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The numerical simulation of biochemical systems, as well as the 
fitting of theoretical curves to experi.nental data, is serious­
ly hampered by the fact that standard !Ili!thods for the numerical 
solution of differential equations are not suitable for the 
solution of the equations that arise from enzyme kinetics. This 
has led to serious difficulties (cf, Garfinkel and Hess,196~). 
This is the reason why we set out to systematically investigate 
numerical methods suitable to approach the socalled "stiff 
equations". 
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The a~proximate solution of ordin~ry differential 
e9,uat1ons 

Introduction 

If we are given a first order differential equation 

dy/dt = f(t,y) (1.1)_ 

We may represent it graphically as a collection of slopes, for 
at each value of the independent variable t and the dependent 
variable y the equation defines a dy/dt, If we are now given 
~ point A, through which our solution is required to pass (the 
1.nitiaZ. condition), we may easily sketch this solution by 
drawing a curve smoothly through the slopes. We then have ap­
proximately integrated the differential equation. In fact, the 
numerical techniques for solving syste~s of differential 
equations are only elaborations of this simple graphical tech-

- "nique. 
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We are directly faced with the major difference between the 
analytical and the numerical solution of a differential equa~, 
tion. The differential system defines mathematically a unique 
s6lution, "the" solution of the system. However, when the dif­
ferential system is given numerically, the equations and the 
initial conditions normally in°volve one or more rounded con­
stants, which ~ave a permissible range of variation; these 
correspond to a s~t of possible solutions. Moreover, the 
numerical processes of obtaining a solution involve errors, 
increasing further the variation in the possible set of 
solutions. A numerical procedure picks out a single member of 
this set. 

In most computer libr~ries, standard routines are available 
that will perform the integration in a great number of cases. 
These routines usually are based on a fourth of fifth order 
Runge-Kutta type algorithm, or on predictor-corrector or 
rational extrapolation methods. However, in the study of 
biochemical systems a set of differential equations arises 
that are parttcularly difficult to solve by ordinary proce~ 
dures. The solutions to these equations contain rapidly 
as well as slowly varying components. They arise when a system 
is very stable for some-kind of perturbations, but much less 
stable for another kind. This, for instance, is the case in 
chemical systems, where some~reaction rates are much faster 
than others, The differential equations exhibiting such a 
behaviour are called stiff equations, since they were first 
encountered during the numerical solution of a mechanical 
system containing a stiff spring. 

As an example of a $tiff equation we show the differential 
equation 

dy/dt = -,2.5 y + (St + ·3) (t + 1)-2 (1. 2) 

Solutions can be found, following the slopes in the t-y-plane. 
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fig, 1. Slopes of equation (1.2). 

A differential equation is stiff when all solutions; corres­
ponding to different initial conditions, rapidly converge to 
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• the same set of slowly varying integral curves (the asymptotia 
solutions). In figure 1 a number of slopes are shown for the 
differential equation (1.2). In figure 2, a number of solu­
tions are shown for the same differential equation. It clearly 
can be seen that all solutions converge to the same asymptotic 
solution. It is a feature of stiff equations that the initial 
phase of a solution is characterized by a time constant which 
has another order of magnitude than the asymptotic phase. 

These stiff equations, des·cribing pher.::,mena with widely spread 
time constants, cause difficulties upc~ computation, because 
of the requirement of numeriaaZ stability, i.e. we want 
numerical perturbations (rounding error·s··' etc.) not to accumul­
ate during the numerical process. Standard methods only are 
numerically stable when a differential equation is integrated 
with time steps that are of the same o~der of m~gnitude as the 
shortest time constant of the system u:,der consideration. Thus 
it will be very timeoonsuming to obtain an asymptotic solution 
to a stiff differential equation. Since, on the other hand, 
stiff systems are very stable - in the sense that they are 
insensitive to some kind of perturbations - , this may be an 
indication that there are algorithms w~ich remove the diffi­
culties. Clearly, there is no sharp division between stiff 
and non-stiff equations, and so it re~ains difficult to combine 
the ease of standard methods with the po1,1er of methods suitable 
to overcome stiffness. A quantitative description of stiffness 
therefore is necessary. 

1.2 Quantitative description of stiffn~ss 

Now we will give a method to describe quantitatively the stiff­
~ess of a system of differential equations. Consider the sys­
tem of differential equation written in vector notation 

d -+ 1' -+ 
ci't y(t) = rCt,y). ( 1. 3) 

-+ -+ 
If the vector function·f is differentia~le with resfect toy, 
we can expand fin a Taylor series with respe~t toy at the 
·point y : 

0 

( 1. 4) 

where h(t) = f(t,y ) is a vector, and J(t,y ~epresents the 
Jaaobian matrix of0 the system at the point ?t,y }: 

0 
-+ 

J(t,y ) = Of.lay.\....... c1.s) 
o l. J ,y=yo 

In the case where tCt) only slowly varies with t, we obtain 
a good quantitative description of the local behaviour of the 
solutions by locating the ~igenvalues of the natrix Jin 
the complex plane. In order to explain this.J. we consider the 
solution in a neighbourhood of a point (t ,y ) and we linearize 
eq. {1 . 4 ): o o 

( 1. 6) 
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By assuming that the eigenvalues of J(t ,Y ) 
the local analytical solution can be wrftt~n 

.,. Ai(t-t 0 ) 

all are different, 

y(t)-y(t 0 ) :: b t D::iwi e (1. 7) 

where{A.} and {w.} a~e the 
of J(t !J ) and w~ere band 
linear0 eq8ations 

eigenvalues and eigenvectors 
{c.} are determined by the 

;I. 

... + 
b + rciwi :: 0 • 

£quation (1. 7) shows that the time-dependent behav1our .of 
the solutions is mainly determined by the eigenvalues of 
J (that are the inverse values of the time constants of 
the system). Only the behaviour induced by t(t) and non­
linearity have been left out of consideration. A stable system 
of differential equations will have its eigenvalues in the 
left half of the complex plane (Re A, <0). A stiff syste~ is 
characterised by a wide spread of th~ values l\il (Re Ai <0). 

1.3 Numerical stability 

A numerical process is called numerically unstable if ~rrors 
induced by the process (e.g. rounding errors) will grow system­
atically, affecting the results of the calculation in an in­
admissible way. A pr•ocess is called numerical Zy stable if an 
error, once induced, will decrease. 

We will illustrate the idea of numerical stability l>y a very 
simple .but rtc:presentative example. With the Euler method we 
solve the single differential equation 

dy/:.'t :: ')..y + g(x), 0<0). (1. 8) 

Choosing a fixed stepsize h, departing from a point y(t), we 
will calculate y(t+h) at every step. Accordini to the Eut.ei' 
method we set 

y(t + h) y(t) 11+ hf(t ,y(t)) 
\ 

:: y ( t ) \+ h\ y ( C l + hg ( t ) 

:: ( 1 + 1: >,) y ( t ) + hg Ct ) • 

The value of y(t) ,already calculated, consists of the true 
value 9(t) and an error E : 

y(t) ~ y(t) + E • (1. 10) 

This errors will cause an error (y+h')..)E in the calculated 
value of y(t+h) 

y(t + h) = (1 + h;l,)(](t) + El + hg(t) 

:: (1 .+ hi-)y(t) + hg(t) + (1+h;\)e: 

9(t + h) + (1 + h\)E (1.11) 
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The requirement that an error, once induced, decreases is equi­
valent with 

or (1.12) 

We see that the requirement of numerical stability gives us 
~ bound for the admissible stepsize, In figure 2 we show some 
integration steps with A= -2.5 and h~1. 

fig; 2. Unstable integration with the Euler 
method. 

We also show that ·there are simple methods that do not restrict 
the stepsize. However, these methods have the disadvantage that 
in each step of the integration process· a (nonlinear) system 
-of equations must be solved. As an exc1:1ple we solve the 
same differential equation (1. 8) with the Q'1Ct:ward __ F;1ile:i.'­
~ethod. ·~ow we set 

y(t+h) = y(t) + h.f(t+h,y(t+h)) 

= y(t} + hAy(t+h) + h.g(t+h) 

= (1-hA}-l (y(t) + h.g(tih)). 

Here an error€ in y(t) causes an error €/(1-hA) in 

(1.13) 

y(t+h). For this method the condition of numerical stability 
reads 

(1.14) 

Hence in this case numerical stability does not impose any 
~estriction on the stepsize. 
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Fig. 3. Stable integration with the backward-
Eule!'-Jlle'thod, 

The form of our numerical stability conditions (1.12) and 
(1.14) also give some justification for the suppression of 
the term h(t) in the ~uantitative description ,of stiffness. 

In the foregoing we only considered the behaviour of an error 
induced by steps already perfqrmed. It is clear that in each 
step some new errors are also introduced. First, we notice 
that, e.g. in the Euler method (1.9), the value set for y(t+hJ 
is not a very gooq_approximation to the 11 real 11 value 

y(t+h) = y(t) + h.y 1 (t) + h 2y 11 (t)/2 + 

The neglected term(of order h 2 ) is called the truncation error, 
Since a numerical process must be finite, any method will in­
troduce this kind of error. Secondly, we.neglected rounding 
errors: in a compute1' ax0 i thmatic operations introduce errors 
since every real number is represented with firiite precision. 

Now we will show how these errors, introduced in each step, 
all act together. Let E~ denote the total error in the cal­
culated value y(t ), ann let the contribution to E~ caused by 
E ~ 1 be given by R E ~ 1 (uh is the ampl.iffoation jdc:to2•, e.g. 
l~h>,. in our examplg 01th tne Euler method). In every step a 
new error En is introduced. 

Thus we find 

EX : X 
n an En-1 + En (1.15) 

Our demands upon a were ja I ~ A < 1. If we assume that 
there exists some Positive I'., so that I En! < E for all E , 
we show that the total error of the computation is boundgd 
by E It follows from the following inequility. 

1-A ' 
For ever•y n 
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1£~1 ~ !en I + Ian I len~l 

~ !en I + Ian I len~l + la Ila 1lle 21 + •.• n n- n-

~ E + AE + A2E + .. . 

= E (1 +A+ A2 .... ) ~ E 
1-A 

Analoious reasoning st1ows that A = 1 rnay give a linear 
growth and A> 1 an exponential growth of the total error. 

1.4 Application to enzyme kinetics 

Let us now take a simple problem from practice and let us 
give an example of a mathemat .i.cal a:1alysis. We choose this 
problem from enzyme kinetics because (1) it describes a 
system that frequently appears as a subsystem when one simul­
ates real biochemical systems, and (2) it exhibits the 
typical features that hamper solution by standard methods: 
nonlinearity and stiff behaviour. 

We treat a simple enzymatic reaction of the Michaelis-l·:enten 
type. This chemical reaction reads 

E + S C E .,. p • 

An enzyme E combines with a reactant Sat one stage and is 
(irreversibly) ·regenerated at a subsequent stage of the 

- reaction. We will refer to this syste~ as ESCEP. The rate 
constants are k 1 , k_ 1 , and k 2 . As a rule the concentration 
of E will be much less than the concentration of S. Besides, 
in many cases we have k_ 1 >> k 2 . The mass-action law enables 
us to describe the ~oncentrations Sand Casa function 
of time 

dS/dt = -k1 CE0 -C)S + k_ 1C 

dC/\t = k1 (E0 -C)S - (k 2+k_ 1 )c. (1.16) 

As initial conditions we have S(O)=S and C(O)=D. In order 

65 

to simplify the notation we write th1s equation in a dimension• 
less form by substituting 

We obtain 

ds/d, = -(1-c)s + qc 

~dc/d, = (1-c)s - pc 

s(O) = 1, c(O) = O. 

c(t) = C/E 

1 = 

q 

0 

(1.17) 

(1.18) 
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We know __the following inegualities 

£,t,q>D; p>q; 

D .:S c; s ~ 1. 

Normally £ <<1 (£ is a small parameter) 

and often D < p - q << q. 

Apart from that, the numel'ical values of p, q and e: may 
differ much in individual cases (cf. Briggs and Haldane,1925) 

in order to show that the system (1.18) is a stiff one, we 
calculate the-Jacobian matrix of the system, together with 
its trace and its determinant: 

J =[~:~c)/£ :::+s)/£}' 
., tr(J) = -(1-c + (p+s)/£ ), 

det(J) = (p-q)C1-c)IE 

The eigenvalues of J being AM and >.. m' 

obviously AM< Am < 0 and 

(A + A )2 
tr(J) 2 

2(1+ '-M1Am)~ -t M = > ··"1-1 det (J) 
m 

>[~]; (~~ = £.E+sJ.2 
£(p-q) 

(1.19) 

Hence, it appears that both eigenvalues are negative and 
that their ratio >..Ml'- is very large. These are the characte­
ristic properties of i stiff differential equation. 

This analysis clarifies why the simulation of systems that 
contain the system ESCEP as a subsystern,often demands an 
excessive use of computer time when standard routines are 
used: in order to solve the equations such routines are forced 
to·take time-steps 0£ order h ~11'-M , whereas the signifi­
cant time constant of the system is 1/>.. • 

m 

1.5 An analytical approximation method 

In enzyme kinetics some approximate solutions are well known 
for the system ESCEP, viz. the Briges-llaldane formula 
(Briggs and Haldane, 1925), and the Gutfreund formula 
(Gutfreund, 1965 , see also Hemker and Hemker', 1969). A method 
for the solution of systems of differential equations, in 
;·:,:c1i a highest dcriva.tive is multiplied by a small pc1I'ctr1,eter 
( can be seen in (1.18 ))~s furnished by the theoz'y of singulai' 
p ,, .. tm•l,ation pz,obZems (sec J.D. Cole, 1968). We show that, in t, ... case where £ is a small parameter, this theory will give 
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a combination of the Briggs-Haldane and the Gutfreund formulae 
as a first approximation to the solution of (1,161, Higher 
order approximations can be obtained (Heineken et.al. ,1967). 

We consider system (1.18} and we try to find a solution that 
is asymptotically correct for e::-+O. To that end we first take 
e::=O to obtain 

ds/dt = -(1-c}s + qc 

0 = (1-c)s - pc 
s(O) = 1' c(O) = o. 

Solving the system we get 

s 
c=s+"p 

(1.20) 

(1.21) 

(i.e. the dimensionless form of the Briggs-Haldane formula] 
and 

ds/dt = -(p-q). s ! p (1.22) 

.This single differential equation admits an implicit solution 
to s (,:}: 

s(,:) + p ln(s(,:)} + (p-q),: = 1. {1.23) 

This is the first order app;::QXirn,ation to s(,:), which is asyrnpt­
ot_ically true for e::+O. Givent_~QIT\eyalucs for P·, q, and ,: , it is 
very easy to compute the numerical value s(t) from this 
.formula. 

However, with equations (1.23), and (1.21), the second initial 
condition c(O)=O cannot be satisfied. To match this condition 
we introduce at ,=O a ZooaZ. ooo1'dinate 1;=.:/e::. Substitutine · 
z;e:: into equation (1.18) we get a description of the initial 
phase of the system 

ds/di;: = -e::(1-c}s + e::qc 

de/di;= (1-c)s - pc 

s(O) = 1, c(O) = o. 

Taking again£ = O, we obtain 

ds/di;: = 0 

de/di;: = (1-c)s - pc 
this admits the solution 

s ( z;) = 1 
C ( z;) = _L [1-e-C1+pl1;J 

l+p 

(i.e. the dimensionless form of the Gutfreund formula}. 

(1. 24) 

(1.25) 

{ 1. 26) 

Now we hv.ve to satisfy the condition that the end of the 
initial phase matches the beginning of the asymptotic phase. 
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So we have the matching conditions (cf, Cole, 1968) 

lim s(l,;) = 1 = lim s(,) 

and 

l,;-HO 

lim c( t;) = 
(;+«> 

1 
l+p 

1 ➔ 0.) 

= lim c(i:) 
y+co 

( 1. 27) 

The first order approximation - with respect to£ - to the 
solution of (1.18) is now easily obtained: 

sh) 
c(1) 

= s(1) defined by (1.23) 
s(t) 1 e-(l+p)t/£ 

s<1T-+p - 1 + p 

2, ~_urvey of modern nurnex,ical techniques 

2.1 General remarks 

(1.28) 

This brief space does not allow us to give a list of all 
methods (algox,ithms, fe~tures, comparions, etc.) that are 
available for solving initial value problems .. The reader can 
find an extensive expositio~ of this kind in Lapidus and Sein­
feld (1971). We only want to give a bird's eye view on the main 
types of integration techniques tha.t are used by the numerical 
analyst and we will str~ss those methods that may be of use 
in the simulation of real (bio)chemical s;stems. References 
are given to the literature where methods are explained in 
more detail and where computer pr·ograrns arc available. Books 
containing r,ener>al infor·n,ation on the subject are a.o. Hcnrici 
(1962) and Gear (1971). 

Any metl,od that solves an initial value problem step by step 
will appro:drnate the mathernat i.c2l solution if steps are taken 
small enough and,·at·least theoretically, this appx,oximation 
will become better when smaller tin~ steps are taken. However, 
numerical stability may comr:,and extremely small steps. In or•­
der to examine, the stability behaviour of a method during the 
integration of the system of differential equations 

dy/dt = f (t ,y), ( 2. 1) 

it is useful to consider' the Jacot,ian r.tatrix 

J = (ofi/cyj) 

and its eigenvalues {11.} , that also served to quantitate 
stiffness (see sectionJl.2). In general this Jacobian matrix 
depends on t and y, and therefore the eigenvalues arc a set 
of real and conj ur;a te corllplex numbers, each one depending on 
t and y. To each method is associated a stab·itity 1'ogi'.c,:, i.e. 
a set of complex numbers h11 (h stcpsize, A eir,envaluc of J) 
for which the method is numerically stable. Thus, a sy,c;tcrn 
of diffch:ntja.l equations (2.1) only can be solved with a 
stq,size h such tlic1t all v21ucs {h\j} lie ir,sidc the stability 
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region of the method. 

In section 1 we already have become acquainted with the stabi­
lity regions of the Euler and the backward-Euler methods. The 
stability region of the Euler method, given by ll+hAl<l (cf. 
eq. 1.12} is a disc in the co~plex h A-plane with radius 1 and 
centre -1. The stability region of the backward-Euler cethod 
given by 11-hAj > 1 (eq. 1.14) is the outside of a disc with 
radius 1 and centre +1. 

Methods which are stable for all hA with Re hA <Oare said 
to be A-stable (Dahlquist, 1963). Methods which are stable for 
all hA with Re h;\. < d < 0 and for all real values hA < 0 are 
called stiffly stable (Gear, 1968). 

2.2 Lin~ar multistep methods 

A linear k-step method for the solution of initial value 
problem (2.1) is defined by the vectur equation 

(2.2) 

where~ +l is a linear combination of values y . and 
f(tn-· ,9 1_i) (i = 0,1, .•. , k-1) that already hi:lv€: been comput­
ed. If 13 = O, the method is e:cpZicit and impZt'.oit if S :j: O. 
When a constant stepsize h is used, the for,mula is normally 
written 

k 
r a-y · 1+ h!;l,f(tn-1·+1'Yn-1·11> = 0 • i=O l. n-1+ ~ 

(2.3) 

A method is defined by a choice of the parameters ai and Si 
(i = 0,1; ..• ,k) and methods are available which are stable 
and accurate for h _,. O. A comprehensi,,e theory on these methods 
exists (see e.g. Hcnrici, 1962) the ~!in resul~bcing: 
1. the order of accuracy of a stable k-step m2thod cannot 

exceed k+l 
2. all explicit linear multistep mett0ds have a firtite stabil-

ity region 
3. the maximum ordet' of an A~stable linear multistep n;eUiod is 2. 

A large number of linear multistep methods have becn-~rop6~ed. 
However, it seems that thr·ee types are:, of practical intet'est, 
each type being available for differfnt values of k. The three 
types are (cf. equation (2.3)): 
1, The explicit Adams or Adama--Bashforth methods, 

characterized by$= O,a. = 0 (i: 2, •.. ,k). These methods 
have small stabiliiy regions that decrease with increasine 
k. However, the fol',~,ulae directly zi.ve a v2.lue y +l' and 
therefore are often used in conjunction with the"applica­
tion of an implicit formula (2.3). The resulting explicit 
methods are cal1ed p2•edicto1•-co1•recto1• methods. 

2. The implicit Aden::, or Adams-l-fou'ltc•; methods characterized 
by a, = 0 (i = 2,3, ... ,k). The ord2r of accuracy being 
k+l,Ithese methods have the highest possible order of ac-
~uracy • t: !he c_~a~s ~~ line.:ir mujtistep methods. 
1he stal:i1l1 ty regicin of these met'hoi.ls is bou11ded 



for k>l, but when stability does not limit the stepsize, 
these methods may be very efficient. 

3, The stiffly stable methods (cf. Gear,1968). These implicit 
methods are characterized by~- = 0 (i = 1,2, ... ,k) and by 
the order of accuracy beine k. 1 These methods only exist for 
kC6. Because of their special stability properties, they 
are very efficient in the case of stiff equations. 

We notice that one has to pay for the nice properties of the 
implicit methods by the fact that we have to solve a (non­
linear) set of algebraic equations at each stage of the inte­
gration process. On the other hand, when accuracy or stability 
questions do not arise, explicit methods may be efficient 
because of the simplicity of the procedure. 

Frequently the use of Runge-Kutta methods is advised in order 
to find the k-1 values yi and f(ti,yi) (i = 1,2, ... ,k-1) 
that are needed to start the multistep methods. However, a 
good routine will have the flexability not only to adjust the 
stepsize, but also to start with a linear 1-step method and to 
adjust the order of the methods during the integration process. 
Routines have been published by Gear (1971) in FORTRAN and by 
Hemker (1971) in ALGOL 60 .. 

2.3 Runge-Kutta methods 

Another family of integration formulae are the Runge-Kutta 
methods. They are of the type 

m 
ki = h.f(t +ll.h , Yn·+ 2: >- . . k.) 

n i j =l 1 J J 
m 

Yn+l = y + t O.k. 
n j=l J J 

i=l, ... ,m ( 2. 4) 

Each method is defined by a choice of the parametersµ., e., 
and A,. and, again, a great nu~ber of methods are avaiiabli~ 
which 1 rlre stable and accurate for h-► O. If A •• = O for i~j, 
~~e methods ~re expZ~ait; Yn+l can be ob~ai~J~ by the success• 
ive computation ki (1= 1, ... ,m). Otherwise, if,-,. + O for any 
i s.j, the method 1s ,implicit and the computation 5f k, 
(i = 1, ... ,m) requiics the solution of a (large) syst~~ of non· 
linear equations. \ 

As. was the case with linear mul tistep methods, the explicit 
formulae only have a finite stability region. However, the 
large number of parameters (µ. ,e., and A-.) leaves the possi­
bility to fii, .. explicit forrnuiae 1 which riclve in conunon their 
high accuracy but differ by their stability properties. For 
instance ,n,ethods are available which have optimal stability 
regions for real or imaginary eigenvalues of the Jacobian 
matrix (v.d.Houwen, 1970a). Also methods are available which 
are stable with respect both to the small eigenvalues and to 
some eigenvalues (real or c,.,iljugate complex), anywhere in the 
left half of the complex plane (v.d,Houwen,1970b). The latter 
type, ~1ere one selects the parameters based on some judgement 
about the solution, are called exponentiaZZy fitted Runge-
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Kutta methods. They represent the asymptotic solution as well 
as the components of the solution with the known (large nega­
tive) eigenvalues. A survey of Runge-Kutta formulae with in­
creased stability regions can be fou~d in v.d.Houwen (1972b). 

A more complicated type of Runge-Kut:a methods is found if the 
par'ameters L., (j<i; if j>i then L~=O) are rational expres­
sions of the 1 JJacobian matrix. Thesl-':;ethods, called semi-im­
plicit Runge-Kutta methods, do not reluire the solution of a 
nonlinear set but only of a linear set of algebraic equations 
at each stage of the integration pro=ess. They are A-stable 
and also may be exponentially fitte~ :o two or three clusters 
of eigenvalues (v.d.Houwen, 1972a). 

When the differential equations are ,,::Jt stiff, the 
use of simple explicit Runge-Kutta cethods is very popular. 
Many good implen~ntations with auto:-~tic stepsize control are 
available (e.g. Zonneveld,1964). If the equations are stiff 
and something is known about the position of the eigenvalues 
in the complex plane, the use of so;:2 explicit methods with 
special stability properties can be recommer,ded. Routines, 
written in ALGOL 60, are available in Beentjes (1972) and in 
Dekker (1972). If one is not able to evaluate the Jacobian 
matrix and if nothing is known about the eigenvalues, ir.,plici t 
Runge-Kutta n~thods might be used (E~le, 1968). 

2.4 Trapezoidal rule with smoothing,backward Euler 

In 1963, Dahlquist ,proved that no ex?licit linear multistep 
method can be A-stable and that the :·,"xirnumccde1' of an A-stable 
linear multistep method is 2. Moreov~?·, for fixed stepsize h, 
the method with the minimum tr·unciJ. tic:1 error is the trapezoi­
dal rule 

Yn+l = y + h(f(t ,y) + f(t , 1 ·,y +l))/2·. n n n n• n (2.5) 

Since direct substitution cause □ co~~:r£2nce difficulties, when 
applied_to stiff equations, the use cf Newton-Raphson iterati­
on is reconITTended to solve this nonlinear eouation in y 1 . 
Hence, the numbe1' of i teratirn,s nece:;:;ciry f;r convergeng& is 
a rneasu1•e fop the local nonlinearity of the differential equa­
tion and therefol'e can be used to cc~trol the stepsize. If we 
take a sufficiently small stepsize, >·e may lirv~cwize equation 
(1.1), obtciining 

( 2. 6) 

Then the execution of a step can be ~rittcn 

. I-h,J / 2 
Yn+l = C(hJ)yn where C(b) = T+-ltJfi (2.7) 

Even though l!C(hJ) II < 1 for Re h).. < O (i.e. the method is 
A-stable), we have C()..h)-,. -1 as h>.-+ - 0 • 

That is·, the nui:,crical process has a tc1dcr1cy to iritroclucc in.­
to the solution some slow1 y damped o =illa ci ons ,,.,;1icl, can be 
very tr·oul,lc,some dm,in,G the calcuJat an of the asymptotic 
Phase of th•~ solution. To over·comc t is difficulty Lindbere; 



(1971) suggested that one calculates the function values y 1 , 
y , and y +l' Then one sets y = (y· _ + 2y + y +l)/4 forp­
s8me p anB continues the inteiratioR from tp usiRg the smooth-
ed value Yp· p 

In conjunction with this smoothing process Lindberg also 
proposes global extrapolation to increase the accuracy. How­
ever, it remains a question whether'this technique is appro­
priate for efficient calculation in system simulation, where 
only limited accuracy is required. 

Another way to avoid the oscillations in an A-stable linear 
method is to use the backward Euler scheme, which is only 
first order a.ccurate. Analogous to equation ( 2. 7) one obtains 

I 
where C(hJ) = I-hJ , (2.8) 

which is also A-stable. However, one has that C(h\) •Oas 
Reh\•-~, which is desirable in the asymptotic phase when 
the contributions to the solution corresponding to the eigen~ 
values with large negative real parts may be neglected. 

2.5 Exponentially fitted.methods .___ 

A special exponentially fitted method - cf. exponentially 
fitted Runge-Kutta methods - is given by Fowler and Warten 
(1967). Their algorithm is explicit and there is no need for 
the user to specify the la!'ge negative eigenvalue. However•, 
their algorithm is only efficient in the case of one. 
real cluster of eigenvalues. 

Anoth•=r family of exponentially fitted method (where, again, 
one selects the parameters based on some judgement about the 
solution) is given in the work of Liniger and Willoughby (1970). 
A special feature is the A-stability of these exponentially 
.fitted methods. Th~y_consider the schemes 

and 

Yn+1 = Y n ·+,'h(( µf( tn ,y n) + ( i-~ )f (tn+ 1 ,Y n+1)) 

0~11~½ 

Yn+i = Yn + h(~-a)f(tn,yn) + (1+a)f(tn+l'Yn+l))/2 

(2.9) 

2 • • 
-h ((b-a)f(tn,yn) + (b+a)f (tn+l'Yn+l))/24 (2.10) 

0 ~ b-a ( 1/3, 1/3~b+a ( 2 

It should be noted that in the first schemeµ= 0 gives the 
backward-Euler andµ= i gives the trapezoidal rule. Thus, the 
choice o( µ allows a selection either of these extremes or 
an intermediate scheme at any poi11t duri11g the intceration. 

These implicit schemes all.ow the user tp combine the approxi­
mate inter,ration of the slowly var-ying component with the 



exact integration of some component with a previous known 
large eigenvalue l. The schemes are A-stable, hence, some 
careless estimation of the eigenvalue will not harm but only 
nullify the labour of exponential fitting. 

3. Parameter estimation 

3.1 Introduction 

A mathematical representation of a 1 biochernica1 system will 
often be given by a set of differential equations in which 
some parameters are unknown. On basis of data obtained in 
experiments these parameters have to be determined. In order 
for the parameters to make sense, it is necessary for the 
equations to be a fair enough representation of the situation 
in vitro. On the other hand, when the best set of para~eters 
apparently are not compatible with the outcone of the experi­
ments, the mathen,atical representation is unlikely to be valid. 
Sow~ are left with two problems 
a. The qualitative problem of how well the situation in vitro 

is described by a given set of eqt:'itions - or, in bioclte­
mical terms, what is the mechanisr.. of the reaction-, and 

b. The qua~titative problem of how the parameters can be 
estimated from experimental data given a likely set of 
equations. 

The first problem is not a mathematical one. It very much . 
concel'ns the "art" in biochemical research. The quantiti.tive 
problem, however, is a mathematical o:,e, and its results 
may serve as a feedback to the bioche~ist, who has to solve 
the qualitative problem. In this section we will confine 
ourselves to the solution of the qua~titative problem. 

Mathematically stated, the ~foblem is this: a set of n diffe­
rential equations is give~ 

~ y = f(t,y,p) (3.1) 

where p represents an m-vecto; of pa!'fmeters. In the process 
considered, p has the value p , but p is not known. Son~ 
components of the vectot' y can b,:; mea::;ured fo1° different 
values oft, but these measurements i~e affected by some ran­
dom errot'S. It is assurued that the for·m of f is known, to­
gether with some statistical pr·~,pertfos of the measurement 
errors. The p1•oblem is to deduce an estimate p of the vectol' 
p!t:. 

Withy,( 1 < i < N) we denote the obs~rved value of some 
componint y-at iime t,. Thus the index i identifies an ob­
servation and also determines what cor;,ponent of y has been 
observed. So we have a set of obsel'vc:tions {y.} , a co:rpes­
po;ding set {ti} (t 5 t 7 s ... ~ tN} and, for 1 some p, we 
can compute a set of thcc'.irctical valt:•:os y(t, ,p). The problem 
now seems to be quite sinvlc: we define the 1 N-vector 

J:.) In this sect ion we use vector notation throur;hout, so p e: Rn1 , 

y e: R x Rm.,. Rn, f E: R x Rn x Rm.,. Rn etc •• 
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Y(p) = (y(ti,p) y. ) 1 
l. 

s i :S N (3.2) 

and we define 

S(p)= 11 Y c P) I I 
2 r:N 2 

= (y(ti,p)-yi) 
i=l 

( 3. 3) 

the sum of the squares of the discrepancies. Using an inte~ 
gration procedure to solve y(t. ,p), we can solve the problem 
stated by minimizing S(p) usin~ standard techniques. Even when 
we assume that the minimum is unique and that the function 
S(p) is the be,;t one to minimize (this can be justified under 
certain conditions), the question still remains as to how bad• 
ly conditioned the problem is. I.e., how small a perturbation 
in SOM! values of y-. will cause how lar'ge a variation in the 
minimizi1tg vector r,: In relation to this question it is clear 
that not only an estimate of p~ has to be determined but 
also an estimate of its reliability. 

Here we will assume that the measurement errors are statisti­
cally independent and that th~y have a Gaussian distribution 
with zero m,,an and variance n . Thus the covariance matl'ix 
of the vector of errors n is 

E(nnT) =cr 2 r ( 3. 4) 

an,d the probability density of Ti is given by 

· p(nl = (2110)-N/ 2 exp <-llnll 212</) 

·3. 2 The method 

The dependence of Y(!J) on p 

The solution of the cliffc-Pential. equation ( 3 .1) can be con,d.­
dei-cd to l>e a function of t as ,-1ell ,is a function of p. We 
consi.dc,1' the diffcrL·nce between two zi.djucent solutions y (t ,p) 
and y 2 (t,p+o) of cqu,tion (3.1)? both st_artinr; at y 1 (o,p1:: 
y 2 (0,p+o) :: c, We co~q1ute the diffc~cnce between y 1 and f 2 due 
to the sn~ll chanee in p. The functions y 1anc1 y 2 are defined 
by 

( 3. 5) 

( 3. f,) 

Expand:ine (3. 6) in a Taylorscries and kccpine only first or-clcr 
terms in o and in y 2 -y 1 , we obtain 

( 3. 7) 

( 3. 8) 
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is an n x n matrix, and 

a FP =Cap f(t,y 1 ,p)) (3.9) 
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is an n x p matrix, both matrices being functions,•! t, p, and 
y1 , but not of o or y 2-y 1 . 

It would be expedient to know how th, computc:ble \. 
y(t. ,p) depend upon small variations 6 arounc p. S 
tio~ (3.7) enables us to construct tle differentia 
which defines then x m matrix 

a YP = ap y ( t, p) , 

we use (3.7) and write 

d cft y(t,p) 

or, in shorthand, 

~- YP = FP + FY.YP. dt 

n.:r· equa­
,·-1uation 

(3.10) 

(3.11) 

(3.12) 

This is a system of n x m differential equations. If we solve 
this system together with system (3.1}, we are able to 
compute· 

A(p) (3.13) 

.an N x m rniltrix, giving the depc:nder,:e of Y(p) (sec ,·,1uation 
3.2))upon variations top. 

,'1inim.i"zin13 S(p) 

2onsider the function S(p) defined by equation (3.3). The 
value p tlwt minirnizes S(p) is an es".ir..:\te of the iJ'tti": va_lue_ 
p 1'. In equation (3.3) y is a nonlin(,,cr functio;-i or I'· Without 
some furlh(:r assumDtior1s the anaJysi;: w:)uld tL-~rl'f,_,t'" bi:: too 
:lnvolv(d to eive h;pc of useful resu'.:ts. This difC.i,·tilty is 
dealt with by assuming that p is a r=2..:;onably eood .:q•1•rox.im­
ation to i,. Usine a rccncralized Ncwtcr;··Raoltsor. tech11 i ,111e, we 
linea1•izc· the nonlin~arity for small depa;'Lures 01• f 1·,,1,1 p. 
Supr,oc:c that p is 11 trial vccto1' and op is the r<'q11 i 1•,-,J . 
corPcct:i.on (p + 01, = p). The r-~siduc~ vector- Y(p) 1 :: c"\l•Pr'ox1n­
at:cd by a linea,• function of the pm"'::«::tcr 

Y(p) = Y(,-6p) = Y(~) - A op 

and for• the residual function 

scp> = scp+opl = I I YCp+op) 11 1 

'-'iiY(p) + A([.i) op 11 2 

2 T T '!' T = I I Y I I + 2 o P A Y + o I' /, Mp 
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The approximating function to S(p) has a minimum at the point 
given by the nonnal equations 

(3.14) 

If the matrix ATA is nonsingular, this equation determines 
c~ from Y(p). 

In the linear theory p + op so determined would be the requir­
ed solution and the rnini1:1um value of S attained there would be 

(3.15) 

In general, S(p + op) will not be the minimal value of Sand 
the whole. p1'ocess i.s r·epeated using p + op as an approxima­
tion to~ for the next iteration. 

If it appears that S(p + op) > S(p), some other techniques 
cari-be applied. Firstly the method of steepest descent is 
recomnended with pas a Point of departure. For this purpose 
the gr'adient vector r::-A1'(p} Y(p) is calculated and a new 
trial step is executed with ·---.. 

If even with this op it appears th.:i.t S(p + op)> S(p), the 
di r,,:·ction of the step should not be changed, but a relaxation 
L,ctor can l:.,e used, e.g. t1,e step op may be multi.plied by 
S(p]/(S(p) + S(p + op)) and a new trial step executed from p. 

3.3 Statistics 

Let~ be the final estimate of p so that S(p) ~ S(~) for all 
p; we assume that tl,e· line.:i.r theory holds in a sufficiently 
la.l'!3C neighbourhood of p. 

:For thl! ~crturbations n; of the obse1•ved values y. we assume 
an N(O,o ·) distcibution""and so it follows from E:,qCiation (3.1Lf) 
that the estimated value p will·also be normally di~trihuted. 
We define op= ~-p* , hence the expectation of op w{ll be 
zero when p=~. We are also interested in the ¥ovariince 
matrix of 6p, i.e. the expected value of cpdp . 

E(opopT) = E((ATA)- 1 ATY YTA u?A)- 1 ) = 

= (AT/:)-1 AT I:(YYT) A (ATA)-1 = a2 (ATA)-1. 

J:'rom this covc1,··1c1nc rr,atcix we derive r .. , the cor1°elatior1,; 
between the estimates QP. and QP.. l] 

1 J 

with q .. 
l] 

T 
(A /1) .. 

lJ 
(3.16) 

By equation (3.14) pis a linear function of Y. Hence its 
pt'oba1,ility dend.ty will be Gaussian and will be r,ivcn by 
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P(op) = ((2no)m det((ATA)- 1 ))-½ exp(-opTATAop/20 2 ). 

From (3.15) follows imrri<2diat.ely 

I !YCp + opll 12 = sCpl + 6pT t?A ap. - - -
2.rtd S(p)/c 2 

2 d' 'b · ; r d " f have a X 1str•1 ut1on 1-11th !, , 2m, and N-m egrees 0.1. reedom, 
respectively. An estir:1ate of o is given by 

(3.17) 

The confidence region at level o. is the ellipsoid 0,l ref.ion 

(3.18) 

where Fa(n,N-m) is the a-point of the F-distribution with m 
and N-m degrees of freedom. The principal axes ~ft'.e ellips­
oidal region are given by the eigenvectors of A1A and the 
length of the axes is A--~ (A. is the eigenvalue of the corres­
ponding eigenvector). rie coniidence limits for each estimate, 
supposing that the other estirr.ates are exact, are 

wher-e 

-Other confidence limits fo1° the individual estimates C:,dcpen­
dently) are 

- ::. 0 Y.. pi pi 

where 

(3.20) 

The geometrical interpr~tation is that the tangent planes to 
the ellipsoi9 with normals to the direction i a1·e at a 
distance op.~- fr-om the.centre of the elli,Jsoicl and that the 
axis i intcicepts the ellipsoid at points- 6pi from the centre. 

3.4 Integration of the differential equations 

The system of the differential equations ~~1ich we have to 
solve in each iteration step of the optimizinc process is, 
in gcf1c1·.:•l, a rath,::r la.q;e one. In the syst""' we distir:e,ui.c~h 
two parls 
1. (sec equation (3.1)) 

d aT y(t,pl = fCt,y,pl (3.21) 

a coupled ~;ystcu of n differcrt1-i.al £>quatJDns. 



2. (see equation (3.12)) 

~t :YP = FP + FY.YP. (3.22) 

This is a set of m systems; each system consists of n differ­
ential equations and is coupled with system (3.21). 

The structur>e of tl1e system (3.21 - 3.22) as a whole can be 
clarified by writing: 

1. the system ( 3. 2 1 - 3.22) as 

y :: f 

Yp1 = fP1 + f 
YP1 y 

ypm :: f + f Yprn (3.23) 
pm y 

where y . = ay/apT, f . =af/op, and pJ. • pi ;r, 

fy = of!oy tl1c Jacobian matrix of the system ( 3. 21 L 
and by writing -

2. the Jacobian matl'i.x of the'°system (3.21 - 3.22) as 

fy 0 0 

J ::: 
f f 0 

pv1 y 

J 0 ~f 
}1 _ y 

wl1c1•e f , = 8(of/3p 2. )/oy. 
py1 

In this Jacobian matrix the one way coupling of the system is 
clearly dcm,:inst1°ated. Besi.des we notice that t11e eiecnvalucs 
of J ar-e all the sa1,,c as the eigcnvaluc,s of f , and so the 
s~c1~ility bel1dviours of system (3.23) and sys'.t'.em (3.2t,) are 
s inn J <'ff' • 

In order to solve the system of differ-c11tial equations effi­
c:i ently, we apply implicit 1 inea1· rnul t istep methods and we 
make use of the particular structure mentioned. In each step 
of the integr-ating process, equation (3.21) is solved as an 
independent system. When tl1is par>t of the intcg1•atj on hac; been 
succesfully cornplctcd, the rr: systems of eqec1atio11s (3.22) 
can be solved with only a litl]e wod:. \-le will show this in 
more detail. 

Since we only use implicit linear> multistep methods, the re­
sult of 011e intC[,l'a tir,n step during th,, solution of 

y = f(y) 
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corresponds to the solution of the nonlinear equatio!, 

(3.20} 

w~ere • contains the information about a number of co~plcted 
steps. A¥ter the choice of a suitable starting value y , this 
equation is solved with a modified Nei.tor,-Ra?hson metRo~ 

r+ 1Yn = ryn - 0-hBf )- 1 < y -¢ -hSf( y )) . (3.26) y r m: r. r n 

When we solve the system of differem:ial equations 

y = f(y) 

w = g (y} + f w y 
we make use of the one-way coupling of the system. In each 
step, we have to solve the nonlinear system 

Yn = hB f(yn} + tn 
wn = hB g{yn} + h~ f/Y1l).wn+ \In 

(3.27) 

(3.28) 

We do •not iterate this system simultan;:;ously, but we solve the 
nonlinear equation (3.27) by the iteration process (3.26), we 
substitute the computed value of Yn in (3.28), and we solve 
the linear equation (3.28) directly. For the solution of this 
linear equation one needs (I-hBf (y ))-1: the sam~ factor that 
.will be used in ~3.26). Y n 

The solution of the system (3.23) is obtained in the same way. 
In each step of the integration process, the first system of 
~ equations (3.21) is solved by ite1,ation. When this iteration 
has been completed, each of them systems of then equations 
(3.22) is solved directly. Each one of these m systems needs 
the LU-decomposition.of one and the sar:.·2 matrix I-hSf (y ) . 
Moreover, this LU-decomposition can be u~Jd again in ¥hen 
next modified Newton-Raphson i te1'ation. 

We.notice that the possibility of coupling the integration 
of (3.22) with the integration of (3.21) with this ease, 
depends Cr'ucially on the form of the linear integrat.ton for­
mula (3.25). It cannot be done, for instance, with Runge-Kutta 
met1,ods. 

We can use another feature of the integration method. On an in­
terval containing some meshpoints, the linear multistep methods 
approxir1 ... , Le the solution of the differential equation to a 
polynomial of a certain degree. As a consequeuce, there is no 
need to take the mcshpoints of our integrating procedure to­
gether with the points {t.} where tile solution is wanted. The 
solution is obtai11cd by ifiteqx,lating the appr·,n:imating poly­
nomial. 

The method is cffcctivc·ly used. in a numt,cr of probler.,s. Rc­
sul ts and an l,LG(IL 60 pru,t.r'dm ar'c: availe.:.J.e in Hemker ( 19 72). 
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BIFURCATION THEORY IN BIOCHnlICAL DYNAMICS 

INTRODUCTION 

OKANGUREL 
IBM Corporation, Wliit~ Plains, NW York I0G04 

U.S.A. 

Biological molecules are building blocks of both static rnd dynamic asp~..:ts of the biological 

systems. This type of classification m::iy not be quite prup•~r for the n:ason that the sttme 

molecule may play both roles in a global sen,c. If it is necessary for a strudural molecule 

mi to take part in a dynamic activity, mi might be cxp1cssed as being included in the dynamic 
model, thus m; bcco·mcs a dynamic building blo.:k as well as a static one. 

The dynamics of these mokculcs can be expressed as difforrntial equations with some 

paramckr;. The singular and periodic solutions of these- equations and their stability proper­

ties can be studied to ddcrmine the topological charactd:Stics of the solutions. The theory of 

bifurcations is concerned with the changes· which occ,.1r in the topological structure of a 
dynamic system in a particular region when: the system itself, namely the set of parameters in 

the right-hand sides of the system equations is altered. Th~ t~rm bifurcation gcncrally_refers to 

those changes in topological structure that occur at the bifurcation values of the pararneters. 

The aim of this paper is to point out the relationship fictween the topology of dynamics of 

molecules and that of dynamics of cells by rcforring to VMious bifurcations. 

BIOLOGICAL INTEGRITY 

If is not conflicting to assume that the Sfhic.: of lilOlcci&s JI! consi5ts of mi, the biochemical 

molecules of both static and dynamic aspects of th,:: biologic:1I systems. The dynamics of these 

molecules in an abstra,'.t form is d.:fined by the mappin&J:.M -►.M. Thert:fore ,/ corresponds to 

a vector field ovs::r the molecular space M. It should also ln: noted that for a dynamic process 

defined by f, some .other ekmcnts, a subset p[ biochemical molccuks, such as enzymes or 

m~tallopruldns, or some physical entities, may form the p~rwncter stiace r, thus the dyna1c,;cs 

of molecules is denotc"d by fr: M·--M, a mappi•1g dq,rndi;'.J 011 the paramckr set r. 
In a similar fashion, the space of cells, at the cellular kvd, is dcnokd by C. The mapping 

g:C _,. C would correspond to the drnamics of the cdl space. It may be the cas~ that the 

biochemical or physical parameters forming the set n are involved in the v.:ctor fidd g over C 
such tlwt the dynamics of the cell space is in an at,;trac! form gn:C->C. Tlw parameter space 

at the cellular·kvcl may involl'c the paramdcr space rand SlHnc of the clements of the space 

of molecules such that the dynamics at the cellular kl'd would be grnii(C- C. In general 

terms, what we have is that the m:.rpping rdating M 2m<l C spaces dcnokd by II would 

complete the diagram 

sud1 tk1t TI[:.M--> C or grI:M .... C, thus Hf0gl!. The existcocc of tht mapping TI, which may be 
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