R(p,j,O) = S(p,j) ~Sp= P. Hence,
P,J p

-p .) =:P -p . P ;R(p,J,0 c r;P = Q, using (4.6).
(J ~ (J p (J

32

b2. K . > O. Then,
P,J

(4.5) -ph(p,j,1) P(. 1) R(· . K)
::::> (• 1); p,J, ;,,,; P,J, . ap,J, ·. P,J

(4.6) -h(p,j,1) (. 1) (.)
::::> Qa(p,j, 1) ;R P,J, ; , ,", ;R p,J ,Kp,j

h(p,j,K .)
~ P (. KP,J);P(p,j,K .);R(p,j,K .)

a P,J, p,j P,J P,J

(4.6) _h(p,j,K .) '•
~. Qa(p J; KP,~);R(p,J,Kp J.)

' , P,J ,

From b1 anq b2 we see that (4.7) is indeed satisfied.

Part 2. {P c P} •
r - r rEp

Again, by the corollary of theorem 3.1, it is sufficient to show that the

{Pr} rEp satisfy

(4.8)

As in part 1, this is clear for the P;· In order to show this for the Q;,

we apply the induction theorem 3.2 in the· following form: Let~ be empty,

and let 1/J be:

That 1/J[Q/X] , i.e., {P~;Q~~} ~, is valid, is clear. Let us put p pETI · v a pETI,aE~
X(p,j,k) = X, iff h(p,j,k) = q. In order to verify the second assumption

q
of the induction theorem in this case, we have to show: If(*)

{pP.,x c~} , then, for each p E TI, a EI:,
a p- a pETI,aEE

(a)

33

~~·) (p ~; D {R(p,j,O);X(p,j,1); ••• ;X(p,j,K . ;R p,j,K .)} E QO'.
j=1 P,J P,J

If K . = O, then Pp;R(p,j,O) E r;l_, by (4,4).
P,J a a .

Let K . > 0. Then
P,J

pP;R(p,j,O);X(p,j,1); ••• ;R(p,j,K .) =
O' p,J (4.3)

ph(p,j,1) (. 1) (. K)
a(p,j,1);X P,J,. ; ••• ;R P,J, p,j E

Qh(p,j, 1) R(. 1) R(. K)
(· 1); P,J, ; ••• ; P,J, . £

a P,J, P,J
... £

h(p,j,K .)
P,J (. K) p

Q (. K) ;R P,J, . £ Q crp,J, . p,J a p,J
(4.4)

(a) and (8) together imply that we have proved the second assumption of the

induction theorem. Thus, we conclude that ~[P /X J holds, i.e., that
p p PE1T

{PP;P c QP} ~· From this, (4.8) follows and the proof of part 2, and,
a p - O' pEir,aEi.

therefore, of the regularization theorem is completed.

4.3. The inductive assertion theorem

Let p be an

scheme over

XE X or of

the special

index set, and let D = {P ,s} be a closed declaration r r rEp
{P} u Au C (i.e., the S contain no occurrences of an r rEp r
a p EA). As in subsection 4.2, we assume that each$ lS of P . r
form (4.1), (4.2). (We replace from now on p(ir) by r(p) in order

to avoid conflicts of notation.)

Let K, M . and Ebe as above, and let E0+={(r,j,k) I rEp, 1<i<K, O<k<M .}. r r,J·Y-r --r,J

Let E = {p:,q:}rEp,aEE be a collection of predicate symbols, contained in

A •
p

We define the inductive assertion pattern A[D,E] with respect to the decla-

ration scheme D and the collection of predicate symbols E as follows: First,

for each a e E, (r,j,k) E I:0+ we define a(r,j,k)[D,E] by putting

1. If K . = O, then.
r,J

a.°(• ·O)[D,EJ r ,J,

2. If K . > O, then
r,J

a. c/1(• o)[D,EJ r ,J,

b. For 1 < k < K .-1
- r,J

(J

a(. k)[D,E] r,J,

r (. o) (. O) h(r,j,1) =p;Rr,J, ERr,J, ;p(. 1).
<J <J r ,J ,

= h(r,j,k) R(. k) R(. k) h(r,j,k+1) q (. k); r,J, E r,J, ;p (. k+1)" or,J, or,J,

c. <J [EJ h(r,j,K(r,j)) R(• K(")) R(. (.)) r a(. K(.)) D, = q (. K(")); r,J, r,J E r,J,K r,J ;q
0

• r,J, r,J o r,J, r,J

. (J

Now let A[D,E]= {a(. k)} '<' (• k) '<' • Then, as we shall see, A[D,E]
,. r, J , cr EL, , r, J , EL, O+

provides the solution to our problem.

Example: Let D be the declaration scheme {P <== A1;P;A2;P;A
3

u A4}. We have

for ACD,EJ:

P ·A C A ·p o' 1 - l' oO

q ·A C A ·p ao ' 2 - 2 ' cr 1

q<J1 ;A3 E A3 ;qcr

p
0

;A4 E A4;q
0

The following picture, referring to an inner call of P with history <J

(oO and cr1) may illustrate the idea:

\p
\ Cf
\
\

p
Cf

I
\ qao'

Pao\ I

\ A4 I A2
,J,

\
I \

I \
I \

I Pao I \

35

\

\ Pa1
\
\
~

I
I
I
I

q I
· Cf I

I
I

Pcr1

\

\
\
\

First we prove a lemma.

LEMMA 4.1.

Let D,E be as above. Let {T} be arbitrary statement schemes over r rEp
Pu Au C. Then the following two assertions are equivalent:

1. {T ;: P }
r r rEP

2. A[D ,EJ r-- {pr ;T
a r

PfWOF

1. 1 ~ 2. First we prove this for the special case that {T = P} • By
. r r rEp

Scott's induction rule (theorem 3.2) it is sufficient to prove that

where, as usual, S results from S by substituting for each r E p, P
r r r

for X. In order to prove (4.9) it is sufficient to show that, for each
r

j, 1 < j < M, we can infer from its assumptionn that
- - r

pr;R(r,j,O);X(r,j,1); ••• ;R(r,j,K(r,j)) c
a -

R(r,j,O);X(r,j,1); ••• ;R(r,j,K(r,j));qr.
a

36

By A[D,E], p~;R(r,j,O) .S R(r~j,O);ph((r,~, 1
1)). By the assumption in (4.9)

V (J r ,J, (•)
f . . t. f t. h r 'J ' 1 X(. 1) on the X, and the de ini ion o the h-func ion, p (. 1); r,J, .s

r cr r,J,
X(. 1) h(r,j, 1) R t· . tS r,J, ;q (.

1
). epea ing this argumen, which is straightforward

a r,J,
from the definition of A[D,E], the desired result follows, i.e., the

proof of 1 ===:> 2 for the case that {T = P} holds, is completed. r r rEp
Next assume that {T .SP} • Then, clearly, r r rEp

r r Also, {p ·T c T} • Since {q~ .s E} the desired conclusion
cr' r - r rEp,OEL v rEp,OEL'

A[D EJ I- { r ·T c T · r} follows. ' Pa, r - r'qcr rEp,OEL

2. 2 ~ 1. We have to show: For all interpretations c, {c(T) c c(P)} • r - r rEp
Let c be an arbitrary interpretation, and let c

0
be its initial inter-

pretation, i.e., c
0

= c I R. Since none of the pr,qr occurs in T or S, a a r r
we can extend c

0
to c0 without causing any change inc, as follows: Let

V be the domain of c., and let, for each r E p, x be an arbitrary
O r

element of V. We put (x,y) E co(p:)_iff X = Y, and, moreover, (xr,x) E

E c(Pr), where Pr is the procedure defined in (4.3). Similarly,
(J (J

(x,y) E c
0
'(qr) iff x = y, and, moreover, (x ,x) E c(Qr), with Qr defined

cr r cr cr
as in (4.4). Let c' be the extension of c0. About :his c' we can now

prove: Each element of {a
0
(• k)} ~ (.. k) ~ satisfies c'. In fact,
r,J, crEL.., r,J, EL..O+

our extensive preparations are rewarded

from the definitions of A[D,E], Pr, and
(J

here, since the proof is direct

Qr. By the assumption of the
(J

lemma we have, since A[D,E] satisfies c', that {pr·T c T ·qr}
cr' r - r' a rEP,OEL'

also satisfies c'. In particular, for a= L, we have that

{pr;T c T ;qr} satisfies c'. Next, we use that (x,y) E c
0
1 (pr£) iff

£ r - r £ rEp
x = xr, which follows from P: = E, and that (x,y) E c0(q:) iff

(x ,x) E c(Qr) = c(P), which follows from P =Qr.Thus, we have shown
r £ £ £ £

that: if x = x and xc(T)y, then xc(P)y. Since x was an arbitrary r' r · r r
element of V, we conclude that fc(Tr) .s c(P)} • r : r.Ep
This completes the proof of lemma 4.1.

It is now easy to give the proof of the inductive assertion theorem:

37

THEOREM 4.2 (the inductive assertion theorem).

Let D, Ebe as above, and let {T} be fixed points of the statement r rEp
schemes {Sr}rEp' i.e., let

{S [T /X J = s}
r r r rEp r rEp

Then the following two assertions are equivalent

1. {S [T'/X] ~ T'} I {T c T'} r r r rEp r rEp r r - r rEp'

l .e • , the {T} are minimal fixed points. r rEp

2.

PROOF

1. 1==> 2. If the {T} are minimal fixed points, then, r rEp by Corollary 3.1,

{T
r = P} , and the result follows by lemma 4.1. r rEp · -

2. 2 ~ 1. By lemma 4.1, if 2 holds, then {T c P} follows. Thus, the r r rEp
{T} are fixed points which are included in, and thus equal to, the r rEp
minimal fixed points {P} r rEp

38

APPENDIX: DERIVATIVES AND TRACES

In [6], Hitchcock and Park introduce the notion of derivative of a program

scheme, and use it in the development of a technique for giving proofs of

termination of programs.

Roughly speaking, the derivative relates states at successive nested calls

of a procedure to each other. Therefore, the question arose as to the clari

fication of the relationship between this notion and our "tracing" con

structs P. In this appendix we state (without proof) a theorem settling a
this question.

First we repeat the definition of [6], somewhat reformulated for the present

purpose:

{ } R Th aT d f" . d . Let T be a statement scheme over P u • en -;;---pis e ined in uctive-

ly as follows:

aT
a. If TE R, then~= n.

r
apr1

b. If TE {Pr}rEP' then~= E,
r

r rEp or

r = r 1 -

r
1

f:. r.

c. If T
aT aT 1 aT

= T1 ;T2 , then "'ai?"° = "'ai?"° u T1 ;ap
2

r r r

d. If T

Example:

The theorem relating derivatives and traces now follows:

THEOREM A

Let

Let

{Pr,sr}. rEP
be a declaration scheme.

6 be defined by:
r 1 ,r2

Let, for r 1 ,r
2

E P, d P
r1 r2

6 = E, r 1 = r
2

,
r l 'r 2

= n, r
1

f:. r
2

•

be a new procedure "symbol", with declaration:

39

(The expression U ... is only seemingly of infinite length, since only
r.e:p as r

for finitely many r, aP
2

j n.)
r

Let c/J be the

Let I =
r 1 'r2

empty set.

* I * {w e: r0 crr ~
1

definition of page 27).

Then

{dr Pr
1 2

= u
cre:Er r

2' 1

= r 2 then {d else c/J) (cf. the

40

REFERENCES

[1 J De Bakker, J. W., Recursive Procedures~ Mathematical Centre Tracts 24,

Mathematical Centre, Amsterdam. (1971).

[2] De Bakker, J.W., Recursion, induction and symbol manipulation, in Proc.

MC-25 Informatica Symposium, Mathematical Centre Tracts 37,

Mathematical Centre, Amsterdam. (1971).

[3] De Bakker, J.W. & W.P. de Roever, A calculus for recursive program.

schemes, to appear in Proc. IRIA Symposium on Automata, Formal

Languages and Program.ming, North-Holland, Amsterdam..

[4] Beki~, H., Definable operations in general algebra, and the theory of

automata and flowcharts, Report IBM Laboratory Vienna (1969).

[5] Floyd, R.W., Assigning meanings to programs, in Proc. of a Symposium in

Applied Mathematics, Vol. 19, Mathematical Aspects of Computer

Science, pp. 19-32 (ed. J.T. Schwartz), AMS, Providence (1967).

[6] Hitchcock, P. & D. Park, Induction rules and proofs of termination, to

appear in Proc. IRIA Symposium on Automata, Formal Languages and

Program.ming, North-Holland, Amsterdam..

[7] Hoare, C.A.R., An axiomatic basis for computer programming, Comm. ACM

..J.g, pp. 576-583 (1969).

[8] Manna, z. & J.M. Cadiou, Recursive definitions of partial functions and

their computations, in Proc. of an ACM Conference on proving

assertions about programs, pp. 58-65, ACM (1972).

[9] Manna, z., S. Ness & J. Vuillemin, Inductive methods for proving

properties of programs, in. Proc. of an ACM Conference on

proving assertions about programs, pp. 27-50, ACM (1972).

[10] Manna, z. & A. Pnueli, Formalization of properties of functional

programs, J. ACM, 17, pp. 555-569 (1970).

[11] Manna, Z. & J. Vuillemin, Fixpoint approach to the theory of computa

tion, C. ACM, 12., pp. 528-536 (1972).

41

[12] McCarthy, J., A basis for a mathematical theory of computation, in

Computer Programming and Formal Systems, pp. 33-70 (eds.

P. Braffort and D. Hirschberg), North-Holland, Amsterdam (1963).

[13] Morris Jr,. J.H., Another recursion induction principle, C. ACM,~,

pp.351-354 (1971).

[14] Milner, R., Implementation and applications of Scott's logic for com

putable functions, in Proc. of an ACM Conference on proving

assertions about programs, pp. 1-6, ACM (1972).

[15] Park, D., Fixpoint induction and proof of program semantics, in

Machine Intelligence, Vol. 5, pp. 59-78 (eds. B. Meltzer and

D. Michie), Edinburgh University Press, Edinburgh (1970).

[16] Scott, D. & J.W. de Bakker, A theory of programs, unpublished notes,

IBM Seminar, Vienna (1969).

[17] Scott, D., in Minutes of the fourth meeting of the IFIP Working Group

2.2 on Formal Language Description Languages, Essex University

[18] Tarski, A., A lattice theoretical fixpoint theorem and its applications,

Pacific J. of Math., ..2., 285-309 (1955).

