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Abstract. A survey of the main results is given of our work of the last years on 
explicit Runge-Kutta methods for the integration of ordinary or partial differential 
equations. Three classes of integration formulas are presented which have second, 
third and fourth order accuracy, respectively. These methods are characterized by 
their limited storage requirements and by the possibility to adapt the characteristic 
root of the method to the problem under consideration. They may be used for the 
integration of parabolic, of hyperbolic and of stiff differential equations. 

Let 

(1.1) 

1. Definitions 

:; =f(x,y) 

represent a set of differential equations of which the real vector function f (x, y) 
belongs to a class of sufficient differentiability. In order to solve an initial value 
problem for this equation we consider explicit m-point single-step Runge-Kutta 
formulas, i.e. formulas of the type 

(1.2) 

µo =Ao,o =Ao,-1 =0. 

Here, hn is the step length xn+i - Xw Using the condensed representation of Runge
Kutta methods, introduced by Butcher, we may represent ( 1.2) by the array form 

(1.2') 

where M is the column vector (µ 0, ••• , µm_ 1), A the lower triangular matrix 
containing the parameters A1,1 and 0 the row vector (00, ••• , 0m_1). 

When scheme ( 1.2) is applied to the scalar equation 

dy 
d:: =IJy, 

we obtain 
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where Pm (z) is a polynomial of the form 

(1.3) 

of which the coefficients {)1 can be expressed in terms of the Runge-Kutta 
parameters. The polynomial Pm (z) will be called the stability polynomial associated 
to formula (1.2'). As is well-known, the stability polynomial is compatible with a 
_Runge-Kutta formula of order p, provided that 

(1.4) 
1 /J; = ]f • f =0, 1, ... , p. 

When (1.4) is satisfied, the polynomial Pm(z) will be called p-th order exact. 
Furthermore, the region S defined by 

S ={zllP,,(z) j < 1} 

will be called the stability region of the Runge-Kutta formula. 

In this paper, scheme (1.2) applied to equation (1.1} is said to be stable when 
the set of points hncJ, where cJ is an eigenvalue of the Jacobian matrix of (1.1), 
belongs to the stability region S of the stability polynomial. 

2. Some special Runge-Kutta formulas 

We propose three classes of Runge-Kutta formulas of which the stability 
polynomials can be chosen freely, apart from the condition that these polynomials 
are in agreement with the order of accuracy of the formulas (condition (1.4)). 
A further characteristic of our formulas are the limited storage requirements 
when used in a computer. 

The first class of formulas is of the type 

0 

.A.1,0 Ai,o 

.A.2,1 0 .A.2,1 

(2.1) 

Am-1,m-2 0 0 Am-1,m-2 

0 0 1 

This scheme generates a Runge-Kutta method which is at least of first order. 
In case that 

(2.2) 

we even have second order accuracy. 

By putting 

(2.3) 1. . = fJm+l-f · 1 2 2 A11 1 {J I 1 = I I •••1 m- ; 
• - m-1 
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the stability polynomial assumes the form 

(2-4) 

The second class of formulas is given by 

0 

Ai,o Ai,o 
Ai!,1 +¼ .!. A2, 1 4 

Aa,2 +¼ ¼ 0 Aa,2 
(2.5) 

8 .!. 0 0 ~i rr 4 

¾ 1 0 0 0 5 
4 IT 

1 0 0 0 0 ¾ 4 

Form> 3 (2.5) is third order exact. When we put 

).. . = /Jm-i+l (1 + 1 )-_!_ 
1,1-l /Jm-j-1 4 Af+l,f 4 ' 

). - ___&_ (1 + _1_) 
l,O - /Jm-1 4.it2,1 ' 

(2.6) 
i =2, 3, ···, m-3, 

the stability polynomial becomes 

(2.7) 

The third class of formulas considered in this paper is generated by the array 
form 

0 
1 1 
lf lf 
1 0 1 
lf lf 

Aa,1 +Aa,2 0 Aa,1 Aa,2 

A4, 1 + A4, a 0 A4,1 0 A4, a 

As,4 0 0 0 0 As,4 
(2.8) 

Am-4,m-5 0 0 0 0 0 Am-4,m-5 
1 0 Am-3,1 0 0 0 0 Am-3,m-4 lf 

½ 0 Am-2,1 0 0 0 0 0 Am-2,m-3 

1 0 0 0 0 0 0 0 0 1 

i- 1 .!. 0 0 0 0 0 0 l. 
3 3 6 

where 
Am-a,1 =0 for m~8. 

Am-2,1 =0 for m~7. 
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Table 2. 1. Parameters J.7,1 expressed in terms of flt 

1 1 fl6 48 (fl6- 2fl7} 2 (flm-1 - 2 flm) 
Aa,1 2 -24fl5 2 - fls 1 - 48 (fl5 - 2fl6) flm -3 - 2flm-2 + 4flm- l 

Aa,2 24fl. 
fl6 96fl7 4flu 

fl. 1 - 48 (fl5 - 2flu) flm-3 -2flm-2 + 4flm-l 

1 flm-2-2flm-l 
At,1 0 - -24fl5 24 (fl5 - 2fls) 48 (fl6 - 2fl7} 2 

2 flm-4 

1 flm-3 - 2flm-2 + 4flm-l 
At,a 1 24fl5 2 - 24 (fl5 - 2fl6) 24(fl0 -2fl6 + 4fl1) 

flm-4 

1 1 
As,, 1 - -

2 2 flm+i-i 
Au-1= 

flm-i 1 
J.6,s 1 -

2 
f=S,6, .. ,m-5,m;;=;,;10. 

A1,u 1 

Am-4,m-5 24/35 

1 
Am-3,m-4 -

2 

1 
Am-2,m-3 -

2 

Am-1,m-2 1 

Formula (2.8) is fourth order exact. By expressing the parameters Ai, 1 in terms 
of {J5 , ••• , fJm, as listed in Table 2.1, we obtain a stability polynomial of the form 

(2.9) Pm(z) =1 +z +½z2 +¼z3 +/4 z4 +{J5 z5 + · · · +fJmr. 

The derivation of the formulas (2.1), (2.5), (2.8) and of the expressions of the 
Runge-Kutta parameters A;,i in terms of the stability coefficients {J1 may be 
found in [9]. 

In the subsequent sections several types of stability polynomials will be given 
which are appropriate for the integration of parabolic, of hyperbolic and of stiff 
differential equations, respectively. 

3. Stability Polynomials for Parabolic Differential Equations 

Many parabolic differential equations lead after discretization of the space 
variables to a set of ordinary differential equations of type ( 1. 1) of which the 
Jacobian matrix has negative eigenvalues c5 with the property 

jc5lmin ~lc5lmax• 



Explicit Runge-Kutta Formulas 153 

Let [ -/3, O] be the segment of the real axis which belongs to the stability domain 
S of the Runge-Kutta formula to be used. Then, the stability condition becomes 

(3.1) fJ hn<-,o-1 -. max 

Hence, we are looking for polynomials Pm(z) of type (2.4), (2.7) or (2.9), which 
have a real stability boundary {3 as large as possible. 

- The optimal polynomials of type (2.4) are well-known; one has 

(3.2) 

where Tm (z) denotes the Chebyshev polynomial of degree min z. These polynomials 
were already used by Franklin [3] in 1959 in connection with the integration of 
linear diffusion problems. 

In [ 4] a strongly stable version of such first order polynomials is given, namely 

P, () = Tm(Wo +w1z) 
m Z Tm(Wo) ' 

(3.3) 
W1 = [ ] m(s-1)th mln Vs+i ' 

Vs-1 

This polynomial has the property that, if the real stability boundary is chosen 
according to 

{3.4) 

the characteristic roots of the Runge-Kutta formula have absolute values less 
than 1, i.e. 

(3.5) 

Furthermore, it is proved that of all first order polynomials satisfying condition 
(3.5), polynomial (3.3) allows the largest integration steps. 

The optimization of polynomials of type (2.4) with the additional condition 
{32 =½, was studied by Lomax [15]. He gave a set of second order polynomials 
with considerably increased stability boundaries. However, in his paper he makes 
no attempt to find the optimal polynomials. Our starting point in constructing 
polynomials with a maximal real stability boundary is based on the following 
theorem (cf. [16]): 

Theorem 3.1. Of all polynomials P.n(x) of the form 

Pm(x)=1+z+•·· + ;: zP+f3p+1zP+1 +··· +f3mzm, 

where p and mare given numbers, the polynomial which has m-p alternating 
points of tangency to the lines y =± 1, x < 0, maximizes (if it exists) the real 
stability boundary. 



Table 3.1. Coefficients of the optimal polynomials for p = 2, m = 3, ... , 12 

m {J(m)/m2 109fls 101op4 1011{]5 1012p6 1014{]7 101Gfls 101sp9 1020fl10 1023fJn 1025fl12 .... 
V, 

3 o.6956 62500000 ... 
4 0.7529 78084485 36084541 
5 0.7782 84608499 55271248 12219644 
6 0.7917 87994019 66169168 22176071 2731156 
7 0,7998 89985021 72877 550 29298151 5 723 751 4336799 
8 0.8050 91257740 77281 768 34366789 8297 337 10298268 5148095 
9 0.8085 92121645 80322777 38043289 10373348 16275261 13652347 4743119 

10 0.8111 92735331 82 508285 40773070 12021 734 21658644 23378958 13887849 3490930 
11 0.8130 93187123 84130659 43846249 13 332017 26301 736 33046921 25627575 11181948 20999782 
12 o.8144 93 529476 85367612 44453441 14381440 30237000 42045847 38385258 22126214 73028416 10518942 

Table 3.2. Coefficients of the optimal polynomials for p = 3, m = 4, ... , 13 

m {J(m)/m2 10D(J4 101op5 1011{]6 1013 {]7 1014fls 1016 flo 1018 fl10 1020fln 1022{]13 1025 fl1s '.'d 
..... 

4 0.3767 18455 702 § 5 0.4214 23 721 832 11118724 
6 0.4457 26054057 17697 690 4284125 0.. 
7 0.4604 27315880 21688644 8124209 11 539864 

(!) 
>; 

8 0.4699 28083 307 24265433 11058382 25241896 2302144 ::r: 
9 0,4765 28587698 26020933 13252127 37998480 5 734468 3 543 546 0 = 10 0.4811 28938153 27269677 14905913 48724828 9395275 9857520 4339861 ~ 11 0.4846 29192093 28189409 16172622 57 582581 12857102 17 520203 13 321234 4332017 i:s 

12 0.4873 29382258 28886366 17159628 64852101 15 962684 15508353 25 524232 14532165 3 593250 
13 0.4894 29528506 29427153 17941422 70830830 18681545 33239933 39414755 29855 892 13070917 25165030 

Table 3,3, Coefficients of the optimal polynomials for p = 4, m = 5, ... , 14 

m {J(m)/m2 1010 {]5 1011{]6 1012 {]7 101s fls 1015 flo 1Ql6fJ10 1018{]11 1 o2op12 102ap13 1025{]14 

5 0.2424 40869614 
6 0.2770 53034307 24047 305 
7 0,2978 58 522914 38959287 9614 737 
8 0,3114 61530756 48271 897 18665099 2802424 
9 0.3207 63380802 54415671 25823024 6324541 6241238 

10 0.3274 64609566 58675260 31318718 9676950 16017061 1098880 
11 0,3324 65471686 61750557 35 551 748 12603 033 26853219 3154281 1 569873 
12 0,3362 66102156 64045172 38852969 15078409 37424775 5 747 862 4976600 1857672 
13 0.3392 66 578 336 65 804031 41465210 17151510 47156774 8 539768 9 788891 6438509 18516202 
14 0,3409 66949337 67189660 43 572346 18894332 55903927 11327608 15470573 13617 834 69780353 15817 898 
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The proof of this theorem follows the lines along which the minimax property 
of the Chebyshev polynomials is proved. Although we did not succeed to prove 
the existence of a polynomial with m-p tangent points, theorem 3.1 gives us the 
equations for the coefficients ()1 if such a polynomial indeed exists. We have, 
in fact, 

(3.6) 
Pm(z1) = (-1)P+i 

P~(z1) =0 
j=1,2, ... ,m-p, 

where for each j, z1 represents the point where Pm(z) touches the line y = (-1P+i). 
In [8] the solution of system (3.6) is discussed. In Table 3.1 the results for p =2, 
m =3, 4, ... , 12 are listed. 

Note that for large values of m the stability limit f) is approximately propor
tional to m2 which means that the effective step length h/m has an upper bound 
which increases linearly with m. 

In the same manner the polynomials of type (2.7) and (2.9) can be optimized. 
Some results are given in Table 3.2 and 3.3. 

4. Stability Polynomials for Hyperbolic Differential Equations 

Cauchy problems for symmetric hyperbolic equations reduce by discretization 
of the space variables to sets of ordinary differential equations of which the 
Jacobian has purely imaginary values. As in the case of parabolic equations the 
value of li5lmax is usually very large. When [ -if), if)] is the stability interval 
on the imaginary axis we have the stability condition 

(4.1) 

The standard Runge-Kutta formulas of orders 1 until 4 have imaginary 
stability boundaries 0, 1, 1.7, 2.8, respectively. As in the real eigenvalue case 
we have tried to construct Runge-Kutta formulas with larger stability intervals 
but now on the imaginary axis. 

For p =1 we found (cf. [4]) 

(4.2) 

with the imaginary stability boundary f) = 1. 
It turned out that form> 2 the optimal polynomials are at least second order 

exact, i.e. p-;;;;_ 2. 

Putting p =2 we found for odd values of m (cf. [5]) 

(
(m-1) 2+2z2) (m-1)2+z2 ((m-1)2+2z2) 

Pm(z)=Tm-1 (m-1)2 +2z (m-1)a Um-a (m-1)2 
2 2 

(4.3) 

with f) =m -1. 

In Table 4.1 coefficients of the optimal polynomials of degree 3, 5, 7, and 9 
are given. 
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Table 4. 1. Coefficients of the optimal polynomials for p = 2, m = 3, 5, 7, 9 

m /Ja /J4 /Js /Ju /J1 /Js /Ju 

3 
4 

3 1 1 
5 - --

16 32 128 

19 1 2 1 1 
7 - -- --

108 27 243 1458 2187 

11 5 17 5 1 
9 -

64 128 2048 1024 32768 1048576 8388608 

Note that the coefficients {31 tends to 1/j! as m-;..oo. 

For even values of m we only solved the case m = 4. The optimal polynomial 
turned out to be of fourth order accuracy: 

(4.4) ~(z) =1 +z +½z2 +¼z3 +2~ z4 

with f3 = 2 y2. Thus, for m = 4 polynomials of lower order of accuracy do not 
exist. · 

We did not consider the general third and fourth order cases. 

5. Stability Polynomials for Stiff Differential Equations 

The third type of equations to be considered in this paper belong to the class 
of stiff differential equations. These equations are characterized by the fact that 
the real parts of the eigenvalues of the Jacobian matrix which lie in the left half 
plane, are widely separated. We restrict our considerations to the case where 
these eigenvalues are located in three clusters, one of which being centered at a 
point c50 near the origin, the other two being centered at points c51 and c52 far from 
the origin. 

In order to integrate such equations, the stability polynomial Pm (z) should 
be such that its stability region contains neighbourhoods of the origin and of the 
points z1 = hn c511 z2 = hn c52• This means that the stability polynomial changes 
when hn varies. 

Suppose that the polynomial 

(5.1) 

has an appropriate stability region at the origin. In addition, let R, (z) satisfy 
the consistency conditions. Then, for large values of lz11 and lz2 1, we are looking 
for a polynomial of the form 

(5.2) 

where L 1 (z) is a polynomial of degree l in z of which the stability region contains 
neighbourhoods of z1 and z2 as large as possible. 
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Furthermore, we require that the coefficients of L1 (z) are real and uniformly 
bounded functions of z1 and z2• Note that Pm(z) and R,(z) have the same behaviour 
as z-o, and therefore, have a comparable stability region near the origin. 

For small values of lz1 1 and lz2 1, Pm(z) should behave as 

(5.3) 
m 1 
L----;yzi 
i=O J. 

in order to approximate exp (z) as close as possible in the neighbourhood of the 
origin. 

Polynomials of the type just described, were considered in [12]. It was pointed 
out that for large values of I z1 I and I z2 I the optimal polynomial Pm (z) satisfies 
relations of the type 

(5.4) 
P,}fl(z1) =0, f =0, 1, ... , 1ni 

P.}/' (z2) =0, i =0, 1, ... , m2• 

When z2 =Z1 andz2 =t=z1 we have to choose odd values forlwith m1 =m2 = (l-1)/2; 
when z1 =z2 we choose m1 =m2 =l, and finally, when z1 and z2 are real and z1 +z2 

we choose mi +m 2 =l-1. 
The polynomials defined by (5-3) and (5.4), which are optimal for small and 

large values of lz1I and lz2 I, respectively, can be matched together by a technique 
called "exponential fitting". The principle on "\\<hich this technique is based, was 
already used by several authors. We mention Pope [16] and Liniger and 
Willoughby [14]. In our case, exponential fitting amounts to the relations 

(5.5) 
P,}/l {z1} =exp(z1}, i =0, 1, ... , mi 

P,}/l {z2) =exp(z2), i =0, 1, ... , m2• 

For large values of lz1 I and lz2I these relations reduce to (5.4). For small values 
of lz1I and lz2I we obtain from (5.5) a polynomial approximating (5.3), provided 
that R, (z) is a r-th degree Taylor-expansion of exp (z), i.e. r = p. When r > p 
relations (5.5) give rise to singular coefficients in L1(z). In order to remove these 
singularities we replace the coefficients {Ji, f = p + 1, ... , r, in a neighbourhood 
of the origin, e.g. max(!z1 I, lz2 1) < 1, by continuous functions ci(z1, z2) such that 
ci(0, 0) =1/i! and ci(zi, z2) ={Ji when max(!z1 1, lz2 1) =1. 

For large values of ]z1 I and lz2 1 the left hand stability region is given by 
(cf. [11]) 

(5.7a) 

if z2 + Zi, and by 

(5.7b) 

11 Numer. Math., Bd. 20 

1 1+1-, 
lz -z1I <{J,- z+T lzl"1+-C 
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In order to illustrate the results given above we consider the case l = 1. We 
then have 

(5.8) 

where 

Pm(z) =R,(z) + [z2g(zi, z2) +z1g(z2, z1)]z"+1 

- [g(zi, z2) +g(z2, z1)]z'+2 

The left hand stability regions are given by 

jz-z1l<,8;1lz1!1-,1~1, jz-z2l<,8;1lz2!1-r ,_z_1 -I 
¾ ~ ¾-~ 

if z2 =1= Zi, and by 

if Z2 =Z1, 
The right hand stability region is given by 

6. Applications 

In this section some stabilized Runge-Kutta formulas are explicitly given. 
For numerical results obtained by these integration methods we refer to [10, 11] 
and Section 7. 

Firstly, we give a formula which is appropriate for the integration of parabolic 
equations when high accuracy is not descired. In such cases we may use shifted 
Chebyshev polynomials, for example 

T ( __!_') - __1i_ 2 _7_ 3 _1_ 4 1 5 1 s 
6 1+ 36 - 1+z+ 216 z + 729 z + 3888 z + 314928 z + 68024448 z · 

The real stability boundary is 72. Substitution of the coefficients of this polynomial 
into (2.1), (2.3) yields the generating array form 

0 
1 1 

216 2Ilf 

(6.1} 1 0 1 
81 81 
3 0 0 3 

112 ll2 
8 0 0 0 8 

135 135 
35 0 0 0 0 35 
216 216 

0 0 0 0 0 1 

The corresponding Runge-Kutta formula has first order accuracy. 
When a highly accurate discretization with respect to the time variable is 

desired, one may use the fourth order exact stability polynomials listed in Table 3. 3. 
Form =6 we have 

P6 (z) =1 +z +½z2 +¼z3 + l4 z4 +o.0053034307z5 +o.00024047305z6 
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with real stability boundary {3 .--.,10. According to Table 2.1 this polynomial can 
be associated to the fourth order exact scheme 

0 

0.5 0.5 

0.5 0 0.5 

(~.2) 0.5 0 0.4546571 0.0453429 
0.5 0 0.3727177 0 0.1272823 
1 0 0 0 0 1 

1 1,_ ½ 0 0 1,_ 
6 3 6 

Secondly, we give a second order scheme which is appropriate for the integra
tion of hyperbolic systems: 

0 

¼ 1 
4 

(6.3) 1 0 1 
6 6 

¾ 0 0 3 
8 

1 0 0 0 1 
lf 2 

0 0 0 0 1 

Here, the stability polynomial is given in Table 4.1, m = 5 ; the imaginary 
stability boundary equals 4. 

Finally, we give a formula which can be used for the integration of stiff 
equations of the type described in Section 5: 

0 
16/33 16/33 

16/32 - 3 16/32 - 3 
16/32 - 3 0 

16/32 -3 
12 12 

1 
0 

3 
4 4 

where {32 and {33 are defined according to (5 .8) with r = 1 and R, (z) = 1 + z. The 
right hand stability region is given by 

the left hand stability regions by 

and by 

in the cases z2 =l= z1 and z2 = Zi, respectively. 

This integration formula is first order exact and "almost" third order exact 
when hn-o. 
11• 
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7. Numerical Examples 

The integration formulas given in Section 6 will be applied to a parabolic, 
a hyperbolic and a stiff differential equation, respectively. We shall concentrate 
on the experimental verification of the theoretically derived stability conditions. 
The experiments were carried out on an Electrologica EL X8 computer. 

Our first problem is a non-linear diffusion problem which proceeds from 
Fehlberg [2]: 

ou o2u 
ae=d(x, u) oxa, o~x~1, t?:o, 

u(x,0)=2[1-ln{1-x2)], o<x~1, 

~=0 X=O, t~O, ox , 

u(1, t) =2 +ln{1 +t), t~O, 

exp(2-u) 
d(x,u)= 4 (2 +x2) • 

The exact solution of this problem is given by 

(7.2) u(x, t) =2 +ln{1 +t)-2 ln(2-x2). 

By using the method of lines we can replace (7.1) by a set of ordinary first order 
differential equations. Following Fehlberg we write 

(7.1') 

du0 1 ( ) dt =2do ,12x U1 -Uo, 

du· 1 
d/ =di Ll 2x(ui_1 -2ui+ui+1), f=1,2, ... ,14, 

d;:s =d15 Ll!x (u14 -2u15 +2+ln(1+t)). 

Here, L1x=1/16, di=d(fL1x,ui) and ui denotes an approximation to the exact 
solution u(x, t) at x =f L1 x. 

The Jacobian matrix J of (7.1') is given by a product of a diagonal and a 
tridiagonal matrix: 

0 

the entries ai are defined by 

0 

a0 = -2(1-u0 +Ui), 

ai=-(2+ui_1 -2ui+ui+i), f =1, 2, ... , 14, 

fli5 =-(2 +u14 -2Ui5 +2 +ln(1 +t)). 
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Since the off-diagonal entries of J are positive, its eigenvalues are real. Further
more, by Gerschgorin's theorem, the eigenvalues are situated in the interval 

[-4, Ll!x mfx (d1, o)]. 
This suggests to apply an integration formula generated by polynomials of the 
type discussed in Section 3. In fact, we have used the first order formula defined 
by (6.1). The corresponding stability condition is 

(7-3) Lit< 72LJZx 
= 4m~xd; · 

1 

By integrating with the maximal step allowed by this condition we reached the 
point t = 100 in 3 5 steps with a maximal absolute error 

m?xlu1-u(f L1 x, 100)1 =3 · 10-2, 
1 

or, relatively, an error of about O. 5 % . 

It may be interesting to calculate the number of integration steps which are 
theoretically required to integrate from t = 0 to t = 100 with the maximal step 
length allowed by condition (7.J). Substitution of the exact solution (7.2) into the 
diffusion coefficient d (x, u) yields 

1 (2-X8) 8 1 
d= 1 +t 4(2+x8) ~ 2(1 +t) · 

Hence, by (7-3) 
Lit =36L1 2 x(1 +t) =H1 +t). 

From this relation it follows that the number of integration steps at t = 100 is 
approximately given by 

100 

J dt 
7 1 +t =7 ln 101::::33. 

0 

The second problem is the Cauchy problem for a non-linear hyperbolic equation 
(cf. Richtmyer and Morton [17, p. 128)): 

au au ae=-U ox' -oo~x:,;;;oo, t::2:0, 
(7.4) 

u(x,0)=x, -oo~x~oo. 

The exact solution is given by 

(7.5) 
X 

u(x,t)= 1 +t· 

Problem (7.4) can be approximated by an initial value problem for the set of 
equations 

(7.4') 

The Jacobian matrix can be represented in the form 

1 1 J=- 2 Llx (-uE_+(E+-E_)u+uE+), 
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where E ± are the usual shift operators and u represents the vector with components 
ui. By splitting J into a symmetric and a skew-symmetric part it is seen that J is 
"almost" skew-symmetric and that the spectral radius is approximately bounded 
by 

Hence, one of the polynomials given in Section 4 seems to be an appropriate 
stability polynomial. We have chosen the second order exact fifth degree poly
nomial which generates formula (6.3). 

The solution u was required in the region 

-½::;;;x::;;;½, o~t:::;½ 
with 

LI X=0.008. 

The time steps LI t were chosen as large as allowed by stability, i.e. 

(7.6) Lit- 4Llx 
- m~x Ju7J · 

1 

After 10 integration steps the process reached t = ½ with a maximal error 

m~x lu1-u(iLI x, ½)I =710 -6. 
1 

Finally, we consider a stiff equation which is of interest in biochemistry: 

(7.7) 

dS 
Tt=(C-1)5 +o.99C, 

dC 
Tt=1000(S-C-SC), 

S(o) =1, C(o) =O. 

Since we did not obtain an analytical solution the results from a fifth order 
Runge-Kutta process with LI t = 0.001 were taken as the exact solution. At t = 50 
this process produced the values 

(7.8) 
S =0.7658783202487, 

C =0.4337103535 768. 

The Jacobian matrix of (7.7) is given by 

( 
C-1 

J = 1000(1-C) 

The eigenvalues of J are given by 

or approximately, 

s+o.99 ) 
-1000(5 +1) . 
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Obviously, the polynomials discussed in Section 5 are suitable for the integration 
of Eq. (7.7). For instance, we may apply scheme (6.4). Since the left hand 
eigenvalue cluster consists of just one eigenvalue the corresponding stability 
condition does not limit the integration step; the right hand stability condition 
becomes in this case ( cf. Section 6) 

2 s+1 
Lit< loo! ~200 1c-11, 

which is not a real restriction of LI t. In Table 7.1 some results are listed obtained 
by formula (6.4). 

Table 7. 1. Absolute errors at t = 50 

LI t N IS(S0)-SNI IC(S0)- CNI 

5 10 10-2,8 10-3.4 

2 25 10-3,2 10-3,7 

1 so 10-3,5 10-4 

o.s 100 10-3,8 10-4.3 

0.2 250 10-4,2 10-4,7 

0.1 500 10-4,5 10-6 

Note that the standard fourth order Runge-Kutta method with real stability 
limit 2.8 requires at least 50/(2.8/ 1~1 1) > 3000 steps for the integration of this 
problem. 

8. Concluding Remarks 

The aim of our study is to arrive at a unified treatment of the integration of 
differential equations. The results presented in this paper are only partial. For 
example, a topic as local truncation error estimates based on the first neglected 
Taylor terms (instead of the last Taylor terms taken into account) is still subject 
of investigation. Some first results are given in [9]. Furthermore, a strategy 
which matches stabilized formules of low accuracy to non-stabilized formulas of 
high accuracy can easily be applied to the formulas described here (cf. [7]). 

An extension of stabilized Runge-Kutta formulas can be obtained when we 
allow the Runge-Kutta coefficients to be functions of the Jacobian matrix of the 
differential equation. Such formulas require less function evaluations than the 
formulas considered here and, therefore, may be advantageous. The semi-implicit 
formulas of Rosenbrock [18] and Calahan [1] belong to this class. In [13] an expli
cit and a semi-implicit formula based on two function evaluations are given. Both 
formulas are third order exact and can be fitted exponentially. 
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