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The numerical simulation of biochemical systems, as well es the
fitting of theoretical curves to experimental data, 1s serious-
1y hampered by the fact that standard methods for the numerical
solution of differential equations are not suitable for the
solution of the equations that arise from enzyme kinetics. This
has led to serious difficulties (cf. Garfinkel and Hess ,1964 ).
This is the reason why we set out to systematically investigate
numerical methods suitable to approach the socalled "stiff
equations”.
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The approximate solution of ordinary differential
equations

Introduction

If we are given a first order differential equation

dy/dt = £(t,y) : (1.1)

we may represent it graphically as a collection of slopes, for
at each value of the independent variable t and the dependent
variable y the equation defines a dy/dt. If we are now given

a goint A, through which our solution is required to pass (the
tnitidl condition), we may easily sketch this solution by
drawing a curve smoothly through the slopes. We then have ap-
Proximately integrated the differential equation. In fact, the
humerical techniques for solving systens of differential
_ﬁguations are only elaborations of this simple graphical tech-
“nique.
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We are directly faced with the major difference between the
analytical and the numerical solution of a differential equa-.
tion. The differential system defines mathematically a unique
sdlution, "the" solution of the system. However, when the dif-
ferential system is given numerically, the equations and the
initial conditions normally ifi¥olve one or more rounded con-
stants, which nave a permissible range of variation; these
correspond to a set of possible solutions. Moreover, the
numerical processes of obtaining a solution involve errors,
increasing further the variation in the possible set of
solutions. A numerical procedure picks out a single member of
this set.

In most computer libraries, standard routines are available
that will perform the integration in a great number of cases.
These routines usually are based on a fourth of fifth order
Runge-Kutta type algorithm, or on predictor-corrector or
rational extrapolation methods. However, in the study of
biochemical systems a set of differential equations arises
that are particularly difficult to solve by ordinary proce~
dures. The solutions to these equations contain rapidly

as well as slowly varying components. They arise when a system
is very stable for some-kind of perturbations, but much less
stable for another kind. Thig, for instance, is the case in
chemical systems, where some reaction rates are much faster
than others, The differential equations exhibiting such a
behaviour are called stiff equations, since they were first
encountered during the numerical solution of a mechanical
system containing a stiff spring.

As an example of a stiff equation we show the differential
equation :

dy/dt = -2,5 y + (5t + 3) (£ + 1) (1.2)
Solutions can be found, following the slopes in the t-~y-plane.
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Fig. 1. Slopes of equation (1.2).

A differential equation is stiff when all solutions; corres-
ponding to different initial conditions, rapidly converge to
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. the same set of slowly varying integral curves (the gsymptotic
solutions). In figure 1 a number of slopes are shown for the
differential equation (1.2), In figure 2, a number of solu-
tions are shown for the same differential equation. It clearly
can be seen that all solutions converge to the same asymptotic
solution. It is a feature of stiff equations that the Znitial
phase of a solution is characterized by a time constant which
has another order of magnitude than the asymptotic phase.

These stiff equations, describing pherncmena with widely spread
time constants, cause difficulties upcn computation, because

of the requirement of numeriecal stabiifty, i.e. we want
numerical perturbations (rounding errcrs etc.) not to accumul-
ate during the numerical process. Standard methods only are
numerically stable when a differential equation is integrated
with time steps that are of the same order of magnitude as the
shortest time constant of the system under consideration. Thus
it will be very timeconsuming to obtain an asymptotic solution
to a stiff differential equation. Sinece, on the other hand,
stiff systems are very stable - in the sense that they are
insensitive to some kind of perturbaticns - , this may be an
indication that there are algorithms wiich remove the diffi-
culties. Clearly, there is no sharp division between stiff

and non-stiff equations, and so it remzins difficult to combine
the ease of standard methods with the power of methods suitable
to overcome stiffness. A quantitative description of stiffness
therefore 1s necessary. :

1.2 Quantitative description of stiffn:ss

Now we will give a method to describe guantitatively the stiff-
ness of a system of differential equatizsns. Consider the sys-
tem of differential equation written in vector notation

g vy = Fee, . _ _ (1.3)

>
If the vector function f is differentizble with respect to ;,
we can expand in a Taylor series with respect to y at the
‘point Yo

G VY = RCE) + TCLIDGT) 4o, (1.4)

where h(t) = #(t,y_ ) is a vector, and J(t,; ) represents the
Jacobian matriz of the system at the point ?t,yo):

J(t,y,) = (25/2y5) (1.5)

I
t,y=yo
In the case where h(t) only slowly varies with t, we obtain
a good quantitative description of the local behaviour of the
solutions by locating the eigenvalues of the matrix J in
the complex plane. In order to explain this, we consider the
solution in a neighbourhood of a point {t_,y ) and we linearize
eq. (1.4): ' °e '

- e > > > .
) (dy/dt)t=t0,= h(to) + J(to,yo)(y—yo). (1.86)
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By assuming that the eigenvalues of.J(to,; ) all are different,
the local analytical solution can be written
A (-t )
YO e ) = brrei et 0, (1.7)

where {(A,} and {w.} ape the eigenvalues and eigenvectors
of J(t 3% ) and where b and {c.} are determined by the
linear equations .

> o -
Ity )b + R(x) = 0
> ->
b+fciwi=0 .

Equation (1.7) shows that the time-dependent behaviour of

the solutions is mainly determined by the eigenvalues of

J (that are the inverse values of the time constants of

the system). Only the behaviour induced by RA(t) and non-
linearity have been left out of consideration. A stable system
of differential equations will have its eigenvalues in the
left half of the complex plane (Re A, <0). A stiff system is
characterised by a wide spread of thé values [Ail (Re Ai <0).

1.3 Numerical stability

RN S

A numerical process is called numerically unstable if lerrors
induced by the process (e.g. rounding errors) will grow system-
atically, affecting the results of the calculation in an in-
admissible way. A process is called numerically stable if an
error, once induced, will decrease.

We will illustrate the idea of numerical stability by a very
simple .but representative example. With the Euler method we
solve the single differential equation

CSdy/dt = Ay 4+ og(x), (A<0). (1.8)
Choosing a fixed stepsize h, departing from a point y(t),bﬁe.
will calculate y(t+h) at every step. According to the Euler
method we set

y(t + h) = y(t) i+ hE(t,y(t))
y(t) # hAy(c) + hgl(t)
= (1+h My(t) + hg(t). (1.9)

The value of y(t),already calculated, consists of the true
value $(t) and an error ¢

n

y(t) = $(t) + & . (1.10)

This error ¢ will cause an error (y+hA)e in the calculated
value of y(t+h)
y(t + h) = (1 + hA)(F(t) + €) + hg(t)
= (1 + hA)¥(t) + hg(t) + (1+hA)e
= y(t + h) + (1 + hX)e . (1.11)
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The requirement that an error, once induced, decreases is equi-
valent with
[(1+hn)el<le|  or o<l . (1.12)
We see that the requirement of numerical stability gives us

a bound for the admissible stepsize, In figure 2 we show some
integration steps with A= -2.5 and h=1.

| /// = ’J Lw_h_,mW_:
St

Fig. 2. Unstable integration with the Euler
method. -

We also show that there are simple methods that do not restrict
the stepsize. However, these methods have the disadvantage that
in each step of the integration process a (nonlinear) system

of equations must be solved. As an exzmple we solve the

same differential equation (1.8) with the fgekward. Euler.

fiethod. HNow we set

y(t+h) = y(t) + h.f(t+h,y(t+h))
y(t) + hAy(t+h) + h.g(t+h)

(1-hM)71 (y(t) + h.glren)). (1.13)

Here an error € in y{(t) causes an error e/(1-hi) in
y(t+h). For this method the condition of numerical stability
reads

n

J1-nAl>1. , (1.14)

Hence in this case numerical stability does not impose any
restriction on the stepsize.
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Fig. 3. Stable integration with the backward-
Euler me'thod.

The form of our numerical s{Ebility conditieons (1.12) and
(1.14) algo give some justification for the suppression of
the term h(t) in the quantitative description .of stiffness.

In the foregoing we only considered the behaviour of an error
induced by steps already performed. It is clear that in each
step some new errors are also introduced. First, we notice
that, e.g. in the Euler method (1.9), the value set for y(t+h)
is not a very good approximation to the "real" value .

y(t+h) = y(t) + h.y'(t) + h2y"(£)/2 + ... .

The neglected term (of order hz) is called the truncation error.
Since a numerical process must be finite, any method will in-
troduce this kind of error. Secondly, we.neglected rounding

" errors: in a computer arithmatic operations introduce errors
since every real number is represented with finite precisiomn.
Now we will show how these errors, introduced in each step,
all act together. Let €% denote the total error in the cal-
culated value y(t_), and let the contribution to €% caused by
€ %  be given by a_e % (a_ is the amplification féctor, e.g.
1§hi in our examplg Qi%h tRe Euler method). In every step a
new error €n is introduced.

Thus we find

x _ *x
€ T oo g T te . (1.15)
Our demands upon a  were Je.] € A < 1. If we assume that

there exists some positive B, so that |le | <E for all €5
we show that the total error of the computation is bounded
by E It follows from the following inequility.

1-A 7
For every n
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leXl & e |+ la_ lle %, |
S leg e log Hegy Delaglha_lle. ol + ...

< E+ AE + A%E + ..

2

= E (1 +A+A° . ...) ¢« 2

1-4 °

Analogous reasoning shows that A = 1 may give a linear
growth and A>1 an exponential growth of the total error.

1.4 Application to enzyme kinetics

lLet us now take a simple problem from practice and let us
give an example of a mathematical analysis. We choose this
problem from enzyme kinetics because (1) it describes a
system that frequently appears as a subsystem when one simul-
ates real biochemical systems, and (2) it exhibits the
typical features that hamper solution by standard methods:
nonlinearity and stiff behaviour.

We treat a simple enzymatic reaction of the Michaelis-lMenten
type. This chemical reaction reads

K K
E+S2 C +2 E+ P .
koq

An enzyme E combines with a reactant S at one stage and is
(irreversibly) ‘regenerated at a subseguent stage of the
reaction. We will refer to this system as ESCEP. The rate
constants are k,, k_,, and k,. As a rule the concentration

of E will be much le8s than The concentration of S. Besides,
in many cases we have k_, »» k,. The mass-action law enables
us to describe the ‘concefitrations S and C as a function

of time B

ds/at = -ky(E,-C)S + k_;C
dC/it =k (E_-C)S - (k,+k_;)C . (1.16)
As initial conditions we have S(0)=S_ and C(0)=0. In order

to simplify the notation we write this equation in a dimension-
less form by substituting

s(t) = S/8 c(t) = C/E
€ = Eo/SO T =tk B
P = (kptk_ )/ 0S8 ) q = k_4/ (k4S80 (1.17)

We obtain
ds/dt = -(1-c)s + qc
zde/dt = (1-c)s - pc
s{0) = 1, <c(0) = 0. (1.18)
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We know the following inequalities

€,1,9>0; P>q;
0 s ¢c; s & 1.

Normally € <<1 (¢ is a small parameter)
and often 0 < p - q << q.

Apart from that, the numerical values of p, q and emay
differ much in individual cases (cf. Briggs and Haldane,1925)

in order to show that the system (1.18) is a stiff one, we
calculate the-Jacobian matrix of the system, together with
its trace and its determinant:

c-1 q+s

J o= (1<c)/e ~(p+s)/e}’
tr(J) = -(1-c + (p+s)/e ),

det(J) = (p-q)(i-c)/e .
The eigenvalues of J beingxlﬁ~and Am’
obviously AM-<Am < 0 and

2
(A + AM)

2
m tr(J)
2(1+ kM/Am)z Am

iKM ~det(J)

(pts] Y/ (pza] . (pis)?
€ € ~ e(p-q) °

Hence, it appears that both eigenvalues are negative and
that their ratio A,/A_ ds very large. These are the characte-
ristic properties of a stiff differential equation.

(1.19)

This analysis clarifies why the simulation of systems that
contain the system ESCEP as a subsystem,often demands an
excessive use of computer time when standard routines are
used: in order to solve the equations such routines are forced
to take time-steps of order h %1/AM , wherecas the signifi-
cant time constant of the system is 1/Am.

1.5 An analytical approximation method

In enzyme kinetics some approximate solutions are wéll known
for the system ESCEP, viz. the Briggs-laldane formula

(Briggs and Haldane, 1925), and the Gutfreund formula
(Gutfreund, 1965 , see also Hemker and Hemker, 1369). A method
for the solution of systems of differential equations, in
wiiich a highest derivative is multiplied by a small parancter

{ can be seen in(1.18)),is furnished by the theory of singular
o <*turbation problems (see J.D. Cole, 1868). We show that, in
ti. case where ¢ is a small parameter, this theory will give
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~a combination of the Briggs-Haldane and the Gutfreund formulae
as a first approximation to the solution of (1,16). Higher
order approximations can be obtained (Heineken et.al.,13867).

We consider system (1.18) and we try to find a solution that
is asymptotically correct for €»0. To that end we first take
€=0 to obtain

ds/dt = -(1-c)s + qc

0 = (1-¢)s - pe
s(0) = 1, c(0) = 0. (1.20)
Solving the system we get
- .S -
CFs+p (1.21)

(i.e. the dimenslonless form of the Briggs-Haldane formulal
and

ds/dt = —(p*q). (1.22)

S
s + p
This single differential equatlon adnmits an implicit solution
to s(t1}:

S(T) + p In(s(t)) + (p-qlt = 1, ) (1.23)

This is the first order approxlmatlon to s(1), which is as yupt-
otically truefor ¢+0. leansonm-valuus for p, q, and 1, it is
very easy to compute the numerical value s(r) from this
formula.

However, with equations (1.23), and (1.21), the second initial
condition ¢(0)=0 cannot be satisfied. To match this condition
we introduce at 1=0 a local coordinate g=t/e. Substituting

te into equation (1.18) we get a description of the initial
phase of the system

ds/dg = -e(l-cl)s + eqc
dec/dg (1-cl)s - pe
s(0) = 1, c(0) = 0. (1.24)

Teking again € = 0, we obtain

ds/dg = 0
de/dg = (1-c)s - pe (1.25)
this admits the solution )
s(g) = 1
_ 1 B —(1+p)§]
C(C) = -i;';'; {1 e (1.26)

(i.e. the dimensionless form of the Gutfreund formula).

Now we have to satisfy the condition that the end of the
initial phase matches the beginning of the asymptotic phase.
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So we have the matching conditions (cf. Cole, 1968)

lim s(z) = 1 = 1lim s(1)

g+ T+
and ' (1.27)
. 1 .
lim c(g) = 5= = lim c®@
C—)oo 1+P T+

The first order approximation - with respect to e - to the
solution of (1.18) is now easily obtained:

s(1) = s(1) defined by (1.23)

_ s(1) 1 ~(l+plt/e (1.28)
C(T)—.m-me .

2. A survey of modern numerical techniques

2.1 General remarks

This brief space does not allow us to give a list of all
methods (algorithms, features, comparions, etc.) that are
available for solving initial value problems. The reader can
find an extensive exposition of this kind in Lapidus and Sein-
feld (1971). We only want to give a bird's eye view on the main
types of integration techniques that are used by the numerical
analyst and we will stress those methods that may be of use

in the simulation of real (bio)chemical systems. References
are given to the literature where methods are explained in
more detail and where computer programs arc available. Books
containing general information on the subject are a.o. Henrici
(1962) and Gear (1971).

Any method that solves an initial value problem step by step
will approximate the mathematical solution if steps are taken
small enough and,-at least theoretically, this approximation
will become better when smaller time steps are taken. However,
numerical stability may command extremely small steps. In or-
der to examine the stability behaviour of a method during the
integration of the system of differential equations

dy/dt = £ (t,y), (2.1)
it is useful to consider the Jacobian matrix

J = (afi/ayj) .
and its eigenvalues {A.} , that also served to quantitate
stiffness (see section”1.2). In general this Jacobian matrix
depends on t and y, and therefore the eigenvalues are a set
of real and conjugate complex numbers, each one depending on
t and y. To each method is associated a stability region, i.e.
a set of complex numbers h)h (h stepsize, A eigenvalue of J)
for which the method is numerically stable. Thus, a system
of differential equations (2.1) only can be solved with a

stepsize h such that all values {hkj} lie inside the stability
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region of the method.

In section 1 we already have become acquainted with the stabi-
1ity regions of the Euler and the bzazkward-Euler mathods. The
stability region of the Euler method, given by |1+hi|<l (cf.
eq. 1.12) is a disc in the complex h A-plane with radius 1 and
centre -1. The stability region of the backward-Euler method
given by |1-hA| >1 (eq. 1.14) is the outside of a disc with
radius 1 and centre +1.

Methods which are stable for all hA with Re hl < 0 are said
to be A-stable (Dahlquist, 1963). Methods which are stable for
all hd with Re hA <d <0 and for all rzal values hl < 0 are
called stiffly stable (Gear, 1968).

2.2 Linear multistep methods

A linear k-step method for the solution of iritial value
problem (2.1) is defined by the vectcr equation

Ynsi ° hsf(tn+i’yn+1) + ¢n+1’ (2.2)
where ¢ 1 is a linear combination of values y ;. and
f(t_ . 9 +) (i = 0,1,..., k-1) that already 1n3vd been comput-

-1 2 -
ed."1} "d'210, the method is ezplieit and implieft if 8 %+ 0.
When a constant stepsize h is used, the formula is normally
written '

o ) = 0. (2.3)

iYn-i+1

et X

-0 ML TR PR S

A method is defined by a choice of the parameters a; and By

(i = 0,1,...,k) and methods are availzble which are stable

and accurate for h -+ 0. A comprehensive theory on these mcthods

exlsts (see e.g. Henrici, 1962) the m:in resulisbeing: .

1. the order of accuracy of a stable k-step mz=thod cannot
exceed k+1

2. all explicit linear multistep methods have a finite stabil-
ity region

3. the maximum order of an A-stable linear multistep nethod is 2.

A large numbsr of linear multistep methods have been proposed.
However, it secems that three types arc of practical interest,
each type being available for different values of k. The three
types are (cf. equation (2.3)):

1. The explicit Adams or Adami-Bashferth methods,
characterized by g = O,a, = 0 (i = 2,...,k). These methods
have small stabili?y regions that decrease with increasing
k. However, the formulae directly give a value y__ ., and
therefore are often used in conjunction with the applica-
tion of an implicit formula (2.3). The resulting explicit
methods are called predictor-corrector mathods.

2. The implieit Adcms or Adams-Moulten methods characterized
by ay = 0 (1 = 2,3,...,k). The ordzr of accuracy being
k+1, these methods have the highest possible order of ac-
curacy.%n the class of linear multistep methods. '
The stability région of these methods is bounded
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for k>1, but when stability does not limit the stepsize,
these methods may be very efficient.

3. The stiffly stable methods (cf. Gear,1968). These implicit
methods are characterized by Bi =0 (i=1,2,...,k) and by
the order of accuracy being k. These methods only exist for
k<6. Because of their special stability properties, they
are very efficlent in the case of stiff equations.

We notice that one has to pay for the nice properties of the
implicit methods by the fact that we have to solve a (non-
linear) set of algebraic equations at each stage of the inte-
gration process. On the other hand, when accuracy or stability
questions do not arise, explicit methods may be efficient
because of the simplicity of the procedure.
Frequently the use of Runge-Kutta methods is advised in order
to find the k-1 values y. and f(t.,y.) (i = 1,2,...,k-1)
that are needed to start the multist&p methods. However, a
good routine will have the flexability not only to adjust the
stepsize, but also to start with a linear 1-step method and to
adjust the order of the methods during the integration process.
Routines have been published by Gear (1971) in FORTRAN and by
Hemker (1871) in ALGOL 60. :
S~
2.3 Runge-Xutta methods -

Another family of integration formulae are the Runge-Kutta
methods. They are of the type :
m

ki = h.f(tn+uih , Ynt j{lkijkj) i=1,...,m (2.4)
" . :
Va1 T Yn +j§1 ejkj

Each method is defined by a choice of the parameters H., 0.,
and A,. and, again, a great number of methods are avaiiabl%5'
which'dre stable and accurate for h»0. If A,. = 0 for i<j,

the methods are explieit: Yne1 G281 be obtaifidd by the success-
ive computation k, (i= 1, ...,m). Otherwise, if XA.,. % 0 for any
i <3, the method 1Is Zmplieit and the computation 5t k.
(i =1,...,m) requines the solution of a (large) systém of non-
linear equations. |

As was the case with linear multistep methods, the explicit
formulae only have a finite stability region. However, the
large number of parameters (u,,0., and},.) leaves the possi-
bility to fin. explicit formutae®which Rdve in common their
high accuracy but differ by their stability properties. For
instance ,methods are available which have optimal stability
regions for real or imaginary eigenvalues of the Jacobian
matrix (v.d.Houwen, 1970a). Also methods are available which
are stable with respect both to the small eigenvalues and to
some eigenvalues (real or cuonjugate complex), anywhere in the
left half of the complex plane (v.d,Houwen,1970b). The latter
type, where one seclects the parameters based on some judgement
about the solution, are called exponentially fitted Runge-
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Kutta methods. They represent the asymptotic solution as well
as the components of the solution with the known (large nega-
tive) eigenvalues. A survey of Runge-Kutta formulae with in-
creased stability regions can be fourd in v.d.Houwen (1972b).

A more complicated type of Runge-Kutita methods is found if the
parameters X.., (j<i; if j>i then Ai =0) are rational expres-
sions of the “Jacobian matrix. ThesZ-zethods, called semi-im-
plicit Runge-Kutta methods, do not rzjuire the solution of a
nonlinear set but only of a linear sst of algebraic equations
at each stage of the integration prczass. They are A-stable
and also may be exponentially fittecd to two or three clusters
of eigenvalues (v.d.Houwen, 1972a).

When the differential equations are not stiff, the

use of simple explicit Runge-Kutta rnzthods is very popular.
Many good 1mplementations with autorztic stepsize control are
available (e.g. Zonneveld,1964). If the equations are stiff
and something is known about the position of the eigenvalues
in the complex plane, the use of souz explicit methods with
special stability properties can be recommended. Routines,
written in ALGOL 60, are available irn Beentjes (1972) and in
Dekker (1972). If one is not able toc evaluate the Jacobian
matrix and if nothing is known about the eigenvalues, implicit
Runge-Kutta methods might be used (Erle, 1968).

2.4 Trapezoidal rule with smoothing,backward‘Euler

In 1963, Dahlquist ,proved that no explicit linear multistep
method can be A-stable and that the raximumceder of an A-stable
linear multistep method is 2. Moreovsr, for fixed stepsize h,
the method with the minimum truncaticn error is the trapezoi-
dal rule

Yas1 = Yp ¥ h(f(tn,yn) + f(t )/ 2. (2.5)

n#1°Yn+1
Since direct substitution causes cornvargence difficulties, when
applied_to stiff equations, the use Nawton-Raphson iterati-
on is recommended to solve this nonlinear equation in y .
Hence, the number of iterations necessary for convergenga is

a measure for the local nonlinearity of the differential equa-
tion and therefore can be used to control the stepsize. If we
take a sufficiently small stepsize, ve may linearize equation
(1.1), obtaining

f(t,y) = h(t) + J(t,yo)(y—yo). (2.6)
Then the execution of a step can be written
- - iy = L1-hJ/2
yn+1 = C(hJ)yn where C(hi) = T+hd/7 % (2.7)

Even though [[C(hJ)|| € 1 for Re hA <8 (i.e. the method is
A-stable), we have C(Ah)~+ -1 as hl» -e.

That is, the numerical process has a tendency to introduce in-
to the solution some slowly damped cszczillations which can be
very troublesome during the calculation of the asymptotic
Phase of the solution. To overcome this difficulty Lindberg

Y
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(1971) suggested that one calculates the function values y

, and y . Then one sets §_ = + 2yt y )/u forP™1’
sgme p ang Continues the lntegratlog }rom tp usx?g the smocoth-
ed value yp

In conjunction with this smoothing process Lindberg also
proposes global extrapolation to increase the accuracy. How-
ever, it remains a question whetherthis technique is appro-
priate for efficient calculation in system simulation, where
only limited accuracy is required.

Ancther way to avoid the oscillations in an A-stable linear
methiod is to use the backward Euler scheme, which is only
first order accurate. Analogous to equation (2.7) one obtains

= C(hddy , where C(hJ) s (2.8)

I
Yn+1 I-hJ
which is also A-stable. However, one has that C(hX) »0 as
Re hi -»-o, which is desirable in the asymptotic phase when
the contributions to the solution corresponding to the eigens
values with large negative real parts may be neglected.

2.5 Exponentially fitted\methpds

A special exponentially fitted method - cf. exponentially
fitted Runge-Kutta methods - 1s given by Fowler and Warten
(1967). Their algorithm is explicit and there is no need for
the user to specify the large negative eigenvalue. However,
their algorithm is only efficient in the case of one .

real cluster of eigenvalues.

Another family of exponentially fitted method (where, again,
one selects the parameters based on some judgement about the
solution) is given in the work of Liniger and Willoughby (13870).
A special feature is the A-stability of these exponentially
fitted methods. They consider the schemes

Ynsr = Y RGECE Ly )+ (m0ECe Ly ) (2.9)
0 s p<i

and
yn+1 = yn + h(g'a)f(tn’yn) + (1+a)f(tn+1’yn+1))/2

—h2<(b—a>%<tn,yn) + (bra)f (t ¥)/24 (2.10)

n+1°Yn+1

0 £ b-a £ 1/3 , 1/3 <b+a € 2

It should be noted that in the first scheme u= 0 gives the
backward-Euler and u= 3 gives the trapezoidal rule. Thus, the
choice of yu allows a selection either of these extremes or
an intermediate scheme at any point during the integration.

These implicit schemes allow the user to combine the approxi-
mate integration of the slowly varying component with the



exact integration of some component with a previous known
large eigenvalue A. The schemes are A-stable, hence, scne
careless estimation of the eigenvalue will not harm but only
nullify the labour of exponential fitting.

3. Parameter estimation

3.1 Introduction

A mathematical representation of a'biochemical system will
often be given by a set of differential equations in which
some parameters are unknown. On basis of data obtained in
experiments these parameters have to be determined. In order
for the paramcters to make sense, it is necessary for the
equations to be a fair enough repressntation of the situation
in vitro. On the other hand, when the best set of parameters
apparently are not compatible with the outcomz2 of the experi-
ments, the mathematical representatien is unlikely to be valid.
So we are left with two problems
a. The qualitative problem of how well the situation in vitro
is described by a given set of equations - or, in bioche-
mical terms, what is the mechanisr of the reaction -, and
b. The quantitative problem of how the parameters can be
estimated from experimental data given a likely set ofl
equations. .
The first problem is not a mathematical one. It very much
concerns the "art'" in biochemical reszarch. The quantiutive
problem, however, is a mathematical cne, and its results
may serve as a feedback to the biochenist, who has to solve
the qualitative problem. In this section we will confine
ourselves to the solution of the quantitative problem.

Mathematically stated, the gfoblem is this: a set of n diffe-
rential equations is given

Ly = iy, (3.1)

where p represents an m-vectorp of parameters. In the process
considered, p has the value p”, Lut p° is not known. Some
components of the vector y can be mezsured for different
values of t, but these measurcments ere affected by some ran-
dom errors. It is assumed that the form of f is known, to-
gether with somne statistical propertiss of the measurement
errors. The problem is to deduce an estimate P of the vector
p*.

With yi( 1 < i £ N) we denote the obsarved value of some
componént y at time t;. Thus the index i identifies an ob-
servation and also determines what component of y has been
observed. So we have a set of observaztions {y.} , a corres-
ponding set {t.} (t, < t, < ... & t,;} and, for some p, we
can compute a det o} the%retical va&tgs y{t.,p). The problen
now seems to be quite simple: we define the HN-vector

%) In this e
yeRx R R, f e Rx R

b i dn S m
tor notagtion throughout, so peR,
x R7» R ete..

2]
=
=
=
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Y(p) = (y(ti,p) - yi) 1 21 <N (3.2)

and we define
sp)= || Y]l ? = gNl (y(ty,pd-y )7 (3.3)
1=

the sum of the squares of the discrepancies. Using an inte~
gration procedure to soclve y(t.,p), we can solve the problem
stated by minimizing S(p) using standard techniques. Even when
we assume that the minimum is unique and that the function
S(p) 1s the best one to minimize (this can be justified under
certain conditions), the question still remains as to how bad-
ly conditioned the problem is. I.e., how small a perturbation
in some values of y. will cause how large a variation in the
minimizing vector P. In relation to this question it is clear
that not only an estimate of p* has to be determined but

also an estimate of its reliability.

Here we will assume that the measurement errors are statisti-
cally independent and that they have a Gaussian distribution

with zero mean and variance n“. Thus the covariance matrix
of the vector of errors n is
T 2 o~
E(nn”) =071 ~ (3.4)
and the probability density of nis given by '
~N/2 |

pn) = (27m0) exp (*Iln||2/2q?)

3.2 The method
The dependence of Y(p) on p

The solution of the differential equation (3.1) can be consi-
dered to be a function of t as well as a function of p. VWe
consider the difference between two adjucent solutions y, (t,p)
and y,(t,p+8) of equation (3.1), both starting at y,(0,p] =
yz(O,p+d) =. ¢. We compute the difference between y, and yo due
t6 the small change in p. The functions y,and y, abre defined
by

(3.5)

1
0
. .

n

- Y4 f(ta)’l’p) yl(Q)

. Q‘D-
+ .

S5 ¥, = £0t,y,,p46) y,(0) = c. (3.6)
Expanding (3.6)in a Taylorseries and keeping only first order
terms in 8§ and in y,-y., we obtain '

2 71
d
T Yyt f(t,yl,p) + FY(y2~y1) + FP § (3.7)

wvhere

9

FY=( 591 f(t,yl,p)) (3.8)
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is an n x n matrix, and

9
FP =(§§ f(t,yl,p)) (3.9)

is an n x p matrix, both matrices being functions ! t, p, and
Yq» but not of § or Yo<Yq-

It would be expedient to know how the computable values
y(t,,p) depend upon small variations § around p. Since equa-r
tiofi (3.7) enables us to construct the differential «¢juation
which defines the n x m matrix

YP = %B y(t,p), (3.10)
we use (3.7) and write
b d S 3. (3.11)
35 dt y(t,p) = FP + FY.5§ yi{z,p)
or, in shorthand, N
d -
aft* YP = FP + FY.YP. (3.12)

This is a system of n x m differentizl equations. I{ we solve
this system together with system (3.1), we are able to
compute:
[
A(P) = -a—ﬁy(ti,p), (3.13)
an N x m matrix, giving the dependernze of Y(p) (sce equation
3.2))upon variations to p.

Minimizing S(p)

Consider the function S(p) defined by equation (3.3). The
value P that minimizes S(p) is an esiirnate of the true value
p*. In equation (3.3) y is a nonlinezr function of p. Without
some further assumptions the analysiz would therefore be too
involved to give hope of useful results. This difficulty is
dealt with by assuming that p is a rzazonably good approxim-
ation to {. Using a generalized Newton-Raphson technique, we
linearize the nonlinearity for small departures §p fvom P.
Suppose that p is a trial vector and ép is the requirved
correction (p + &p = p). The residual vector Y(p) in approxim-
ated by a linear function of the parzneter

Y(p) = Y(5-6p) = Y(§) - A &p
and for the residual function

S(P) = S(ptép) = |[¥(p+ép) || ?

_ = lvan + Al 6 )7

= 11y |12+ 26p ATy + eptaTasp
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The approximating function to S(p) has a minimum at the point
given by the normal equations :

AT(pIA(PISp = -AT(pIY(P). | (3.14)

If the matrix ATA is nonsingular, this equation determines
$p from Y(p).

In the linear theory p + 8p so determined would be the requir-
ed solution and the minimum value of S attained there would be

S = [y )12 - ¢pTatasp (3.15)

In general, S(b + 8p) will not be the minimal value of S and
the whole process is repeated using p + 6p as an approxima-
tion to P for the next iteration.

If it appears that S(p + 8p) > S(p), some other techniques
can'be applied. Firstly the method of steepest descent is
recomnended with p as a Eoint of departure. For this purpose
the gradient vector ra<A<(p) Y(p) is calculated and a new
trial step is executed with

sp = ollrl1%/]]ac]12

If even with this §p it appears that S(p + &p) > S(p), the
direction of the step should not be changed, but a relaxation
factor can be used, e.g. the step &p may be multiplied by
S(p)/(S(p) + S(p + 6p)) and a new trial step executed from p.

3.3 Statistics

Let P be the final estimate of p so that S(p) 2 S(p) for all
py we assume that the’ linear theory holds in a sufficiently
large neighbourhood of P.

For the perturbations n. of the observed values y. we assume
an N(0,0") distribution™and so it follows from equation (3.1u4)
that the estimated value P will-also be normally distributed.
We define 6p = P-p~ , hence the expectation of 8p will be
zero when p=p. We are also interested in the §ovaridnce
matrix of &p, i.e. the expected value of §pdp~.

ECepepl) = E(ATA)™L ATy vTa aTay™h) =
= aTa)y AT £eey®y A aTa) ! - 0?2 (T,

From this covarianc matrix we derive 1.., the correlations

between the estimates gp; and 5pj. )
SO & I with q.. = (ATA),. - (3.16)
i3 /453955 i3 ij

By equation (3.14) p is a linear function of Y. Hence its
probability density will be Gaussian and will be given by
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P(p) = ((2710)0™ det((ATA) 1)) exp(-epTaTasp/202y.
From (3.15) follows immediately

HYG + 6pd[12 = s3> + 67 AT 6y

Now it is clear that ||Y |[%/0?, 6p"aTasp/0?, and s(p)/o?
have a x2 distribution with N, m, and N-m degrees of freedomn,
respectively. An estimate of ¢° is given by

s2 = SRy -m) = 1Y) 2/ei-m) (3.17)
The confidence region at level ais the ellipsoidal region
T . T m -
dp~ AA $p Si‘(_‘ﬁi S(p) FQ(m,N—m), (3.18)

where Fo(n,N-m) is the g-point of the F-distribution with m
and N-m degrees of freedom. The principal axes of the ellips-
oidal region are given by the eigenvectors of A*A and the
length of the axes is A.~2 (A, is the eigenvalue of the corres-
ponding eigenvector). The contidence limits for each estimate,
supposing that the other estimates are exact, are

P; * &pg
where V/r —
_ m T
épi = Vs S(p) Fq/(A A)ii

Other confidence limits for the individual estimates (ndepen-
dently) are

- *x
Py * dp;
where
x _ /m - T,\-1 -
8p;” = /%:5 S(p) Fo(A'A) - (3.20)

The geometrical interpréetation is that the tangent planes to
the ellipsoid with normals to the direction i are at a
distance &p.,> from the.centre of the ellipsoid and that the
axis 1 inte%cepts the ellipsoid at points Gpi from the centre.

3.4 Integration of the differential equations

The system of the differential equations which we have to
solve in each iteration step of the optimizing process is,
in geheral, a rather large one. In the system we distinguish

two parts
1. (sec equation (3.1))

Sryle,p) = £(t,y,p) (3.21)

a coupled system of n differential equations.



2. (see equation (3.12))

YP = FP + FY.YP. . (3.22)

This is a set of m systems; each system consists of n differ-
ential equations and is coupled with system (3.21).

CLIO.
o+

The structure of the system (3.21 - 3.22) as a whole can be
clarified by writing:

1. the system (3.21 - 3.22) as

E:

y = f + £

“p1 7 Tp1 T Yy Ypa

yPm z fpm + fy Ypm (3.23)
where Ypi * 3Y/9p; > fPi =af/3pi and

fy = 3f/3y the Jacobian matrix of the system (3.21),

and by writing c
2. the Jacobian matrix of the system (3.21 - 3.22) as

here = 5(af
where fpyi = S\df(Bpi)/By.
In this Jacobian maitrix the one way coupling of the system is
clearly demonstrated. Besides we notice that the elgenvalues
of J are all the same as the eigenvalues of f_, and so the
stability behaviours of system (3.23) and system (3.24) are
similar.

In order to solve the system of differential equations effi-
ciently, we apply implicit linear multistep methods and we
make use of the particular structure mentioned. In each step
of the integrating process, equation (3,21) is solved as an
independent system. When this part of the integration has been
succesfully completed, the m systems of equations (3.22)

can be solved with only a little work. We will show this in
more detail.

Since we only use inplicit linear multistep methods, the re-
sult of one integration step during the solution of

9 = f(y)
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corresponds to the solution of the nonlinear equation
v, = he fly ) + ¢, (3.25;

where ¢ _ contains the information about a number of completed
steps. After the choice of a suitable starting value Vo this
equation is solved w1th a modlfled Nantou—Pdvhoon metncd

r+1Yn = pYn T (1I- thy) ( Y —¢ ~hpf( “n . (3.26)

When we solve the system of dlfferentl&l equations

fly)

y
(y + £ w
w gly y

we make use of the one-way coupling of the system. In each
step, we have to solve the nonlinear systemn

y. = h f(yn) + Qn (3.27)

1t

w

n hg g(yn) + hp fy(yn).wn-+ Y (3.28)

n

We do ot iterate this system simultansously, but we solve the
nonlinear equation (3.27) by the iteration process (3.28), we
substitute the computed value of y_in (3.28), and we solve
the linear equation (3.28) directly. Fe“ the vo]utlon of this
linear equatlon one needs (I-hgf (y ))"1: the samé factor that
will be used in (3.26). y

The solution of the system (3.23) is obtained in the same way.
In each step of the integration process, the first system of
o equations (3.21) is solved by iteration. When this iteration
has been completed, each of the m s;ste?: of the n equations
(3.22) is solved directly. Each one of these m systems needs
the L U-decomposition of one and the sanz matrix I-hff (j ).
Moreover, this L U-decomposition can be uszed again in ¥ne"

next modified Newton-Raphson iteration.

We notice that the possibility of coupling thz integration

of (3.22) with the integration of (3.21) with this ease,
depends crucially on the form of the linear integration for-
mula (3,25). It cannot be done, for instance, with Runge-Kutta
methods.

We can use another feature of the integration method. On an in-
terval containing some meshpoints, the linear multistep methods
approximate the solution of the differential equation to a
polynomial of a certain degrec. As a cofssquence, there is no
need to take the meshpoints of our integrating procedure to-
gether with the points {t,} where ihe sclution is wanted. The
solution is obtained by ifiterpolating the approximating poly-
nomial.

The method is effectively used in a number of problems. Re-
sults and an ALGCOL 60 program are availeile in Hemker (1972).
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BIFURCATION THEORY IN BIOCHEMICAL DYNAMICS
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INTRODUCTION

Biological molecules are building blocks of both static and dynamic aspects of the biological
systems. This type of classification may not be quite proper for the reason that the same
molecule may play both roles in a global sense. If it i nocessary for a structural molecule
m; to take part in a dynamic activity, m; might be exprsssed as being included in the dynamic
model, thus m; becomes a dynamic building block as wellas a static one.

The dynamics of these molecules can be expressed as differential equations with some
parametess. The singulur and periodic solutions of these equations and their stability proper-
ties can be studied to determine the topological charactesistics of the solutions. The theory of
bifurcations is concerned with the changes which ocecur in the topological structure of a
dynamic system in a particular region where the system itself, namely the set of parameters in
the right-hand sides of the system equations is altered. Thz term bifurcation generally refers to
those changes in topological structure that occur at the bi¥furcation values of the paraineters.

The aim of this paper is to point out the relationship between the topology of dynarnics of
molecules and that of dynamics of cells by referring to vazious bifurcations.

BIOLOGICAL INTEGRITY

It is not conflicting to assume thut the spuce of molecules A consists of nyy, the biochemical
molecules of both static and dynamic aspects of the biolegical systems. The dynamics of these
molecules in an abstract form is defined by the mapping £:A -~31. Therefore, f corresponds to
a vector field over the molecular space AL It should also be noted that for @ dynamic process
defined by f, some other elements, a subset of biochenical molecules, such as enzymes or
metalloproteins, or some physical entities, may foun the puramerer space T, thus the dynaeisics
of molecules is denoted by f[‘:Mw»M, a mapping dependizg on the parameter set T

In a similar fashion, the spuce of cells, at the cellular level, is denoted by C. The mapping
g:C ~>» C would correspond to the dynamics of the cell space. It may be the cuse that the
biochemical or physical parameters forming the set  are involved in the vector ficld g over €
such that the dynamics of the cell space is in an abstract forin g :C->C. The parameter spuce
at the cellular level may involve the paramcter space Mand some of the elements of the space
of molecules such that the dynumics at the cellular level would be grau:€C-> C In general
terms, what we have is that the mapping relating M and C spaces denoted by IT would
complete the diagram

f
M~ B
\
N I
N
g X
.

C- C

such that I3 — € or gll:Af~ C, thus Tif=¢ll. The existence of the mapping 1, which may be

81



