stichting mathematisch centrum

AFDELING NUMERIEKE WISKUNDE

ND 1/74

MARCH

J.D. ALANEN (ed.) KWIC INDEX FOR CDC AND CERN MATHEMATICAL SOFTWARE AVAILABLE ON THE SARA COMPUTER

.

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.

Directions for use

The key word in context (KWIC) index is based upon program abstracts such as:

F18HELP FINDS ALL THE \$ZEROS OF A \$COMPLEX \$POLYNOMIAL BY \$LEHMERS \$METHOD USING \$SCHURS \$METHOD FOR ISOLATING ONE ZERO.

The first nine characters ("F18HELP ") of each abstract are a code to identify the program, while the remaining characters until a period comprise a short description of the program (what it does and how it does it), only "important" words (preceded by a \$ in the above example) are used as key words in the KWIC index.

The first appearance of our above example abstract in the KWIC index is:

FINDS ALL THE ZEROS OF A COMPLEX POLYNOMIAL BY LEHMERS METHOD USING SCHURS METHOD FOR ISOLATING ONE ZERO. F18HELP

If this program is of interest, you can further identify it as follows: the first letter of the code is the programming language (F = Fortran, C = Compass). The next two digits are the literature reference number (18 = Math Science Library, vol. 8, Nonlinear equation solvers); a complete list of literature references is given below. The final six characters of the code are the name ("HELP" in the example) of the program.

In case an entry in the KWIC index is not completely readable (i.e. truncated at an end of the line), you can find a complete, alphabetical listing of all the abstracts following the KWIC index. In our example; you would first look under language "F", then reference "18", and lastly the program name "HELP"; the complete abstract would follow.

Literature

- [1] Matrix algebra subroutines general information manual, CDC pub. no. 60154800 (December 1965), 1-9.
- [2] Statistical subroutines reference manual, CDC pub. no. 60135300
 (June 1966), 1-67.

Statistical subroutines general information manual, CDC pub. no. 60154700 (December 1965), 1-22.

- [3] CERN computer 6000 series program library: Classified list of programs available, amended 21.8.1971.
- [11] Math Science Library, CDC pub. no. 60327500 (March 1971), vol. 1, Programmed arithmetic.
- [12] Math Science Library, CDC pub. no. 60327500 (March 1971), vol. 2, Elementary functions.
- [13] Math Science Library, CDC pub. no. 60327500 (March 1971), vol. 3, Polynomials and special functions.
- [14] Math Science Library, CDC pub. no. 60327500 (March 1971), vol. 4, Ordinary differential equations.
- [15] Math Science Library, CDC pub. no. 60327500 (March 1971), vol. 5, Interpolation, approximation, and quadrature.
- [16] Math Science Library, CDC pub. no. 60327500 (March 1971), vol. 6, Linear algebra.
- [17] Math Science Library, CDC pub. no. 60327500 (March 1971), vol. 7, Probability, statistics, and time series.
- [18] Math Science Library, CDC pub. no. 60327500 (March 1971), vol. 8, Nonlinear equation solvers.

Acknowledgements

The following Mathematical Centre staff members contributed to the production of this KWIC index:

Jack Alanen organized the project and edited the abstracts.
A.C. IJsselstein wrote and ran the EL X8 computer program.
J. Kok abstracted the programs in [18].
P.W. Hemker abstracted the programs in [14] and [15].
W. Hoffmann abstracted the programs in [16].
N.M. Temme abstracted the programs in [13].
A.P.B.M. Vehmeyer abstracted the programs in [17].
D. Winter supplied and advised us on the use of his input/output, file and sort procedures which were written for another program.

TES) IN THEIR STORED ORDER (ABSCISSA). F17YPLOT) AGAINST A SINGLE VARIABLE (ARSCISSA). F17XYPLOT PPLYING STEEPEST DESCENT WITH ACCELERATION DEVICES AND USING EXPLICIT DEFLATION WHEN ONE ZERO IS ACCEPTED." F18CPOLRT PRECISION NUMBERS OF MAXIMUM ACCURACY. F13AMCON AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER. F168ITRNP AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER. F16BITERM AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER. F16BITRFM F16BITWNP AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER. AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER. F16CITERF ADDS TWO FRACTIONS AND EXPRESSES THE RESULT AS A FRACTION IN ITS LOWEST TERMS. F11FAFRAC COMPUTES BY AITKENS METHOD THE POLYNOMIAL INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY F15AITKEN SOLVES A SYSTEM OF NONLINEAR ALGEBRAIC EQUATIONS USING THE GENERALIZED SECANT METHOD MODIFYING THE STEP VECTOR WHEN THE SET OF GU F18NONLIQ ONSTRUCTS, USING THE EXCHANGE ALGCRITHM, THE MINIMAX POLYNOMIAL THROUGH A DISCRETE, WEIGHTED SET OF POINTS. F15CFQME OR OF TWO INTEGERS BY EUCLIDS ALGORITHM. F11HCF PIVOTING ACCORDING TO CROUTS ALGORITHM HAS BEEN CARRIED OUT AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND CONDITION NUMBE F16ITERFM PIVOTING ACCORDING TO CROUTS ALGORITHM HAS BEEN CARRIED OUT AND PROVIDES DATA POR CALCULATING THE DETERMINANT AND CONDITION NUMBE F16ITERFS IANGULAR FACTORS USING CROUTS ALGORITHM WITHOUT PIVOTING; THE DETERMINANT IS AVAILABLE. F16DCWNP A LINEAR SYSTEM USING CROUTS ALGORITHM WITHOUT PIVOTING; THE DETERMINANT IS AVAILABLE, F16LESWNP A LINEAR SYSTEM USING CROUTS ALGORITHM WITHOUT PIVOTING AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NUMBER. F16LITWNP IANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION; ALSO COMPUTES ITS DETERMINANT. F16CDECOM ECOMPOSITION FOLLOWING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE C F16CFBSUM MPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT; THE DETERMINANT AND COND F16CGITRF RIGHT-HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16CGLESM MPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR F16CITERF IANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE. F16DCWNE IANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE. F16DECOM AR DECOMPOSITION USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT BY SUBROUTINE DECOM. F16DETERM MPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE D F16FBSUBM MPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT. F16FBSUBS ND SIDES ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16GLESOM ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. AR SYSTEM ACCORDING TO CROUTS F16GLESOS INVERTS & MATRIX USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16INVERS INEMENT & MATRIX USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. FIGINVITE IGHT-HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINA F16GITRFM A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINA F16GITRFS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT. AR DECOMPOSITION USING CROUTS F16ITERIN A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE. F16LESWNE A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETER F16LITWNE AMPLITUDES. F AN ARRAY OF COMPLEX FOURIER F17HARM S ROOTS THROUGH FORWARD ERROR ANALYSIS. F18CNSLVL X ROOTS THROUGH FORWARD ERROR ANALYSIS. F18NSLVL MPROVES AN APPROXIMATE EIGENVALUE EIGENVECTOR PAIR OF A REAL SYMMETRIC MATRIX BY CALCULATING THE RAYLEIGH QUOTI F16EIGCHK INE INTEGRALS USING CHEBYSHEV APPROXIMATIONS. F13SICI ARGUMENT BY USING POLYNOMIAL APPROXIMATIONS AND THE SUBROUTINE BESNIS. F13BESNKS CONSTRUCTS AN APPROXIMATION, WHICH IS THE SUM OF A PRESCRIBED NUMBER OF EXPONENTIALS, TO A SET OF N EQUALLY SPACED F15PRONY AL ARGUMENT BY USING RATIONAL APPROXIMATION. F13GAMMA S A MINIMAX RATIONAL FUNCTION APPROXIMATION OF GIVEN DEGREE TO A DISCRETE DATA SET. F15MINRAT TS & LEAST SQUARES POLYNOMIAL APPROXIMATION OF SOME PREASSIGNED DEGREE TO A SET OF DATA POINTS WITH GIVEN WEIGHT WHERE THE POLYNOM F15FDLSQ R PAIR WHICH IS NEAREST TO AN APPROXIMATION OF AN EIGENVALUE OF A REAL MATRIX MAVING DISTINCT REAL EIGENVALUES. F16EIGCO1 CONSTRUCTS A MINIMAX FUNCTION APPROXIMATION TO A SET OF GIVEN POINTS IN TERMS OF A LINEAR COMBINATION OF A PRESCRIBED SET OF AT MO F15MIGEN THE COEFFICIENTS OF THE PADE APPROXIMATION TO A FUNCTION OF WHICH THE MAGLAURIN EXPANSION IS GIVEN. F15PADE APPROXIMATION TO A SET OF DATA POINTS BY A RATIONAL PUNCTION WITH NUMERATOR AND DENOMINATOR OF A SPE SE OF LEAST SQUARES, THE BEST F15RATL COMPUTES THE ARCOSINE TRIGONOMETRIC FUNCTION. C12ACOS ARCSINE TRIGONOMETRIC FUNCTION. COMPUTES THE C12ASIN COMPUTES THE ARCTANGENT TRIGONOMETRIC FUNCTION. C12ATAN ARCTANGENT TRIGONOMETRIC FUNCTION OF A QUOTIENT U/V. COMPUTES THE C12ATAN2 COMPUTES THE DOUBLE PRECIS ON ARCTANGENT TRIGONOMETRIC FUNCTION. C12DATAN COMPUTES THE DOUBLE PRECIS:ON ARCTANGENT TRIGONOMETRIC FUNCTION OF A QUOTIENT U/V. C12DATAN2 , OF A COMPLEX FUNCTION IN AN AREA IN THE COMPLEX PLANE ENCLOSED BY A POLYGON. F18ZCOUNT

	ARGUMENT OF A COMPLEX POLYNOMIAL. Argument of a real polynomial.	F13CPTRAN F13PTRAN
	ARITHMETIC OPERATIONS ON THE VALUES OF ONE VARIABLE IN A MULTIPLEXED ARRAY AND A GIVEN CONSTANT.	F17CONRAY
	ARITHMETIC TRANSFORMATIONS ON THE OBSERVATIONS OF TWO VARIABLES IN MULTIPLEXED ARRAYS.	F170P2RAY
	ARRAYS	F17DSCRPT
	ARRAYS	F170P2RAY
	ARRAY.	F13REV
	ARRAY	F13CREV
	ARRAY.	F17CORCOV
	ARRAY.	F17DSCRP2
	ARRAY.	F17NRAND
S THE VALUES IN A MULTIPLEXED	ARRAY.	F17NRMNO
ONE VARIABLE IN A MULTIPLEXED	ARRAY.	F170P1RAY
ONE VARIABLE IN A MULTIPLEXED	ARRAY.	F17URAND
ONE VARIABLE IN A MULTIPLEXED	ARRAY AND A GIVEN CONSTANT.	F17CONRAY
ONE VARIABLE IN A MULTIPLEXED	ARRAY IN INCREASING ORDER.	F17VARORD
COMPUTES EITHER	AUTO CORRELATION COEFFICIENTS OR THE AUTO VARIANCE COEFFICIENTS FOR ONE VARIABLE IN & MULTIPLEXED AR	F17CORCOV
E OUTPUTS OF A MOVING AVERAGE	AUTO REGRESSIVE FILTER.	F17FILTER
	AUTO VARIANCE COEFFICIENTS FOR ONE VARIABLE IN A MULTIPLEXED ARRAY.	F17CORCOV
	AVERAGE AUTO REGRESSIVE FILTER.	F17FILTER
	AVERAGE OF A SPECIFIED NUMBER OF OTHER POINTS IN ITS NEIGHBORHOOD.	F15MILN2
	BACKWARD RECURSION.	F13BESNIS
R REAL ARGUMENT BY FORWARD OR	BACKWARD RECURSION WITH STARTING VALUES.	F13BSJ
T AND INTEGER ORDERS BY USING	BACKWARD RECURSION.	F13NBESJ
PERFORMS THE DESTRED	BACK SUBSTITUTION ON THE EIGENVECTORS OF A HESSENBERG MATRIX PROVIDED THE TRANSFORMATION TO HESSEBER	F16SIMP
CIENTS WITH NEWTON'S METHOD OR	JAIRSTOWS METHOD BY PERFORMING SIMULTANEOUSLY ONE ITERATION OF EACH METHOD AND DEFLATING THE ORIGINA	FIBPROOT
	BALANCED HESSENBERG MATRIX.	FIGOREIGN
	BALANCES A COMPLEX MATRIX BY MEANS OF DIAGONAL SIMILARITY TRANSFORMATIONS.	F16BALANC
, SYMMETRIC POSITIVE DEFINITE	SANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS.	F16BCHSDC
ATION WITHOUT PIVOTING A REAL	BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS; THE DETERMINANT IS ALSO AVAILABLE.	F16BDCWNP
IMPLICIT EQUILIBRATION A REAL	BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS.	F16BDECOM
	BANDMATRIX USING THE METHOD OF INVERSE WIELANDT ITERATION WITH PERIODIC RAYLEIGH QUOTIENT SHIFTING C	FIGBANEIG
SOLVES A LINEAR SYSTEM FOR A	BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITHOUT PIVOTING HAS	F168FBANP
SOLVES A LINEAR SYSTEM FOR A	BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING	F16BFBSUM
INEMENT & LINEAR SYSTEM FOR A	JANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITHOUT PIVOTING HAS	F16BITRNP
INEMENT A LINEAR SYSTEM FOR A	BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING	F16BITERM
INEMENT A LINEAR SYSTEM FOR A	DANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLIC	F16BITRFM
	BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION BY CHOLESKYS METHOD HAS B	F16BITRPD
INEMENT A LINEAR SYSTEM FOR A	BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVOTING AND GIVES AN ES	F16BITWNP
SOLVES A LINEAR SYSTEM FOR A	BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLIC	F16BLESOM
SOLVES A LINEAR SYSTEM FOR A	BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVOTING; THE DETERMINAN	F16BLSWNP
	BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION.	F16BPDITM
	BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION BY CHOLESKYS METHOD HAS B	F16BPDFSB
	BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION.	F16BPDSOM
	BARTLETTS TEST OF THE HOMOGENEITY OF A GOUP OF VARIANCE ESTIMATES.	F17BRTLTT
PONENTIATION C**R FOR COMPLEX	SASE AND REAL EXPONENT.	F12CBAREX
COMPUTES THE	BASE TEN LOGARITHM OF A REAL ARGUMENT.	C12ALOG10
COMPUTES THE	BASE TEN LOGARITHM OF A POUBLE PRECISION REAL ARGUMENT.	C12DL0G10
D OUT, POSSIBLY BY SUBROUTINE	BASE TEN LOGARTTHM OF A DOUBLE FRECISION REAL ARGUMENT. BCHSDC.	
		F168PDFSB
D OUT, POSSIBLY BY SUBROUTINE	BDCWNP,	F16BFBANP
	BDECOM.	F16BFBSUM
OXIMATIONS AND THE SUBROUTINE	BESNIS	F13BESNKS
MPUTES A SEQUENCE OF MODIF ED	BESSEL FUNCTIONS OF THE FIRST KIND FOR REAL ARGUMENT BY USING BACKWARD RECURSION,	F13BESNIS
	BESSEL FUNCTIONS OF THE SECOND KIND FOR REAL ARGUMENT BY USING POLYNOMIAL APPROXIMATIONS AND THE SUB	F13BESNKS
	BESSEL FUNCTIONS OF THE FIRST KIND FOR REAL ARGUMENT BY FORWARD OR BACKWARD RECURSION WITH STARTING	F1385J
	BESSEL FUNCTIONS OF THE FIRST OR SECOND KINDS FOR COMPLEX ARGUMENT AND COMPLEX ORDER,	F13COMBES
	BESSEL FUNCTIONS.	F13HANKEL
COMPUTES	BESSEL FUNCTIONS OF THE FIRST KIND FOR REAL ARGUMENT AND INTEGER ORDERS BY USING BACKWARD RECURSION.	F13NBESJ
COMPUTES A SEQUENCE OF	BESSEL FUNCTIONS OF THE SECOND KIND FOR POSITIVE REAL ARGUMENT AND INTEGER ORDERS.	F13RBESY
E SENSE OF LEAST SQUARES, THE	BEST APPROXIMATION TO A SET OF DATA POINTS BY A RATIONAL FUNCTION WITH NUMERATOR AND DENOMINATOR OF	F15RATL

BEST FITTING LINE TO A NUMBER OF DATA POINTS, IN THE SENSE THAT THE SUM OF THE SQUARES OF THE PERPEN F15FITLIN CONSTRUCTS A DISTRIBUTION FUNCTION OF THE F17PBETA BETA DISTRIBUTION. DISTRIBUTION FUNCTION OF THE BETA DISTRIBUTION. F17PIBETA F17BETAR COMPUTES THE INCOMPLETE BETA RATIO. DISTRIBUTION FUNCTION OF THE BINOMIAL DISTRIBUTION. F17PBINOM F17PIBIN DISTRIBUTION FUNCTION OF THE BINOMIAL DISTRIBUTION. F17PINBIN TION FUNCTION OF THE NEGATIVE BINOMIAL DISTRIBUTION. TION FUNCTION OF THE NEGATIVE BINOMIAL DISTRIBUTION. F17PNBIN PERPOSITION, USING SUBROUT NE BLCKDQ TO PERFORM THE SOLUTION OF THE REQUIRED INITIAL VALUE PROBLEMS. F14LINBVD BOUNDARY VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS BY COMBINING AN INITIAL VALUE SOLVER WITH F14BVD SOLVES NONLINEAR BOUNDARY VALUE PROBLEMS IN A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS, WHERE THE SOLUTION IS EASED SOLVES LINEAR F14LINBVD EIGH QUOTIENT AND GIVES ERROR BOUNDS. F16EIGCHK F17PCHY DISTRIBUTION FUNCTION OF THE CAUCHY DISTRIBUTION. DISTRIBUTION FUNCTION OF THE CAUCHY DISTRIBUTION. F17PICHY D OUT, POSSIBLY BY SUBROUTINE CDECOM. F16CFBSUM RUCTS THE COEFFICIENTS OF THE CHEBYCHEFF POLYNOMIAL THAT GIVES A CLOSE APPROXIMATION TO A MINIMAX FIT OF A GIVEN FUNCTION OVER A G F15CHEBAP CHEBYSHEV APPROXIMATIONS. F13SICI NE AND COSINE INTEGRALS USING RROR FUNCTION BY EXPANSION IN CHEBYSHEV SERIES. F13ERF COMPUTES CHI SQUARE CUMULATIVE DISTRIBUTION FUNCTION. F17CHIPRB DISTRIBUTION FUNCTION OF THE CHI SQUARE DISTRIBUTION. F17PICHI PERFORMS CH: SQUARE TEST FOR GOODNESS OF FIT. F17CHIDST PERFORMS CH: SQUARE TEST FOR SYMMETRY ABOUT ZERO. F17CHIRAB PERFORMS CHI SQUARE TEST FOR RUNS UP AND DOWN. F17CHIRUD COMPUTES CHI SQUARE TEST-STATISTIC FOR GIVEN EXPECTED AND OBSERVED FREQUENCIES. F17CHSQ0 CHOLESKYS DECOMPOSITION AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND ESTIMATING THE CONDITI F16PDITRM EVERAL RIGHT-HAND SIDES USING D TRIANGULAR DECOMPOSITION BY CHOLESKYS METHOD HAS BEEN CARRIED OUT. F16BITRPD EVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION. F16BPDITM CHOLESKYS METHOD HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BCHSDC. F16BPDFSB D TRIANGULAR DECOMPOSITION BY EVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION, F168PDSOM CHOLESKYS METHOD; THE DETERMINANT IS AVAILABLE. INTO TRIANGULAR FACTORS USING F16CHSDEC CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROVIDES DATA FOR ESTIMATING THE CONDITION NUMBER AND THE F161TRPDM M PROVIDED DECOMPOSITION W TH CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROVIDES DATA FOR ESTIMATING THE CONDITION NUMBER AND THE PROVIDED DECOMPOSITION WITH F16|TRPDS INEMENT & LINEAR SYSTEM USING CHOLESKY DECOMPOSITION AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND ESTIMATING THE CONDITIO F16PD|TRS DEFINITE LINEAR SYSTEM USING CHOLESKY DECOMPOSITION. F16PDLSOS EVERAL RIGHT-HAND SIDES USING CHOLESKY DECOMPOSITION. F16PDLSOM RIANGULAR DECOMPOS TION USING CHOLESKY DECOMPOSITION HAS BEEN CARRIED OUT, F16PDSF85 RIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSITION HAS BEEN CARRIED OUT. F16PDSF8M DECOMPOSES BY THE CHOLESKY METHOD A REAL, SYMMETRIC POSITIVE DEFINITE BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTO F16BCHSDC S A POLYNOMIAL HAVING COMPLEX COEFFICIENTS AT A COMPLEX POINT BY SUMMING THE PRODUCT OF THE POWERS TIMES THE COEFFICIENTS. F13CCOMPE ATES A POLYNOMIAL HAVING REAL COEFFICIENTS AT A REAL VALUE OF THE INDEPENDENT VARIABLE BY NESTED MULTIPLICATION. F13EVREAL FICIENTS OR THE AUTO VARIANCE CCEFF CLENTS FOR ONE VARIABLE IN A MULTIPLEXED ARRAY. F17CORCOV THE ORDER OF REAL POLYNOM AL COEFFICIENTS IN AN ARRAY. F13REV E ORDER OF COMPLEX POLYNOMIAL COEFFICIENTS IN AN ARRAY. F13CREV ION OF A POLYNOMIAL WITH REAL COEFFICIENTS NEAR ONE OF ITS COMPLEX ROOTS THROUGH FORWARD ERROR ANALYSIS. F18NSLVL COMPUTES THE COEFFICIENTS OF THE SUM OF TWO REAL POLYNOMIALS. F13ADR COEFF'CIENTS OF THE SUM OF TWO COMPLEX POLYNOMIALS. COMPUTES THE F13CADR COMPUTES THE COEFFICIENTS OF A POLYNOMIAL WHICH IS THE INTEGRAL OF ANOTHER REAL POLYNOMIAL GIVEN THE COEFFICIENTS F13INT COMPUTES THE COEFFICIENTS OF A POLYNOMIAL WHICH IS THE INTEGRAL OF ANOTHER COMPLEX POLYNOMIAL GIVEN THE COEFFICIE F13CINT F13PARFAC ENOMINATOR POLYNOMIAL AND THE COEFFICIENTS OF THE NUMERATOR POLYNOMIAL. COMPUTES THE COEFFICIENTS OF THE DIFFERENCE OF TWO REAL POLYNOMIALS. F13SBR COMPUTES THE COEFFICIENTS OF THE DIFFERENCE OF TWO COMPLEX POLYNOMIALS. F13CSBR COEFFICIENTS OF THE REAL POLYNOMIAL P(AX) FROM THE COEFFICIENTS OF P(X). COMPUTES THE F13SHRINK COEFFICIENTS OF THE COMPLEX POLYNOMIAL P(AX) FROM THE COEFFICIENTS OF P(X). F13CSHRNK COMPUTES THE COEFFICIENTS OF A POLYNOMIAL WHICH IS THE DERIVATIVE OF ANOTHER REAL POLYNOMIAL GIVEN THE COEFFICIEN F13DERIV COMPUTES THE COEFFICIENTS OF A POLYNOMIAL WHICH IS THE DERIVATIVE OF ANOTHER COMPLEX POLYNOMIAL GIVEN THE COEFFIC COMPUTES THE F13CDERIV COEFFICIENTS OF THE N-TH DEGREE LAGRANGIAN INTERPOLATING POLYNOMIAL THROUGH N+1 POINTS. F15FLGNEW CONSTRUCTS COEFFICIENTS OF THE N+M+1 DEGREE HERMITIAN INTERPOLATING POLYNOMIAL THROUGH N+1 POINTS WITH FIRST DE CONSTUCTS F15FHRNEW COEFFICIENTS OF A SINE POLYNOMIAL WITH A LINEAR TREND GIVEN A SET OF (ABSCISSA, ORDINATE) PAIRS WITH F15SINSER CONSTRUCTS COEFFICIENTS OF A FINITE FOURIER SERIES WITH A LINEAR TREND THROUGH A SET OF EQUISPACED POINTS. F1570UR| CONSTRUCTS COEFFICIENTS OF THE BEST FOURIER SERIES WITH LINEAR TREND, IN THE LEAST SQUARES SENSE, TO A SET OF E CONSTRUCTS F15FOURAP

CONSTRUCTS	COEFFICIENTS OF THE DERIVATIVE OF A FOURIER SERIES, GIVEN THE COEFFICIENTS OF THE TRIGONOMETRIC POLY	F15TRGDIF
CONSTRUCTS Constructs the	COEFFICIENTS OF THE FOURIER SERIES WITH A LINEAR TREND THAT IS OBTAINED BY INTEGRATION OF A TRIGONOM	
CONSTRUCTS THE		F15PADE
CONSTRUCTS		F15CHEBAP
RD DEVIATIONS, VARIANCES, AND	COEFF CIENTS OF A FOLYNOMIAL WHICH IS THE DERIVATIVE OF ANOTHER POLYNOMIAL GIVEN THE COEFFICIENTS OF	F15DERIV Ed3DEc007
RUTES ETHER AUTO CORRELATION	COEFFICIENTS OF THE AUTO VARIANCE COEFFICIENTS FOR ONE VARIABLE IN A MULTIPLEXED ARRAY.	F17DSCRPT F17CORCOV
ROS OF A POLYNOMIAL WITH REAL		F18PROOT
OF TWO VECTORS WHICH MAY BE A	COLUMN OR A ROW OF A MATRIX USING EITHER SINGLE OR DOUBLE PRECISION; OTHER SUBROUTINES ARE VIPA, VIP	
FINDS THE HIGHEST	COMMON FACTOR OF TWO INTEGERS BY EUCLIDS ALGORITHM.	F11HCF
FINDS THE LEAST		F11LCM
COMPUTES THE		FIJCELJ
EVALUATES THE		FIJELK
SFORMATION; COULD BE USED FOR		F13EL3
NS OF A AND B, INTEGER, REAL,	COMPLEX, AND DOUBLE PRECISION.	C12PS1132
THE EXPONENTIAL FUNCTION OF A	COMPLEX ARGUMENT.	C12CEXP
ES THE NATURAL LOGARITHM OF A		C12CLOG
COMPUTES THE SQUARE ROOT OF A	COMPLEX ARGUMENT.	C12CSORT
THE FIRST OR SECOND KINDS FOR	COMPLEX ARGUMENT AND COMPLEX ORDER.	F13COMBES
THM OF THE GAMMA FUNCTION FOR	COMPLEX ARGUMENT BY USING CONTINUED FRACTIONS.	F13LOGGAM
NERAL EXPONENTIATION C**R FOR		F12CBAREX
EVALUATES A POLYNOMIAL HAVING	COMPLEX COEFFICIENTS AT A COMPLEX POINT BY SUMMING THE PRODUCT OF THE POWERS TIMES THE COEFFICIENTS.	
COMPUTES THE	COMPLEX COSINE TRIGONOMETRIC FUNCTION.	C12CCOS
PRODUCT OF TWO VECTORS HAVING	COMPLEX ELEMENTS.	F16CINPRD
RIER TRANSFORM OF AN ARRAY OF Required number of zeros of a	COMPLEX FOURTER AMPLITUDES. COMPLEX FUNCTION USING A METHOD DESCRIBED BY JARRATT AND NUDDS FOR APPROXIMATION OF ONE ZERO AND FAC	F17HARM
REQUIRED NUMBER OF ZEROS OF A	COMPLEX FUNCTION WITH MULLERS METHOD AND FACTORING OUT PREVIOUSLY FOUND ZEROS.	F18ZAFUJ
BY THE NUMBER OF POLES, OF A		F18ZAFUM F18ZCOUNT
A GUESS OF AN EIGENVALUE TO A		F16DTSHFT
DECOMPOSES A		
SOLVES A LINEAR SYSTEM FOR A	and were successfully and the second states of the successfully and the	F16CFBSUM
INEMENT A LINEAR SYSTEM FOR A		
SOLVES A LINEAR SYSTEM FOR A		F16CGLESM
INEMENT A LINEAR SYSTEM FOR A		F16CITERF
ARCH SUBROUTINE TO MULTIPLY A	COMPLEX MATRIX BY A COMPLEX VECTOR.	CIGFMVCX
TINE TO MULTIPLY A TRANSPOSED		C16FMTVCX
NVALUES AND EIGENVECTORS OF A		F16QREIGN
REDUCES A	COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD.	F16SUBDIA
BALANCES A	COMPLEX MATRIX BY MEANS OF DIAGONAL SIMILARITY TRANSFORMATIONS.	F16BALANC
A NUMBER OF EIGENVECTORS OF A	COMPLEX MATRIX USING OR ITERATION ON A SIMILAR HESSENBERG MATRIX FOR THE EIGENVALUES AND INVERSE ITE	
ORDERS A SET OF		••••••••••••••••••••••••••••••••••••••
NDS FOR COMPLEX ARGUMENT AND		F13COMBES
ING COMPLEX COEFFICIENTS AT A LUATES A REAL POLYNOMIAL AT A		F13CCOMPE
OEFFICIENTS OF THE SUM OF TWO		F13COMPEV
CH IS THE INTEGRAL OF ANOTHER		F13CADR F13CINT
DIVIDES A		FIJCLDIV
FINDS THE PRODUCT OF TWO		F13CMPYR
NDER OBTAINED BY DIVIDING ONE		F13CPDIV-
NSLATION IN THE ARGUMENT OF A		F13CPTRAN
DIVIDES A		F13CQDIV
REVERSES THE ORDER OF	COMPLEX POLYNOMIAL COEFFICIENTS IN AN ARRAY.	FISCREV
ENTS OF THE DIFFERENCE OF TWO		F13CSBR
	COMPLEX POLYNOMIALS, Complex Polynomial P(AX) from the coefficients of P(X), Complex Polynomial Given the coefficients of the Latter, Complex Polynomial Near one of its Roots Through Forward Error Analysis,	F13CSHRNK
	COMPLEX POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER.	F13CDERIV
ERROR IN THE EVALUATION OF A	COMPLEX POLYNOMIAL NEAR ONE OF ITS ROOTS THROUGH FORWARD ERROR ANALYSIS,	F18CNSLVL
FINDS ALL THE ZEROS OF A	COMPLEX POLYNOMIAL BY APPLYING STEEPEST DESCENT WITH ACCELERATION DEVICES AND USING EXPLICIT DEFLATI	F18CPOLRT
FINDS ALL THE ZEROS OF A	COMPLEX POLYNOMIAL BY LEHMERS METHOD USING SCHURS METHOD FOR ISOLATING ONE ZERO.	F18HELP
E ZEROS OR A SINGLE ZERO OF A	COMPLEX POLYNOMIAL BY MULLERS METHOD WITH DEFLATION.	F18MULLP
PERFORMS A SINGLE	COMPLEX OR ITERATION ON A HESSENBERG MATRIX HAVING REAL SUBDIAGONAL ELEMENTS.	F169R1

COEFFICIENTS NEAR ONE OF ITS	COMPLEX ROOTS THROUGH FORWARD ERROR ANALYSIS.	FIBNSLVL
COMPUTES THE	COMPLEX SINE TRIGONOMETRIC FUNCTION.	C12CSIN
A LEAST SQUARES PROBLEM FOR A EVALUATES THE	COMPLEX SYSTEM USING THE METHOD OF CONJUGATE GRADIENT. Complex valued hankel function for real argument and integer order by summation of series for bessel	F16CCONGR F13HANKEL
ULTIPLY & COMPLEX MATRIX BY A		C16FMVCX
RANSPOSED COMPLEX MATRIX BY A	COMPLEX VECTOR.	C16FMTVCX
NGES A VECTOR WITH FRACTIONAL	COMPONENTS INTO ONE WITH INTEGER COMPONENTS TIMES A SCALAR FUNCTION.	F11FFRAC
TO SUBTRACT FROM A VECTOR ITS	COMPONENT ALONG ANOTHER VECTOR.	C16FPUR
MATE FOR THE ACCURACY AND THE	CONDITION NUMBER.	F16BITRNP
MATE FOR THE ACCURACY AND THE	CONDETION NUMBER.	F16BITERM
MATE FOR THE ACCURACY AND THE	CONDITION NUMBER.	F16BITRFM
MATE FOR THE ACCURACY AND THE	CONDITION NUMBER. Condition number are available.	F16BITWNP
RIED OUT; THE DETERMINANT AND	CONDITION NUMBER ARE AVAILABLE.	F16CGITRF
MATE FOR THE ACCURACY AND THE	CONDITION NUMBER.	F16CITERF
LCULATING THE DETERMINANT AND	CONDITION NUMBER OF THE MATRIX.	F16ITERFM
LCULATING THE DETERMINANT AND	CONDITION NUMBER OF THE MATRIX.	F161 TERFS
STIMATING THE DETERMINANT AND	CONDITION NUMBER OF THE MATRIX AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION.	F16GITRFM
STIMATING THE DETERMINANT AND	CONDITION NUMBER OF THE MATRIX AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION.	F16GITRFS
	CONDITION NUMBER AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION,	
VIDES DATA FOR ESTIMATING THE		F16ITRPDM
VIDES DATA FOR ESTIMATING THE	CONDITION NUMBER AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION.	F16ITRPDS
STIMATING THE DETERMINANT AND	CONDITION NUMBER.	F16LITWNE
STIMATING THE DETERMINANT AND	CONDITION NUMBER.	F16LITWNP
ETERMINANT AND EST MATING THE	CONDITION NUMBER OF THE MATRIX.	F16PDITRS
ETERMINANT AND ESTIMATING THE	CONDITION NUMBER OF THE MATRIX, CONDITION NUMBER OF THE MATRIX, CONJUGATE GRADIENT, CONJUGATE GRADIENT METHOD, CONJUGATE GRADIENT METHOD,	F16PDITRM
EX SYSTEM USING THE METHOD OF	CONJUGATE GRADIENT.	F16CCONGR
EAST SQUARES ACCORDING TO THE	CONJUGATE GRADIENT METHOD.	F16FCGM2
RECTANGULAR MATR'X USING THE	CONJUGATE GRADIENT METHOD.	F16SCONG
TAIN MACHINE AND MATHEMATICAL	CONSTANTS AS SINGLE PRECISION NUMBERS OF MAXIMUM ACCURACY.	F13AMCON
FOR COMPLEX ARGUMENT BY USING	CONTINUED FRACTIONS.	F13LOGGAM
PERFORMS A SINGLE	CONTINUED FRACTION INTERPOLATION USING INVERTED DIFFERENCES ON TABULAR DATA WITH ARBITRARY SPACING.	F15ACF1
CISSAS REQUIRED; SECOND ORDER	CONTINUITY.	F15COMCUB
EFFECTS A	COORDINATE TRANSLATION IN THE ARGUMENT OF A REAL POLYNOMIAL.	F13PTRAN
EFFECTS A	COORDINATE TRANSLATION IN THE ARGUMENT OF A COMPLEX POLYNOMIAL.	FIJCPTRAN
	CORFECTOR METHOD OF EIGHTH ORDER AND PICARDS METHOD OF SUCCESSIVE SUBSTITUTION.	F14BLCKDQ
L EQUATIONS USING A PREDICTOR		
THE MATRIX AND THE NUMBER OF	CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION,	F16GITRFM
THE MATRIX AND THE NUMBER OF	CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION.	F16GITRFS
TION NUMBER AND THE NUMBER OF	CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION,	F161TRPDM
TION NUMBER AND THE NUMBER OF	CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION.	F16ITRPDS
COMPUTES EITHER AUTO	CORRELATION COEFFICIENTS OR THE AUTO VARIANCE COEFFICIENTS FOR ONE VARIABLE IN A MULTIPLEXED ARRAY.	F17CORCOV
EVALUATES THE SINE AND	COSINE INTEGRALS USING CHEBYSHEV APPROXIMATIONS.	F13SICI
EVALUATES A	COSINE POLYNOMIAL AT A GIVEN POINT.	F15COSEVL
COMPUTES THE HYPERBOL C	COS'NE TRIGONOMETRIC FUNCTION.	F12COSH
COMPUTES THE	COSINE TRIGONOMETRIC FUNCTION.	C12C05
COMPUTES THE DOUBLE PRECIS ON	COS'NE TRIGONOMETRIC FUNCTION.	CI2DCOS
COMPUTES THE COMPLEX	COSINE TRIGONOMETRIC FUNCTION.	C12CCOS
INTO TRIANGULAR FACTORS USING	CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION; ALSO COMPUTES ITS DETERMINANT.	F16CDECOM
GULAR DECOMPOSITION FOLLOWING	CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBRO	F16CFBSUM
	CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT; THE DETERMINANT A	
AR DECOMPOSITION ACCORDING TO		F16CGITRF
EVERAL RIGHT-HAND SIDES USING	CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION.	F16CGLESM
AR DECOMPOSITION ACCORDING TO	CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIM	
INTO TRIANGULAR FACTORS US NG	CROUTS ALGOR THM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE.	F16DCWNE
INTO TRIANGULAR FACTORS USING	CROUTS ALGORITHM WITHOUT PIVOTING; THE DETERMINANT IS AVAILABLE.	F16DCWNP
INTO TRIANGULAR FACTORS USING	CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE,	F16DECOM
RIANGULAR DECOMPOSITION USING	CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT BY SUBROUTINE DECO	F16DETERM
AR DECOMPOSITION ACCORDING TO	CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBRO	F16FBSUBM
AR DECOMPOSITION ACCORDING TO	CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT,	F16F8SUBS
	CROUTS ALGORITHM HAS BEEN CARRIED OUT AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND CONDITIO	F161TERFM
PARTIAL PIVOLING ACCORDING TO		
PARTIAL PIVOTING ACCORDING TO		
PARTIAL PIVOTING ACCORDING TO PARTIAL PIVOTING ACCORDING TO IGHT-HAND SIDES ACCORDING TO	CROUTS ALGORITHM HAS BEEN CARRIED OUT AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND CONDITIO	F16ITERFS F16GLESOM

•

INVERTS A MATRIX USING	CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION.	F16INVERS
IVE REFINEMENT A MATRIX USING	CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION.	F16INVITR
ERAL RIGHT-HAND SIDES USING	CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DE	F16GITRFM
INEMENT & LINEAR SYSTEM USING	CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DE	F16GITRF5
RIANGULAR DECOMPOS TION USING	CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT.	F16ITERIN
SOLVES A LINEAR SYSTEM USING	CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE.	F16LESWNE
SOLVES A LINEAR SYSTEM USING	CROUTS ALGORITHM WITHOUT PIVOTING; THE DETERMINANT IS AVAILABLE.	F16LESWNP
INEMENT A LINEAR SYSTEM USING	CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING TH	FIGLITWNE
INEMENT A LINEAR SYSTEM US NG	CROUTS ALGORITHM WITHOUT PIVOTING AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NUM	F16LITWNP
COMPUTES THE	CUBE ROOT OF A REAL ARGUMENT.	C12CBRT
TS; POINTS ARE GENERATED ON A	CUBIC INTERPOLATING CURVE.	F15NR CH
CONSTRUCTS A NONLINEAR	CUBIC SPLINE INTERPOLATING A SET OF POINTS WITH ARBITRARY SPACING.	F15UNCSPL
CONSTRUCTS	CUBIC SPLINE THROUGH N POINTS; MONOTONE ABSCISSAS REQUIRED; SECOND ORDER CONTINUITY,	F15COMCUB
HOSE POINTS DETERMINED BY THE	CUBIC SPLINE THROUGH THE WHOLE DATA SET.	F15SMOCUB
COMPUTES CHI SQUARE	CUMULATIVE DISTRIBUTION FUNCTION.	F17CHIPRB
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE BETA DISTRIBUTION.	F17PBETA
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE BINOMIAL DISTRIBUTION.	F17PBINOM
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE CAUCHY DISTRIBUTION.	F17PCHY
COMPUTES THE Computes the	CUMULATIVE DISTRIBUTION FUNCTION OF THE F (VARIANCE RATIO) DISTRIBUTION,	F17PFDIST
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE GEOMETRIC DISTRIBUTION.	F17PGEOM
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE GAMMA DISTRIBUTION. CUMULATIVE DISTRIBUTION FUNCTION OF THE HYPER GEOMETRIC DISTRIBUTION.	F17PGMMA
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE INFORM DISTRIBUTION.	F17PHYPGE
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE NORMAL DISTRIBUTION.	F17PIUNF F17PINORM
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE EXPONENTIAL DISTRIBUTION.	F17PIEXP
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE TRUNCATED NORMAL DISTRIBUTION.	F17PITRNM
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE LOG NORMAL DISTRIBUTION.	F17PILGNM
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE WEIBULL DISTRIBUTION.	F17PIWEBL
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE GAMMA DISTRIBUTION.	F17PIGAMA
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE BETA DISTRIBUTION,	F17PIBETA
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE CAUCHY DISTRIBUTION.	F17PICHY
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE RAYLEIGH DISTRIBUTION.	F17PIRAYL
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE CHI SQUARE DISTRIBUTION.	F17PICHI
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE F (VARIANCE RATIO) DISTRIBUTION,	F17PIFDIS
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE STUDENTS T DISTRIBUTION.	F17PIT
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE DISCRETE UNIFORM DISTRIBUTION,	F17PIUNFD
COMPUTES THE INVERSE Computes the inverse	CUMULATIVE D'STRIBUTION FUNCTION OF THE BINOMIAL DISTRIBUTION,	F17PIBIN
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE POISSON DISTRIBUTION, CUMULATIVE DISTRIBUTION FUNCTION OF THE HYPER GEOMETRIC DISTRIBUTION,	F17PIPOIS
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE REGATIVE BINOMIAL DISTRIBUTION.	F17PIHYPG F17PINBIN
COMPUTES THE INVERSE	CUMULATIVE DISTRIBUTION FUNCTION OF THE REGMETRIC DISTRIBUTION.	F17PIGEO
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE LOG NORMAL DISTRIBUTION.	F17PLGNRM
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE NEGATIVE BINOMIAL DISTRIBUTION.	F17PNBIN
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE NORMAL DISTRIBUTION.	F17PNORM
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE POISSON DISTRIBUTION.	F17POIS
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE RAYLEIGH DISTRIBUTION.	F17PRAYL
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE EXPONENTIAL DISTRIBUTION,	F17PRBEXP
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE UNIFORM DISTRIBUTION,	F17PRBUNF
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE STUDENTS T DISTRIBUTION.	F17PTDIST
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE TRUNCATED NORMAL DISTRIBUTION,	F17PTRNRM
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE DISCRETE UNIFORM DISTRIBUTION	F17PUNFD
COMPUTES THE	CUMULATIVE DISTRIBUTION FUNCTION OF THE WEIBULL DISTRIBUTION.	F17PWEBL
TS TO MINIMIZE THE RIPPLE IN	CURVATURE,	F15RICH
ATED ON A CUBIC INTERPOLATING	CURVE.	F15NRICH
	DECOMPOSES A COMPLEX MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND	F16CDECOM
	DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW	F16DCWNE
	DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITHOUT PIVOTING; THE DETERMINANT	F16DCWNP
	DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQU	F16DECOM
	DECOMPOSES A SYMMETRIC POSITIVE DEFINITE MATRIX INTO TRIANGULAR FACTORS USING CHOLESKYS METHOD; THE DECOMPOSES A SYMMETRIC POSITIVE DEFINITE MATRIX INTO LOWER TRIANGULAR, DIAGONAL AND UPPER TRIANGULAR	F16CHSDEC

F16TRDCOM DECOMPOSES A TRIDIAGONAL MATRIX INTO LOWER AND UPPER TRIANGULAR FACTORS USING PARTIAL PIVOTING. DECOMPOSES A TRIDIAGONAL MATRIX INTO TRIANGULAR FACTORS WITHOUT PIVOTING. F16TRDCNP DECOMPOSES BY GAUSSIAN ELIMINATION WITHOUT PIVOTING A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULA F16BDCWNP DECOMPOSES BY GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION A REAL BANDMATRI F16BDECOM DECOMPOSES BY THE CHOLESKY METHOD A REAL, SYMMETRIC POSITIVE DEFINITE BANDMATRIX INTO UPPER AND LOWE F16BCHSDC KYS METHOD FOR THE TRIANGULAR F16BPDITM DECOMPOSITION. KYS METHOD FOR THE TR ANGULAR DECOMPOSITION. F16BPDSOM LINEAR SYSTEM USING CHOLESKY DECOMPOSITION. F16PDLSOS GHT-HAND SIDES USING CHOLESKY DECOMPOSITION. F16PDLSOM DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CAR F16CGITRF SIDES PROVIDED THE TR'ANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CAR F16CITERF AND SIDES PROV DED TRIANGULAR ND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CAR F16FBSUBM DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CAR F16FBSUBS AR SYSTEM PROV DED TR'ANGULAR DECOMPOSITION AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND ESTIMATING THE CONDITION NUMBER F16PDITRS LINEAR SYSTEM USING CHOLESKY HT-HAND SIDES USING CHOLESKYS DECOMPOSITION AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND ESTIMATING THE CONDITION NUMBER F16PDITRM F16BITRPD AND SIDES PROV DED TRIANGULAR DECOMPOSITION BY CHOLESKYS METHOD HAS BEEN CARRIED OUT. DECOMPOSITION BY CHOLESKYS METHOD HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BCHSDC. F16BPDFSB AND SIDES PROVIDED TRIANGULAR F16CF8SUM SIDES PROVIDED THE TRIANGULAR DECOMPOSITION FOLLOWING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIE TEM PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT. F16ITRSPM ES PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT. F16ITRSPS DECOMPOSITION HAS BEEN CARRIED OUT. F16PDSF8S DECOMPOSITION USING CHOLESKY DECOMPOSITION USING CHOLESKY DECOMPOSITION HAS BEEN CARRIED OUT. F16PDSFBM A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OU F16DETERM DECOMPOSITION USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OU A MATRIX PROVIDED TRIANGULAR F16ITERIN AR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSITION HAS BEEN CARRIED OUT. F16PDSFBS AND SIDES PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSITION HAS BEEN CARRIED OUT. F16PDSFBM LECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT. POSSIBLY BY SUBROUTINE BDCWNP. F16BFBANP SIDES PROVIDED THE TR'ANGULAR SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUB F16BFBSUM DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE C F16BITRNP SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN EST F16BITERM SIDES PROVIDED THE TRIANGULAR EAST SQUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN GARRIED OUT. F16BSUBHT ND SIDES PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING ACCORDING TO CROUTS ALGORITHM HAS BEEN CARRIED OUT AND PROVIDES F16ITERFM DECOMPOSITION WITH PARTIAL PIVOTING ACCORDING TO CROUTS ALGORITHM HAS BEEN CARRIED OUT AND PROVIDES F16ITERFS AR SYSTEM PROVIDED TRIANGULAR EAST SQUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN GARRIED OUT. F161TRLSQ DECOMPOSITION WITH CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROVIDES DATA FOR ESTIMATING THE CONDIT F16ITRPDM FINITE LINEAR SYSTEM PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROVIDES DATA FOR ESTIMATING THE CONDIT AL RIGHT-HAND SIDES PROVIDED F16ITRPDS DECOMPOSIT ON WITH PARTIAL PIVOTING HAS BEEN CARRIED OUT. F16TRDFBM A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT. F16TRDSUB A TRIDIAGONAL MATRIX PROVIDED F16DETERM EEN CARRIED OUT BY SUBROUTINE DECOM. F16FBSUBM D OUT, POSSIBLY BY SUBROUTINE DECOM. DECREASING OR INCREASING MAGNITUDE IN A WAY WHICH IS NOT EFFICIENT FOR A LARGE SET OF NUMBERS. F16VECORD X NUMBERS ACCORDING TO EITHER DEFIN'TE, NARROW BANDMATRIX USING THE METHOD OF INVERSE WIELANDT ITERATION WITH PERIODIC RAVEIGH QU S OF A SYMMETRIC, NONNEGATIVE F16BANEIG DEFINITE BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS. F168CHSDC OD & REAL. SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION BY CHOLESKYS MET STEM FOR A SYMMETRIC POSITIVE F16BITRPD DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOS STEM FOR A SYMMETRIC POSITIVE F16BPDITM DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION BY CHOLESKYS MET STEM FOR A SYMMETRIC POSITIVE F16BPDFS8 STEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOS F168PDSOM FINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROVIDE F16ITRPDM FINEMENT & SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD H F161TRPDS DEFINITE LINEAR SYSTEM PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT. FINEMENT A SYMMETR C POSITIVE F16ITRSPM FINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BE F16|TRSPS SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM USING CHOLESKY DECOMPOSITION. F16PDLSOS DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING CHOLESKY DECOMPOSITION. F16PDLSOM SOLVES A SYMMETRIC POSITIVE F16PDSFBS SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSITION HAS BEEN CARRI F16PDSFBM SOLVES A SYMMETR C POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION USING CHOLE DEFINITE LINEAR SYSTEM PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUTINE F16SPDFBM SOLVES A POSIT VE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHO F16SPDF8S SOLVES A POSITIVE DEFINITE LINEAR SYSTEM WITHOUT USING THE SQUARE ROOT ROUTINE. F16SPDSOM SOLVES A POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES WITHOUT USING THE SQUARE ROOT ROUTINE. F16SPDSOS SOLVES A POSITIVE DEFINITE LINEAR SYSTEM USING SQUARE ROOT FREE DECOMPOSITION. F16SPITRM ERATIVE REFINEMENT & POSITIVE

ERATIVE REFINEMENT A POSITIVE	DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING SQUARE ROOT FREE DECOMPOSITION.	F16SPITRS
COMPOSES A SYMMETRIC POSITIVE	DEFINITE MATRIX INTO TRIANGULAR FACTORS USING CHOLESKYS METHOD; THE DETERMINANT IS AVAILABLE.	F16CHSDEC
COMPOSES A SYMMETRIC POSITIVE	DEFINITE MATRIX INTO LOWER TRIANGULAR, DIAGONAL AND UPPER TRIANGULAR FACTORS WITHOUT CALCULATING & S	F16SPDCOM
ITERATION OF EACH METHOD AND	DEFLATING THE ORIGINAL POLYNOMIAL WHEN A LINEAR OR QUADRATIC FACTOR IS FOUND,	FISPROOT
NOMIAL BY MULLERS METHOD WITH	DEFLATION.	F18MULLP
ITH A STABLE, BAND-PRESERVING	DEFLATION TECHNIQUE.	F16BANEIG
ON DEVICES AND USING EXPLICIT	DEFLATION WHEN ONE ZERO IS ACCEPTED.	F18CPOLRT
CONSTRUCTS A FIFTH	DEGREE SPLINE INTERPOLATING A SET OF EQUISPACED DATA.	F15SPLINE
OF A POLYNOMIAL WHICH IS THE	DER'VATIVE OF ANOTHER REAL POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER.	FIJDERIV
OF A POLYNOMIAL WHICH IS THE	DER'VATIVE OF ANOTHER COMPLEX POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER.	FISCHERIV
ONSTRUCTS COEFFICIENTS OF THE	DERIVATIVE OF A FOURIER SERIES, GIVEN THE COEFFICIENTS OF THE TRIGONOMETRIC POLYNOMIAL.	F15TRGDIF
OF A POLYNOMIAL WHICH IS THE	DERIVATIVE OF ANOTHER POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER.	F15DERIV
AND SWITCHING TO THE STEEPEST	DESCENT METHOD IF THE FORMER METHOD GIVES D'VERGENCE; IN THE STEP VECTOR DIRECTION THE OPTIMAL STEP	F18NRSG
LYNOMIAL BY APPLYING STEEPEST	DESCENT WITH ACCELERATION DEVICES AND USING EXPLICIT DEFLATION WHEN ONE ZERO IS ACCEPTED.	F18CPOLRT
LIBRATION; ALSO COMPUTES TS	DETERMINANT.	
HYMANS METHOD TO EVALUATE THE	DETERMINANT.	F16CDECOM
ION HAS BEEN CARRIED OUT; THE		F16DTSHFT
	DETERMINANT AND CONDITION NUMBER ARE AVAILABLE.	F16CGITRF
IDES DATA FOR CALCULATING THE	DETERMINANT AND CONDITION NUMBER OF THE MATRIX	F16ITERFM
IDES DATA FOR CALCULATING THE	DETERMINANT AND CONDITION NUMBER OF THE MATRIX,	F16ITERFS
VIDES DATA FOR EST MATING THE	DETERMINANT AND CONDITION NUMBER OF THE MATRIX AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTE	F16GITRFM
VIDES DATA FOR ESTIMATING THE	DETERMINANT AND CONDITION NUMBER OF THE MATRIX AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTE	F16GITRFS
VIDES DATA FOR ESTIMATING THE	DETERMINANT AND CONDITION NUMBER.	FIGLITWNE
VIDES DATA FOR EST MATING THE	DETERMINANT AND CONDITION NUMBER.	F16LITWNP
IDES DATA FOR CALCULATING THE	DETERMINANT AND ESTIMATING THE CONDITION NUMBER OF THE MATRIX.	F16PDITRS
IDES DATA FOR CALCULATING THE	DETERMINANT AND ESTIMATING THE CONDITION NUMBER OF THE MATRIX,	F16PDITRM
LOWER TRIANGULAR FACTORS; THE	DETERMINANT 'S ALSO AVAILABLE.	F16BDCWNP
D IMPLICIT EQUILIBRATION; THE	DETERMINANT IS ALSO AVAILABLE.	F16BLESOM
INATION WITHOUT PIVOTING; THE	DETERMINANT 'S ALSO AVAILABLE.	F16BLSWNP
S USING CHOLESKYS METHOD; THE	DETERMINANT IS AVAILABLE.	F16CHSDEC
ITHOUT ROW EQUILIBRATION; THE	DETERMINANT IS AVAILABLE.	F16DCWNE
GORITHM WITHOUT PIVOTING; THE	DETERMINANT IS AVAILABLE.	F16DCWNP.
NG AND ROW EQUILIBRATION; THE	DETERMINANT IS AVAILABLE.	F16DECOM
THOUT ROW EQUILIBRATION; THE	DETERMINANT 'S AVAILABLE.	F16LESWNE
GORITHM WITHOUT PIVOTING; THE	DETERMINANT IS AVAILABLE.	F16LESWNP
ALCULATING A SQUAPE ROOT; THE	DETERMINANT 'S AVAILABLE.	F16SPDCOM
AND EXPONENT (BASE 2) OF THE	DETERMINANT OF A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM WITH PARTIAL PIVOTI	F16DETERM
SOLVES AN OVER	DETERMINED SYSTEM OF NONLINEAR EQUATIONS BY CALCULATING A STEP VECTOR DIRECTION AS A LEAST SQUARES S	F18NRSG
COMPUTES MEANS, STANDARD	DEVIATIONS, VARIANCES, AND COEFFICIENTS OF SKEWNESS AND KURTOSIS FOR MULTIPLEXED ARRAYS.	F17DSCRPT
EST DESCENT WITH ACCELERATION	DEVICES AND USING EXPLICIT DEFLATION WHEN ONE ZERO IS ACCEPTED.	F18CPOLRT
A COMPLEX MATRIX BY MEANS OF	DIAGONAL SIMILARITY TRANSFORMATIONS.	F16BALANC
INTERPOLATION USING INVERTED	DIFFERENCES ON TABULAR DATA WITH ARBITRARY SPACING.	F15ACF I
PUTES THE COEFFIC ENTS OF THE	DIFFERENCE OF TWO REAL POLYNOMIALS.	F13SBR
PUTES THE COEFFICIENTS OF THE	DIFFERENCE OF TWO COMPLEX POLYNOMIALS.	F13CSBR
YSTEM OF FIRST ORDER ORDINARY	DIFFERENTIAL EQUATIONS USING A PREDICTOR CORRECTOR METHOD OF EIGHTH ORDER AND PICARDS METHOD OF SUCC	F14BLCKDQ
YSTEM OF FIRST ORDER ORDINARY	DIFFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNIQUE BASED ON A MODIFIED MIDPOINT RULE; E	F14DRATEX
YSTEM OF FIRST ORDER ORDINARY	DIFFERENTIAL EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TECHNIQUE EFFICIENT FOR LOW ACCURACY WORK.	F14RKINIT
SOLVES	DIFFERENTIAL EQUATIONS AS PROCEDURE RKINIT BUT RUNS FASTER AND REQUIRES MORE STORAGE,	F14NRKUS
RY VALUE PROBLEMS IN ORDINARY	DIFFERENTIAL EQUATIONS BY COMBINING AN INITIAL VALUE SOLVER WITH A NONLINEAR EQUATION SOLVING PROGRA	F14BVD
BLEMS IN A SYSTEM OF ORDINARY	DIFFERENTIAL EQUATIONS, WHERE THE SOLUTION IS BASED ON THE PRINCIPLE OF SUPERPOSITION, USING SUBROUT	F14LINBVD
ENSYSTEM FOR THE SECOND ORDER	DIFFERENTIAL EQUATION A+X.	F16DEIG
	DIFFERENTIATES NUMERICALLY A FUNCTION GIVEN AS A TABLE WITH EQUISPACED ARGUMENTS, AT A TABULAR POINT	F15DIFTAB
	DIFFERENTIATES NUMERICALLY AN EQUALLY SPACED TABULAR FUNCTION AT ANY POINT USING AN INTERPOLATING PO	F15LAGDIF
RIX AND THE NUMBER OF CORRECT	DIGITS IN THE FIRST COMPUTED SOLUTION.	F16GITRFM
RIX AND THE NUMBER OF CORRECT	DIG'TS IN THE FIRST COMPUTED SOLUTION.	F16GITRFS
BER AND THE NUMBER OF CORRECT	DIGITS IN THE FIRST COMPUTED SOLUTION.	F16ITRPDM
BER AND THE NUMBER OF CORRECT	DIG'TS IN THE FIRST COMPUTED SOLUTION.	F16ITRPDS
ARANGIAN INTERPOLATION IN ONE	DIMENSICNAL TABLE; ARBITRARY ORDER.	F15TBLU1
GRANGIAN INTERPOLATION IN TWO	DIMENSIONAL TABLE; ARBITRARY ORDER.	F15TBLU2
ANGIAN INTERPOLATION IN THREE	DIMENSIONAL TABLE; ARBITRARY ORDER.	F15TBLU3
DISTRIBUTION FUNCTION OF THE	DISCRETE UNIFORM DISTRIBUTION.	F17PIUNED

DISTRIBUTION FUNCTION OF THE	DISCRETE UNIFORM DISTRIBUTION.	F17PUNFD
VALUE OF A REAL MATRIX HAVING		F16E/GCO1
ANDOM NUMBERS HAVING A NORMAL	DISTRIBUTION, PROVIDING A CONVENIENT WAY OF HANDLING THE TAIL AND STORES THE VALUES IN A MULTIPLEXED	F17NRMNO
HAVING A NEGATIVE EXPONENT AL	DISTRIBUTION.	F17EXRAND
ANDOM NUMBERS HAVING A NORMAL	DISTRIBUTION.	F17NRML
M INTEGERS HAVING THE POISSON	DISTRIBUTION.	F17PORAND
BERS HAVING UNIFORM OR NORMAL	DISTRIBUTION.	F17RAND
ANDOM NUMBERS HAVING A NORMAL	DISTRIBUTION AND STORES THE VALUES IN A MULTIPLEXED ARRAY.	F17NRAND
F RUNS (EXPECTED IN SYMMETRIC	DISTRIBUTION AND OBSERVED) ABOVE AND BELOW ZERO OF DIFFERENT LENGTHS FOR A SAMPLE,	F17RUNSAB
NDOM NUMBERS HAVING A UNIFORM	DISTRIBUTION AND STORES THE VALUES AS ONE VARIABLE IN A MULTIPLEXED ARRAY.	F17URAND
OMPUTES CHI SQUARE CUMULATIVE	DISTRIBUTION FUNCTION.	F17CHIPRB
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE BETA DISTRIBUTION.	F17PBETA
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE BINOMIAL DISTRIBUTION.	F17PB NOM
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE CAUCHY DISTRIBUTION,	F17PCHY
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE F (VARIANCE RATIO) DISTRIBUTION.	F17PFDIST
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE GEOMETRIC DISTRIBUTION.	F17PGEOM
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE GAMMA DISTRIBUTION.	F17PGMMA
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE HYPER GEOMETRIC DISTRIBUTION.	F17PHYPGE
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE UNIFORM DISTRIBUTION,	F17PIUNF
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE NORMAL DISTRIBUTION,	F17PINORM
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE EXPONENTIAL DISTRIBUTION.	F17PIEXP
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE TRUNCATED NORMAL DISTRIBUTION.	F17PITRNM
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE LOG NORMAL DISTRIBUTION.	F17PILGNM
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE WEIBULL DISTRIBUTION,	F17PIWEBL
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE GAMMA DISTRIBUTION.	F17PIGAMA
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE BETA DISTRIBUTION.	F17PIBETA
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE CAUCHY DISTRIBUTION.	F17PICHY
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE RAYLEIGH DISTRIBUTION,	F17PIRAYL
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE CHI SQUARE DISTRIBUTION. Distribution function of the F (variance ratio) distribution.	F17PICHI
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE F (VARIANCE RATIO) DISTRIBUTION.	F17PIFDIS
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE STUDENTS T DISTRIBUTION.	F17PIT
MPUTES THE INVERSE CUMULAT VE	DISTRIBUTION FUNCTION OF THE DISCRETE UNIFORM DISTRIBUTION.	F17PIUNED
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE BINOMIAL DISTRIBUTION.	F17PIBIN
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE POISSON DISTRIBUTION.	F17PIPOIS
MPUTES THE INVERSE CUMULATIVE	DISTR BUTION FUNCTION OF THE HYPER GEOMETRIC DISTRIBUTION,	F17PIHYPG
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE REGATIVE BINOMIAL DISTRIBUTION,	F17PINBIN
MPUTES THE INVERSE CUMULATIVE	DISTRIBUTION FUNCTION OF THE GEOMETRIC DISTRIBUTION.	F17PIGEO
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE LOG NORMAL DISTRIBUTION,	F17PLGNRM
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE NEGATIVE BINOMIAL DISTRIBUTION.	F17PNBIN
COMPUTES THE CUMULAT VE	DISTRIBUTION FUNCTION OF THE NORMAL DISTRIBUTION,	F17PNORM
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE PO'SSON DISTRIBUTION,	F17P0 S
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE RAYLEIGH DISTRIBUTION.	F17PRAYL
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE EXPONENTIAL DISTRIBUTION.	F17PRBEXP
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE UNIFORM DISTRIBUTION	F17PRBUNF
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE STUDENTS T DISTRIBUTION.	F17PTDIST
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE TRUNCATED NORMAL DISTRIBUTION.	F17PTRNRM
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE DISCRETE UNIFORM DISTRIBUTION.	F17PUNFD
COMPUTES THE CUMULATIVE	DISTRIBUTION FUNCTION OF THE WEIBULL DISTRIBUTION,	F17PWEBL
	DIVIDES A COMPLEX POLYNOMIAL BY A LINEAR FACTOR, X+B, WHERE B MAY BE COMPLEX.	F13CLDIV
	DIVIDES A COMPLEX POLYNOMIAL BY A QUADRATIC EXPRESSION.	F13CQDIV
	DIVIDES A REAL POLYNOMIAL BY A LINEAR FACTOR, X+B, WHERE B MAY BE COMPLEX.	F13LDIV
THT AND DEMAINSED ODTAINED TH	DIVIDES A REAL POLYNOMIAL BY A QUADRATIC EXPRESSION.	F13001V
ENT AND REMAINDER OBTAINED BY	DIVIDING ONE COMPLEX POLYNOMIAL BY ANOTHER.	F13CPDIV
ENT AND REMAINDER OBTAINED BY	DIVIDING ONE REAL POLYNOMIAL BY ANOTHER.	F13PDIV
BY GAUSSIAN ELIMINATION USING	DOOLITTLES METHOD AND APPLYING PARTIAL PIVOTING AND DOUBLE PRECISION ARITHMETIC FOR THE CALCULATION	F18LINSYS
COMPUTES THE	DOUBLE PRECISION SINE TRIGONOMETRIC FUNCTION.	C12DSIN
COMPUTES THE	DOUBLE PRECISION COSINE TRIGONOMETRIC FUNCTION.	C12DCOS
COMPUTES THE	DOUBLE PRECISION ARCTANGENT TRIGONOMETRIC FUNCTION.	C12DATAN
COMPUTES THE	DOUBLE PRECISION ARCTANGENT TRIGONOMETRIC FUNCTION OF A QUOTIENT U/V.	C12DATAN2

ES THE NATURAL LOGARITHM OF A DOUBLE PRECISION REAL ARGUMENT. C12DLOG S THE BASE TEN LOGARITHM OF A DOUBLE PRECISION REAL ARGUMENT. C12DLOG10 COMPUTES THE SQUARE ROOT OF A DOUBLE PRECISION REAL ARGUMENT. C12DSORT C12P51132 , INTEGER, REAL, COMPLEX, AND DOUBLE PRECISION. COMPUTES THE DOUBLE PRECISION INNER PRODUCT OF TWO VECTORS HAVING COMPLEX ELEMENTS. F16CINPRD MATRIX USING EITHER SINGLE CR DOUBLE PRECISION; OTHER SUBROUTINES ARE VIPA, VIPS, VIPD, VIPDA, VIPDS, INRPRD, PROSUM. C16VIP COMPUTES THE DOUBLE PRECISION SUMS OF POWERS OF OBSERVATIONS. F17SUMPS APPLYING PARTIAL PIVOTING AND DOUBLE PRECISION ARITHMETIC FOR THE CALCULATION OF INNER PRODUCTS. F18LINSYS RS TRANSFORMATION FOLLOWED BY DOUBLE OR ITERATION. F16LATNTR SOLVES THE EIGENSYSTEM FOR THE SECOND ORDER DIFFERENTIAL EQUATION A*X. F16DEIG COMPUTES THE SMALLEST EIGENVALUES AND ASSOCIATED EIGENVECTORS OF A SYMMETRIC, NONNEGATIVE DEFINITE, NARROW BANDMATRIX USIN F16BANEIG EIGENVALUES AND SOME EIGENVECTORS OF A REAL SYMMETRIC MATRIX. CALCULATES ALL F16EIGSYM CALCULATES ALL EIGENVALUES AND EIGENVECTORS OF A COMPLEX MATRIX BY MEANS OF OR ITERATION ON A SIMILAR BALANCED HESS F16QREIGN CALCULATES A NUMBER OF EIGENVALUES AND EIGENVECTORS OF A HERMITIAN MATRIX USING HOUSEHOLDERS TRANSFORMATION TO TRIDIAGONAL F16TCDIAG CALCULATES THE EIGENVALUES AND A NUMBER OF EIGENVECTORS OF A COMPLEX MATRIX USING OR ITERATION ON A SIMILAR HESSENB F16VALVEC CALCULATES SOME EIGENVALUES OF A REAL MATRIX BY MEANS OF A MODIFICATION OF LAGUERRES METHOD. F16E165 EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS CALCULATES ALL F16SEPAR CALCULATES A SUBSET OF EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS F16SEPAR2 CALCULATES ALL EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING LR ITERATION. F16SYMLR CALCULATES ALL EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING QR ITERATION. F16SYMGR EIGENVALUES (COMPLEX AND REAL) OF A REAL MATRIX USING HOUSEHOLDERS TRANSFORMATION FOLLOWED BY DOUBLE CALCULATES THE F16LATNTR EIGENVALUE EIGENVECTOR PAIR OF A REAL SYMMETRIC MATRIX BY CALCULATING THE RAYLEIGH QUOTIENT AND GIVE IMPROVES AN APPROXIMATE F16EIGCHK CALCULATES THE EIGENVALUE EIGENVECTOR PAIR WHICH IS NEAREST TO AN APPROXIMATION OF AN EIGENVALUE OF A REAL MATRIX H F16EIGC01 REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. F16REDSY1 EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL F16REDSY2 CALCULATES A GUESS OF AN EIGENVALUE TO A COMPLEX HESSENBERG MATRIX USING HYMANS METHOD TO EVALUATE THE DETERMINANT. F16DTSHFT RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR S F16RECOV4 RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR S F16RECOV2 ST EIGENVALUES AND ASSOCIATED EIGENVECTORS OF A SYMMETRIC, NONNEGATIVE DEFINITE, NARROW BANDMATRIX USING THE METHOD OF INVERSE WIE F16BANEIG EIGENVECTORS OF A REAL SYMMETRIC MATRIX. ATES ALL EIGENVALUES AND SOME F16E | GSYM ALCULATES ALL EIGENVALUES AND EIGENVECTORS OF A COMPLEX MATRIX BY MEANS OF OR ITERATION ON A SIMILAR BALANCED HESSENBERG MATRIX. F16QREIGN IRED BACK SUBSTITUTION ON THE EIGENVECTORS OF A HESSENBERG MATRIX PROVIDED THE TRANSFORMATION TO HESSEBERG FORM HAS BEEN CARRIED O F16SIMP S A NUMBER OF EIGENVALUES AND LIGENVECTORS OF A HERMITIAN MATRIX USING HOUSEHOLDERS TRANSFORMATION TO TRIDIAGONAL FORM FOLLOWED BY F16TCD AG E E-GENVALUES AND A NUMBER OF EIGENVECTORS OF A COMPLEX MATRIX USING OR ITERATION ON A SIMILAR HESSENBERG MATRIX FOR THE EIGENVALU F16VALVEC REFINES AN EIGENVECTOR BELONGING TO A SINGLE REAL EIGENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF WIELANDT I F16EIGIMP CALCULATES AN EIGENVECTOR BELONGING TO A SINGLE REAL EIGENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF INVERSE IT F16E GVCH CALCULATES AN EIGENVECTOR BELONGING TO A GOOD APPROXIMATION OF AN EIGENVALUE USING INVERSE ITERATION. F16VECTOR EIGENVECTOR PAIR OF A REAL SYMMETRIC MATRIX BY CALCULATING THE RAYLEIGH QUOTIENT AND GIVES ERROR BOU VES AN APPROXIMATE EIGENVALUE F16EIGCHK CALCULATES THE EIGENVALUE EIGENVECTOR PAIR WHICH IS NEAREST TO AN APPROXIMATION OF AN EIGENVALUE OF A REAL MATRIX HAVING DISTI F16EIGC01 ELIMINATION USING DOOLITTLES METHOD AND APPLYING PARTIAL PIVOTING AND DOUBLE PRECISION ARITHMETIC FO ME LEFT HAND SIDE BY GAUSSIAN F18L INSYS DECOMPOSES BY GAUSSIAN ELIMINATION WITHOUT PIVOTING A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS; THE DETERMIN F16BDCWNP DECOMPOSES BY GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION A REAL BANDMATRIX INTO UPPER AND LOWER F16BDECOM GHT-HAND SIDES USING GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION AND GIVES AN ESTIMATE FOR THE ACCURACY F16BITRFM GHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVOTING AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER. F168ITWNP GHT-HAND SIDES USING GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION: THE DETERMINANT IS ALSO AVAILABLE. F16BLESOM ELIMINATION WITHOUT PIVOTING: THE DETERMINANT IS ALSO AVAILABLE. GHT-HAND SIDES USING GAUSSIAN F16BLSWNP COMPUTES THE COMPLETE ELLIPTIC INTEGRAL OF THE THIRD KIND BY THE LANDEN TRANSFORMATION. F13CEL3 EVALUATES THE COMPLETE LLLIPTIC INTEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION. F13ELK EVALUATES THE INCOMPLETE ELLIPTIC INTEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION. FIJELF EVALUATES THE INCOMPLETE ELLIPTIC INTEGRAL OF THE THIRD KIND BY USING THE GAUSS TRANSFORMATION: COULD BE USED FOR COMPLETE EL F13EL3 NI COULD BE USED FOR COMPLETE ELLIPTIC INTEGRAL OF THE THIRD KIND SOMETIMES. F13EL3 ENRICHES A GIVEN CURVE DEFINED BY AN ARRAY OF POINTS SO AS TO SATISFY A SPECIFIED CHORD HEIGHT TOLER F15RICH ENRICHES A SET OF POINTS BY ADDING POINTS ON AN INTERPOLATING CURVE THROUGH THE GIVEN POINTS; POINTS F15NR1CH STEM OF ORDINARY D FFERENTIAL EQUATIONS, WHERE THE SOLUTION IS BASED ON THE PRINCIPLE OF SUPERPOSITION, USING SUBROUTINE BLCKDQ TO F14LINBVD SOLVES DIFFERENT AL EQUATIONS AS PROCEDURE REINIT BUT RUNS FASTER AND REQUIRES MORE STORAGE. F14NRKUS EQUATIONS BY CALCULATING A STEP VECTOR DIRECTION AS A LEAST SQUARES SOLUTION OF THE SYSTEM OF LINEAR ETERMINED SYSTEM OF NONLINEAR F18NRSG SOLVES A SYSTEM OF NONLINEAR EQUATIONS BY CALLING SUBROUTINE QNWT A NUMBER OF TIMES WITH DIFFERENT INITIAL GUESSES. F18RONWT LEMS IN ORDINARY D'FFERENTIAL EQUATIONS BY COMBINING AN INITIAL VALUE SOLVER WITH A NONLINEAR EQUATION SOLVING PROGRAM. F14BVD SOLVES A SYSTEM OF NONLINEAR EQUATIONS BY COMPUTING IN EACH ITERATION A CORRECTION VECTOR TO THE TRIAL SOLUTION VECTOR WITH THE N F18NEWT SOLVES A SYSTEM OF NONLINEAR EQUATIONS BY USING THE NEWTON RAPHSON METHOD IN THE FIRST ITERATION AND BY UPDATING THE APPROXIMATIO F18QNWT

			,
	SOLVES A SYSTEM OF LINEAR	EQUATIONS OR SEVERAL SYSTEMS WITH THE SAME LEFT HAND SIDE BY GAUSSIAN ELIMINATION USING DOOLITTLES M	FIBLINSYS
	T ORDER ORDINARY DEFFERENTIAL	EQUATIONS OF SEVERAL SYSTEMS WITH THE SAME LEFT HAND SIDE BY GAUSSIAN ELIMINATION USING DUCLITILES M EQUATIONS USING A PREDICTOR CORRECTOR METHOD OF EIGHTH ORDER AND PICARDS METHOD OF SUCCESSIVE SUBSTI	F14BLCKDQ
	T ORDER ORDINARY DIFFERENTIAL	EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNIQUE BASED ON A MODIFIED MIDPOINT RULE; EFFICIENT FOR	F14DRATEX
	T ORDER ORDINARY DIFFERENTIAL	EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TECHNIQUE EFFICIENT FOR LOW ACCURACY WORK,	F14RKINIT
	SYSTEM OF NONLINEAR ALGEBRAIC	EQUATIONS USING THE GENERALIZED SECANT METHOD MODIFYING THE STEP VECTOR WHEN THE SET OF GUESSES TEND	FIBNONLIO
	THE SECOND ORDER DIFFERENTIAL	EQUATION A*X.	F16DE+G
	WITH PARTIAL PIVOTING AND ROW	EQUILIBRATION	F16CGLESM
	WITH PARTIAL PIVOTING AND ROW	EQUILIBRATION	F16GLESOM
	WITH PARTIAL PIVOTING AND ROW WITH PARTIAL PIVOTING AND ROW	EQUILIBRATION.	F16GLESDS F16INVERS
	WITH PARTIAL PIVOTING AND RCW WITH PARTIAL PIVOTING AND RCW	EQUILIBRATION. EQUILIBRATION.	F16INVERS F16INVITR
	PARTIAL PIVOTING AND YMPLICIT	EQUILIBRATION, THE DETERMINANT IS ALSO AVAILABLE,	F16BLESOM
	WITH PARTIAL PIVOTING AND RCW	EQUILIBRATION; ALSO COMPUTES ITS DETERMINANT.	F16CDECOM
	WITH PARTIAL P.VOTING AND ROW	EQUILIBRATION; THE DETERMINANT IS AVALUABLE,	F16DECOM
	PARTIAL PIVOTING AND IMPLICIT	EQUIL BRATION A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS.	F16BDECOM
	PARTIAL PIVOTING AND IMPLICIT	EQUILIBRATION AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER.	F16BITRFM
	WITH PARTIAL PIVOTING AND RCW	EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NUMBER OF THE MATRIX AN	F16GITRFM
	WITH PARTIAL PIVOTING AND ROW	EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NUMBER OF THE MATRIX AN	F16GITRF5
	PARTIAL PIVOTING AND IMPLICIT	EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BDECOM.	F16BFBSUM
	PARTIAL PIVOTING AND IMPLICIT WITH PARTIAL PIVOTING AND ROW	EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER. Equilibration has been carried out, possibly by subroutine cdecom.	F16BITERM
	WITH PARTIAL POUTING AND ROW	EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE CDECOM, Equilibration has been carried out; the determinant and condition number are available.	F16CF8SUM F16CG TRF
	WITH PARTIAL PIVOTING AND ROW	EQUILIBRATION HAS BEEN CARRIED OUT THE DETERMINANT AND CONDITION NUMBER ARE AVAILABLE.	F16CITERF
	WITH PARTIAL PIVOTING AND ROW	EQUILIBRATION HAS BEEN CARRIED OUT BY SUBROUTINE DECOM.	F16DETERM
	WITH PARTIAL P. VOTING AND ROW	EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE DECOM.	F16FBSUBM
	WITH PARTIAL PIVOTING AND ROW	EQUILIBRATION HAS BEEN CARRIED OUT.	F16FESUBS
	WITH PARTIAL PEVOTING AND ROW	EQUILIBRATION HAS BEEN CARRIED OUT.	F16ITERIN
6	UNCTION GIVEN AS A TABLE WITH	EQUISPACED ARGUMENTS, AT A TABULAR POINT OR AT THE MIDPOINT OF AN INTERVAL.	F15DIFTAB
P.	BLE OVER A FINITE INTERVAL OF	EQUISPACED VALUES.	F15PARBC
	OF ITS ROOTS THROUGH FORWARD	ERROR ANALYSIS.	F18CNSLVL
	COMPLEX ROOTS THROUGH FORWARD E Rayleigh Quotient and gives	ERROR ANALYS'S. Error bounds.	F18NSLVL F16FLGCHK
	COMPUTES THE	ERROR BUUNDS. Error function by expansion in chebyshev series,	F16E/GCHK F13ERF
	COMPUTES THE INVERSE OF THE	ERROR FUNCTION BY EXPANSION IN CHEDISHEV SERIES,	F13ERFINV
	ESTIMATES THE ROUNDING	ERROR IN THE EVALUATION OF A COMPLEX POLYNOMIAL NEAR ONE OF ITS ROOTS THROUGH FORWARD ERROR ANALYSIS	F18CNSLVL
	ESTIMATES THE ROUNDING	ERROR IN THE EVALUATION OF A POLYNOMIAL WITH REAL COEFFICIENTS NEAR ONE OF ITS COMPLEX ROOTS THROUGH	FIBNSLVL
	ENEITY OF A GROUP OF VARIANCE	EST MATES.	F17BRTLTT
	BEEN CARRIED OUT AND GIVES AN	ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER.	F16CITERF
	BRATION AND PROVIDES DATA FOR	ESTIMATING THE DETERMINANT AND CONDITION NUMBER OF THE MATRIX AND THE NUMBER OF CORRECT DIGITS IN TH	F16GITRFS
	BRATION AND PROVIDES DATA FOR	ESTIMATING THE DETERMINANT AND CONDITION NUMBER.	F16LITWNE
	IVOTING AND PROVIDES DATA FOR	ESTIMATING THE DETERMINANT AND CONDITION NUMBER.	F16LITWNP
	LCULATING THE DETERMINANT AND LCULATING THE DETERMINANT AND	ESTIMATING THE CONDITION NUMBER OF THE MATRIX. Estimating the Condition number of the Matrix.	F16PDITRS
	RCH SUBROUTINE TO COMPUTE THE	EUCLIDIAN NORM OF A VECTOR,	F16PDITRM C16FABSV
	MON FACTOR OF TWO INTEGERS BY	EUCLIDS ALGORITHM.	E11HCF
	CONSTRUCTS, USING THE	EXCHANGE ALGORITHM, THE MINIMAX POLYNOMIAL THROUGH A DISCRETE, WEIGHTED SET OF POINTS.	F15CFQME
	SUM OF A PRESCRIBED NUMBER OF	EXPONENTIALS, TO A SET OF N EQUALLY SPACED DATA POINTS.	F15PRONY
	DOM NUMBERS HAVING A NEGATIVE	EXPONENTIAL DISTRIBUTION.	F17EXRAND
	DISTRIBUTION FUNCTION OF THE	EXPENENTIAL DISTRIBUTION.	F17PIEXP
	DISTRIBUTION FUNCTION OF THE	EXPONENTIAL DISTRIBUTION.	F17PRBEXP
	COMPUTES THE	EXPONENTIAL FUNCTION OF A REAL ARGUMENT.	C12EXP
	COMPUTES THE	EXPONENTIAL FUNCTION OF A DOUBLE PRECISION REAL ARGUMENT,	C12DEXP
	COMPUTES THE EVALUATES AN	EXPONENTIAL FUNCTION OF A COMPLEX ARGUMENT. Exponential integral by Hermite Gauss quadrature formulas.	C12CEXP
	EVALUATES AN Evaluates an	EXPONENTIAL INTEGRAL BY HERMITE GAUSS QUADRATURE FORMULAS. Exponential integral by Laguerre Gauss quadrature formulas.	F15HERMIT F15LAGUER
	F PROGRAMS TO PERFORM GENERAL	EXPONENTIAL INTEGRAL BE LAGUERRE GAUSS GUADRATURE FORMULAS. EXPONENTIATION, A**B, FOR VARIOUS COMBINATIONS OF A AND B, INTEGER, REAL, COMPLEX, AND DOUBLE PRECIS	C12PS1132
	EVALUATES GENERAL	EXPONENTIATION (445, FOR COMPLEX BASE AND REAL EXPONENT.	C12PS1132 F12CBAREX
	**R FOR COMPLEX BASE AND REAL	EXPONENT.	F12CBAREX
	CALCULATES MANTISSA AND	EXPONENT (BASE 2) OF THE DETERMINANT OF A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGO	F16DETERM
	EAL POLYNOMIAL BY A QUADRATIC		

	EX POLYNOMIAL BY A QUADRATIC	EXPRESSION.	F13CQDIV
	AL EQUATIONS USING A RATIONAL	EXTRAPOLATION TECHNIQUE BASED ON A MODIFIED MIDPOINT RULE; EFFICIENT FOR HIGH ACCURACY WORK,	F14DRATEX
E	ERIES BY USE OF LANCZOS SIGMA	FACTORS.	F15SIGSMT
Α	A REAL POLYNOMIAL BY A LINEAR	FACTOR, X+8, WHERE B MAY BE COMPLEX.	F13LDIV
0	OMPLEX POLYNOMIAL BY A LINEAR		F13CLDIV
L.,	LIES A POLYNOMIAL BY A LINEAR	FACTOR	F13FMULT1
	FINDS THE HIGHEST COMMON	FACTOR, ATD, WHERE B MAY BE COMPLEX. FACTOR, FACTOR OF TWO INTEGERS BY EUCLIDS ALGORITHM. FAST FOURIER TRANSFORM OF AN ARRAY OF COMPLEX FOURIER AMPLITUDES. FIFTH DEGREE SPLINE INTERPOLATING A SET OF EQUISPACED DATA. FILTER, FINITE FOURIER SERIES WITH A LINEAR TREND THROUGH A SET OF EQUISPACED POINTS. FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION	FIIHCE
3	COMPUTÉS THE	FAST FOURIER TRANSFORM OF AN ARRAY OF COMPLEX FOURIER AMPLITUDES.	F17HARM
	CONSTRUCTS A	FIFTH DEGREE SPLINE INTERPOLATING A SET OF EQUISPACED DATA.	FISSPLINE
n	OVING AVERAGE AUTO REGRESSIVE		F17FILTER
	CONSTRUCTS COEFFICIENTS OF A	FINITE FOURTER SERIES WITH A LINEAR TREND THROUGH A SET OF FOURSPACED POINTS.	F15FOUR!
	ETE ELLIPTIC INTEGRAL OF THE	FIRST AND SECOND KINDS BY USING LANDERS TRANSFORMATION	F13ELK
	LETE ELLIPTIC INTEGRAL OF THE	FIRST AND SECOND KINDS OF GOTING LANDENS TRANSFORMATION	F13ELF
	IFIED BESSEL FUNCTIONS OF THE		F13BESNIS
	RICAL BESSEL FUNCTIONS OF THE	FIRST VIND FOR REAL ARGUMENT BY SOMMADD OD BACHWARD RECORDION,	F1385J
	PUTES BESSEL FUNCTIONS OF THE	FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION, FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION, FIRST KIND FOR REAL ARGUMENT BY USING BACKWARD RECURSION, FIRST KIND FOR REAL ARGUMENT BY FORWARD OR BACKWARD RECURSION WITH STARTING VALUES, FIRST KIND FOR DEAL ARGUMENT AND INTEGER OPDERS BY USING BACKWARD RECURSION	F13NBESJ
۳		THE AND TOR ACKE AROUNDED AND THIESEN ORDERS OF OUTHE EXCREMED ACCORSION.	
	SOLVES A SYSTEM OF		F14BLCKDQ
	SOLVES A SYSTEM OF	FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNIQUE BASED ON A MODI	F14DRATEX
	SOLVES A SYSTEM OF	FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TECHNIQUE EFFICIENT FO	F14RKINIT
F	F THE BESSEL FUNCTIONS OF THE	FIRST OR SECOND KINDS FOR COMPLEX ARGUMENT AND COMPLEX ORDER.	F13COMBES
		FITS, IN THE SENSE OF LEAST SQUARES, TO A GIVEN SET OF POINTS THE BEST LINEAR COMBINATION OF A SET O	F150RTHFT
		FITS A SMOOTH SURFACE WITH CONTINUOUS FIRST PARTIAL DERIVATIVES TO A SET OF POINTS DEFINED OVER A RE	F15SURFS
	CONSTRUCTS A BEST	FITTING LINE TO A NUMBER OF DATA POINTS, IN THE SENSE THAT THE SUM OF THE SQUARES OF THE PERPENDICUL	F15FITLIN
1	I SQUARE TEST FOR GOODNESS OF	F i T,	F17CHIDST
S	SE APPROXIMATION TO A MINIMAX	FIT OF A GIVEN FUNCTION OVER A GIVEN INTERVAL.	F15CHEBAP
	GENERATES UNIFORM RANDOM	FLOATING POINT NUMBERS BETWEEN TWO GIVEN VALUES.	F17XIRAND
S	SING A 5-POINT GAUSS LEGENDRE	FORMULA TO A NUMBER OF SUBINTERVALS SPECIFIED BY THE USER.	F15GM
	MATRIX INTO UPPER HESSENBERG	FORM ACCORDING TO HOUSEHOLDERS METHOD,	F16SUBDIR
N	NEAR ONE OF ITS ROOTS THROUGH	FORWARD ERROR ANALYSIS.	F18CNSLVL
	OF ITS COMPLEX ROOTS THROUGH	FORWARD ERROR ANALYSIS.	F18NSLVL
R	ST KIND FOR REAL ARGUMENT BY	FIL OF A GIVEN FUNCTION OVER A GIVEN INTERVAL. FLOATING POINT NUMBERS BETWEEN TWO GIVEN VALUES, FORMULA TO A NUMBER OF SUBINTERVALS SPECIFIED BY THE USER. FORM ACCORDING TO HOUSEHOLDERS METHOD, FORWARD ERROR ANALYSIS. FORWARD ERROR ANALYSIS. FORWARD OR BACKWARD RECURSION WITH STARTING VALUES. FOURIER AMPLITUDES. FOURIER SERIES, GIVEN THE COEFFICIENTS OF THE TRIGONOMETRIC POLYNOMIAL, FOURIER SERIES, GIVEN THE COEFFICIENTS OF THE TRIGONOMETRIC POLYNOMIAL, FOURIER SERIES WITH A LINEAR TREND THROUGH A SET OF EQUISPACED POINTS. FOURIER SERIES WITH LINEAR TREND THROUGH A SET SQUARES SENSE, TO A SET OF EQUISPACED DATA.	F13BSJ
	SFORM OF AN ARRAY OF COMPLEX	FOUR ER AMPLITUDES.	F17HARM
	CIENTS OF THE DERIVATIVE OF A	FOUR ER SERIES, GIVEN THE COEFFICIENTS OF THE TRIGONOMETRIC POLYNOMIAL.	F15TRGDIF
L	UCTS COEFFICIENTS OF A FINITE	FOURIER SERIES WITH A LINEAR TREND THROUGH A SET OF EQUISPACED POINTS.	F15FOURI
	UCTS COEFFICIENTS OF THE BEST	FOURIER SERIES WITH LINEAR TREND. IN THE LEAST SQUARES SENSE. TO A SET OF EQUISPACED DATA.	F15FOURAP
	DNSTRUCTS COEFFICIENTS OF THE	FOUR ER SERIES WITH A LINEAR TREND THAT IS OBTAINED BY INTEGRATION OF A TRIGONOMETRIC POLYNOMIAL.	F15TRGINT
	PERFORMS SMOOTHING OF A	POURTER SERIES BY USE OF LANCZOS SIGMA FACTORS.	F15SIGSMT
	COMPUTES THE FAST	FOUR ER TRANSFORM OF AN ARRAY OF COMPLEX FOURIER AMPLITUDES.	F17HARM
	CHANGES A VECTOR WITH	FRACTIONAL COMPONENTS INTO ONE WITH INTEGER COMPONENTS TIMES A SCALAR FUNCTION.	F11FFRAC
	A ARGUMENT BY USING CONTINUED		F13LOGGAM
		FRACTIONS, Fractions, and everyters, the regult as a spaction in its lowest terms	
	ADDS TWO	FRACTIONS, Fractions and expresses the result as a fraction in its lowest terms, practions and expresses the desult as a fraction in its lowest terms.	F11FAFRAC
	MULTIPLIES TWO	TRACTIONS AND EXTRESSED THE RESSEL TO A TRACTION TH THE EDGEST (Endot	F11FMFRAC
ρ	ATIONAL FUNCTION INTO PARTIAL	FRACTIONS GIVEN THE ROOTS OF THE DENOMINATOR POLYNOMIAL AND THE COEFFICIENTS OF THE NUMERATOR POLYNO	
~	PERFORMS A SINGLE CONTINUED	FRACTION INTERPOLATION USING INVERTED DIFFERENCES ON TABULAR DATA WITH ARBITRARY SPACING.	F15ACF1
	R GIVEN EXPECTED AND OBSERVED	FREQUENCIES.	F17CHSQ0
	A SEQUENCE OF MODIFIED BESSEL	FUNCTIONS OF THE FIRST KIND FOR REAL ARGUMENT BY USING BACKWARD RECURSION.	F13BESNIS
	A SEQUENCE OF MODIFIED BESSEL	FUNCTIONS OF THE SECOND KIND FOR REAL ARGUMENT BY USING POLYNOMIAL APPROXIMATIONS AND THE SUBROUTINE	
	SWQUENCE OF SPHERICAL BESSEL	FUNCTIONS OF THE FIRST KIND FOR REAL ARGUMENT BY FORWARD OR BACKWARD RECURSION WITH STARTING VALUES.	
P	PUTES SEQUENCES OF THE BESSEL	FUNCTIONS OF THE FIRST OR SECOND KINDS FOR COMPLEX ARGUMENT AND COMPLEX ORDER.	F13COMBES
	COMPUTES BESSEL	FUNCTIONS OF THE FIRST KIND FOR REAL ARGUMENT AND INTEGER ORDERS BY USING BACKWARD RECURSION.	F13NBESJ
c	COMPUTES A SEQUENCE OF BESSEL	FUNCTIONS OF THE SECOND KIND FOR POSITIVE REAL ARGUMENT AND INTEGER ORDERS.	F13RBESY
G	SER COMPONENTS TIMES A SCALAR	FUNCTION.	F11FFRAC
ິດ	QUARE CUMULATIVE DISTRIBUTION	FUNCTION.	F17CHIPRB
	COMPUTES THE INCOMPLETE GAMMA	FUNCTION.	F17GAMAIN
	CONSTRUCTS A MINIMAX	FUNCTION APPROXIMATION TO A SET OF GIVEN POINTS IN TERMS OF A LINEAR COMBINATION OF A PRESCRIBED SET	F15MIGEN
c	CONSTRUCTS A MINIMAX RATIONAL	FUNCTION APPROXIMATION OF GIVEN DEGREE TO A DISCRETE DATA SET.	F15MINRAT
	COMPUTES THE ERROR	FUNCTION BY EXPANSION IN CHEBYSHEV SERIES.	F13ERF
1	UTES THE INVERSE OF THE ERROR	FUNCTION BY NEWTONS METHOD.	F13ERFINV
		FUNCTION FOR COMPLEX ARGUMENT BY USING CONTINUED FRACTIONS.	F13LOGGAM
	ATURAL LOGAR THM OF THE GAMMA	FUNCTION FOR COMPLEX ARGUMENT BY USING CONTINUED FRACTIONS.	

RESOLVES A RATIONAL	FUNCTION INTO PARTIAL FRACTIONS GIVEN THE ROOTS OF THE DENOMINATOR POLYNOMIAL AND THE COEFFICIENTS O	F13PARFAC
construction of the second	na na anglan na na na ang ang ang ang ang ang ang	F18ZCOUNT
EVALUATES THE GAMMA	FUNCTION OF A REAL ARGUMENT BY USING RATIONAL APPROXIMATION, FUNCTION OF THE BETA DISTRIBUTION, FUNCTION OF THE BINOMIAL DISTRIBUTION, FUNCTION OF THE CAUCHY DISTRIBUTION, FUNCTION OF THE CAUCHY DISTRIBUTION, FUNCTION OF THE GEOMETRIC DISTRIBUTION, FUNCTION OF THE GEOMETRIC DISTRIBUTION, FUNCTION OF THE GEOMETRIC DISTRIBUTION, FUNCTION OF THE UNIFORM DISTRIBUTION, FUNCTION OF THE UNIFORM DISTRIBUTION, FUNCTION OF THE NORMAL DISTRIBUTION, FUNCTION OF THE UNIFORM DISTRIBUTION, FUNCTION OF THE WINFORM DISTRIBUTION, FUNCTION OF THE EXPONENTIAL DISTRIBUTION, FUNCTION OF THE EXPONENTIAL DISTRIBUTION, FUNCTION OF THE EXPONENTIAL DISTRIBUTION, FUNCTION OF THE EXPONENTIAL DISTRIBUTION, FUNCTION OF THE GEOMETRIC DISTRIBUTION, FUNCTION OF THE GEOMETRIC DISTRIBUTION, FUNCTION OF THE GEOMETRICION, FUNCTION OF THE GEOMENT DISTRIBUTION, FUNCTION OF THE GEOMENT DISTRIBUTION, FUNCTION OF THE GAMMA DISTRIBUTION, FUNCTION OF THE CAUCHY DISTRIBUTION, FUNCTION OF THE CAUCHY DISTRIBUTION, FUNCTION OF THE AUXLEIGH DISTRIBUTION, FUNCTION OF THE TO DISTRIBUTION, FUNCTION OF THE SUBARENT T DISTRIBUTION, FUNCTION OF THE BISONIAL DISTRIBUTION, FUNCTION OF THE BISON DISTRIBUTION, FUNCTION OF THE BISON DISTRIBUTION, FUNCTION OF THE BISON DISTRIBUTION, FUNCTION OF THE BISON DISTRIBUTION, FUNCTION OF THE DISCRETE UNIFORM DISTRIBUTION, FUNCTION OF THE BISON DISTRIBUTION, FUNCTION OF THE BORMIAL DISTRIBUTION, FUNCTION OF THE RAYLE GEOMETRIC DISTRIBUTION, FUNCTION OF THE ROPERAL DISTRIBUTION, FUNCTION OF TH	F13GAMMA
S THE CUMULATIVE DISTRIBUTION	FUNCTION OF THE BETA DISTRIBUTION.	F17PBETA
S THE CUMULATIVE DISTRIBUTION	FUNCTION OF THE BUNGMIAL DISTRIBUTION.	F17PBINOM
S THE CUMULATIVE DISTRIBUTION S THE CUMULATIVE DISTRIBUTION	FUNCTION OF THE CAUCHY DISTRIBUTION.	F17PCHY F17PFD.IST
S THE CUMULATIVE DISTRIBUTION	FUNCTION OF THE GOVERTHE DISTRIBUTION,	F17PGEOM
S THE CUMULATIVE DISTRIBUTION	FUNCTION OF THE GAMMA DISTRIBUTION.	F17PGMMA
S THE CUMULATIVE D'STRIBUT ON	FUNCTION OF THE HYPER GEOMETRIC DISTRIBUTION.	F17PHYPGE
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE UNIFORM DISTRIBUTION.	F17PIUNF
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE NORMAL DISTRIBUTION.	F17PINORM
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE EXPONENTIAL DISTRIBUTION.	F17PIEXP
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE TRUNCATED NORMAL DISTRIBUTION,	F17PITRNM F17PILGNM
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE LOG NORMAL DISTRIBUTION.	F17PIWEBL
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE GAMMA DISTRIBUTION.	F17PIGAMA
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE BETA DISTRIBUTION.	F17PIBETA
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE CAUCHY DISTRIBUTION.	F17PICHY
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE RAYLEIGH DISTRIBUTION.	F17PIRAYL
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE CHI SQUARE DISTRIBUTION.	F17PICHI
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE F (VARIANCE RATIO) DISTRIBUTION.	F17PIFDIS
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE SIDENTS (DISTRIBUTION,	F17PIT F17PIUNFD
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE BINOMIAL DISTRIBUTION.	F17PIBIN
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE POISSON DISTRIBUTION.	F17PIPOIS
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE HYPER GEOMETRIC DISTRIBUTION.	F17PIHYPG
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE NEGATIVE BINOMIAL DISTRIBUTION.	F17PINBIN
VERSE CUMULATIVE DISTRIBUTION	FUNCTION OF THE GEOMETRIC DISTRIBUTION,	F17PIGEO
S THE CUMULATIVE DISTRIBUTION S THE CUMULATIVE DISTRIBUTION	FUNCTION OF THE LOG NORMAL DISTRIBUTION, FUNCTION OF THE NEGATIVE BINOMIAL DISTRIBUTION, FUNCTION OF THE NORMAL DISTRIBUTION.	F17PLGNRM F17PNBIN
S THE CUMULATIVE DISTRIBUTION	FUNCTION OF THE NORMAL DISTRIBUTION.	F17PNORM
S THE CUMULATIVE DISTRIBUTION	FUNCTION OF THE POISSON DISTRIBUTION.	F17POIS
S THE CUMULATIVE DISTRIBUTION	PUNCTION OF THE DAMED OF DISTOLDUTION	F17PRAYL
S THE CUMULATIVE D STRIBUTION	FUNCTION OF THE EXPONENTIAL DISTRIBUTION. FUNCTION OF THE EXPONENTIAL DISTRIBUTION. FUNCTION OF THE UNIFORM DISTRIBUTION. FUNCTION OF THE STUDENTS T DISTRIBUTION.	F17PRBEXP
S THE CUMULATIVE DISTRIBUTION	FUNCTION OF THE UNIFORM DISTRIBUTION.	F17PRBUNF
S THE CUMULATIVE D STRIBUTION	FUNCTION OF THE STUDENTS T DISTRIBUTION.	F17PTDIST
S THE CUMULATIVE D STRIBUTION S THE CUMULATIVE D STRIBUTION	FUNCTION OF THE TRUNCATED NORMAL DISTRIBUTION. Function of the discrete uniform distribution.	F17PTRNRM F17PUNFD
S THE CUMULATIVE DISTRIBUTION	FUNCTION OF THE WEIBULL DISTRIBUTION.	F17PWEBL
NUMBER OF ZEROS OF A COMPLEX	FUNCTION USING A METHOD DESCRIBED BY JARRATT AND NUDDS FOR APPROXIMATION OF ONE ZERO AND FACTORING O	F18ZAFUJ
ERANCE USING AN INTERPOLATING	FUNCTION WHICH ATTEMPTS TO MINIMIZE THE RIPPLE IN CURVATURE,	F15RICH
UMBER OF REAL ZEROS OF A REAL	FUNCTION WITH A METHOD DESCRIBED BY JARRATT AND NUDDS FOR APPROXIMATION OF ONE ZERO AND FACTORING OU	F18ZAFUR
NUMBER OF ZEROS OF A COMPLEX	FUNCTION WITH MULLERS METHOD AND FACTORING OUT PREVIOUSLY FOUND ZEROS,	F18ZAFUM
OF DATA POINTS BY A RATIONAL	FUNCTION WITH NUMERATUR AND DENUMINATUR OF A SPECIFIED DEGREE.	F15RATL
DISTRIBUTION FUNCTION OF THE DISTRIBUTION FUNCTION OF THE	F (VARIANCE RATIO) DISTRIBUTION, F (VARIANCE RATIO) DISTRIBUTION,	F17PFDIST F17PIFDIS
DISTRIBUTION FUNCTION OF THE	GAMMA DISTRIBUTION.	F17PGMMA
DISTRIBUTION FUNCTION OF THE	GAMMA DISTRIBUTION.	F17PIGAMA
COMPUTES THE INCOMPLETE	GAMMA FUNCTION.	F17GAMAIN
EVALUATES THE	GAMMA FUNCTION OF A REAL ARGUMENT BY USING RATIONAL APPROXIMATION.	F13GAMMA
THE NATURAL LOGAR THM OF THE	GAMMA FUNCTION FOR COMPLEX ARGUMENT BY USING CONTINUED FRACTIONS.	F13LOGGAM
DECOMPOSES BY	GAUSSIAN ELIMINATION WITHOUT PIVOTING A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS; THE	F16BDCWNP
DECOMPOSES BY	GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION A REAL BANDMATRIX INTO UPPER A GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION AND GIVES AN ESTIMATE FOR THE	F16BDECOM
EVERAL RIGHT-HAND SIDES USING	GAUSSIAN ELIMINATION WITH PARTIAL FIVOTING AND IMPLICIT EQUILIBRATION AND GIVES AN ESTIMATE FOR THE GAUSSIAN ELIMINATION WITHOUT PIVOTING AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBE	F16BITRFM F16BITWNP
EVERAL RIGHT-HAND SIDES USING	GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION; THE DETERMINANT IS ALSO AVAIL	F16BLESOM
EVERAL RIGHT-HAND SIDES USING	GAUSSIAN ELIMINATION WITHOUT PIVOTING; THE DETERMINANT IS ALSO AVAILABLE.	F16BLSWNP
TH THE SAME LEFT HAND SIDE BY	GAUSSIAN ELIMINATION USING DOOLITTLES METHOD AND APPLYING PARTIAL PIVOTING AND DOUBLE PRECISION ARIT	F18LINSYS
NITE INTERVAL, USING LEGENDRE	GAUSS FORMULAS AND UNEQUAL SUBINTERVALS.	F15QUAD

м. .

	PERFORMED BY USING A 5-POINT	GAUSS LEGENDRE FORMULA TO A NUMBER OF SUBINTERVALS SPECIFIED BY THE USER.	F15GMI
	PONENTIAL INTEGRAL BY HERMITE		FISHERMIT
	ONENTIAL INTEGRAL BY LAGUERRE	GAUSS QUADRATURE FORMULAS.	F15LAGUER
	INITE INTERVAL USING LEGENDRE	GAUSS QUADRATURE FORMULAS	F15LEGEND
	F THE THIRD KIND BY USING THE	GAUSS TRANSFORMATION; COULD BE USED FOR COMPLETE ELLIPTIC INTEGRAL OF THE THIRD KIND SOMETIMES.	F13EL3
	ALGEBRAIC EQUATIONS USING THE	GENERALIZED SECANT METHOD MODIFYING THE STEP VECTOR WHEN THE SET OF GUESSES TEND TO BECOME LINEARLY	FIBNONLIQ
	REDUCE THE	GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM.	F16REDSY1
	REDUCE THE	GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM.	F16REDSY2
	A SET OF PROGRAMS TO PERFORM	GENERAL EXPONENTIATION, A**8, FOR VARIOUS COMBINATIONS OF A AND B, INTEGER, REAL, COMPLEX, AND DOUBL	
	EVALUATES	GENERAL EXPONENTIATION, 4**8, FOR VARIOUS COMBINATIONS OF A AND B, INTEGER, REAL, COMPLEX, AND DOUBL GENERAL EXPONENTIATION C**R FOR COMPLEX BASE AND REAL EXPONENT.	C12PS1132
	LYARUNG		F12CBAREX
		GENERATES RANDOW NUMBERS HAVING A NEGATIVE EXPONENTIAL DISTRIBUTION,	F17EXRAND
		GENERATES RANDOW NUMBERS HAVING A NORMAL DISTRIBUTION AND STORES THE VALUES IN A MULTIPLEXED ARRAY.	F17NRAND
		GENERATES RANDOM NUMBERS HAVING A NORMAL DISTRIBUTION.	F17NRML
			F17NRMNO
		GENERATES RANDOM INTEGERS HAVING THE POISSON DISTRIBUTION.	F17PORAND
		GENERATES RANDOM NUMBERS HAVING UNIFORM OR NORMAL DISTRIBUTION.	F17RAND
		GENERATES RANDOM NUMBERS HAVING A UNIFORM DISTRIBUTION AND STORES THE VALUES AS ONE VARIABLE IN A NU	F17URAND
		JENERATES UNFFORM RANDOM INTEGERS BETWEEN TWO GIVEN VALUES.	F17 RAND
		GENERATES UNFFORM RANDOM FLOATING POINT NUMBERS BETWEEN TWO GIVEN VALUES.	F17XIRAND
	DISTRIBUTION FUNCTION OF THE	GEOMETRIC DISTRIBUTION.	F17PGEOM
	IBUTION FUNCTION OF THE HYPER	GEOMETRIC DISTRIBUTION.	F17PHYPGE
	IBUTION FUNCTION OF THE HYPER	GEOMETRIC DISTRIBUTION.	F17PIHYPG
	DISTRIBUTION FUNCTION OF THE	GEOMETRIC DISTRIBUTION.	F17PIGEO
	PERFORMS CHI SQUARE TEST FOR		F17CHIDST
	USING THE METHOD OF CONJUGATE	GRAD ENT.	F16CCONGR
	ES ACCORDING TO THE CONJUGATE		F16FCGM2
	AR MATRIX USING THE CONJUGATE		
	TIMES WITH DIFFERENT NITIAL	GUESSES.	F16SCONG
	CALCULATES A	GUESS OF AN EIGENVALUE TO A COMPLEX HESSENBERG MATRIX USING HYMANS METHOD TO EVALUATE THE DETERMINAN	F18RQNWT F16DTCHFT
	EVALUATES THE COMPLEX VALUED		F16DTSHFT
		HANKEL FUNCTION FOR REAL ARGUMENT AND INTEGER ORDER BY SUMMATION OF SERIES FOR BESSEL FUNCTIONS.	FISHANKEL
	INTEGERS BY USING SUBROUTINE		F11LCM
	ES AN EXPONENTIAL NTEGRAL BY		F15HERMIT
	PERFORMS	the second of the second strength and the second stren	F15HRMT1
	PERFORMS		F15HRMT2
	FFICIENTS OF THE N+M+1 DEGREE		F15FHRNEW
	NVALUES AND EIGENVECTORS OF A		F16TCD AG
	SFORMS A REAL MATRIX TO UPPER		F16HSSN
	ORMS A REAL MATRIX INTO UPPER	HESSENBERG FORM ACCORDING TO HOUSEHOLDERS METHOD.	F16SUBDIR
	REDUCES A COMPLEX MATRIX TO	HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD.	F16SUBDIA
	GLE REAL EIGENVALUE OF A REAL	HESSENDERG FORM ACCORDING TO HOUSEHOLDERS METHOD, HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD, HESSENBERG MATRIX BY MEANS OF WIELANDT INVERSE ITERATION. HESSENBERG MATRIX.	F16EIGIMP
	GLE REAL EIGENVALUE OF A REAL	HESSENBERG MATRIX BY MEANS OF INVERSE ITERATION.	FIGEIGVCH
	ERATION ON A SIMILAR BALANCED	HESSENBERG MATRIX.	F16QREIGN
	GLE COMPLEX OR ITERATION ON A		F160R1
	OF AN EIGENVALUE TO A COMPLEX	HESSENBERG MATRIX USING HYMANS METHOD TO EVALUATE THE DETERMINANT.	F16DTSHFT
	TION ON THE EIGENVECTORS OF A		F16SIMP
	ING OR TERATION ON A SIMILAR		F16VALVEC
	FINDS THE		F11HCF
4			F17HSTGRM
	FR INTERVALS! USED TO PRODUCE		
	ED INTERVALS; USED TO PRODUCE EPEOPMS HAPTLETTS TEST OF THE	HISTORAMS, Homoschethy of a coold of Variance fortmates	
	ED INTERVALS; USED TO PRODUCE ERFORMS BARTLETTS TEST OF THE	HONCGENEITY OF A GROUP OF VARIANCE ESTIMATES.	F17BRTLTT
	ED INTERVALS; USED TO PRODUCE ERFORMS BARTLETTS TEST OF THE M PROVIDED DECOMPOSITION WITH	HISTOGRAMS. Homogeneity of a group of Variance Estimates. Householders method has been carried out.	F17BRTLTT F16BSUBHT
	ED INTERVALS; USED TO PRODUCE ERFORMS BARTLETTS TEST OF THE M PROVIDED DECOMPOSITION WITH INTO UPPER TRIANGULAR FORM BY	HONGENEITY OF A GROUP OF VARIANCE ESTIMATES. HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT. HOUSEHOLDERS METHOD.	F17BRTLTT F16BSUBHT F16DCBHT
	ED INTERVALS; USED TO PRODUCE ERFORMS BARTLETTS TEST OF THE M PROVIDED DECOMPOSITION WITH INTO UPPER TRIANGULAR FORM BY M PROVIDED DECOMPOSITION WITH	HONGGENEITY OF A GROUP OF VARIANCE ESTIMATES. Householders method has been carried out. Householders method. Householders method has been carried out.	F17BRTLTT F16BSUBHT F16DCBHT F16ITRLSQ
	ED INTERVALS; USED TO PRODUCE ERFORMS BARTLETTS TEST OF THE M PROVIDED DECOMPOSITION WITH INTO UPPER TRIANGULAR FORM BY M PROVIDED DECOMPOSITION WITH HESSENBERG FORM ACCORDING TO	HONOGENEITY OF A GROUP OF VARIANCE ESTIMATES. HONGEHOLDERS METHOD HAS BEEN CARRIED OUT. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT. HOUSEHOLDERS METHOD.	F17BRTLTT F16BSUBHT F16DCBHT F16TRLSQ F16SUBDIR
	ERFORMS BARTLETTS TEST OF THE M PROVIDED DECOMPOSITION WITH INTO UPPER TRIANGULAR FORM BY M PROVIDED DECOMPOSITION WITH HESSENBERG FORM ACCORDING TO R LEAST SQUARES PROBLEM USING	HOMOGENEITY OF A GROUP OF VARIANCE ESTIMATES. Householders method has been carried out. Householders method. Householders method has been carried out. Householders method.	F17BRTLTT F16BSUBHT F16DCBHT F161TRLSQ F16SUBDIR F16LSQSIT
	ERFORMS BARTLETTS TEST OF THE M PROVIDED DECOMPOSITION WITH INTO UPPER TRIANGULAR FORM BY M PROVIDED DECOMPOSITION WITH HESSENBERG FORM ACCORDING TO R LEAST SQUARES PROBLEM USING FORM USING A MODIFICATION OF	HOMOGENEITY OF A GROUP OF VARIANCE ESTIMATES. Householders method has been carried out. Householders method. Householders method has been carried out. Householders method.	F17BRTLTT F16BSUBHT F16DCBHT F16TRLSQ F16SUBDIR
	ERFORMS BARTLETTS TEST OF THE M PROVIDED DECOMPOSITION WITH INTO UPPER TRIANGULAR FORM BY M PROVIDED DECOMPOSITION WITH HESSENBERG FORM ACCORDING TO R LEAST SQUARES PROBLEM USING FORM USING A MODIFICATION OF REAL) OF A REAL MATRIX USING	HOMOGENEITY OF A GROUP OF VARIANCE ESTIMATES. HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT. HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT. HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD. HOUSEHOLDERS TRANSFORMATION FOLLOWED BY DOUBLE GR ITERATION.	F17BRTLTT F16BSUBHT F16DCBHT F16ITRLSQ F16SUBDIR F16LSQSIT F16SUBDIA F16LATNTR
	ERFORMS BARTLETTS TEST OF THE M PROVIDED DECOMPOSITION WITH INTO UPPER TRIANGULAR FORM BY M PROVIDED DECOMPOSITION WITH HESSENBERG FORM ACCORDING TO R LEAST SQUARES PROBLEM USING FORM USING A MODIFICATION OF REAL) OF A REAL MATRIX USING S OF A HERMITIAN MATRIX USING	HOMOGENEITY OF A GROUP OF VARIANCE ESTIMATES. HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD. HOUSEHOLDERS TRANSFORMATION FOLLOWED BY DOUBLE OR ITERATION. HOUSEHOLDERS TRANSFORMATION FOLLOWED BY DOUBLE OR ITERATION.	F17BRTLTT F16BSUBHT F16DCBHT F16ITRLSQ F16SUBDIR F16LSQSIT F16SUBDIA F16LATNTR
	ERFORMS BARTLETTS TEST OF THE M PROVIDED DECOMPOSITION WITH INTO UPPER TRIANGULAR FORM BY M PROVIDED DECOMPOSITION WITH HESSENBERG FORM ACCORDING TO R LEAST SQUARES PROBLEM USING FORM USING A MODIFICATION OF REAL) OF A REAL MATRIX USING	HOMOGENEITY OF A GROUP OF VARIANCE ESTIMATES. HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD. HOUSEHOLDERS TRANSFORMATION FOLLOWED BY DOUBLE OR ITERATION. HOUSEHOLDERS TRANSFORMATION FOLLOWED BY DOUBLE OR ITERATION.	F17BRTLTT F16BSUBHT F16DCBHT F16ITRLSQ F16SUBDIR F16LSQSIT F16SUBDIA F16LATNTR
	ERFORMS BARTLETTS TEST OF THE M PROVIDED DECOMPOSITION WITH INTO UPPER TRIANGULAR FORM BY M PROVIDED DECOMPOSITION WITH HESSENBERG FORM ACCORDING TO R LEAST SQUARES PROBLEM USING FORM USING A MODIFICATION OF REAL) OF A REAL MATRIX USING S OF A HERMITIAN MATRIX USING	HOMOGENEITY OF A GROUP OF VARIANCE ESTIMATES. HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD. HOUSEHOLDERS TRANSFORMATION FOLLOWED BY DOUBLE OR ITERATION. HOUSEHOLDERS TRANSFORMATION FOLLOWED BY DOUBLE OR ITERATION.	F17BRTLTT F16BSUBHT F16DCBHT F16ITRLSQ F16SUBDIR F16LSQSIT F16SUBDIA F16LATNTR F16TCDIAG
	ERFORMS BARTLETTS TEST OF THE M PROVIDED DECOMPOSITION WITH INTO UPPER TRIANGULAR FORM BY M PROVIDED DECOMPOSITION WITH HESSENBERG FORM ACCORDING TO R LEAST SQUARES PROBLEM USING FORM USING A MODIFICATION OF REAL) OF A REAL MATRIX USING S OF A HERMITIAN MATRIX USING X INTO TRIDIAGONAL FORM USING	HOMOGENEITY OF A GROUP OF VARIANCE ESTIMATES. HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD. HOUSEHOLDERS METHOD. HOUSEHOLDERS TRANSFORMATION FOLLOWED BY DOUBLE GR ITERATION. HOUSEHOLDERS TRANSFORMATION TO TRIDIAGONAL FORM FOLLOWED BY EITHER GR ITERATION OR LR ITERATION OR T HOUSEHOLDERS TRANSFORMATION.	F17BRTLTT F16BSUBHT F161TRLSQ F16SUBDIR F16SUBDIR F16SUBDIA F16LATNTR F16CDIAG F16TRIDI

MPL	EX HESSENBERG MATRIX USING	HYMANS METHOD TO EVALUATE THE DETERMINANT.	F16DTSHFT	
	COMPUTES THE	HYPERBOLIC COSINE TRIGONOMETRIC FUNCTION.	F12COSH	
	COMPUTES THE	HYPERBOLIC SINE TRIGONOMETRIC FUNCTION.	C12SINH	
· · · · · · · · · · · · · · · · · · ·	COMPUTES THE	HYPERBOLIC TANGENT TRIGONOMETRIC FUNCTION.	C12TANH	
DI	ISTRIBUTION FUNCTION OF THE	HYPER GEOMETRIC DISTRIBUTION.	F17PHYPGE	
	STRIBUTION FUNCTION OF THE	HYPER GEOMETRIC DISTRIBUTION.	F17PIHYPG	
	N WITH PARTIAL PIVOTING AND	MPLICIT EQUILIERATION A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS.	F16BDECOM	
	WITH PARTIAL P VOTING AND	IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BDECOM.	F16BFBSUM	
	N WITH PARTIAL PIVOTING AND	IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION	F16BITERM	
	WITH PARTIAL PIVOTING AND	IMPLICIT EQUILIBRATION AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER.	F16BITRFM	
101	N WITH PARTIAL POVOTING AND	IMPLICIT EQUILIBRATION: THE DETERMINANT IS ALSO AVAILABLE.	F16BLESOM	
		IMPROVES AN APPROXIMATE EIGENVALUE EIGENVECTOR PAIR OF A REAL SYMMETRIC MATRIX BY CALCULATING THE RA	F16EIGCHK	
	COMPUTES THE	NCOMPLETE BETA RATIO,	F178ETAR	
	EVALUATES THE	INCOMPLETE ELLIPTIC INTEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION.	F13ELF	
	EVALUATES THE	NCOMPLETE ELLIPTIC INTEGRAL OF THE THIRD KIND BY USING THE GAUSS TRANSFORMATION; COULD BE USED FOR	F13EL3	
	COMPUTES THE	INCOMPLETE GAMMA FUNCTION.	F17GAMAIN	
RDI	ING TO EITHER DECREASING OR	INCREASING MAGNITUDE IN A WAY WHICH IS NOT EFFICIENT FOR A LARGE SET OF NUMBERS.	F16VECORD	
	E IN A MULTIPLEXED ARRAY IN	INCREASING ORDER.	F17VARORD	
	BER OF TIMES WITH DIFFERENT	INITIAL GUESSES.	F18RQNWT	
	MPUTES THE DOUBLE PRECIS ON	INNER PRODUCT OF TWO VECTORS HAVING COMPLEX ELEMENTS.	F16CINPRD	
	UBROUTINES TO CALCULATE THE	NNER PRODUCT OF TWO VECTORS WHICH MAY BE A COLUMN OR A ROW OF A MATRIX USING EITHER SINGLE OR DOUBL	C16VIP	
PA,	, VIPS, VIPD, VIPDA, VIPDS,	INRPRD, PRDSUM.	C16VIP	
	GENERATES UNIFORM RANDOM	INTEGERS BETWEEN TWO GIVEN VALUES.	F17IRAND	
	GENERATES RANDOM	INTEGERS HAVING THE POISSON DISTRIBUTION.	F17PORAND	
I'OU	JS COMBINATIONS OF A AND B,	INTEGER, REAL, COMPLEX, AND DOUBLE PRECISION.	C12PS1132	
OR	POSITIVE REAL ARGUMENT AND	INTEGER ORDERS.	F13RBESY	
ST	KIND FOR REAL ARGUMENT AND	INTEGER ORDERS BY USING BACKWARD RECURSION,	F13NBESJ	
UNC	CTION FOR REAL ARGUMENT AND	INTEGER ORDER BY SUMMATION OF SERIES FOR BESSEL FUNCTIONS.	F13HANKEL	
EVA	ALUATES THE SINE AND COSINE	NTEGRALS USING CHEBYSHEV APPROXIMATIONS.	F13SICI	
	EVALUATES AN EXPONENT AL	INTEGRAL BY HERMITE GAUSS QUADRATURE FORMULAS.	FISHERMIT	
	EVALUATES AN EXPONENTIAL	INTEGRAL BY LAGUERRE GAUSS QUADRATURE FORMULAS.	F15LAGUER	
	EVALUATES THE	INTEGRAL BY SIMPSONS RULE OF A BOUNDED FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL OF EQUISPACED	F15PARBC	
05	F A POLYNOMIAL WHICH IS THE	INTEGRAL OF ANOTHER REAL POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER.	F13INT	
0F	F A POLYNOMIAL WHICH IS THE	INTEGRAL OF ANOTHER COMPLEX POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER.	F13CINT	
	EVALUATES THE	INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL USING ROMBERG INTEGRATION.	F15ROMBG	
	EVALUATES THE	INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL, USING LEGENDRE GAUSS FORMULAS AND UNE	F15QUAD	
	EVALUATES THE	INTEGRAL OF A FUNCTION OVER A FINITE INTERVAL USING SIMPSONS RULE.	F15SIMPRC	
•	EVALUATES THE	NTEGRAL OF A REAL FUNCTION OF ONE VARIABLE BASED ON LAGRANGIAN INTERPOLATION.	F15LAGRAN	
	EVALUATES THE	INTEGRAL OF ONE VARIABLE OVER A FINITE INTERVAL USING LEGENDRE GAUSS QUADRATURE FORMULAS.	F15LEGEND	
OMP	PUTES THE COMPLETE ELLIPTIC	INTEGRAL OF THE THIRD KIND BY THE LANDEN TRANSFORMATION.	F13CEL3	
ALU	JATES THE COMPLETE ELLIPTIC	INTEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION.	F13ELK	
UAT	TES THE INCOMPLETE ELLIPTIC	INTEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION.	F13ELF	
UAT	TES THE INCOMPLETE ELLIPTIC	NTEGRAL OF THE THIRD KIND BY USING THE GAUSS TRANSFORMATION; COULD BE USED FOR COMPLETE ELLIPTIC IN	F13EL3	
BE	USED FOR COMPLETE ELLIPTIC	INTEGRAL OF THE THIRD KIND SOMETIMES.	F13EL3	
	EVALUATES A M-TUPLE	INTEGRAL (M LESS 11) OF AN INTEGRAND BETWEEN ARBITRARY LIMITS; THE INTEGRATION IS PERFORMED BY USING	F15GMI	
FIN	NITE INTERVAL USING ROMBERG	NTEGRATION.	F15ROMBG	
	TWEEN ARBITRARY LIMITS; THE	INTEGRATION IS PERFORMED BY USING A 5-POINT GAUSS LEGENDRE FORMULA TO A NUMBER OF SUBINTERVALS SPECI	F15GM1	
	R TREND THAT IS OBTAINED BY	INTEGRATION OF A TRIGONOMETRIC POLYNOMIAL.	F15TRGINT	
	S THE LAGRANGIAN POLYNOMIAL	INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY BY A POLYNOMIAL OF DEGREE N-1,	F15LAGINT	
	TKENS METHOD THE POLYNOMIAL	INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY BY A POLYNOMIAL OF DEGREE N=1	F15AITKEN	
	RUCTS A FIFTH DEGREE SPLINE	NTERPOLATING A SET OF EQUISPACED DATA.	F15SPLINE	
	TS A NONLINEAR CUBIC SPLINE	NTERPOLATING A SET OF POINTS WITH ARBITRARY SPACING.	F15UNCSPL	
	TS ARE GENERATED ON A CUBIC	NTERPOLATING CURVE,	F15NRICH	
ORC	D HEIGHT TOLERANCE USING AN	INTERPOLATING FUNCTION WHICH ATTEMPTS TO MINIMIZE THE RIPPLE IN CURVATURE.	F15RICH	×
OF	THE N-TH DEGREE LAGRANGIAN	INTERPOLATING POLYNOMIAL THROUGH N+1 POINTS.	F15FLGNEW	
07	THE N+M+1 DEGREE HERMITIAN	INTERPOLATING POLYNOMIAL THROUGH N+1 POINTS WITH FIRST DERIVATIVES GIVEN AT THE FIRST M+1 POINTS (M	F15FHRNEW	
UNC	CTION AT ANY POINT USING AN	INTERPOLATING POLYNOMIAL OF SPECIFIED ORDER.	F15LAGDIF	
	ARIABLE BASED ON LAGRANGIAN	INTERPOLATION.	F15LAGRAN	
	IS CALCULATED BY PARABOLIC	INTERPOLATION.	FIBNRSG	
	IS CALCULATED BY PARABOLIC PERFORMS HERMITE	INTERPOLATION. INTERPOLATION AT ONE POINT GIVEN THE ABSCISSA AND A TABLE OF CORRESPONDING VALUES OF THE INDEPENDENT.	F18NRSG F15HRMT1	

`

•

PERFORMS HERMITE	INTERPOLATION FOR SEVERAL VALUES OF INDEPENDENT VARIABLE, INTERPOLATION IN ONE DIMENSIONAL TABLE; ARBITRARY ORDER, INTERPOLATION IN TWO DIMENSIONAL TABLE; ARBITRARY ORDER, INTERPOLATION IN THREE DIMENSIONAL TABLE; ARBITRARY ORDER, INTERPOLATION USING INVERTED DIFFERENCES ON TABULAR DATA WITH ARBITRARY SPACING,	F15HRMT2
LAGARANGIAN	INTERPOLATION IN ONE DIMENSIONAL TABLE; ARBITRARY ORDER.	F15TBLU1
LAGRANGIAN	INTERPOLATION IN TWO DIMENSIONAL TABLE; ARBITRARY ORDER.	F15TBLU2
LAGRANG. AN	INTERPOLATION IN THREE DIMENSIONAL TABLE; ARBITRARY ORDER,	F15TBLU3
S A SINGLE CONTINUED FRACTION	INTERPOLATION USING INVERTED DIFFERENCES ON TABULAR DATA WITH ARBITRARY SPACING.	F15ACF1
OF OBSERVATIONS IN SPECIFIED	INTERVALS; USED TO PRODUCE HISTOGRAMS.	F17HSTGRM
COMPUTES THE	NVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE UNIFORM DISTRIBUTION.	F17PIUNE
COMPUTES THE	NVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE NORMAL DISTRIBUTION	F17PINORM
COMPUTES THE	NVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE EXPONENTIAL DISTRIBUTION	F17PIEXP
COMPUTES THE	NVERSE CHMULATIVE DISTRIBUTION FUNCTION OF THE TRUNCATED NORMAL DISTRIBUTION	F17PITRNM
COMPUTES THE	AVERSE COMPLETIVE DISTRIBUTION ENGLISH OF THE LOCANCE NORMED FOR DURING	
COMPUTES THE	INVERSE COMPLATIVE DISTRIBUTION FUNCTION OF THE LOG NORMAL DISTRIBUTION,	F17PILGNM
COMPUTES THE	INVERSE CUMOLATIVE DISTRIBUTION FUNCTION OF THE WEIBULL DISTRIBUTION,	F17PIWEBL
COMPUTES THE	INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE GAMMA DISTRIBUTION,	F17PIGAMA
COMPUTES THE	INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE BETA DISTRIBUTION.	F17PIBETA
COMPUTES THE	NVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE CAUCHY DISTRIBUTION.	F17PICHY
COMPUTES THE	INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE RAYLEIGH DISTRIBUTION.	F17PIRAYL
COMPUTES THE	NVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE CHI SQUARE DISTRIBUTION.	F17PICHI
COMPUTES THE	INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE F (VARIANCE RATIO) DISTRIBUTION.	F17PIFDIS
COMPUTES THE	INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE STUDENTS T DISTRIBUTION.	F17PIT
COMPUTES THE	INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE DISCRETE UNIFORM DISTRIBUTION,	F17PIUNED
COMPUTES THE	INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE BINOMIAL DISTRIBUTION.	F17PIBIN
COMPUTES THE	INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE POISSON DISTRIBUTION.	F17PIPOIS
COMPUTES THE	NVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE HYPER GEOMETRIC DISTRIBUTION.	F17PIHYPG
COMPUTES THE	INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE NEGATIVE BUNDHIAL DISTRIBUTION.	F17PINBIN
COMPUTES THE	EVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE GEOMETRIC DISTRIBUTION	F17PIGEO
G MATRIX BY MEANS OF WIELANDT	NVERSE ITERATION.	F16EIGIMP
HESSENBERG MATRIX BY MEANS OF	INTERVALS; USED TO PRODUCE HISTOGRAMS. INTERVALS; USED TO PRODUCE HISTOGRAMS. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE UNIFORM DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE VERICATED NORMAL DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE TRUNCATED NORMAL DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE LOG NORMAL DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE WEIBULL DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE WEIBULL DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE GAMMA DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE BETA DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE GAMMA DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE GAMMA DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE RAYLEIGH DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE CAUCHY DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE CAUCHY DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE F (VARIANCE RATIO) DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE F (VARIANCE RATIO) DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE STUDENTS T DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE DISCRETE UNIFORM DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE POISSON DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE HYPER GEOMETRIC DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE HYPER GEOMETRIC DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE HYPER BEOMETRIC DISTRIBUTION. INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE REGATIVE BINOMIAL DISTRIBUTION. INVERSE ITERATION.	
		F16EIGVCH
VECTORS ARE FOUND BY MEANS OF	NVERSE ITERATION.	F16TCDIAG
ATRIX FOR THE EIGENVALUES AND	INVERSE ITERATION FOR THE EIGENVECTORS.	F16VALVEC
MATION OF AN EIGENVALUE USING	INVERSE ITERATION.	F16VECTOR
REFINES ITERATIVELY THE	INVERSE OF A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM WITH PARTIAL PIVOTING A	F16ITERIN
COMPUTES THE	NVERSE OF THE ERROR FUNCTION BY NEWTONS METHOD.	F13ERFINV
ANDMATR'X USING THE METHOD OF	NVERSE WIELANDT ITERATION WITH PERIODIC RAYLEIGH QUOTIENT SHIFTING COMBINED WITH A STABLE, BAND-PRE	F16BANEIG
FRACTION INTERPOLATION USING	INVERTED DIFFERENCES ON TABULAR DATA WITH ARBITRARY SPACING.	F15ACF1
	NVERTS AN UPPER TRIANGULAR MATRIX.	F16TRUPIN
	INVERTS A LOWER TRIANGULAR MATRIX.	F16TRLOIN
	INVERTS A MATRIX USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION,	F16INVERS
	NVERTS WITH ITERATIVE REFINEMENT A MATRIX USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUI	F16INVITR
BY MEANS OF WIELANDT INVERSE	TERATION.	F16EIGIMP
RG MATRIX BY MEANS OF INVERSE	I TERATION.	F16EIGVCH
RMATION FOLLOWED BY DOUBLE OR	TERATION.	F16LATNTR
C TRIDIAGONAL MATR X USING LR	TERATION	F16SYMLR
C TRIDIAGONAL MATP X USING OR	TERATION	F16SYMOR
ARE FOUND BY MEANS OF INVERSE	ITERATION.	F16TCDIAG
F AN EIGENVALUE USING INVERSE		F16VECTOR
QUATIONS BY COMPUTING IN EACH	TERATION & CORRECTION VECTOR TO THE TRIAL SOLUTION VECTOR WITH THE NEWTON RAPHSON METHOD MODIFYING	
		F18NEWT
R THE EIGENVALUES AND INVERSE	ITERATION FOR THE EIGENVECTORS.	F16VALVEC
COMPLEX MATRIX BY MEANS OF GR	ITERATION ON A SIMILAR BALANCED HESSENBERG MATRIX.	F16QREIGN
PERFORMS A SINGLE COMPLEX OR	ITERATION ON A HESSENBERG MATRIX HAVING REAL SUBDIAGONAL ELEMENTS.	F160R1 .
OF A COMPLEX MATRIX USING QR	TERATION ON A SIMILAR HESSENBERG MATRIX FOR THE EIGENVALUES AND INVERSE ITERATION FOR THE EIGENVECT	F16VALVEC
AL FORM FOLLOWED BY ETHER OR	TERATION OR LE ITERATION OR THE STURM SEQUENCE METHOD; EIGENVECTORS ARE FOUND BY MEANS OF INVERSE I	F16TCD AG
BY EITHER GR ITERATION OR LR	TERATION OR THE STURM SEQUENCE METHOD; EIGENVECTORS ARE FOUND BY MEANS OF INVERSE ITERATION.	F16TCDIAG
HE METHOD OF INVERSE WIELANDT	ITERATION WITH PERIODIC RAYLEIGH QUOTIENT SHIFTING COMBINED WITH A STABLE, BAND-PRESERVING DEFLATION	F16BANE IG
REFINES	TERATIVELY A SOLUTION OF A LEAST SQUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HA	F161TRLS0
REFINES	ITERATIVELY THE INVERSE OF A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM WITH PA	F16ITERIN
SOLVES WITH	ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRI	F16BITRNP
SOLVES WITH	TERATIVE REFINEMENT & LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRI	F16BITERM
SOLVES WITH	ITERATIVE REFINEMENT & LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN E	F16BITRFM
SOLVES WITH	ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT	F16BITRPD
SOLVES WITH	ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN E	F16B TWNP
		- The clause

SOLVES WITH	ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT	F16BPDITM
SOLVES WITH	ITERATIVE REFINEMENT & LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE	F16CGITRF
SOLVES WITH	ITERATIVE REF NEMENT & LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRI	F16CITERF
SOLVES WITH	ITERATIVE REFINEMENT A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITIO	F16ITERFM
SOLVES WITH	ITERATIVE REF NEMENT A LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING ACCORDI	F16ITERFS
INVERTS WITH	TERATIVE REF NEMENT & MATRIX USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION.	F16INVITR
SOLVES WITH	TERATIVE REFINEMENT A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES USING CROUTS ALGORITHM WITH PART	F16GITRFM
SOLVES WITH	ITERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRAT	F16GITRFS
SOLVES WITH	ITERATIVE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED DECOMPOSITION WITH CHOLESK	F16ITRPDM
SOLVES WITH	ITERATIVE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROV	F16ITRPDS
SOLVES WITH	ITERATIVE REF NEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED SQUARE ROOT FREE DECOMPOSI	F16ITRSPM
SOLVES WITH	ITERATIVE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PRCV	F16ITRSPS
SOLVES WITH	ITERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILI	F16LITWNE
SOLVES WITH	ITERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITHOUT PIVOTING AND PROVIDES DATA FOR E	F16LITWNP
SOLVES WITH	ITERATIVE REFINEMENT A LINEAR LEAST SQUARES PROBLEM USING HOUSEHOLDERS METHOD.	F16LSQSIT
SOLVES WITH	ITERATIVE REFINEMENT A LINEAR SYSTEM USING CHOLESKY DECOMPOSITION AND PROVIDES DATA FOR CALCULATING	F16PDITRS
SOLVES WITH	ITERATIVE REFINEMENT A LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING CHOLESKYS DECOMPOSITION A	F16PDITRM
SOLVES WITH	ITERATIVE REFINEMENT A POSITIVE DEFINITE LINEAR SYSTEM USING SQUARE ROOT FREE DECOMPOSITION.	F16SPITRM
SOLVES WITH	TERATIVE REFINEMENT A POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING SQUARE	F16SP TRS
N USING A METHOD DESCRIBED BY	JARRATT AND NUDDS FOR APPROXIMATION OF ONE ZERO AND FACTORING OUT PREVIOUSLY FOUND ZEROS,	F18ZAFUJ
ON WITH A METHOD DESCRIBED BY	JARRATT AND NUDDS FOR APPROXIMATION OF ONE ZERO AND FACTORING OUT PREVIOUSLY FOUND ZEROS.	F18ZAFUR
EGRAL OF THE FIRST AND SECOND	KINDS BY USING LANDENS TRANSFORMATION.	F13ELK
EGRAL OF THE FIRST AND SECOND	KINDS BY USING LANDENS TRANSFORMATION,	F13ELF
CTIONS OF THE FIRST OR SECOND	KINDS FOR COMPLEX ARGUMENT AND COMPLEX ORDER.	F13COMBES
LLIPTIC INTEGRAL OF THE THIRD	KIND BY THE LANDEN TRANSFORMATION.	F13CEL3
LLIPTIC INTEGRAL OF THE THIRD	KIND BY USING THE GAUSS TRANSFORMATION; COULD BE USED FOR COMPLETE ELLIPTIC INTEGRAL OF THE THIRD KI	F13EL3
ESSEL FUNCTIONS OF THE SECOND	KIND FOR POSITIVE REAL ARGUMENT AND INTEGER ORDERS.	FIJRBESY
BESSEL FUNCTIONS OF THE FIRST	KIND FOR REAL ARGUMENT BY USING BACKWARD RECURSION.	F13BESNIS
ESSEL FUNCTIONS OF THE SECOND	KIND FOR REAL ARGUMENT BY USING POLYNOMIAL APPROXIMATIONS AND THE SUBROUTINE EESNIS.	F13BESNKS
BESSEL FUNCTIONS OF THE FIRST	KIND FOR REAL ARGUMENT BY FORWARD OR BACKWARD RECURSION WITH STARTING VALUES.	F13BSJ
BESSEL FUNCTIONS OF THE FIRST	KIND FOR REAL ARGUMENT AND INTEGER ORDERS BY USING BACKWARD RECURSION.	F13NBESJ
LLIPTIC INTEGRAL OF THE TH'RD	KIND SOMETIMES.	F13EL3
COEFFICIENTS OF SKEWNESS AND	KURTOSIS FOR MULTIPLEXED ARRAYS,	F17DSCRPT
S USING A VARIABLE STEP RUNGE	KUTTA TECHNIQUE EFFICIENT FOR LOW ACCURACY WORK,	F14RKINIT
	LAGARANGIAN INTERPOLATION IN ONE DIMENSIONAL TABLE; ARBITRARY ORDER.	F15TBLU1
EFFICIENTS OF THE N-TH DEGREE	LAGRANGIAN INTERPOLATING POLYNOMIAL THROUGH N+1 POINTS.	F15FLGNEW
This diama and the second of	LAGRANGIAN INTERPOLATION IN TWO DIMENSIONAL TABLE; ARBITRARY ORDER.	F15TBLU2
	LAGRANGIAN INTERPOLATION IN THREE DIMENSIONAL TABLE; ARBITRARY ORDER.	F15TBLU3
TION OF ONE VARIABLE BASED ON	LAGRANGIAN INTERPOLATION.	F15LAGRAN
COMPUTES THE	LAGRANGIAN POLYNOMIAL INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY BY A POL	F15LAGINT
BY MEANS OF A MODIFICATION OF	LAGUERES METHOD.	F16E165
ES AN EXPONENTIAL INTEGRAL BY	LAGUERRE GAUSS QUADRATURE FORMULAS.	F15LAGUER
OF A FOURIER SERIES BY USE OF	LANCZOS SIGMA FACTORS.	F15SIGSMT
RST AND SECOND KINDS BY USING	LANDENS TRANSFORMATION.	F13ELK
RST AND SECOND KINDS BY USING	LANDENS TRANSFORMATION.	
GRAL OF THE THIRD KIND BY THE	LANDENS TRANSFORMATION.	F13ELF
ARCH SUBROUTINE TO MULTIPLY A	LANDEN TRANSFORMATION,	F13CEL3 C16SMVX
		- · · · · ·
TINE TO MULTIPLY A TRANSPOSED Solves a linear system for a	LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT. LARGE SPARSE RECTANGULAR MATRIX USING THE CONJUGATE GRADIENT METHOD.	C16SMTVX
		F16SCONG
FINDS THE	LEAST COMMON MULTIPLE OF TWO INTEGERS BY USING SUBROUTINE HCF.	F11LCM
CONSTRUCTS, IN THE SENSE OF	LEAST SQUARES, THE BEST APPROXIMATION TO A SET OF DATA POINTS BY A RATIONAL FUNCTION WITH NUMERATOR	F15RATL
FITS, IN THE SENSE OF	LEAST SCUARES, TO A GIVEN SET OF POINTS THE BEST LINEAR COMBINATION OF A SET OF PRESCRIBED GENERAL F	F15ORTHFT
FINDS BY THE METHOD OF	LEAST SQUARES A POLYNOMIAL OF SPECIFIED DEGREE WHOSE GRAPH APPROXIMATES A SET OF DATA POINTS WITH WE	F15FLSQFY
R REAL SYSTEM IN THE SENSE OF	LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD,	F16FCGM2
CONSTRUCTS A	LEAST SQUARES POLYNOMIAL APPROXIMATION OF SOME PREASSIGNED DEGREE TO A SET OF DATA POINTS WITH GIVEN	F15FDLSQ
CONSTRUCTS A	LEAST SQUARES POLYNOMIAL OF A SPECIFIED DEGREE WHOSE GRAPH APPROXIMATES A SET OF DATA POINTS WITH WE	F15FCLSQ
IS OBTAINED BY EVALUATING THE	LEAST SQUARES POLYNOMIAL OF DEGREE N BASED ON SUCCESSIVE POINTS,	F15SMOOTH
SOLVES A	LEAST SCUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT,	F16BSUBHT
SOLVES A	LEAST SQUARES PROBLEM FOR A COMPLEX SYSTEM USING THE METHOD OF CONJUGATE GRADIENT.	F16CCONGR
S ITERATIVELY A SOLUTION OF A	LEAST SQUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT,	F16 TRLSO

·

			\sim
SOLVES A LINEAR	LEAST SQUARES PROBLEM USING HOUSEHOLDER TRANSFORMATIONS.	F16LSQHTS	1
SOLVES A LINEAR	LEAST SCUARES PROBLEM WITH SEVERAL RIGHT-HAND SIDES USING HOUSEHOLDER TRANSFORMATIONS,	F16LSQHTM	\sim
ITERATIVE REFINEMENT A LINEAR	LEAST SCUARES PROBLEM USING HOUSEHOLDERS METHOD.	F16LSQSIT	
IES WITH LINEAR TREND, IN THE	LEAST SQUARES SENSE, TO A SET OF EQUISPACED DATA,	F15FOURAP	
A STEP VECTOR DIRECTION AS A	LEAST SQUARES SOLUTION OF THE SYSTEM OF LINEAR EQUATIONS IN THE NEWTON RAPHSON METHOD AND SWITCHING	F18NRSG	
RMED BY USING A 5-POINT GAUSS	LEGENDRE FORMULA TO A NUMBER OF SUBINTERVALS SPECIFIED BY THE USER.	F15GM	
OVER A FINITE INTERVAL USING	LEGENDRE GAUSS GUADRATURE FORMULAS.	F15LEGEND	
OVER A FINITE INTERVAL, USING			
	LEGENDRE GAUSS FORMULAS AND UNEQUAL SUBINTERVALS,	F15QUAD	
OS OF A COMPLEX POLYNOMIAL BY	LEHMERS METHOD USING SCHURS METHOD FOR ISOLATING ONE ZERO.	F18HELP	
SOLVES	LINEAR BOUNDARY VALUE PROBLEMS IN A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS, WHERE THE SOLUTION IS	F14LINBVD	
SOLVES A SYSTEM OF	LINEAR EQUATIONS OR SEVERAL SYSTEMS WITH THE SAME LEFT HAND SIDE BY GAUSSIAN ELIMINATION USING DOOLI	F18LINSYS	
IVIDES A REAL POLYNOM AL BY A	LINEAR FACTOR, X+B, WHERE B MAY BE COMPLEX.	F13LDIV	
DES A COMPLEX POLYNOM'AL BY A	LINEAR FACTOR, X+B, WHERE B MAY BE COMPLEX.	F13CLDIV	
MULTIPLIES A POLYNOMIAL BY A	LINEAR FACTOR.	F13FMULT1	
SOLVES A	LINEAR LEAST SQUARES PROBLEM USING HOUSEHOLDER TRANSFORMATIONS.	F16LSQHTS	
SOLVES A	LINEAR LEAST SQUARES PROBLEM WITH SEVERAL RIGHT-HAND SIDES USING HOUSEHOLDER TRANSFORMATIONS.	F16LSQHTM	
S WITH TERATIVE REFINEMENT A	LINEAR LEAST SQUARES PROBLEM USING HOUSEHOLDERS METHOD.	F16LSQSIT	
SOLVES A RECTANGULAR	LINEAR REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD.	F16FCGM2	
SOLVES A LOWER TR'ANGULAR	LINEAR SYSTEM.	F16TRILOM	
SOLVES AN UPPER TRIANGULAR	LINEAR SYSTEM		
		F16TR UPM	
SOLVES A	LINEAR SYSTEM ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION.	F16GLESOS	
SOLVES A	LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION W	F16BFBANP	
SOLVES A	LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION W	F16BFBSUM	
S WITH ITERATIVE REFINEMENT A	LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION W	F16BITRNP	
S WITH ITERATIVE REFINEMENT A	LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION W	F16BITERM	
S WITH TERATIVE REFINEMENT A	LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITH PARTIAL	F16BITRFM	
S WITH ITERATIVE REFINEMENT A	LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TR	F16BITRPD	
S WITH ITERATIVE REFINEMENT A	LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVO	F16BITWNP	
SOLVES A	LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITH PARTIAL	F16BLESOM	
SOLVES A	LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVO	F16BLSWNP	
S WITH ITERATIVE REFINEMENT A	LINFAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLE	F168PDITM	
SOLVES A	LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TR	F16BPDFSB	
SOLVES A	LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLE	F168PDSOM	
SOLVES A	LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITI		
		F16CFBSUM	
S WITH ITERATIVE REFINEMENT A	LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIFES PROVIDED THE TRIANGULAR DECOMPOSITI	F16CGITRF	
SOLVES A	LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL	F16CGLESM	
S WITH TERATIVE REFINEMENT A	LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION A	F16CITERF	
SOLVES A	L'NEAR SYSTEM FOR A LARGE SPARSE RECTANGULAR MATRIX USING THE CONJUGATE GRADIENT METHOD.	F16SCONG	
SOLVES A	LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITH PARTIAL PIVOTING HAS BEEN CARRIED	F16TRDFBM	
SOLVES A	LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX USING PARTIAL PIVOTING.	F16TRDSOM	
SOLVES A	LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT,	F16TRDSUB	
SOLVES A	LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX WITHOUT PIVOTING.	F16TRDWNP	
S WITH ITERATIVE REFINEMENT A	LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING CHOLESKYS DECOMPOSITION AND PROVIDES DATA FOR CA	F16PD TRM	
A SYMMETRIC POSITIVE DEFINITE	LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING CHOLESKY DECOMPOSITION.	F16PDLSOM	
A SYMMETRIC POSITIVE DEFINITE	LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOM	F16PDSFBM	
SOLVES A POSITIVE DEFINITE	LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING		
SOLVES A POSITIVE DEFINITE	LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES WITHOUT USING THE SQUARE ROOT ROUTINE.	F16SPDSOS	
EFINEMENT A POSITIVE DEFINITE	LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING SQUARE ROOT FREE DECOMPOSITION.	F16SPITRS	
SOLVES A LOWER TRIANGULAR	LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES.	F16TRILOS	
SOLVES AN UPPER TRIANGULAR	LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES,	F16TRIUPS	
SOLVES A	LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING	F16FBSUBS	
S WITH ITERATIVE REFINEMENT A	LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING ACCORDING TO CROUTS ALGORITHM	F16ITERFS	
A SYMMETRIC POSITIVE DEFINITE	LINEAR SYSTEM PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROVIDES DATA FO	F16 TRPDM	
A SYMMETRIC POSITIVE DEFINITE	LINEAR SYSTEM PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT.	F16ITRSPM	
A SYMMETRIC POSITIVE DEFINITE	LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSITION HAS BEEN CARRIED OUT.	F16PD5FB5	
SOLVES A POSIT'VE DEFINITE	LINEAR SYSTEM PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUTINE.	F16SPDFBM	
S WITH ITERATIVE REFINEMENT A	LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA F	F16GITRFS	
SOLVES A	LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION; THE DETERMINAN	F16LESWNE	
SOLVES A	LINEAR SYSTEM USING CROUTS ALGORITHM WITHOUT PIVOTING: THE DETERMINANT IS AVAILABLE.	F16LESWNP	
S WITH ITERATIVE REFINEMENT A	LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIERATION AND PROVIDES DA	FIGLITWNE	
w epino presentate ser incluent a	LINEAR STOLE SERVICE REGIO REGARITION AND PROVIDES DA	TOFIIMUE	

	S WITH ITERATIVE REFINEMENT A	LINEAR SYSTEM USING CROUTS ALGORITHM WITHOUT PIVOTING AND PROVIDES DATA FOR ESTIMATING THE DETERMINA	F16LITWNP
	S WITH ITERATIVE REFINEMENT A	LINEAR SYSTEM USING CHOLESKY DECOMPOSITION AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND EST	F16PDITRS
	A SYMMETRIC POSITIVE DEFINITE	LINEAR SYSTEM USING CHOLESKY DECOMPOSITION.	F16PDLSOS
	EFINEMENT A POSITIVE DEFINITE	LINEAR SYSTEM USING SQUARE ROOT FREE DECOMPOSITION.	F16SPITRM
	SOLVES A	LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS A	
	S WITH ITERATIVE REFINEMENT A	LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING	F16ITERFM
	SOLVES A	LINEAR SYSTEM WITH SEVERAL R.GHT-HAND SIDES ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND	F16GLESOM
	S WITH ITERATIVE REFINEMENT A A SYMMETRIC POSITIVE DEFINITE	LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQ LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED DECOMPOSITION WITH CHCLESKYS METHOD HAS BEEN C	F16GITRFM
	A SYMMETRIC POSITIVE DEFINITE		F16ITRPDS
	SOLVES A POSITIVE DEFINITE	LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED SWUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIE	F16 TRSPS F16SPDSOM
	THE BEST FOURIER SERIES WITH	LINEAR STSTEM WITHOUT USING THE SQUARE ROOT ROOTINE.	F15FOURAP
	S OF A SINE POLYNOMIAL WITH A	LINEAR TREND, IN THE LEAST SUGARES SENSE, TO A SET OF ENDINATED PAIRS WITH ARBITRARY SPACING.	F15SINSER
	FINITE FOURIER SERIES WITH A	LINEAR TREND STORM A SET OF CAUSPACED POINTS.	F15FOUR
	OF THE FOURTER SERIES WITH A	LINEAR TREND THAT IS OBTAINED BY INTEGRATION OF A TRIGONOMETRIC POLYNOMIAL.	F15TRGINT
	CONSTRUCTS A BEST FITTING	LINE TO A NUMBER OF DATA POINTS, IN THE SENSE THAT THE SUM OF THE SQUARES OF THE PERPENDICULAR DISTA	
	COMPUTES THE NATURAL		C12ALOG
	COMPUTES THE NATURAL	LOGARITHM OF A DOUBLE PRECISION REAL ARGUMENT.	C12DLOG
	COMPUTES THE NATURAL	LOGAR THM UF & COMPLEY ARGUMENT.	C12CLOG
	COMPUTES THE BASE TEN	LOGARITHM OF A REAL ARGUMENT. LOGARITHM OF A DOUBLE PRECISION REAL ARGUMENT. LOGARITHM OF A COMPLEX ARGUMENT. LOGARITHM OF A REAL ARGUMENT. LOGARITHM OF A DOUBLE PRECISION REAL ARGUMENT. LOGARITHM OF THE GAMMA FUNCTION FOR COMPLEX ARGUMENT BY USING CONTINUED FRACTIONS. LOG NORMAL DISTRIBUTION	C12ALOG10
	COMPUTES THE BASE TEN	LOGAR THM OF A DOUBLE PRECISION REAL ARGUMENT.	C12DL0G10
	COMPUTES THE NATURAL	LOGARITHM OF THE GAMMA FUNCTION FOR COMPLEX ARGUMENT BY USING CONTINUED FRACTIONS,	F13LOGGAM
	DISTRIBUTION FUNCTION OF THE	LOG NORMAL DISTRIBUTION.	F17PILGNM
	DISTRIBUTION FUNCTION OF THE	LOG NORMAL DISTRIBUTION.	F17PLGNRM
	SOLVES A	LOG NORMAL DISTRIBUTION. LOWER TRIANGULAR LINEAR SYSTEM. LOWER TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES. LOWER TRIANGULAR MATRIX. LOWEST TERMS. LOWEST TERMS. LR ITERATION.	F16TRILOM
	SOLVES A	LOWER TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES.	F16TRILOS
	INVERTS A	LOWER TRIANGULAR MATRIX.	F16TRLOIN
	E RESULT AS A FRACTION IN ITS	LOWEST TERMS.	F11FAFRAC
	E RESULT AS A FRACTION IN ITS	LOWEST TERMS.	F11FMFRAC
	TRIC TRIDIAGONAL MATRIX USING		F16SYMLR
	WED BY EITHER QR ITERATION OR	LR ITERATION OR THE STURM SEQUENCE METHOD; EIGENVECTORS ARE FOUND BY MEANS OF INVERSE ITERATION.	F16TCDIAG
	PROVIDES CERTAIN	MACHINE AND MATHEMATICAL CONSTANTS AS SINGLE PRECISION NUMBERS OF MAXIMUM ACCURACY.	F13AMCON
	THER DECREASING OR INCREASING	MAGNITUDE IN A WAY WHICH IS NOT EFFICIENT FOR A LARGE SET OF NUMBERS.	F16VECORD
	CALCULATES	MANTISSA AND EXPONENT (BASE 2) OF THE DETERMINANT OF A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USIN	-
	PROVIDES CERTAIN MACHINE AND	MATHEMATICAL CONSTANTS AS SINGLE PRECISION NUMBERS OF MAXIMUM ACCURACY.	F13AMCON
		MATRIARCH SUBROUTINE TO DO A MATRIX VECTOR MULTIPLICATION. MATRIARCH SUBROUTINE TO MULTIPLY A TRANSPOSED MATRIX BY A VECTOR. MATRIARCH SUBROUTINE TO MULTIPLY A COMPLEX MATRIX BY A COMPLEX VECTOR. MATRIARCH SUBROUTINE TO MULTIPLY A TRANSPOSED COMPLEX MATRIX BY A COMPLEX VECTOR.	C16FMVX
		MATRIARCH SUBROUTINE TO MULTIPLY A TRANSPOSED MATRIX BY A VECTOR.	C16FMTVX
		MATRIARCH SUBROUTINE TO MULTIPLY A COMPLEX MATRIX BY A COMPLEX VECTOR. Matriarch subroutine to multiply a transposed complex matrix by a complex vector.	C16FMVCX
			C16FMTVCX
		MAIR ARCH SUBROUTINE TO COMPUTE THE EUCLIDIAN NORM OF A VECTOR.	C16FABSV
		MATRIARCH SUBROUTINE TO NORMALIZE A VECTOR IN THE 2 NORM.	C16FNORM1
		MATRIARCH SUBROUTINE TO SUBTRACT FROM A VECTOR ITS COMPONENT ALONG ANOTHER VECTOR, Matriarch subroutine to perform a matrix Matrix Multiplication.	C16FPUR
		MATRIARCH SUBROUTINE TO PERFORM A MAINIX MAINIX MULIPLICATION. Matriarch subroutine to muliply a transposed matrix by a matrix on the right.	C16FMMX
			C16FMTMX C16FCOMB
		MATRIARCH SUBROUTINE TO SUBTRACT A CONSTANT TIMES A VECTOR FROM ANOTHER VECTOR. Matriarch subroutine to multiply a large sparse matrix by a vector on the right.	C16SMVX
		MATRIARCH SUBROUTINE TO MULTIPLY A TRANSPOSED LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT,	C16SMTVX
		MATRIARCH SUBROUTINE TO TRANSPOSE A RECTANGULAR MATRIX.	C16FMTR
	ENVECTORS OF A REAL SYMMETRIC		FIGEIGSYM
	T AND CONDITION NUMBER OF THE	NATRIX.	F16ITERFM
	T AND CONDIT ON NUMBER OF THE	MATRIX	F16ITERFS
	NE TO TRANSPOSE A RECTANGULAR	IATRIX.	C16FMTR
19 - A	G THE CONDITION NUMBER OF THE	TATRIX.	F16PDITRS
	G THE CONDITION NUMBER OF THE	MATRIX,	F16PD TRM
	QUOTIENT FOR A REAL SYMMETRIC	MATRIX.	F16RAYLGH
	INVERTS A LOWER TRIANGULAR	MATRIX.	F16TRLOIN
	INVERTS AN UPPER TRIANGULAR	MATRIX.	F16TRUPIN
	T AND CONDITION NUMBER OF THE	MATRIX AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION.	F16GITRFM
	T AND CONDITION NUMBER OF THE	MATRIX AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION.	F16GITRFS
	ROUTINE TO MULTIPLY A COMPLEX	MATRIX. MATRIX. MATRIX. MATRIX. MATRIX. MATRIX. MATRIX. MATRIX. MATRIX. MATRIX AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION. MATRIX AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION. MATRIX AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION. MATRIX BY A COMPLEX VECTOR.	C16FMVCX

.

MULTIPLY A TRANSPOSED COMPLEX MATRIX BY A COMPLEX VECTOR. TINE TO MULTIPLY A TRANSPOSED MATRIX BY A MATRIX ON THE RIGHT. TINE TO MULTIPLY A TRANSPOSED MATRIX BY A VECTOR ON THE RIGHT. NE TO MULTIPLY A LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT. PLY A TRANSPOSED LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT. CTOR PAR OF A REAL SYMMETRIC MATRIX BY A VECTOR ON THE RIGHT. CTOR PAR OF A REAL SYMMETRIC MATRIX BY A VECTOR ON THE RIGHT. GENVALUE OF A REAL HESSENBERG MATRIX BY AVECTOR ON THE RIGHT. GENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF WIELANDT INVERSE ITERATION. GENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF INVERSE ITERATION. GENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF OF INVERSE ITERATION. GENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF OF INVERSE ITERATION. MATRIX BY MEANS OF A MODIFICATION OF LAGUERRES METHOD. AND EIGENVALUES OF A REAL MATRIX BY MEANS OF OF INVERSE ITERATION. BALANCES A COMPLEX MATRIX BY MEANS OF DIAGONAL SIMILARITY TRANSFORMATIONS. TE LINEAR SYSTEM PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUTINE. ON OF AN EIGENVALUE OF A REAL MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUTINE. ON OF AN EIGENVALUE OF A REAL MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUTINE. ON OF AN EIGENVALUE OF A REAL MATRIX HAS IDED DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUTINE. ON OF AN EIGENVALUE OF A REAL MATRIX HAS IDED DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUTINE. ON OF AN EIGENVALUE OF A REAL MATRIX HAVING DISTINCT REAL EIGENVALUES. OR ITERATION ON A HESSENBERG MATRIX HAVING REAL SUBDIAGONAL ELEMENTS. A SYMMETRIC POSITIVE DEFINITE MATRIX INTO LOWER AND UPPER TRIANGULAR FACTORS WITHOUT CALCULATING A SQU DECOMPOSES A TRIDIAGONAL MATRIX INTO LOWER AND UPPER TRIANGULAR FACTORS WITHOUT CALCULATING A SQU DECOMPOSES A TRIDIAGONAL MATRIX INTO LOWER AND UPPER TRIANGULAR FACTORS USING PARTIAL PIVOTING. DECOMPOSES A TRIDIAGONAL	C16FMTVCX C16FMTMX C16FMTVX C16SMVX C16SMTVX
TINE TO MULTIPLY A TRANSPOSED MATRIX EY A MATRIX ON THE RIGHT. TINE TO MULTIPLY A TRANSPOSED MATRIX EY A VECTOR. NE TO MULTIPLY A LARGE SPARSE MATRIX EY A VECTOR ON THE RIGHT. PLY A TRANSPOSED LARGE SPARSE MATRIX EY A VECTOR ON THE RIGHT. CTOR PAIR OF A REAL SYMMETRIC MATRIX EY CALCULATING THE RAYLEIGH QUOTIENT AND GIVES ERROR BOUNDS. GENVALUE OF A REAL HESSENBERG MATRIX EY MEANS OF WIELANDT INVERSE ITERATION.	C16FMTMX C16FMTVX C16SMVX C16SMTVX
TINE TO MULTIPLY A TRANSPOSED MATRIX BY A VECTOR. NE TO MULTIPLY A LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT. PLY A TRANSPOSED LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT. CTOR PAIR OF A REAL SYMMETRIC MATRIX BY CALCULATING THE RAYLEIGH QUOTIENT AND GIVES ERROR BOUNDS. GENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF WIELANDT INVERSE ITERATION.	C16FMTVX C165MVX C165MTVX
NE TO MULTIPLY A LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT. PLY A TRANSPOSED LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT. CTOR PAIR OF A REAL SYMMETRIC MATRIX BY CALCULATING THE RAYLEIGH QUOTIENT AND GIVES ERROR BOUNDS. GENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF WIELANDT INVERSE ITERATION.	C16SMVX C16SMTVX
PLY A TRANSPOSED LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT. CTOR PAIR OF A REAL SYMMETRIC MATRIX BY CALCULATING THE RAYLEIGH QUOTIENT AND GIVES ERROR BOUNDS. GENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF WIELANDT INVERSE ITERATION.	C16SMTVX
CTOR PAIR OF A REAL SYMMETRIC - MATRIX BY CALCULATING THE RAYLEIGH QUOTIENT AND GIVES ERROR BOUNDS. Genvalue of a real hessenberg - matrix by means of Wielandt Inverse Iteration.	
GENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF WIELANDT INVERSE ITERATION.	F16EIGCHK
	F16EIGIMP
GËNVALUE OF A REAL HESSENBERG MATRIX EY MEANS OF INVERSE ITERATION.	F16E GVCH
ES SOME EIGENVALUES OF A REAL MATRIX BY MEANS OF A MODIFICATION OF LAGUERRES METHOD.	F16E1G5
AND EIGENVECTORS OF A COMPLEX MATRIX BY MEANS OF OR ITERATION ON A SIMILAR BALANCED HESSENBERG MATRIX.	F16QREIGN
BALANCES A COMPLEX MATRIX BY MEANS OF DIAGONAL SIMILARITY TRANSFORMATIONS.	F16BALANC
TE LINEAR SYSTEM PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUTINE.	F16SPDFBM
RIGHT-HAND SIDES PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUTINE.	F16SPDF85
ON OF AN EIGENVALUE OF A REAL MATRIX HAVING DISTINCT REAL EIGENVALUES.	F16EIGC01
OR ITERATION ON A HESSENBERG MATRIX HAVING REAL SUBDIAGONAL ELEMENTS.	F160R1
A SYMMETRIC POSITIVE DEFINITE MATRIX INTO LOWER TRIANGULAR, DIAGONAL AND UPPER TRIANGULAR FACTORS WITHOUT CALCULATING A SQU	UARE ROD F16SPDCOM
DECOMPOSES A TRIDIAGONAL MATRIX INTO LOWER AND UPPER TRIANGULAR FACTORS USING PARTIAL PIVOTING	F16TRDCOM
DECOMPOSES A COMPLEX MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRA	ATION; A F16CDECOM
A SYMMETRIC POSITIVE DEFINITE MATRIX INTO TRIANGULAR FACTORS USING CHOLESKYS METHOD; THE DETERMINANT IS AVAILABLE.	F16CHSDEC
DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUIL	
DECOMPOSES A MATR'X INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITHOUT PIVOTING; THE DETERMINANT IS AN	
DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRA	ATION) T F16DECOM
DECOMPOSES A TRIDIAGONAL MATRIX INTO TRIANGULAR FACTORS WITHOUT PIVOTING.	F16TRDCNP
TRANSFORMS A SYMMETRIC MATRIX INTO TRIDIAGONAL FORM USING HOUSEHOLDERS TRANSFORMATION,	F16TRIDI
TRANSFORMS A MATRIX INTO UPPER TRIANGULAR FORM BY HOUSEHOLDERS METHOD.	F16DCBHT
TRANSFORMS A REAL MATR'X INTO UPPER HESSENBERG FORM ACCORDING TO HOUSEHOLDERS METHOD.	F16SUBDIR
REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EIGENVALUE PROBLEM.	F16RECOV1
REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EIGENVALUE PROBLEM.	F16RECOV2
IARCH SUBROUTINE TO PERFORM A MATRIX MATRIX MULTIPLICATION.	C16FMMX
SE 2) OF THE DETERMINANT OF A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW	
ITERATIVELY THE INVERSE OF A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW	W EQUILI F16ITERIN
EIGENVECTORS OF A HESSENBERG - MATRIX PROVIDED THE TRANSFORMATION TO HESSEBERG FORM HAS BEEN CARRIED OUT WITH WILKENSONS MET	THOD, F16SIMP
NEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITH PARTIAL PIVOTING HAS BEEN CARRIED OUT.	F16TRDFBM
NEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT.	F16TRDSUB
REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD.	F16SUBDIA
TRANSFORMS A REAL MATRIX TO UPPER HESSENBERG FORM USING WILKINSONS METHOD.	F16HSSN
INVERTS A MATRIX TO OFFER RESERBERG FORM USING WIELLINSONS METHOD, INVERTS A MATRIX USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. S WITH ITERATIVE REFINEMENT A MATRIX USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION.	F16INVERS
S WITH ITERATIVE REFINEMENT A MATRIX USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION.	F16INVITR
MAY BE A COLUMN OR A ROW OF A - MATRIX USING EITHER SINGLE OR DOUBLE PRECISION; OTHER SUBROUTINES ARE VIPA, VIPS, VIPD, VIPDA	A, VIPDS C16VIP
(COMPLEX AND REAL) OF A REAL MATRIX USING HOUSEHOLDERS TRANSFORMATION FOLLOWED BY DOUBLE OR ITERATION.	FIGLATNTR
D EIGENVECTORS OF A HERMITIAN MATRIX USING HOUSEHOLDERS TRANSFORMATION TO TRIDIAGONAL FORM FOLLOWED BY EITHER OR ITERATION	OR LR I F16TCDIAG
VALUE TO A COMPLEX HESSENBERG MATRIX USING HYMANS METHOD TO EVALUATE THE DETERMINANT.	F16DTSHFT
ES OF A SYMMETRIC TRIDIAGONAL MATRIX USING LR ITERATION.	F16SYMLR
NEAR SYSTEM FOR A TRIDIAGONAL MATRIX USING PARTIAL PIVOTING.	F16TRDSOM
ES OF A SYMMETRIC TRIDIAGONAL MATRIX USING QR ITERATION.	F16SYMQR
OF EIGENVECTORS OF A COMPLEX MATRIX USING OR ITERATION ON A SIMILAR HESSENBERG MATRIX FOR THE EIGENVALUES AND INVERSE ITER	
OR A LARGE SPARSE RECTANGULAR MATRIX USING THE CONJUGATE GRADIENT METHOD.	F16SCONG
ES OF A SYMMETRIC TRIDIAGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MINORS.	F16SEPAR
ES OF A SYMMETRIC TRIDIAGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MINORS.	F16SEPAR2
MATRIARCH SUBROUTENE TO DO A MATRIX VECTOR MULTIPLICATION.	C16FMVX
NEAR SYSTEM FOR A TRIDIAGONAL MATRIX WITHOUT PIVOTING.	F16TRDWNP
A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-MAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION FOLLOWING CROUTS A	
A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION ACCORDING TO CROUT	
A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQU	
	LGORITHM F16CITERF
A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS AL	
A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL R'GHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS AL Computes median, minimum, maximum, and range for one or all variables in a multiplexed array.	F17DSCRP2
A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL R'GHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS AL Computes median, minimum, maximum, and range for one or all variables in a multiplexed array. Computes means, standard deviations, variances, and coefficients of skewness and kurtosis for multiple	EXED ARR F17DSCRPT
A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS AL COMPUTES MEDIAN, MINIMUM, MAXIMUM, AND RANGE FOR ONE OR ALL VARIABLES IN A MULTIPLEXED ARRAY. Computes means, standard deviations, variances, and coefficients of skewness and kurtosis for multiple OR of means and subtracts the mean from Each observation of a set.	EXED ARR F17DSCRPT F17ZRNM
A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS AL Computes median, minimum, maximum, and range for one or all variables in a multiplexed array. Computes means, standard deviations, variances, and coefficients of skewness and kurtosis for multiple	EXED ARR F17DSCRPT

IANGULAR FORM BY HOUSEHOLDERS METHOD. F16DCBHT F A MODIFICATION OF LAGUERRES METHOD. F16E165 ING TO THE CONJUGATE GRADIENT METHOD . F16FCGM2 SENBERG FORM USING WILKINSONS METHOD. F16HSSN ORM ACCORDING TO HOUSEHOLDERS METHOD. F16SUBDIR ES PROBLEM USING HOUSEHOLDERS METHOD. F16LSQSIT MODIFICATION OF HOUSEHOLDERS METHOD. F16SUBDIA USING THE CONJUGATE GRADIENT METHOD F16SCONG N CARRIED OUT WITH WILKENSONS METHOD. F16SIMP ERATION OR THE STURM SEQUENCE METHOD; EIGENVECTORS ARE FOUND BY MEANS OF INVERSE ITERATION. F16TCDIAG GULAR FACTORS USING CHOLESKYS METHOD; THE DETERMINANT IS AVAILABLE, F16CHSDEC ELIMINATION USING DOOL TTLES METHOD AND APPLYING PARTIAL PIVOTING AND DOUBLE PRECISION ARITHMETIC FOR THE CALCULATION OF INNER PR F18LINSYS COMPLEX FUNCTION WITH MULLERS METHOD AND FACTORING OUT PREVIOUSLY FOUND ZEROS, F18ZAFUM METHOD AND SWITCHING TO THE STEEPEST DESCENT METHOD IF THE FORMER METHOD GIVES DIVERGENCE; IN THE ST UATIONS IN THE NEWTON RAPHSON F18NRSG DECOMPOSES BY THE CHOLESKY METHOD & REAL, SYMMETRIC POSITIVE DEFINITE BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS. F16BCHSDC METHOD BY PERFORMING SIMULTANEOUSLY ONE ITERATION OF EACH METHOD AND DEFLATING THE ORIGINAL POLYNOMI F18PROOT H NEWTONS METHOD OR BAIRSTOWS Y LEHMERS METHOD USING SCHURS METHOD FOR ISOLATING ONE ZERO. F18HELP HT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION. F168PDITM HT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION. F16BPDSOM METHOD HAS BEEN CARRIED OUT. AR DECOMPOSITION BY CHOLESKYS F16BITRPD METHOD HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BCHSDC. AR DECOMPOSITION BY CHOLESKYS F16BPDFSB COMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT. F16BSUBHT COMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT. F16ITRLSQ DECOMPOSITION WITH CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROVIDES DATA FOR ESTIMATING THE CONDITION NUMBER AND THE NUMBER OF F16 TRPDM METHOD HAS BEEN CARRIED OUT AND PROVIDES DATA FOR ESTIMATING THE CONDITION NUMBER AND THE NUMBER OF DECOMPOSITION WITH CHOLESKYS F16ITRPDS F18NRSG CHING TO THE STEEPEST DESCENT METHOD IF THE FORMER METHOD GIVES DIVERGENCE; IN THE STEP VECTOR DIRECTION THE OPTIMAL STEP VECTOR I METHOD IN THE FIRST ITERATION AND BY UPDATING THE APPROXIMATION OF THE JACOBIAN IN THE NEXT ITERATIC S BY USING THE NEWTON RAPHSON F18QNWT METHOD MODIFYING THIS CORRECTION VECTOR WHEN IT IS TOO LARGE OR WHEN THE CORRECTION DOES NOT IMPROVE ECTOR WITH THE NEWTON RAPHSON F1BNEWT USING THE GENERALIZED SECANT METHOD MODIFYING THE STEP VECTOR WHEN THE SET OF GUESSES TEND TO BECOME LINEARLY DEPENDENT OR WHEN T F18NONLIG OR A COMPLEX SYSTEM USING THE METHOD OF CONJUGATE GRADIENT. F16CCONGR S USING A PREDICTOR CORRECTOR METHOD OF EIGHTH ORDER AND PICARDS METHOD OF SUCCESSIVE SUBSTITUTION. F14BLCKD0 METHOD OF INVERSE WIELANDT ITERATION WITH PERIODIC RAYLEIGH QUOTIENT SHIFTING COMBINED WITH A STABLE , NARROW BANDMATRIX USING THE F16BANEIG METHOD OF LEAST SQUARES A POLYNOMIAL OF SPECIFIED DEGREE WHOSE GRAPH APPROXIMATES A SET OF DATA POIN F NDS BY THE F15FLSQFY D OF EIGHTH ORDER AND PICARDS METHOD OF SUCCESSIVE SUBSTITUTION. F14BLCKDQ EAL COEFFICIENTS WITH NEWTONS METHOD OR BAIRSTOWS METHOD BY PERFORMING SIMULTANEOUSLY ONE ITERATION OF EACH METHOD AND DEFLATING T F18PROOT METHOD THE POLYNOMIAL INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY BY A POL COMPUTES BY AITKENS F15AITKEN ESSENBERG MATRIX USING HYMANS F16DTSHFT METHOD TO EVALUATE THE DETERMINANT. COMPLEX POLYNOMIAL BY LEHMERS METHOD USING SCHURS METHOD FOR ISOLATING ONE ZERO, F18HELP COMPLEX POLYNOMIAL BY MULLERS METHOD WITH DEFLATION. F18MULLP F15CHEBAP MINIMAX FIT OF A GIVEN FUNCTION OVER A GIVEN INTERVAL. ES & CLOSE APPROXIMAT ON TO A MINIMAX FUNCTION APPROXIMATION TO A SET OF GIVEN POINTS IN TERMS OF A LINEAR COMBINATION OF A PRESCR CONSTRUCTS A F15MIGEN G THE EXCHANGE ALGORITHM, THE MINIMAX POLYNOMIAL THROUGH A DISCRETE, WEIGHTED SET OF POINTS. F15CFQME CONSTRUCTS A MINIMAX RATIONAL FUNCTION APPROXIMATION OF GIVEN DEGREE TO A DISCRETE DATA SET. F15MINRAT NG FUNCTION WHICH ATTEMPTS TO MINIMIZE THE RIPPLE IN CURVATURE. F15RICH COMPUTES MEDIAN. MIN'MUM, MAX MUM, AND RANGE FOR ONE OR ALL VARIABLES IN A MULTIPLEXED ARRAY. F17DSCRP2 MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND FOR REAL ARGUMENT BY USING BACKWARD RECURSION. COMPUTES A SEQUENCE OF F13BESNIS COMPUTES A SEQUENCE OF MODIFIED BESSEL FUNCTIONS OF THE SECOND KIND FOR REAL ARGUMENT BY USING POLYNOMIAL APPROXIMATIONS AN F13BESNKS COMPUTES THE OUTPUTS OF A MOVING AVERAGE AUTO REGRESSIVE FILTER, F17FILTER RO OF A COMPLEX POLYNOMIAL BY MULLERS METHOD WITH DEFLATION. F18MULLP OS OF A COMPLEX FUNCTION WITH MULLERS METHOD AND FACTORING OUT PREVIOUSLY FOUND ZEROS. F18ZAFUM E VALUES OF ONE VARIABLE IN A MULTIPLEXED ARRAY AND A GIVEN CONSTANT. F17CONRAY MULT PLEXED ARRAY. ICIENTS FOR ONE VARIABLE IN A F17CORCOV OF SKEWNESS AND KURTOSIS FOR MULTIPLEXED ARRAYS. F17DSCRPT MULTIPLEXED ARRAY. FOR ONE OR ALL VAR ABLES IN A F17DSCRP2 MULTIPLEXED ARRAY. ON AND STORES THE VALUES IN A F17NRAND IL AND STORES THE VALUES IN A MULTIPLEXED ARRAY. F17NRMNO RVATIONS OF ONE VARIABLE IN A MULTIPLEXED ARRAY. F170P1RAY ERVATIONS OF TWO VARIABLES IN MULT PLEXED ARRAYS. F170P2RAY E VALUES AS ONE VARIABLE IN A MULTIPLEXED ARRAY. F17URAND E VALUES OF ONE VARIABLE IN A MULTIPLEXED ARRAY IN INCREASING ORDER. F17VARORD

FINDS THE LEAST COMMON	MULTIPLE OF TWO INTEGERS BY USING SUBROUTINE HCF,	F11LCM
ROUTINE TO DO A MATRIX VECTOR	MULTIPLICATION.	C16FMVX
NE TO PERFORM A MATRIX MATRIX	MULTIPLICATION.	C16FMMX
	MULTIPLIES A POLYNOMIAL BY A LINEAR FACTOR.	F13FMULT1
	MULTIPLIES TWO FRACTIONS AND EXPRESSES THE RESULT AS A FRACTION IN ITS LOWEST TERMS.	F11FMFRAC
MATRIARCH SUBROUTINE TO	MULTIPLY A COMPLEX MATRIX BY A COMPLEX VECTOR.	CIGFMVCX
MATRIARCH SUBROUTINE TO	MULTIPLY A LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT.	C16SMVX
MATRIARCH SUBROUTINE TO	MULTIPLY A TRANSPOSED MATRIX BY A VECTOR.	C16FMTVX
MATRIARCH SUBROUTINE TO	MULTIPLY A TRANSPOSED COMPLEX MATRIX BY A COMPLEX VECTOR.	CIGFMTVCX
MATRIARCH SUBROUTINE TO	MULTIPLY A TRANSPOSED MATRIX BY A MATRIX ON THE RIGHT.	C16FMTMX
	MULTIPLY A TRANSPOSED WATRIX OF A WATRIX ON THE ATOM.	C16SMTVX
MATRIARCH SUBROUTINE TO	MULTIPLY A TRANSPOSED LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT,	
METRIC, NONNEGATIVE DEFINITE,	NARROW BANDMATRIX USING THE METHOD OF INVERSE WIELANDT ITERATION WITH PERIODIC RAYLEIGH QUOTIENT SHI	
COMPUTES THE	NATURAL LOGARITHM OF A REAL ARGUMENT.	C12ALOG
COMPUTES THE	NATURAL LOGARITHM OF A DOUBLE PRECISION REAL ARGUMENT.	C12DLOG
COMPUTES THE	NATURAL LOGARITHM OF A COMPLEX ARGUMENT.	C12CLOG
COMPUTES THE	NATURAL LOGARITHM OF THE GAMMA FUNCTION FOR COMPLEX ARGUMENT BY USING CONTINUED FRACTIONS.	F13LOGGAM
DISTRIBUTION FUNCTION OF THE	NEGATIVE BINOMIAL DISTRIBUTION.	F17PINBIN
DISTRIBUTION FUNCTION OF THE	NEGATIVE BINOMIAL DISTRIBUTION.	F17PNBIN
RATES RANDOM NUMBERS HAVING A	NEGATIVE EXPONENTIAL DISTRIBUTION.	F17EXRAND
ERSE OF THE ERROR FUNCTION BY	NEWTONS METHOD.	F13ERFINV
L WITH REAL COEFFICIENTS WITH	NEWTONS METHOD OR BAIRSTOWS METHOD BY PERFORMING SIMULTANEOUSLY ONE ITERATION OF EACH METHOD AND DEF	F18PROOT
RIAL SOLUTION VECTOR WITH THE	NEWTON RAPHSON METHOD MODIFYING THIS CORRECTION VECTOR WHEN IT IS TOO LARGE OR WHEN THE CORRECTION D	FISNEWT
EM OF LINEAR EQUATIONS IN THE	NEWTON RAPHSON METHOD AND SWITCHING TO THE STEEPEST DESCENT METHOD IF THE FORMER METHOD GIVES DIVERG	F18NRSG
LINEAR EQUATIONS BY USING THE	NEWTON RAPHSON METHOD IN THE FIRST ITERATION AND BY UPDATING THE APPROXIMATION OF THE JACOBIAN IN TH	F18QNWT
SOLVES A SYSTEM OF	NONLINEAR ALGEBRAIC EQUATIONS USING THE GENERALIZED SECANT METHOD MODIFYING THE STEP VECTOR WHEN THE	F18NONL 10
SOLVES	NONLINEAR BOUNDARY VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS BY COMEINING AN INITIAL VALUE S	F14BVD
CONSTRUCTS A	NONLINEAR CUBIC SPLINE INTERPOLATING A SET OF POINTS WITH ARBITRARY SPACING.	F15UNCSPL
SOLVES A SYSTEM OF	NONLINEAR CODIC SPLINE INTERCALLING A SLI OF FORMIS WITH ARBITRATION OF THE TRIAL SOLUTION VECTOR	FISNEWT
		F18NRSG
AN OVER DETERMINED SYSTEM OF	NONLINEAR EQUATIONS BY CALCULATING A STEP VECTOR DIRECTION AS A LEAST SQUARES SOLUTION OF THE SYSTEM	
SOLVES A SYSTEM OF	NONLINEAR EQUATIONS BY USING THE NEWTON RAPHSON METHOD IN THE FIRST ITERATION AND BY UPDATING THE AP	F18QNWT
SOLVES A SYSTEM OF	NONLINEAR EQUATIONS BY CALLING SUBROUTINE ONWY A NUMBER OF TIMES WITH DIFFERENT INITIAL GUESSES.	F18RGNWT
EIGENVECTORS OF A SYMMETRIC,	NONNEGATIVE DEFINITE, NARROW BANDMATRIX USING THE METHOD OF INVERSE WIELANDT ITERATION WITH PERIODIC	F16BANEIG
MATRIARCH SUBROUTINE TO	NORMALIZE A VECTOR IN THE 2 NORM.	C16FNORM1
RATES RANDOM NUMBERS HAVING A	NORMAL DISTRIBUTION AND STORES THE VALUES IN A MULTIPLEXED ARRAY.	F17NRAND
RATES RANDOM NUMBERS HAVING A	NORMAL DISTREBUTION.	F17NRML
RATES RANDOM NUMBERS HAVING A	NORMAL DISTRIBUTION, PROVIDING A CONVENIENT WAY OF HANDLING THE TAIL AND STORES THE VALUES IN A MULT	F17NRMNO
DISTRIBUTION FUNCTION OF THE	NORMAL DISTRIBUTION.	F17PINORM
ION FUNCTION OF THE TRUNCATED	NORMAL DISTRIBUTION.	F17PITRNM
TRIBUTION FUNCTION OF THE LOG	NORMAL DISTRIBUTION.	F17PILGNM
TRIBUTION FUNCTION OF THE LOG	NORMAL DISTRIBUTION.	F17PLGNRM
DISTRIBUTION FUNCTION OF THE	NORMAL DISTRIBUTION.	F17PNORM
ION FUNCTION OF THE TRUNCATED	NORMAL DISTRIBUTION.	F17PTRNRM
DOM NUMBERS HAVING UNIFORM CR	NORMAL DISTRIBUTION.	F17RAND
O NORMALIZE A VECTOR IN THE 2	NORM.	C16FNORM1
TINE TO COMPUTE THE EUCLIDIAN	NORM OF A VECTOR.	C16FABSV
THOD DESCRIBED BY JARRATT AND	NUDDS FOR APPROXIMATION OF ONE ZERO AND FACTORING OUT PREVIOUSLY FOUND ZEROS.	F18ZAFUJ
THOD DESCRIBED BY JARRATT AND	NUDDS FOR APPROXIMATION OF ONE ZERO AND FACTORING OUT PREVIOUSLY FOUND ZEROS.	F18ZAFUR
ORDERS A SET OF COMPLEX		F16VECORD
UNIFORM RANDOM FLOATING POINT	NUMBERS BETWEEN TWO GIVEN VALUES.	F17XIRAND
GENERATES RANDOM	NUMBERS HAVING A NEGATIVE EXPONENTIAL DISTRIBUTION.	FITEXRAND
		F17NRAND
GENERATES RANDOM	NUMBERS HAVING A NORMAL DISTRIBUTION AND STORES THE VALUES IN A MULTIPLEXED ARRAY.	
GENERATES RANDOM	NUMBERS HAVING A NORMAL DISTRIBUTION.	F17NRML
GENERATES RANDOM	NUMBERS HAVING A NORMAL DISTRIBUTION, PROVIDING A CONVENIENT WAY OF HANDLING THE TAIL AND STORES THE	F17NRMNO
GENERATES RANDOM	NUMBERS HAVING UNIFORM OR NORMAL DISTRIBUTION.	F17RAND
GENERATES RANDOM	NUMPERS HAVING A UNIFORM DISTRIBUTION AND STORES THE VALUES AS ONE VARIABLE IN A MULTIPLEXED ARRAY.	F17URAND
HE ACCURACY AND THE CONDITION	NUMBER.	F16BITRNP
HE ACCURACY AND THE CONDIT ON	NUMBER.	F16BITERM
HE ACCURACY AND THE CONDITION	NUMBER.	F16BITRFM
HE ACCURACY AND THE CONDITION	NUMBER,	F16BITWNP
HE ACCURACY AND THE CONDITION	NUMBER.	F16CITERF

THE DETERMINANT AND CONDITION	NUMBER.	F16LITWNE
THE DETERMINANT AND CONDITION	NUMBER.	F16LITWNP
FOR ESTIMATING THE CONDITION	NUMBER AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION.	F16 TRPDM
FOR ESTIMATING THE CONDITION	NUMBER AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION.	F16ITRPDS
THE DETERMINANT AND CONDITION	NUMBER ARE AVAILABLE.	F16CGITRF
COMPUTES THE	NUMEER OF OBSERVATIONS IN SPECIFIED INTERVALS; USED TO PRODUCE HISTOGRAMS,	F17HSTGRM
THE DETERMINANT AND CONDITION		F16ITERFM
	NUMBER OF THE MATRIX.	
THE DETERMINANT AND CONDITION	NUMBER OF THE MATRIX.	F16ITERFS
THE DETERMINANT AND CONDITION	NUMBER OF THE MATRIX AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION.	F16GITRFM
THE DETERMINANT AND CONDITION	NUMBER OF THE MATRIX AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION.	F16GITRFS
AND ESTIMATING THE CONDITION	NUMBER OF THE MATRIX.	F16PDITRS
AND ESTIMATING THE CONDITION	NUMBER OF THE MATRIX.	F16PDITRM
CALCULATES THE	NUMBER OF ZEROS, DECREASED BY THE NUMBER OF POLES, OF A COMPLEX FUNCTION IN AN AREA IN THE COMPLEX P	F18ZCOUNT
DIFFERENTIATES	NUMERICALLY AN EQUALLY SPACED TABULAR FUNCTION AT ANY POINT USING AN INTERPOLATING POLYNOMIAL OF SPE	F15LAGDIF
DIFFERENTIATES	NUMERICALLY A FUNCTION GIVEN AS A TABLE WITH EQUISPACED ARGUMENTS, AT A TABULAR POINT OR AT THE MIDP	F15DIFTAB
E PRECISION SUMS OF POWERS OF	OBSERVATIONS.	F17SUMPS
REMOVES SPECIF ED	OBSERVATIONS FROM A DATA ARRAY.	F17DLETE
COMPUTES THE NUMBER OF	OBSERVATIONS IN SPECIFIED INTERVALS; USED TO PRODUCE HISTOGRAMS.	F17HSTGRM
RFORMS TRANSFORMAT ONS ON THE	OBSERVATIONS OF ONE VARIABLE IN A MULTIPLEXED ARRAY.	F170P1RAY
HMETIC TRANSFORMATIONS ON THE	OBSERVATIONS OF TWO VARIABLES IN MULTIPLEXED ARRAYS.	F170P2RAY
SUBTRACTS THE MEAN FROM EACH	OPSERVATION OF A SET.	F17ZRNM
LAGARANGIAN INTERPOLATION IN	ONE DIMENSIONAL TABLE: ARBITRARY ORDER.	F15TBLU1
PERFORMS AR THMETIC	OPERATIONS ON THE VALUES OF ONE VARIABLE IN A MULTIPLEXED ARRAY AND A GIVEN CONSTANT,	F17CONRAY
THE STEP VECTOR DIRECTION THE	OPTIMAL STEP VECTOR IS CALCULATED BY PARABOLIC INTERPOLATION.	F18NRSG
VE REAL ARGUMENT AND INTEGER	ORDERS.	F13RBESY
THE REAL ARCOMENT AND INTEGER	ORDERS A SET OF COMPLEX NUMBERS ACCORDING TO EITHER DECREASING OR INCREASING MAGNITUDE IN A WAY WHIC	
FOR REAL ADGUMENT AND INTEGER		
FOR REAL ARGUMENT AND INTEGER	ORDERS BY USING BACKWARD RECURSION.	F13NBESJ
COMPLEX ARGUMENT AND COMPLEX	ORDER,	F13COMBES
LTIPLEXED ARRAY IN INCREAS NG	ORDER.	F17VARORD
FOR REAL ARGUMENT AND INTEGER	ORDER BY SUMMATION OF SERIES FOR BESSEL FUNCTIONS.	F13HANKEL
NE ABSCISSAS REQUIRED; SECOND	ORDER CONTINUITY.	F15COMCUB
HE EIGENSYSTEM FOR THE SECOND	ORDER DIFFERENTIAL EQUATION A#X.	F16DEIG
REVERSES THE	ORDER OF COMPLEX POLYNOMIAL COEFFICIENTS IN AN ARRAY.	F13CREV
REVERSES THE	ORDER OF REAL POLYNOMIAL COEFFICIENTS IN AN ARRAY.	F13REV
SOLVES A SYSTEM OF FIRST	ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A PREDICTOR CORRECTOR METHOD OF EIGHTH ORDER AND PICARDS	F14BLCKDQ
SOLVES A SYSTEM OF FIRST	ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNIQUE BASED ON A MCDIFIED M	F14DRATEX
SOLVES A SYSTEM OF FIRST	ORDER ORDINART DIFFERENTIAL EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TECHNIQUE EFFICIENT FOR LOW	F14RKINIT
(ORDINATES) IN THEIR STORED	ORDER (ABSCISSA).	F17YPLOT
OLVES A SYSTEM OF FIRST ORDER	ORDINARY DIFFERENTIAL EQUATIONS USING A PREDICTOR CORRECTOR METHOD OF EIGHTH ORDER AND PICARDS METHO	F14BLCKDQ
OLVES A SYSTEM OF FIRST ORDER	ORDINARY DIFFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNIQUE BASED ON A MODIFIED MIDPOIN	F14DRATEX
OLVES A SYSTEM OF F'RST ORDER	ORDINARY DIFFERENTIAL EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TECHNIQUE EFFICIENT FOR LOW ACCURA	F14RKINIT
AR BOUNDARY VALUE PROBLEMS IN	ORDINARY DIFFERENTIAL EQUATIONS BY COMBINING AN INITIAL VALUE SOLVER WITH A NONLINEAR EQUATION SOLVI	F14BVD
VALUE PROBLEMS IN A SYSTEM OF	ORDINARY DIFFERENTIAL EQUATIONS, WHERE THE SOLUTION IS BASED ON THE PRINCIPLE OF SUPERPOSITION, USIN	F14LINBVD
ALUES FOR UP TO 5 VAR ABLES (ORDINATES) AGAINST A SINGLE VARIABLE (ABSCISSA).	F17XYPLOT
ALUES FOR UP TO 5 VARIABLES (ORDINATES) IN THEIR STORED ORDER (ABSCISSA).	F17YPLOT
ATTACHED TO EACH PU'NT, USING	ORTHOGONAL POLYNOMIALS.	F15FLSQFY
SOLVES AN	OVER DETERMINED SYSTEM OF NONLINEAR EQUATIONS BY CALCULATING A STEP VECTOR DIRECTION AS A LEAST SQUA	F18NRSG
	PADE APPROXIMATION TO A FUNCTION OF WHICH THE MACLAURIN EXPANSION IS GIVEN.	F15PADE
RUCTS THE COEFFICIENTS OF THE		
STEP VECTOR IS CALCULATED BY	PARABOLIC INTERPOLATION,	F18NRSG
LVES A RATIONAL FUNCTION INTO	PARTIAL FRACTIONS GIVEN THE ROOTS OF THE DENOMINATOR POLYNOMIAL AND THE COEFFICIENTS OF THE NUMERATO	F13PARFAC
BY GAUSSIAN ELIMINATION WITH	PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTOR	F16BDECOM
TRIANGULAR DECOMPOSITION WITH	PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BDECOM.	F168FBSUM
TRIANGULAR DECOMPOSITION W.TH	PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCUR	F16BITERM
ING GAUSSIAN ELIMINATION WITH	PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION	F16BITRFM
ING GAUSSIAN ELIMINATION WITH	PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION; THE DETERMINANT IS ALSO AVAILABLE.	F16BLESOM
S USING CROUTS ALGORITHM W TH	PARTIAL PIVOTING AND ROW EQUILIBRATION; ALSO COMPUTES ITS DETERMINANT.	F16CDECOM
LLOWING CROUTS ALGORITHM WITH	PARTIAL PIVOTING AND ROW EQUIL BRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE CDECOM.	F16CFBSUM
DING TO CROUTS ALGORITHM WITH	PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN GARRIED OUT; THE DETERMINANT AND CONDITION NUMBER AR	F16CGITRF
S USING CROUTS ALGORITHM WITH	PARTIAL PIVOTING AND ROW EQUILIBRATION.	F16CGLESM
DING TO CROUTS ALGORITHM WITH	PARTIAL PIVOTING AND ROW EQUIL'BRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY A	F16CITERF

•

S USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION: THE DETERMINANT IS AVAILABLE. F16DCWNE S USING CROUTS ALGOPITHM WITH PART AL PIVOTING AND ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE. F16DECOM N USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN GARRIED OUT BY SUBROUTINE DECOM. F16DETERM DING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE DECOM. F16F8SUBM DING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT. F16F8SUBS TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING ACCORDING TO CROUTS ALGORITHM HAS BEEN CARRIED OUT AND PROVIDES DATA FOR CALCULATIN F16ITERFM TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING ACCORDING TO CROUTS ALGORITHM HAS BEEN CARRIED OUT AND PROVIDES DATA FOR CALCULATIN F16|TERFS DING TO CROUTS ALGOR THM WITH PART AL PIVOTING AND ROW EQUILIBRATION. F16GLESOM DING TO CROUTS ALGORITHM W TH PART AL PIVOTING AND ROW EQUILIBRATION. F16GLESOS X USING CROUTS ALGORITHM WITH PART AL PIVOTING AND ROW EQUILIBRATION. F16INVERS X USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16INVITR USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITIO F16GITRFM M USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITIO F16GITRFS PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT. N USING CROUTS ALGORITHM WITH F16ITERIN M USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION: THE DETERMINANT IS AVAILABLE. F16LESWNE M USING CROUTS ALGORITHM W TH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND COND F16LITWNE PPER TRIANGULAR FACTORS USING PART AL PIVOTING. F16TRDCOM X PROVIDED DECOMPOSITION WITH PARTIAL PIVOTING HAS BEEN CARRIED OUT. F16TRDFBM OR A TRIDIAGONAL MATRIX USING PARTIAL PIVOTING. F16TRDSOM OOLITTLES METHOD AND APPLYING PARTIAL PIVOTING AND DOUBLE PRECISION ARITHMETIC FOR THE CALCULATION OF INNER PRODUCTS. F18LINSYS VERSE WIELANDT ITERATION WITH PERIODIC RAYLEIGH QUOTIENT SHIFTING COMBINED WITH A STABLE, BAND-PRESERVING DEFLATION TECHNIQUE. F16BANEIG OR METHOD OF EIGHTH ORDER AND PICARDS METHOD OF SUCCESSIVE SUBSTITUTION. F14BLCKDQ ANGULAR FACTORS USING PARTIAL PIVOTING. F16TRDCOM DIAGONAL MATRIX USING PARTIAL PIVOTING. F16TRDSOM AR DECOMPOSITION W TH PARTIAL PIVOTING ACCORDING TO CROUTS ALGORITHM HAS BEEN GARRIED OUT AND PROVIDES DATA FOR CALCULATING THE DE F161TERFM AR DECOMPOSITION WITH PARTIAL PIVOTING ACCORDING TO CROUTS ALGORITHM HAS BEEN CARRIED OUT AND PROVIDES DATA FOR CALCULATING THE DE F161TERFS S METHOD AND APPLYING PART AL PIVOTING AND DOUBLE PRECISION ARITHMETIC FOR THE CALCULATION OF INNER PRODUCTS. F18LINSYS SIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS. F16BDECOM AR DECOMPOSITION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BDECOM. F16BF8SUM AR DECOMPOSITION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY AND F16BITERM PIVOTING AND IMPLICIT EQUILIBRATION AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER. STAN ELIMINATION WITH PARTIAL F16BITRFM STAN ELIMINATION W. TH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION; THE DETERMINANT IS ALSO AVAILABLE. F16BLESOM CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION; ALSO COMPUTES ITS DETERMINANT. F16CDECOM CROUTS ALGORITHM WITH PARTIAL PRVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE CDECOM. F16CFBSUM CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT; THE DETERMINANT AND CONDITION NUMBER ARE AVAILA F16CGITRF CROUTS ALGOR THM W TH PART AL PIVOTING AND ROW EQUILIBRATION. F16CGLESM CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE C F16CITERF CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION: THE DETERMINANT IS AVAILABLE. F16DECOM CROUTS ALGORITHM W TH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT BY SUBROUTINE DECOM. F16DETERM CROUTS ALGOR THM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE DECOM. F16FBSUBM CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT. F16F8SU8s CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16GLESOM CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16GLESOS CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16INVERS CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16INVITR CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NUMBER F16GITRFM CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NUMBER F16GITRFS CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT. F16ITERIN ED DECOMPOSITION WITH PARTIAL PIVOTING HAS BEEN CARRIED OUT. F16TRDFBM CROUTS ALGOR THM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE. F16DCWNE PIVOTING WITHOUT ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE. CROUTS ALGORITHM WITH PARTIAL F16LESWNE CROUTS ALGOR THM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NU F16LITWNE PROVIDES & PRINTER PLOT OF THE VALUES FOR UP TO 5 VARIABLES (ORDINATES) IN THEIR STORED ORDER (ABSCISSA). F17YPLOT PROVIDES & PRINTER PLOT OF THE VALUES FOR UP TO 5 VARIABLES (ORDINATES) AGAINST A SINGLE VARIABLE (ABSCISSA). F17XYPLOT REAL POLYNOMIAL AT A COMPLEX POINT BY FACTORIZING WITH A QUADRATIC TERM. F13COMPEV RATES UNIFORM RANDOM FLOATING POINT NUMBERS BETWEEN TWO GIVEN VALUES. F17X RAND DISTRIBUTION FUNCTION OF THE POISSON DISTRIBUTION, F17PIPOIS F17POIS DISTRIBUTION FUNCTION OF THE POISSON DISTRIBUTION. ES RANDOM INTEGERS HAVING THE POISSON DISTRIBUTION. F17PORAND E COMPLEX PLANE ENCLOSED BY A POLYGON. F18ZCOUNT

CIENTS OF THE SUM OF TWO REAL POLYNOMIALS. F13ADR NTS OF THE SUM OF TWO COMPLEX POLYNOMIALS. F13CADR FINDS THE PRODUCT OF TWO REAL POLYNOMIALS. F13MPYR DS THE PRODUCT OF TWO COMPLEX POLYNOMIALS. F13CMPYR OF THE DIFFERENCE OF TWO REAL POLYNOMIALS. F13SBR THE DIFFERENCE OF TWO COMPLEX POLYNOMIALS. F13CSBR EACH POINT, USING ORTHOGONAL POLYNOMIALS. F15FLSOFY ION IN THE ARGUMENT OF A REAL POLYNOMIAL. F13PTRAN IN THE ARGUMENT OF A COMPLEX POLYNOMIAL. F13CPTRAN F15TRGDIF FICIENTS OF THE TR GONOMETRIC POLYNOMIAL. NTEGRATION OF A TRIGONOMETRIC POLYNOMIAL. F15TRGINT THE ROOTS OF THE DENOMINATOR POLYNOMIAL AND THE COEFFICIENTS OF THE NUMERATOR POLYNOMIAL. F13PARFAC ND FOR REAL ARGUMENT BY USING POLYNOMIAL APPROXIMATIONS AND THE SUBROUTINE BESNIS. F13BESNKS POLYNOMIAL APPROXIMATION OF SOME PREASSIGNED DEGREE TO A SET OF DATA POINTS WITH GIVEN WEIGHT WHERE CONSTRUCTS A LEAST SQUARES F15FDLSQ POLYNOMIAL AT A COMPLEX POINT BY FACTORIZING WITH A QUADRATIC TERM. EVALUATES A REAL F13COMPEV EVALUATES A SINE POLYNOMIAL AT A GIVEN POINT. F15SINEVL EVALUATES A COSINE POLYNOMIAL AT A GIVEN POINT. F15COSEVL MULTIPLIES A POLYNOMIAL BY A LINEAR FACTOR. F13FMULT1 DIVIDES A REAL POLYNOMIAL BY A LINEAR FACTOR, X+B, WHERE B MAY BE COMPLEX. F13LDIV DIVIDES & COMPLEX POLYNOMIAL BY A LINEAR FACTOR, X+B, WHERE B MAY BE COMPLEX. F13CLDIV OBTAINED BY DIVIDING ONE REAL POLYNOMIAL BY ANOTHER. F13PDIV AINED BY DIVIDING ONE COMPLEX POLYNOMIAL BY ANOTHER. F13CPDIV DIV DES A REAL POLYNOMIAL BY A QUADRATIC EXPRESSION. F130DIV DIVIDES A COMPLEX POLYNOMIAL BY A QUADRATIC EXPRESSION. F13CQDIV DS ALL THE ZEROS OF A COMPLEX POLYNOMIAL BY APPLYING STEEPEST DESCENT WITH ACCELERATION DEVICES AND USING EXPLICIT DEFLATION WHEN F18CPOLRT DS ALL THE ZEROS OF A COMPLEX POLYNOMIAL BY LEHMERS METHOD USING SCHURS METHOD FOR ISOLATING ONE ZERO. F18HELP OR A SINGLE ZERO OF A COMPLEX POLYNOMIAL BY MULLERS METHOD WITH DEFLATION. F18MULLP REVERSES THE ORDER OF REAL POLYNOMIAL COEFFICIENTS IN AN ARRAY. F13REV REVERSES THE ORDER OF COMPLEX POLYNOMIAL COEFFICIENTS IN AN ARRAY. F13CREV THE INTEGRAL OF ANOTHER REAL POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER. F13INT E INTEGRAL OF ANOTHER COMPLEX POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER. F13CINT HE DERIVATIVE OF ANOTHER REAL POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER. F13DERIV DERIVATIVE OF ANOTHER COMPLEX POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER. F13CDERIV EVALUATES A POLYNOMIAL HAVING COMPLEX COEFFICIENTS AT A COMPLEX POINT BY SUMMING THE PRODUCT OF THE POWERS TIMES F13CCOMPE EVALUATES A POLYNOMIAL HAVING REAL COEFFICIENTS AT A REAL VALUE OF THE INDEPENDENT VARIABLE BY NESTED MULTIPLICA F13EVREAL COMPUTES THE LAGRANGIAN POLYNOMIAL INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY BY A POLYNOMIAL OF F15LAGINT OMPUTES BY AITKENS METHOD THE POLYNOMIAL INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY BY A POLYNOMIAL OF F15AITKEN POLYNOMIAL NEAR ONE OF ITS ROOTS THROUGH FORWARD ERROR ANALYS'S. N THE EVALUATION OF A COMPLEX F18CNSLVL POLYNOMIAL OF A SPECIFIED DEGREE WHOSE GRAPH APPROXIMATES A SET OF DATA POINTS WITH WEIGHT ATTACHED CONSTRUCTS & LEAST SQUARES F15FCLS0 EVALUATING THE LEAST SQUARES POLYNOMIAL OF DEGREE N BASED ON SUCCESSIVE POINTS. F15SMOOTH THE METHOD OF LEAST SQUARES A POLYNOMIAL OF SPECIFIED DEGREE WHOSE GRAPH APPROXIMATES A SET OF DATA POINTS WITH WEIGHT ATTACHED TO F15FLSQFY POINT USING AN INTERPOLATING POLYNOMIAL OF SPECIFIED ORDER. F15LAGDIF THE COEFFICIENTS OF THE REAL POLYNOMIAL P(AX) FROM THE COEFFICIENTS OF P(X). F13SHRINK E COEFFICIENTS OF THE COMPLEX POLYNOMIAL P(AX) FROM THE COEFFICIENTS OF P(X). F13CSHRNK OEFFICIENTS OF THE CHEBYCHEFF POLYNOMIAL THAT GIVES A CLOSE APPROXIMATION TO A MINIMAX FIT OF A GIVEN FUNCTION OVER A GIVEN INTERV F15CHEBAP POLYNOMIAL THROUGH N+1 POINTS. GREE LAGRANGIAN INTERPOLATING F15FLGNEW EGREE HERMITIAN INTERPOLATING POLYNOMIAL THROUGH N+1 POINTS WITH FIRST DERIVATIVES GIVEN AT THE FIRST M+1 POINTS (M NOT GREATER TH F15FHRNEW CHANGE ALGORITHM, THE MINIMAX POLYNOMIAL THROUGH A DISCRETE, WEIGHTED SET OF POINTS. F15CFQME CONSTRUCTS COEFFICIENTS OF A POLYNOMIAL WHICH IS THE DERIVATIVE OF ANOTHER POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER. F15DERIY TRUCTS COEFFICIENTS OF A SINE POLYNOMIAL WITH A LINEAR TREND GIVEN A SET OF (ABSCISSA, ORDINATE) PAIRS WITH ARBITRARY SPACING. F15SINSER POLYNOMIAL WITH REAL COEFFICIENTS NEAR ONE OF ITS COMPLEX ROOTS THROUGH FORWARD ERROR ANALYSIS. ERROR IN THE EVALUATION OF A F18NSLVL FINDS ALL ZEROS OF A POLYNOMIAL WITH REAL COEFFICIENTS WITH NEWTONS METHOD OR BAIRSTOWS METHOD BY PERFORMING SIMULTANEOUS F18PROOT POSITIVE DEFINITE BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS. ESKY METHOD A REAL, SYMMETRIC F16BCHSDC LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION BY CHOL F16BITRPD POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR LINEAR SYSTEM FOR A SYMMETRIC F16BPDITM LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION BY CHOL F16BPDFSB LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR F16BPDSOM DECOMPOSES A SYMMETRIC POSITIVE DEFINITE MATRIX INTO TRIANGULAR FACTORS USING CHOLESKYS METHOD; THE DETERMINANT IS AVAILABL F16CHSDEC RATIVE REFINEMENT & SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD HAS BEEN CARRIED OUT AN F16|TRPDM POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED DECOMPOSITION WITH CHOLESKYS RATIVE REFINEMENT & SYMMETRIC F16ITRPDS

	RATIVE REFINEMENT & SYMMETRIC	POSITIVE DEFINITE LINEAR SYSTEM PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT.	F16 TRSPM	
	RATIVE REFINEMENT A SYMMETRIC	POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED SQUARE ROOT FREE DECOMPOSITI	F16ITRSPS	
	SOLVES A SYMMETRIC	POSITIVE DEFINITE LINEAR SYSTEM USING CHOLESKY DECOMPOSITION.	F16PDLSOS	
	SOLVES A SYMMETRIC	POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING CHOLESKY DECOMPOSITION.	F16PDLSOM	
	SOLVES A SYMMETRIC	POSITIVE DEFINITE LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSITION HAS B	F16PDSFBS	
	SOLVES A SYMMETRIC	POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION US	F16PDSFBM	
· · · · · · · · · · · · · · · · · · ·	DECOMPOSES A SYMMETRIC	POSITIVE DEFINITE MATRIX INTO LOWER TRIANGULAR, DIAGONAL AND UPPER TRIANGULAR FACTORS WITHOUT CALCUL	F16SPDCOM	
	SOLVES A	POSITIVE DEFINITE LINEAR SYSTEM PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROO	F16SPDF BM	
	SOLVES A	POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED THE MATRIX HAS BEEN DECOMPO	F16SPDF8s	
	SOLVES A	POSITIVE DEFINITE LINEAR SYSTEM WITHOUT USING THE SQUARE ROOT ROUTINE.	F16SPDSOM	
	SOLVES A	POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES WITHOUT USING THE SQUARE ROCT ROUTIN	F16SPDSOS	
	S WITH ITERATIVE REFINEMENT A	POSITIVE DEFINITE LINEAR SYSTEM USING SQUARE ROOT FREE DECOMPOSITION.	F16SP TRM	
	S WITH ITERATIVE REFINEMENT A	POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING SQUARE ROOT FREE DECOMPOSITION	F16SPITRS	
	CTIONS OF THE SECOND KIND FOR	POSITIVE REAL ARGUMENT AND INTEGER ORDERS,	F13RBESY	•
	THE DOUBLE PRECISION SUMS OF	POWERS OF OBSERVATIONS.	F17SUMPS	
	, VIPD, VIPDA, VIPDS, INRPRD,	PRDSUM.	C16VIP	
	ER, REAL, COMPLEX, AND DOUBLE	PRECISION,	C12PS1132	
	USING EITHER SINGLE OR DOUBLE	PRECISION; OTHER SUBROUTINES ARE VIPA, VIPS, VIPD, VIPDA, VIPDS, INRPRD, PRDSUM.	C16VIP	
	COMPUTES THE DOUBLE	PRECISION ARCTANGENT TRIGONOMETRIC FUNCTION.	C12DATAN	
	COMPUTES THE DOUBLE	PRECISION ARCTANGENT TRIGONOMETRIC FUNCTION OF A QUOTIENT U/V.	C12DATAN2	
	G PARTIAL PIVOTING AND DOUBLE	PRECISION ARITHMETIC FOR THE CALCULATION OF INNER PRODUCTS.	F18LINSYS	
	COMPUTES THE DOUBLE	PRECISION COSINE TRIGONOMETRIC FUNCTION.	C12DCOS	
	COMPUTES THE DOUBLE	PRECISION, OTHER SUBROUTINES ARE VIPA, VIPS, VIPD, VIPDA, VIPDS, INRPRD, PRDSUM, PRECISION ARCTANGENT TRIGONOMETRIC FUNCTION. PRECISION ARCTANGENT TRIGONOMETRIC FUNCTION OF A QUOTIENT U/V. PRECISION ARITHMETIC FOR THE CALCULATION OF INNER PRODUCTS. PRECISION COS'NE TRIGONOMETRIC FUNCTION. PRECISION INNER PRODUCT OF TWO VECTORS HAVING COMPLEX ELEMENTS. PRECISION REAL ARGUMENT. PRECISION REAL ARGUMENT. PRECISION REAL ARGUMENT.	F16CINPRD	
	ONENTIAL FUNCTION OF A DOUBLE	PRECISION REAL ARGUMENT.	C12DEXP	
	NATURAL LOGARITHM OF A DOUBLE	PRECISION REAL ARGUMENT.	C12DLOG	
	ASE TEN LOGARITHM OF A DOUBLE	PRECISION REAL ARGUMENT.	C12DLOG10	
	S THE SQUARE ROUT OF A DOUBLE	PRECISION REAL ARGUMENT.	C12DSORT	
	COMPUTES THE DOUBLE	PRECISION SINE TRIGONOMETRIC FUNCTION,	C12DSIN	
	COMPUTES THE DOUBLE	PRECISION SUMS OF POWERS OF OBSERVATIONS,	F17SUMPS	
	IFFERENTIAL EQUATIONS USING A	PREDICTOR CORRECTOR METHOD OF EIGHTH ORDER AND PICARDS METHOD OF SUCCESSIVE SUBSTITUTION.	F14BLCKDQ	
	THE SOLUTION IS BASED ON THE	PRINCIPLE OF SUPERPOSITION, USING SUBROUTINE BLCKDQ TO PERFORM THE SOLUTION OF THE REQUIRED INITIAL	F14LINBVD	
	PROVIDËS A Provides a	PRINTER PLOT OF THE VALUES FOR UP TO 5 VARIABLES (ORDINATES) IN THEIR STORED ORDER (ABSCISSA).	F17YPLOT	
	SOLVES À LEAST SQUARES	PR'NTER PLOT OF THE VALUES FOR UP TO 5 VARIABLES (ORDINATES) AGAINST A SINGLE VARIABLE (ABSCISSA PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT.	F17XYPLOT F16BSUBHT	
	FINDS THE	PRODUCT OF TWO REAL POLYNOMIALS.	F13MPYR	
	FINDS THE	PRODUCT OF TWO COMPLEX POLYNOMIALS.	F13CMPYR	
	ES THE DOUBLE PRECISION INNER	PRODUCT OF TWO VECTORS HAVING COMPLEX ELEMENTS.	F16CINPRD	
	UTINES TO CALCULATE THE INNER	PRODUCT OF TWO VECTORS WHICH MAY BE A COLUMN OR A ROW OF A MATRIX USING EITHER SINGLE OR DOUBLE PREC	C16VIP	
	UATIONS BY CALLING SUBROUTINE	ANUT A NUMBER OF TIMES WITH DIFFERENT INITIAL GUESSES.	F18RQNWT	
	SFORMATION FOLLOWED BY DOUBLE	GR (TERATION.	FIGLATNTR	
	TRIC TRIDIAGONAL MATRIX USING	GR TERATION.	F16SYMOR	
	A COMPLEX MATRIX BY MEANS OF	OR ITERATION ON A SIMILAR BALANCED HESSENBERG MATRIX.	F16GREIGN	
	PERFORMS A SINGLE COMPLEX	OR ITERATION ON A HESSENBERG MATRIX HAVING REAL SUBDIAGONAL ELEMENTS.	F160R1	
	ORS OF A COMPLEX MATR X USING	OR TERATION ON A SIMILAR HESSENBERG MATRIX FOR THE EIGENVALUES AND INVERSE ITERATION FOR THE EIGENV	F16VALVEC	
	GONAL FORM FOLLOWED BY EITHER	OR ITERATION OR LE ITERATION OR THE STURM SEQUENCE METHOD; EIGENVECTORS ARE FOUND BY MEANS OF INVERS	F16TCD AG	
	IVIDES A REAL POLYNOMIAL BY A	QUADRATIC EXPRESSION.	F13QDIV	
	DES A COMPLEX POLYNOMIAL BY A	QUADRATIC EXPRESSION.	FIJCQDIV	
	IAL INTEGRAL BY HERMITE GAUSS	QUADRATURE FORMULAS.	FISHERMIT	
	AL INTEGRAL BY LAGUERRE GAUSS	QUADRATURE FORMULAS.	F15LAGUER	
	INTERVAL USING LEGENDRE GAUSS	QUADRATURE FORMULAS.	F15LEGEND	
	OBIAN IN THE NEXT ITERATIONS (OUAS (NEWTON METHOD)	F18QNWT	
	X BY CALCULATING THE RAYLEIGH	QUOT ENT AND GIVES ERROR BOUNDS.	F16EIGCHK	
•	PROVIDES THE	QUOTIENT AND REMAINDER OBTAINED BY DIVIDING ONE REAL POLYNOMIAL BY ANOTHER.	F13PDIV	
	PROVIDES THE	QUOTIENT AND REMAINDER OBTAINED BY DIVIDING ONE REAL POLYNOMIAL BY ANOTHER. QUOTIENT AND REMAINDER OBTAINED BY DIVIDING ONE REAL POLYNOMIAL BY ANOTHER. QUOTIENT AND REMAINDER OBTAINED BY DIVIDING ONE GOMPLEX POLYNOMIAL BY ANOTHER.	F13CPDIV	
	CALCULATES THE RAYLEIGH	QUOTIENT FOR A REAL SYMMETRIC MATRIX.	F16RAYLGH	
	RATION WITH PERIOD C RAYLE GH	QUOTIENT FOR A REAL SYMMETRIC MATRIX. QUOTIENT SHIFTING COMBINED WITH A STABLE, BAND-PRESERVING DEFLATION TECHNIQUE. QUOTIENT U/V.	F16BANEIG	
	T TRIGONOMETRIC FUNCTION OF A	QUOTIENT U/V.	C12ATAN2	
	T TRIGONOMETRIC FUNCTION OF A	QUOTIENT U/V.	C12DATAN2	
	GENERATES UNIFORM	RANDOM FLOATING POINT NUMBERS BETWEEN TWO GIVEN VALUES.	F17XIRAND	
	GENERATES UNIFORM	RANDOM INTEGERS BETWEEN TWO GIVEN VALUES.	F17IRAND	

GENERATES RANDOM INTEGERS HAVING THE POISSON DISTRIBUTION. F17PORAND GENERATES RANDOM NUMBERS HAVING A NEGATIVE EXPONENTIAL DISTRIBUTION. F17EXRAND GENERATES RANDOM NUMBERS HAVING A NORMAL DISTRIBUTION AND STORES THE VALUES IN A MULTIPLEXED ARRAY. F17NRAND GENERATES RANDOM NUMBERS HAVING A NORMAL DISTRIBUTION. F17NRML GENERATES RANDOM NUMBERS HAVING A NORMAL DISTRIBUTION, PROVIDING A CONVENIENT WAY OF HANDLING THE TAIL AND STO F17NRMNO RANDOM NUMBERS HAVING UNIFORM OR NORMAL DISTRIBUTION. GENERATES F17RAND GENERATES RANDOM NUMBERS HAVING A UNIFORM DISTRIBUTION AND STORES THE VALUES AS ONE VARIABLE IN A MULTIPLEXED F17URAND MEDIAN, MINIMUM, MAXIMUM, AND RANGE FOR ONE OR ALL VARIABLES IN A MULTIPLEXED ARRAY. F17DSCRP2 LUTION VECTOR WITH THE NEWTON RAPHSON METHOD MODIFYING THIS CORRECTION VECTOR WHEN IT IS TOO LARGE OR WHEN THE CORRECTION DOES NOT F18NEWT INEAR EQUATIONS IN THE NEWTON RAPHSON METHOD AND SWITCHING TO THE STEEPEST DESCENT METHOD IF THE FORMER METHOD GIVES DIVERGENCE; I F18NRSG RAPHSON METHOD IN THE FIRST ITERATION AND BY UPDATING THE APPROXIMATION OF THE JACOBIAN IN THE NEXT EQUATIONS BY USING THE NEWTON F18QNWT N OF A REAL ARGUMENT BY USING RATIONAL APPROXIMATION. F13GAMMA IFFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNIQUE BASED ON A MODIFIED MIDPOINT RULE; EFFICIENT FOR HIGH ACCURACY WORK F14DRATEX RESOLVES A RATIONAL FUNCTION INTO PARTIAL FRACTIONS GIVEN THE ROOTS OF THE DENOMINATOR POLYNOMIAL AND THE COEFF F13PARFAC CONSTRUCTS A MINIMAX RATIONAL FUNCTION APPROXIMATION OF GIVEN DEGREE TO A DISCRETE DATA SET. F15MINRAT TO A SET OF DATA POINTS BY A RATIONAL FUNCTION WITH NUMERATOR AND DENOMINATOR OF A SPECIFIED DEGREE. F15RATL COMPUTES THE INCOMPLETE BETA RATIO. F17BETAR FUNCTION OF THE F (VARIANCE RATIO) DISTRIBUTION. F17PFDIST FUNCTION OF THE F (VARIANCE RATIO) DISTRIBUTION. F17PIFDIS DISTRIBUTION FUNCTION OF THE RAYLEIGH DISTRIBUTION. F17PIRAYL DISTRIBUTION FUNCTION OF THE RAYLEIGH DISTRIBUTION. F17PRAYL LANDT ITERATION WITH PERIODIC RAYLEIGH QUOTIENT SHIFTING COMBINED WITH A STABLE, BAND-PRESERVING DEFLATION TECHNIQUE. F16BANEIG RIC MATRIX BY CALCULATING THE RAYLE GH QUOTIENT AND GIVES ERROR BOUNDS. F16EIGCHK CALCULATES THE RAYLEIGH QUOTIENT FOR A REAL SYMMETRIC MATRIX. F16RAYLGH INATIONS OF A AND B. NTEGER, REAL, COMPLEX, AND DOUBLE PRECISION. C12PS1132 THE EXPONENTIAL FUNCTION OF A REAL ARGUMENT. C12EXP UNCTION OF A DOUBLE PRECISION REAL ARGUMENT. C12DEXP ES THE NATURAL LOGARITHM OF A REAL ARGUMENT. C12ALOG GARITHM OF A DOUBLE PRECISION REAL ARGUMENT. C12DLOG S THE BASE TEN LOGAR THM OF A REAL ARGUMENT. C12AL0G10 GARITHM OF A DOUBLE PRECISION REAL ARGUMENT. C12DL0G10 COMPUTES THE SQUARE ROOT OF A REAL ARGUMENT. C12SORT RE ROOT OF A DOUBLE PRECIS ON REAL ARGUMENT. C12DSQRT COMPUTES THE CUBE ROOT OF A REAL ARGUMENT. C12CBRT EX VALUED HANKEL FUNCTION FOR REAL ARGUMENT AND INTEGER ORDER BY SUMMATION OF SERIES FOR BESSEL FUNCTIONS. F13HANKEL NCTIONS OF THE FIRST KIND FOR REAL ARGUMENT AND INTEGER ORDERS BY USING BACKWARD RECURSION. F13NBESJ THE SECOND KIND FOR POSITIVE REAL ARGUMENT AND INTEGER ORDERS. F13RBESY NCTIONS OF THE FIRST KIND FOR REAL ARGUMENT BY USING BACKWARD RECURSION, F138ESNIS REAL ARGUMENT BY USING POLYNOMIAL APPROXIMATIONS AND THE SUBROUTINE BESNIS. CTIONS OF THE SECOND KIND FOR F13BESNKS NCTIONS OF THE FIRST KIND FOR REAL ARGUMENT BY FORWARD OR BACKWARD RECURSION WITH STARTING VALUES. F13BSJ REAL ARGUMENT BY USING RATIONAL APPROXIMATION. UATES THE GAMMA FUNCTION OF A F13GAMMA EVALUATES & POLYNOMIAL HAVING REAL COEFFICIENTS AT A REAL VALUE OF THE INDEPENDENT VARIABLE BY NESTED MULTIPLICATION. F13EVREAL REAL COEFFICIENTS NEAR ONE OF ITS COMPLEX ROOTS THROUGH FORWARD ERROR ANALYSIS. ALUATION OF A POLYNOM'AL WITH F18NSLVL LL ZEROS OF A POLYNOMIAL WITH REAL COEFFICIENTS WITH NEWTONS METHOD OR BAIRSTOWS METHOD BY PERFORMING SIMULTANEOUSLY ONE ITERATION F18PROOT A REAL MATRIX HAVING DISTINCT REAL EIGENVALUES. F16EIGC01 ION C**R FOR COMPLEX BASE AND REAL EXPONENT. F12CBAREX RED NUMBER OF REAL ZEROS OF A REAL FUNCTION WITH A METHOD DESCRIBED BY JARRATT AND NUDDS FOR APPROXIMATION OF ONE ZERO AND FACTORI F18ZAFUR A SINGLE REAL EIGENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF WIELANDT INVERSE ITERATION. F16EIGIMP A SINGLE REAL EIGENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF INVERSE ITERATION. F16E GVCH CULATES SOME EIGENVALUES OF A REAL MATRIX BY MEANS OF A MODIFICATION OF LAGUERRES METHOD. F16E165 IMATION OF AN EIGENVALUE OF A REAL MATRIX HAVING DISTINCT REAL EIGENVALUES. F16EIGCO1 TRANSFORMS A REAL MATRIX INTO UPPER HESSENBERG FORM ACCORDING TO HOUSEHOLDERS METHOD. F16SUBDIR TRANSFORMS A REAL MATRIX TO UPPER HESSENBERG FORM USING WILKINSONS METHOD F16HSSN ALUES (COMPLEX AND REAL) OF A REAL MATRIX USING HOUSEHOLDERS TRANSFORMATION FOLLOWED BY DOUBLE OR ITERATION, F16LATNTR DEFFICIENTS OF THE SUM OF TWO REAL POLYNOMIALS. F13ADR REAL POLYNOMIAL AT A COMPLEX POINT BY FACTORIZING WITH A QUADRATIC TERM. EVALUATES A F13COMPEV REAL POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER. CH IS THE INTEGRAL OF ANOTHER F13INT DIVIDES A REAL POLYNOMIAL BY A LINEAR FACTOR, X+B, WHERE B MAY BE COMPLEX. F13LDIV FINDS THE PRODUCT OF TWO REAL POLYNOMIALS. F13MPYR NDER OBTAINED BY D VIDING ONE REAL POLYNOMIAL BY ANOTHER. F13PDIV

PUTES IS T ON A ÉNVALN S THE SOL RCH S AL AR EGER GUMEN RECO	REVERSES THE ORDER OF OF THE DIFFERENCE OF TWO THE COEFFICIENTS OF THE HE DERIVATIVE OF ANOTHER HESSENBERG MATRIX HAVING UE EIGENVECTOR PAIR OF A D SOME EIGENVECTORS OF A RAYLEIGH QUOTIENT FOR A VES A RECTANGULAR LINEAR SOLVES A UBROUTINE TO TRANSPOSE A GUMENT BY USING BACKWARD ORDERS BY USING BACKWARD ORDERS BY USING BACKWARD VER EIGENVECTORS AFTER A VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE	REAL POLYNOMIAL BY A GUADRATIC EXPRESSION, REAL POLYNOMIAL COEFFICIENTS IN AN ARRAY, REAL POLYNOMIALS, REAL POLYNOMIALS, REAL POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER, REAL SUBDIAGONAL ELEMENTS, REAL SYMMETRIC MATRIX BY CALCULATING THE RAYLEIGH QUOTIENT AND GIVES ERROR BOUNDS, REAL SYMMETRIC MATRIX, REAL SYMMETRIC MATRIX, REAL SYMMETRIC MATRIX, REAL SYMMETRIC MATRIX, REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD, RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECTANGULAR LINEAR REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT MET RECTANGULAR MATRIX, RECURSION, RECURSION, RECURSION, RECURSION, REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL R	F13GDIV F13REV F13SHRINK F13DERIV F16GR1 F16EIGCHK F16EIGCHK F16EIGCHK F16FCG02 F16FCG02 F16FCG02 F16FCG02 F16FCG02 F16FCG02 F16FCG02 F16FCG02 F16FCG02 F16FCG02 F16FCC02 F16F
PUTES IS T ON A ENVAL ES AN S THE SOL RCH S AL AR EGER GUMEN RECO	OF THE DIFFERENCE OF TWO THE COEFFICIENTS OF THE HE DERIVATIVE OF ANOTHER HESSENBERG MATRIX HAVING UE EIGENVECTOR PAIR OF A D SOME EIGENVECTORS OF A RAYLEIGH QUOTIENT FOR A VES A RECTANGULAR LINEAR SOLVES A UBROUTINE TO TRANSPOSE A GUMENT BY USING BACKWARD ORDERS BY USING BACKWARD T BY FORWARD OR BACKWARD T BY FORWARD OR BACKWARD T BY FORWARD OR BACKWARD VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE	REAL POLYNOMIALS. REAL POLYNOMIAL GVEN THE COEFFICIENTS OF P(X). REAL POLYNOMIAL GVEN THE COEFFICIENTS OF THE LATTER. REAL SUMMETRIC MATRIX BY CALCULATING THE RAYLEIGH QUOTIENT AND GIVES ERROR BOUNDS. REAL SYMMETRIC MATRIX. REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD. RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECTANGULAR LINEAR REAL SYSTEM 'N THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT MET RECTANGULAR MATRIX. RECURSION. RECURSION. RECURSION. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REF'NEMENT A L'NEAR SYSTEM FOR A BANDMATRIX W'TH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REF'NEMENT A L'NEAR SYSTEM FOR A BANDMATRIX W'TH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F13SBR F13SBR F13SHRINK F13DERIV F16GR1 F16EIGCHK F16FCGM2 F16FCGM2 F16FCCGM2 F16FCCGM2 C16FMTR F13BESNIS F13BBESJ F13BESJ F16SUBDIA F16REDSY1 F16REDSY1 F16RECOV1 F16RECOV2 F16BETRPM F16BETRPM
PUTES IS T ON A ENVAL ES AN S THE SOL RCH S AL AR EGER GUMEN RECO	THE COEFFICIENTS OF THE HE DERIVATIVE OF ANOTHER HESSENBERG MATRIX HAVING UE EIGENVECTOR PAIR OF A D SOME EIGENVECTORS OF A RAYLEIGH QUOTIENT FOR A VES A RECTANGULAR LINEAR SOLVES A GUMENT BY USING BACKWARD ORDERS BY USING BACKWARD T BY FORWARD OR BACKWARD T BY FORWARD OR BACKWARD VER EIGENVECTORS AFTER A VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE SOLVES WITH ITERAT VE	REAL POLYNOMIAL P(AX) FROM THE COEFFICIENTS OF P(X). REAL POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER. REAL SUBDIAGONAL ELEMENTS. REAL SYMMETRIC MATRIX BY CALCULATING THE RAYLEIGH QUOTIENT AND GIVES ERROR BOUNDS. REAL SYMMETRIC MATRIX. REAL SYMMETRIC MATRIX. REAL SYMMETRIC MATRIX. REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD. RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECTANGULAR LINEAR REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT MET RECTANGULAR MATRIX. RECURSION. RECURSION. RECURSION. RECURSION. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F13SHRINK F13DERIV F16GR1 F16EIGCHK F16EIGCHK F16FCGM2 F16FCGM2 F16FCGM2 C16FMTRIS F13NBESJ F13NBESJ F13NBESJ F13NBESJ F13NBESJ F16SUBDIA F16REDSY12 F16RECOV1 F16RECOV2 F16BEITRNM F16BITRNM
IS T ON A ÈNVAL ES ANVAL S THE S THE S AL R CH S AL AL AR G UMEN RECO	HE DERIVATIVE OF ANOTHER HESSENBERG MATRIX HAVING UE EIGENVECTOR PAIR OF A D SOME EIGENVECTORS OF A RAYLEIGH QUOTIENT FOR A VES A RECTANGULAR LINEAR SOLVES A UBROUTINE TO TRANSPOSE A GUMENT BY USING BACKWARD ORDERS BY USING BACKWARD T BY FORWARD OR BACKWARD T BY FORWARD OR BACKWARD T BY FORWARD OR BACKWARD VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE SOLVES WITH ITERAT VE	REAL POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER. REAL SUBDIAGONAL ELEMENTS. REAL SUMMETRIC MATRIX BY CALCULATING THE RAYLEIGH QUOTIENT AND GIVES ERROR BOUNDS. REAL SYMMETRIC MATRIX REAL SYMMETRIC MATRIX. REAL SYMMETRIC MATRIX. REAL SYMMETRIC MATRIX. REAL SYMMETRIC MATRIX. REAL SYMMETRIC MATRIX. REAL SYMMETRIC MATRIX. REAL SYMMETRIC MATRIX. RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECTANGULAR LINEAR REAL SYSTEM 'N THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT MET RECURSION. RECURSION. RECURSION. RECURSION. RECURSION. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F13DERIV F16QR1 F16EIGCYM F16EIGCYM F16FCGM2 F16FCGM2 F16FCGM2 C16FMTR F13BESU F16FCGM2 C16FMTR F13BESU F13BESU F13BESU F13BESU F16REDSY1 F16REDSY1 F16RECOV1 F16RECOV1 F16RECOV1 F16BITRPM F16BITRPM
ON A ENVAL ES AN S THE SOL RCH S AL AR EGER GUMEN RECO	HESSENBERG MATRIX HAVING UE EIGENVECTOR PAIR OF A D SOME EIGENVECTORS OF A RAYLEIGH QUOTIENT FOR A VES A RECTANGULAR LINEAR UBROUTINE TO TRANSPOSE A GUMENT BY USING BACKWARD ORDERS BY USING BACKWARD T BY FORWARD OR BACKWARD T BY FORWARD OR BACKWARD VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE	REAL SUEDIAGONAL ELEMENTS. REAL SYMMETRIC MATRIX BY CALCULATING THE RAYLEIGH QUDIENT AND GIVES ERROR BOUNDS. REAL SYMMETRIC MATRIX. REAL SYMMETRIC MATRIX. REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD. RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECTANGULAR LINEAR REAL SYSTEM 'N THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT MET RECURSION. RECURSION. RECURSION. RECURSION. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F16QR1 F16E GCHK F16E GSYM F16FCGM2 F16FCGM2 F16FCGM2 F16FCGM2 C16FMTR F13BESNJ F13BESNJ F13BESNJ F13BSJ F168UBD1A F16REDSY1 F16RECOV1 F16RECOV2 F16B TRPM F16B TRPM
ÊNVAL ES AN S THE SOL RCH S AL AR EGER GUMEN RECO	UE EIGENVECTOR PAIR OF A D SOME EIGENVECTORS OF A RAYLEIGH QUOTIENT FOR A VES A RECTANGULAR LINEAR SOLVES A UBROUTINE TO TRANSPOSE A GUMENT BY USING BACKWARD ORDERS BY USING BACKWARD T BY FORWARD OR BACKWARD T BY FORWARD OR BACKWARD VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE	REAL SYMMETRIC MATRIX BY CALCULATING THE RAYLEIGH QUOTIENT AND GIVES ERROR BOUNDS. REAL SYMMETRIC MATRIX. REAL SYMMETRIC MATRIX. REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD. RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECTANGULAR LINEAR REAL SYSTEM 'N THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT MET RECURSION. RECURSION. RECURSION. RECURSION. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REF'NEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F16EIGCHK F16EIGSYM F16RECOV1 F16RECOV2 F16RECOV2 F16FCGM2 C16FMTR F13BESNIS F13NBESJ F13BESJ F13BESJ F16REDSY1 F16REDSY2 F16RECOV1 F16RECOV2 F16BETRNP F16BITRNP
ES AN S THE SOL RCH S AL AR EGER GUMEN RECO	D SOME EIGENVECTORS OF A RAYLEIGH QUOTIENT FOR A VES A RECTANGULAR LINEAR SOLVES A UBROUTINE TO TRANSPOSE A GUMENT BY USING BACKWARD ORDERS BY USING BACKWARD T BY FORWARD OR BACKWARD T BY FORWARD OR BACKWARD VER EIGENVECTORS AFTER A VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE	REAL SYMMETRIC MATRIX. REAL SYMMETRIC MATRIX. REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD. RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECTANGULAR LINEAR REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT MET RECTANGULAR MATRIX. RECURSION. RECURSION. RECURSION. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F16EIGSYM F16RCQLGH F16RECOV2 F16RECOV2 F16FCGM2 C16FMTR F13BESN F13BESJ F13BESJ F13BESJ F16SUBDIA F16REDSY2 F16RECOV2 F16RECOV2 F16BETRRM F16BITRRM
S THE SOL RCH S AL AR EGER GUMEN RECO	RAYLEIGH QUOTIENT FOR A VES A RECTANGULAR LINEAR SOLVES A UBROUTINE TO TRANSPOSE A GUMENT BY USING BACKWARD ORDERS BY USING BACKWARD T BY FORWARD OR BACKWARD VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE	REAL SYMMETRIC MATRIX. REAL SYMMETRIC MATRIX. REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD. RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECTANGULAR LINEAR REAL SYSTEM 'N THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT MET RECURSION. RECURSION. RECURSION. RECURSION. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F16RAYLGH F16FCGM2 F16RECOV1 F16RECOV2 F16FCGM2 C16FMTR F13BESN F13BESN F13BESN F13BESN F13BESN F16REDSY1 F16REDSY2 F16RECOV1 F16RECOV2 F16RECOV2 F16BITRPM F16BITRPM
SOL RCH S AL AR EGER GUMEN RECO	VES A RECTANGULAR LINEAR SOLVES A UBROUTINE TO TRANSPOSE A GUMENT BY USING BACKWARD ORDERS BY USING BACKWARD T BY FORWARD OR BACKWARD VER EIGENVECTORS AFTER A VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE	REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD, RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECTANGULAR LINEAR REAL SYSTEM 'N THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT MET RECTANGULAR MATRIX. RECURSION. RECURSION. RECURSION. RECURSION. RECURSION WITH STARTING VALUES. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REF'NEMENT A L'NEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A L'NEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A L'NEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F16FCGM2 F16REC0V1 F16REC0V2 F16FCGM2 C16FMTR F13BESN IS F13NBESJ F13BSJ F16SUBDIA F16REDSY1 F16REDSY1 F16REC0V1 F16REC0V2 F16BITRPM F16BITRPM
RCH S AL AR EGER GUMEN RECO	SOLVES A UBROUTINE TO TRANSPOSE A GUMENT BY USING BACKWARD ORDERS BY USING BACKWARD T BY FORWARD OR BACKWARD VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE SOLVES WITH ITERAT VE	RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECTANGULAR LINEAR REAL SYSTEM 'N THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT MET RECTANGULAR MATRIX. RECURSION. RECURSION. RECURSION WITH STARTING VALUES. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F16RECOV1 F16FCGM2 C16FMTR F13BESNIS F13BESJ F13BESJ F13BUBDIA F16REDSY2 F16RECOV1 F16RECOV2 F16BECOV2 F16BETRMP F16BITERM
AL AR EGER GUMEN RECO	UBROUTINE TO TRANSPOSE A GUMENT BY USING BACKWARD ORDERS BY USING BACKWARD T BY FORWARD OR BACKWARD VER EIGENVECTORS AFTER A VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE	RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION US RECTANGULAR LINEAR REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT MET RECTANGULAR MATRIX. RECURSION. RECURSION. RECURSION. RECURSION. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE	F16RECOV2 F16FCGM2 C16FMTR F13BESN F F13NBESJ F13BBSJ F16REDSY12 F16RECOV1 F16RECOV2 F16BETRNP F16BTTRNP
AL AR EGER GUMEN RECO	UBROUTINE TO TRANSPOSE A GUMENT BY USING BACKWARD ORDERS BY USING BACKWARD T BY FORWARD OR BACKWARD VER EIGENVECTORS AFTER A VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE	RECTANGULAR LINEAR REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT MET RECTANGULAR MATRIX. RECURSION. RECURSION. RECURSION. RECURSION. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCT TO USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE	F16FCGM2 C16FMTR F13BESNIS F13NBESJ F16SUBDIA F16REDSY1 F16REDSY2 F16RECOV1 F16RECOV2 F16BITRPP F16BITRPM
AL AR EGER GUMEN RECO	UBROUTINE TO TRANSPOSE A GUMENT BY USING BACKWARD ORDERS BY USING BACKWARD T BY FORWARD OR BACKWARD VER EIGENVECTORS AFTER A VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE	RECTANGULAR MATRIX. RECURSION. RECURSION WITH STARTING VALUES. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A L'NEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A L'NEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE	C16FMTR F13BESNIS F13BESJ F13BSJ F16SUBDIA F16REDSY1 F16REDSY2 F16RECOV2 F16BECOV2 F16BETRNP F16BITRNP
AL AR EGER GUMEN RECO	GUMENT BY USING BACKWARD ORDERS BY USING BACKWARD T BY FORWARD OR BACKWARD VER EIGENVECTORS AFTER A VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE SOLVES WITH ITERAT VE	RECURSION. RECURSION. RECURSION. RECURSION. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F13BESNIS F13NBESJ F13BSJ F16SUBDIA F16REDSY1 F16RECSY2 F16RECOV2 F16BECOV2 F16BITRNP F16BITRNP
EGER GUMEN RECO	ORDERS BY USING BACKWARD T BY FORWARD OR BACKWARD VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE SOLVES WITH ITERAT VE	RECURSION. RECURSION WITH STARTING VALUES. REDUCES A COMPLEX MATRIX TO HESENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F13NBESJ F13BSJ F16SUBDIA F16REDSY1 F16RECSY2 F16RECOV1 F16RECOV2 F16BITRNP F16BITRNP
RECO	VER EIGENVECTORS AFTER A VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE	RECURSION WITH STARTING VALUES. REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A L'NEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A L'NEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A L'NEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINARION	F1385J F16SUBDIA F16REDSY1 F16REDSY2 F16RECOV1 F16RECOV2 F16BITRNP F16BITRNP
	VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE SOLVES WITH ITERAT VE	REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A L'NEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A L'NEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE	F16SUBDIA F16REDSY1 F16REDSY2 F16RECOV1 F16RECOV2 F16BITRNP F16BITERM
	VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE SOLVES WITH ITERAT VE	REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F16REDSY1 F16REDSY2 F16RECOV1 F16RECOV2 F16BITRNP F16BITERM
	VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE SOLVES WITH ITERAT VE	REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REF'NEMENT A L'NEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REF'NEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REF'NEMENT A L'NEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F16REDSY2 F16RECOV1 F16RECOV2 F16BITRNP F16BITERM
	VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE SOLVES WITH ITERAT VE	REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE	F16RECOV1 F16RECOV2 F16BITRNP F16BITERM
	VER EIGENVECTORS AFTER A SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERAT VE SOLVES WITH ITERAT VE	REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EI REFINEMENT A L'INEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A L'INEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A L'INEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F16RECOV2 F16BITRNP F16BITERM
	SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE	REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F16BITRNP F16BITERM
	SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE	REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F16BITERM
	SOLVES WITH ITERAT VE SOLVES WITH ITERAT VE		FILELTOFN
	SOLVES WITH ITERAT VE	DEC NEMENT & LINCAD CURTEN FOR A CUMMETRIC DOCITIVE DECLUSE CLUCKATORY WIND CONCERT CONTRACTOR AND	LODINKIM
		REFINEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDE	F16BITRPD
	COLVES WITH TEPATIVE	REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION	F16BITWNP
		REFINEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDE	F16BPDITM
	SOLVES W TH TERATIVE	REFINEMENT A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULA	F16CGITRF
	SOLVES WITH ITERATIVE	REFINEMENT A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DE	F16CITERF
	SOLVES WITH ITERATIVE	REFINEMENT A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION WITH PAR	F16ITERFM
	SOLVES W TH ITERAT VE	REFINEMENT A LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING ACCORDING TO CROU	F16 TERFS
	SOLVES WITH ITERATIVE	REFINEMENT A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTI	F16GITRFM
	SOLVES WITH ITERATIVE	REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PR	F10GITRF5
	SOLVES WITH ITERATIVE	REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION AN	F16LITWNE
	SOLVES WITH ITERATIVE	REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITHOUT PIVOTING AND PROVIDES DATA FOR ESTIMATING	F16LITWNP
	SOLVES WITH ITERATIVE	REFINEMENT A LINEAR LEAST SQUARES PROBLEM USING HOUSEHOLDERS METHOD.	F16LSQSIT
	SOLVES WITH ITERATIVE	REFINEMENT A LINEAR SYSTEM USING CHOLESKY DECOMPOSITION AND PROVIDES DATA FOR CALCULATING THE DETERM	F16PDITRS
	SOLVES WITH ITERAT VE	REFINEMENT A LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING CHOLESKYS DECOMPOSITION AND PROVIDE	F16PDITRM
	INVERTS WITH ITERATIVE	REFINEMENT A MATRIX USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION.	F16INVITR
	SOLVES W TH ITERATIVE	REFINEMENT A POSITIVE DEFINITE LINEAR SYSTEM USING SQUARE ROOT FREE DECOMPOSITION.	F16SPITRM
	SOLVES WITH ITERATIVE SOLVES WITH ITERATIVE	REFINEMENT A POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING SQUARE ROOT FREE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD	F16SPITRS
	SOLVES WITH ITERATIVE		F161TRPDM
	SOLVES WITH TTERATIVE	REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED DECOM REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS B	F161TRPDS
	SOLVES WITH ITERATIVE	REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS B	F161TRSPM
	GULTLO TEIN ISCRAFIVE	REFINENCE AN ELECTOR BELONGING TO A SINGLE REAL ELECTION OF A REAL HESENBERG MATRIX BY MEANS OF	F161TRSPS F16EIGIMP
		REFINES ITERATIVELY THE INVERSE OF A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM	F16ITERIN
		REFINES ITERATIVELY A SOLUTION OF A LEAST SQUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLERS M	FIGITERIN
PUTC	OF A MOVING AVERAGE AUTO	REGRESSIVE FILTER.	F17FILTER
	ROVIDES THE QUOTTENT AND	REMAINDER OBTAINED BY DIVIDING ONE REAL POLYNOMIAL BY ANOTHER.	F13PDIV
	ROVIDES THE QUOTIENT AND	REMAINDER OBTAINED BY DIVIDING ONE COMPLEX POLYNOMIAL BY ANOTHER.	F13CPDIV
F		REMARKES SPECIFIED OBSERVATIONS FROM A DATA ARRAY.	F17DLETE
PRECT	ION DOES NOT IMPROVE THE	RESIDUAL OF THE EQUATIONS.	F18NEWT
	ter solo del androre del	RESOLVES A RATIONAL FUNCTION INTO PARTIAL FRACTIONS GIVEN THE ROOTS OF THE DENOMINATOR POLYNOMIAL AN	F13PARFAC
		REVERSES THE ORDER OF REAL POLYNOMIAL COEFFICIENTS IN AN ARRAY.	F13REV
		REVERSES THE ORDER OF COMPLEX POLYNOMIAL COEFFICIENTS IN AN ARRAY.	FIJCREV
FOR A	BANDMATRIX WITH SEVERAL	RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT. POSSIB	F16BFBANP
	BANDMATR X WITH SEVERAL	RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT AND GIV	F16BITRNP
	and a second sec		

FOR A BANDMATRIX W. TH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRAT F16BITERM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION AND GIV F16B1TRFM INITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION BY CHOLESKYS METHOD HAS BEEN CARRIED OUT, F16BITRPD FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVOTING AND GIVES AN ESTIMATE FOR THE ACCURACY F16BITWNP FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION; THE DE F16BLESOM FOR A BANDMATR X WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVOTING: THE DETERMINANT IS ALSO AVAILABLE. F16BLSWNP INITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION. F16BPDITM INITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION BY CHOLESKYS METHOD HAS BEEN CARRIED OUT. POSSIBL F16BPDFSB INITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION. F168PDSOM A COMPLEX MATRIX WITH SEVERAL R'GHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION FOLLOWING CROUTS ALGORITHM WITH PARTIAL PIVOT F16CFBSUM A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PI F16CG|TRF A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16CGLESM RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTI A COMPLEX MATRIX W TH SEVERAL F16CITERF A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOT F16FBSUBM A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING ACCORDING TO CROUTS ALGORI F161TERFM A LINEAR SYSTEM W TH SEVERAL RIGHT-HAND SIDES ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16GLESOM A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DA F16GITRFM TE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROVIDES DAT F16ITRPDS TE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT. F16ITRSPS RIGHT-HAND SIDES USING HOUSEHOLDER TRANSFORMATIONS. SQUARES PROBLEM WITH SEVERAL F16LSQHTM LINEAR SYSTEM HAV NG SEVERAL RIGHT-HAND SIDES USING CHOLESKYS DECOMPOSITION AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND F16PDITRM LINEAR SYSTEM HAV NG SEVERAL RIGHT-HAND SIDES USING CHOLESKY DECOMPOSITION. F16PDLSOM LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSITION HAS BEEN CARRIED OUT F16PDSF8M LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUTINE. F16SPDFBS LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES WITHOUT USING THE SQUARE ROOT ROUTINE. F16SPDSOS LINEAR SYSTEM HAV NG SEVERAL RIGHT-HAND SIDES USING SQUARE ROOT FREE DECOMPOSITION. F16SPITRS LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES. F16TRILOS RIGHT-HAND SIDES. LINEAR SYSTEM HAVING SEVERAL F16TRIUPS HICH ATTEMPTS TO MINIMIZE THE RIPPLE IN CURVATURE. F15RICH ENTIAL EQUATIONS AS PROCEDURE RKINIT BUT RUNS FASTER AND REQUIRES MORE STORAGE. F14NRKUS OVER A FINITE INTERVAL USING ROMBERG INTEGRATION. F15ROMBG ROOTS OF THE DENOMINATOR POLYNOMIAL AND THE COEFFICIENTS OF THE NUMERATOR POLYNOMIAL. F13PARFAC O PARTIAL FRACTIONS GIVEN THE EX POLYNOMIAL NEAR ONE OF ITS ROOTS THROUGH FORWARD ERROR ANALYSIS. F18CNSLVL IENTS NEAR ONE OF TS COMPLEX ROOTS THROUGH FORWARD ERROR ANALYSIS. F18NSLVL ROOT: THE DETERMINANT IS AVAILABLE. WITHOUT CALCULATING A SQUARE F16SPDCOM LINEAR SYSTEM PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT. F16|TRSPM T-HAND SIDES PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT. F16ITRSPS TE LINEAR SYSTEM USING SQUARE ROOT FREE DECOMPOSITION. F16SPITRM RIGHT-HAND SIDES USING SQUARE ROOT FREE DECOMPOSITION. F16SPITRS COMPUTES THE SQUARE ROOT OF A COMPLEX ARGUMENT. C12CSORT COMPUTES THE SQUARE ROOT OF A DOUBLE PRECISION REAL ARGUMENT. C12DSQRT COMPUTES THE SQUARE ROOT OF A REAL ARGUMENT. C12SORT COMPUTES THE CUBE ROOT OF A REAL ARGUMENT. C12CBRT OSED WITHOUT USING THE SQUARE ROOT ROUTINE. F16SPDFBM OSED WITHOUT USING THE SQUARE ROOT ROUTINE. F16SPDFBS STEM WITHOUT USING THE SQUARE ROOT ROUTINE. F16SPDSOM IDES WITHOUT USING THE SQUARE ROOT ROUTINE. F16SPDSOS ESTIMATES THE ROUNDING ERROR IN THE EVALUATION OF A COMPLEX POLYNOMIAL NEAR ONE OF ITS ROOTS THROUGH FORWARD ERROR F18CNSLVL ESTIMATES THE ROUNDING ERROR IN THE EVALUATION OF A POLYNOMIAL WITH REAL COEFFICIENTS NEAR ONE OF ITS COMPLEX ROOT F18NSLVL THM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION; ALSO COMPUTES ITS DETERMINANT. F16CDECOM THM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE CDECOM. F16CFBSUM THM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT; THE DETERMINANT AND CONDITION NUMBER ARE AVAILABLE. F16CGITRF THM WITH PARTIAL PIVOTING AND ROW EQUIL BRATION. F16CGLESM THM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMB F16CITERF THM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE. F16DECOM THM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT BY SUBROUTINE DECOM. F16DETERM THM WITH PARTIAL P VOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT. POSSIBLY BY SUBROUTINE DECOM. F16F8SUBM THM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT. F16FBSUBS THM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16GLESOM THM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16GLESOS THM WITH PARTIAL P VOTING AND ROW EQUILIBRATION. F16INVERS THM WITH PARTIAL P'VOTING AND ROW EQUILIBRATION. F16INVITR THM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NUMBER OF THE MATRI F16GITRFM THM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NUMBER OF THE MATRI F16GITRFS THM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT. F16ITERIN RS WHICH MAY BE A COLUMN OR A ROW OF A MATRIX USING EITHER SINGLE OR DOUBLE PRECISION: OTHER SUBROUTINES ARE VIPA, VIPS, VIPC, VIP C16VIP INITE INTERVAL USING SIMPSONS RULE. F15SIMPRC ATES THE INTEGRAL BY SIMPSONS RULE OF A BOUNDED FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL OF EQUISPACED VALUES. F15PARBC UATIONS USING A VARIABLE STEP RUNGE KUTTA TECHNIQUE EFFICIENT FOR LOW ACCURACY WORK. F14RKINIT PERFORMS CHI SQUARE TEST FOR RUNS UP AND DOWN. F17CHIRUD COMPUTES THE NUMBER OF RUNS (EXPECTED IN SYMMETRIC DISTRIBUTION AND OBSERVED) ABOVE AND BELOW ZERO OF DIFFERENT LENGTHS FOR F17RUNSAB COMPUTES THE NUMBER OF RUNS (EXPECTED AND OBSERVED) UP AND DOWN FOR A SAMPLE. F17RUNSUD RO OF DIFFERENT LENGTHS FOR A SAMPLE. F17RUNSAB D OBSERVED) UP AND DOWN FOR A SAMPLE. F17RUNSUD TH INTEGER COMPONENTS TIMES A SCALAR FUNCTION. F11FFRAC OMIAL BY LEHMERS METHOD USING SCHURS METHOD FOR ISOLATING ONE ZERO. F18HELP UATIONS USING THE GENERALIZED SECANT METHOD MODIFYING THE STEP VECTOR WHEN THE SET OF GUESSES TEND TO BECOME LINEARLY DEPENDENT OR F18NONLIG TIC INTEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION. F13ELK TIC INTEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION. F13ELF SEL FUNCTIONS OF THE F RST OR SECOND KINDS FOR COMPLEX ARGUMENT AND COMPLEX ORDER. F13COMBES IFIED BESSEL FUNCTIONS OF THE SECOND KIND FOR REAL ARGUMENT BY USING POLYNOMIAL APPROXIMATIONS AND THE SUBROUTINE BESNIS. F13BESNKS CE OF BESSEL FUNCTIONS OF THE SECOND KIND FOR POSITIVE REAL ARGUMENT AND INTEGER ORDERS. F13RBESY MONOTONE ABSCISSAS REQUIRED; SECOND ORDER CONTINUITY. F15COMCUB OLVES THE EIGENSYSTEM FOR THE SECOND CRDER DIFFERENTIAL EQUATION A*X. F16DEIG OR LR ITERATION OR THE STURM SEQUENCE METHOD; EIGENVECTORS ARE FOUND BY MEANS OF INVERSE ITERATION. F16TCDIAG AGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MINORS. F16SEPAR AGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MINORS. F16SEPAR2 F THE DERIVATIVE OF A FOUR ER SERVES, GIVEN THE COEFFICIENTS OF THE TRIGONOMETRIC POLYNOMIAL. F15TRGDIF ION BY EXPANSION IN CHEBYSHEV SERIES. F13ERF RFORMS SMOOTHING OF A FOURIER SER ES BY USE OF LANCZOS SIGMA FACTORS. F15SIGSMT FFICIENTS OF A FINITE FOURIER SERIES WITH A LINEAR TREND THROUGH A SET OF EQUISPACED POINTS. F15FOURI S COEFFICIENTS OF THE FOURIER SER'ES WITH A LINEAR TREND THAT IS OBTAINED BY INTEGRATION OF A TRIGONOMETRIC POLYNOMIAL. F15TRGINT FFICIENTS OF THE BEST FOURIER SERVES WITH LINEAR TREND, IN THE LEAST SQUARES SENSE, TO A SET OF EQUISPACED DATA. F15FOURAP ONE OF A SET OF SUBROUTINES TO CALCULATE THE INNER PRODUCT OF TWO VECTORS WHICH MAY BE A COLUMN OR A ROW OF A C16VIP SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT F16BFBANP SYSTEM FOR A BANDMATR X WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING AND IMPLICIT EG F16BFBSUM SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT F16BITRNP SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING AND IMPLICIT EQ F16BITERM SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION F16BITREM TIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION BY CHOLESKYS METHOD HAS BEEN CARRIED OUT. F168TTRPD SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVOTING AND GIVES AN ESTIMATE FOR THE A F16BITWNP SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION F16BLESOM SYSTEM FOR A BANDMATRIX W TH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVOTING; THE DETERMINANT IS ALSO AVAILA F16BLSWNP TIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION. F168PDITM TIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION BY CHOLESKYS METHOD HAS BEEN CARRIED OUT. F168PDFSB SEVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION, TIVE DEFINITE BANDMATRIX WITH F16BPDSOM SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION FOLLOWING CROUTS ALGORITHM WITH PARTI TEM FOR A COMPLEX MATRIX WITH F16CFBSUM TEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PA F16CGITRF TEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16CGLESM TEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIA F16CITERF SOLVES A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTI F16FBSUBM FINEMENT A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING ACCORDING TO CROUT F16ITERFM SOLVES A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16GLESOM FINEMENT & LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PLUCTING AND ROW EQUILIBRATION AND PRO F16GITRFM E DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROV F161TRPDS E DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT. F16|TRSPS AR LEAST SQUARES PROBLEM WITH SEVERAL RIGHT-HAND SIDES USING HOUSEHOLDER TRANSFORMATIONS. F16LSQHTM NEMENT A LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING CHOLESKYS DECOMPOSITION AND PROVIDES DATA FOR CALCULATING THE DETERMI F16PDITRM DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING CHOLESKY DECOMPOSITION. F16PDLSOM DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSITION HAS BEEN CAR F16PDSFBM

DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUT! F16SPDFBS DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES WITHOUT USING THE SQUARE ROOT ROUTINE. F16SPDSOS DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING SQUARE ROOT FREE DECOMPOSITION, F16SPITRS TANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES. F16TRILOS IANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES. F16TRIUPS TH PERIODIC RAYLE GH QUOTIENT SHIFTING COMBINED WITH A STABLE, BAND-PRESERVING DEFLATION TECHNIQUE. F16BANEIG F15SIGSMT RIER SERIES BY USE OF LANCZOS SIGMA FACTORS. X MATRIX BY MEANS OF DIAGONAL SIM'LARITY TRANSFORMATIONS. F16BALANC OVER A FINITE INTERVAL USING SIMPSONS RULE. F15SIMPRC EVALUATES THE NTEGRAL BY SIMPSONS RULE OF A BOUNDED FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL OF EQUISPACED VALUES. F15PARBC EVALUATES THE SINE AND COSINE INTEGRALS USING CHEBYSHEV APPROXIMATIONS. F13SICI CONSTRUCTS COEFFICIENTS OF A SINE POLYNOMIAL WITH A LINEAR TREND GIVEN A SET OF (ABSCISSA, ORDINATE) PAIRS WITH ARBITRARY SPACING F15SINSER EVALUATES A SINE POLYNOMIAL AT A GIVEN POINT. F15SINEVL COMPUTES THE SINE TRIGONOMETRIC FUNCTION. C1251N COMPUTES THE DOUBLE PRECISION SINE TRIGONOMETRIC FUNCTION. C12DSIN COMPUTES THE COMPLEX SINE TRIGONOMETRIC FUNCTION. C12CSIN COMPUTES THE HYPERBOLIC SINE TRIGONOMETRIC FUNCTION. C12SINH PERFORMS A SINGLE COMPLEX OR ITERATION ON A HESSENBERG MATRIX HAVING REAL SUBDIAGONAL ELEMENTS. F160R1 ROW OF A MATRIX USING EITHER SINGLE CR DOUBLE PRECISION; OTHER SUBROUTINES ARE VIPA, VIPS, VIPD, VIPDA, VIPDS, INRPRD, PROSUM. C16VIP ARIANCES, AND COEFFICIENTS OF SKEWNESS AND KURTOSIS FOR MULTIPLEXED ARRAYS. F17DSCRPT T AND NP FUNCTION VALUES; THE SMOOTHING IS OBTAINED BY EVALUATING THE LEAST SQUARES POLYNOMIAL OF DEGREE N BASED ON SUCCESSIVE POL F15SMOOTH PERFORMS SMOOTHING OF A FOURIER SERIES BY USE OF LANCZOS SIGMA FACTORS. F15SIGSMT SMOOTHING OF A TWO DIMENSIONAL DATA SET BY MOVING EACH OF THE INPUT DATA POINTS TOWARD A CUBIC THROU PERFORMS F15SMOCUB SMOOTHS A SET OF DATA; EACH SMOOTHED ORDINATE IS OBTAINED AS A WEIGHTED AVERAGE OF A SPECIFIED NUMBE F15MILN2 FITS A SMOOTH SURFACE WITH CONTINUOUS FIRST PARTIAL DERIVATIVES TO A SET OF POINTS DEFINED OVER A RECTANGUL F15SURFS REFINES ITERATIVELY A SOLUTION OF A LEAST SQUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN CARRIED F16ITRLSQ DIRECTION AS & LEAST SQUARES SOLUTION OF THE SYSTEM OF LINEAR EQUATIONS IN THE NEWTON RAPHSON METHOD AND SWITCHING TO THE STEEPES F18NRSG SOLVES AN OVER DETERMINED SYSTEM OF NONLINEAR EQUATIONS BY CALCULATING A STEP VECTOR DIRECTION AS A F18NRSG SOLVES AN UPPER TRIANGULAR LINEAR SYSTEM. F16TRIUPM SOLVES AN UPPER TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES. F16TRIUPS SOLVES A LEAST SQUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT. F16BSUBHT SOLVES A LEAST SQUARES PROBLEM FOR A COMPLEX SYSTEM USING THE METHOD OF CONJUGATE GRADIENT. F16CCONGR SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMP F16BFBANP SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMP F16BFBSUM SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WIT F16BLESOM SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WIT F16BLSWNP SOLVES A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PR F168PDFS8 SOLVES A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES US F16BPDSOM SOLVES A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DE F16CFBSUM SOLVES A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES USING CROUTS ALGORITHM WIT F16CGLESM SOLVES A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO F16FBSUBM SOLVES A LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL F16F8SUBS SOLVES A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIV F16GLESOM SOLVES A LINEAR SYSTEM ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16GLESOS SOLVES A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION; THE D F16LESWNE SOLVES A LINEAR SYSTEM USING CROUTS ALGORITHM WITHOUT PIVOTING; THE DETERMINANT IS AVAILABLE. F16LESWNP SOLVES A LINEAR LEAST SQUARES PROBLEM USING HOUSEHOLDER TRANSFORMATIONS. F16LSQHTS SOLVES A LINEAR LEAST SQUARES PROBLEM WITH SEVERAL RIGHT-HAND SIDES USING HOUSEHOLDER TRANSFORMATION F16LSQHTM SOLVES A LINEAR SYSTEM FOR A LARGE SPARSE RECTANGULAR MATRIX USING THE CONJUGATE GRADIENT METHOD. F16SCONG SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITH PARTIAL PIVOTING HAS BEE F16TRDFBM SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX USING PARTIAL PIVOTING. F16TRDSOM SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITHOUT PIVOTING HAS BEEN CAR F16TRDSUB SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX WITHOUT PIVOTING. F16TRDWNP SOLVES A LOWER TRIANGULAR LINEAR SYSTEM. F16TRILOM SOLVES A LOWER TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES. F16TRILOS SOLVES A POSITIVE DEFINITE LINEAR SYSTEM PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE S F16SPDFBM SOLVES A POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED THE MATRIX HAS BEE F16SPDFBS SOLVES A POSITIVE DEFINITE LINEAR SYSTEM WITHOUT USING THE SQUARE ROOT ROUTINE. F16SPDSOM SOLVES A POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES WITHOUT USING THE SQUARE RO F16SPDSOS SOLVES A RECTANGULAR LINEAR REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRA F16FCGM2

SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM USING CHOLESKY DECOMPOSITION. F16PDLSOS SOLVES & SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING CHOLESKY DE F16PDLSOM SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY F16PDSFBS SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGUL F16PDSFBM SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A PREDICTOR CORRECTOR METHOD OF F14BLCKD0 SOLVES & SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNI F14DRATEX SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TEC F14RKINIT SOLVES A SYSTEM OF NONLINEAR EQUATIONS BY COMPUTING IN EACH ITERATION A CORRECTION VECTOR TO THE TRI F18NEWT SOLVES A SYSTEM OF LINEAR EQUATIONS OR SEVERAL SYSTEMS WITH THE SAME LEFT HAND SIDE BY GAUSSIAN ELIM F18LINSYS SOLVES A SYSTEM OF NONLINEAR ALGEBRAIC EQUATIONS USING THE GENERALIZED SECANT METHOD MODIFYING THE S F18NONLIO SOLVES A SYSTEM OF NONLINEAR EQUATIONS BY USING THE NEWTON RAPHSON METHOD IN THE FIRST ITERATION AND F180NWT SOLVES A SYSTEM OF NONLINEAR EQUATIONS BY CALLING SUBROUTINE ONWY A NUMBER OF TIMES WITH DIFFERENT I F18RONWT SCLVES DIFFERENTIAL EQUATIONS AS PROCEDURE RKINIT BUT RUNS FASTER AND REQUIRES MORE STORAGE. F14NRKUS SOLVES LINEAR BOUNDARY VALUE PROBLEMS IN A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS, WHERE THE SOLU F14LINBVD SOLVES NONLINEAR BOUNDARY VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS BY COMBINING AN INITIAL F14BVD SOLVES THE EIGENSYSTEM FOR THE SECOND ORDER DIFFERENTIAL EQUATION A*X. F16DEIG SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROV F16BITRNP SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROV F16BITERM SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USIN F168ITRFM SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH S F16BITRPD SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USIN F16BITWNP SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH S F16BPDITM SOLVES WITH TERATIVE REFINEMENT A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES F16CGITRF SOLVES WITH ITERATIVE REFINEMENT & LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES F16CITERF SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR F16ITERFM SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVO F16ITERFS SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES USING CROUTS ALGORIT F16GITRFM SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND RO F16GITRFS SOLVES WITH ITERATIVE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED DECOMPOSITION F16|TRPDM SOLVES WITH ITERATIVE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND F16|TRPDS SOLVES WITH ITERATIVE REFINEMENT & SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED SQUARE ROOT FR F16ITRSPM SOLVES WITH ITERATIVE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND F16|TRSPS SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOU F16LITWNE SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITHOUT PIVOTING AND PROVICE F16LITWNP SOLVES WITH ITERATIVE REFINEMENT A LINEAR LEAST SQUARES PROBLEM USING HOUSEHOLDERS METHOD. F16LSQSIT SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM USING CHOLESKY DECOMPOSITION AND PROVIDES DATA FOR F16PDITRS SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING CHOLESKYS DEC F16PDITRM SOLVES WITH ITERATIVE REFINEMENT A POSITIVE DEFINITE LINEAR SYSTEM USING SQUARE ROOT FREE DECOMPOSIT F16SPITRM SOLVES WITH ITERATIVE REFINEMENT & POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES U F16SPITRS SORTS THE VALUES OF ONE VARIABLE IN A MULTIPLEXED ARRAY IN INCREASING ORDER. F17VARORD UBROUTINE TO MULTIPLY A LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT. C16SMVX SPARSE MATRIX BY A VECTOR ON THE RIGHT. C16SMTVX O MULTIPLY A TRANSPOSED LARGE SPARSE RECTANGULAR MATRIX USING THE CONJUGATE GRADIENT METHOD. F16SCONG S A LINEAR SYSTEM FOR A LARGE SPHERICAL BESSEL FUNCTIONS OF THE FIRST KIND FOR REAL ARGUMENT BY FORWARD OR BACKWARD RECURSION WITH COMPUTES A SWQUENCE OF F138SJ F15SPLINE CONSTRUCTS A FIFTH DEGREE SPLINE INTERPOLATING & SET OF EQUISPACED DATA. CONSTRUCTS A NONL NEAR CUBIC SPL NE INTERPOLATING A SET OF POINTS WITH ARBITRARY SPACING. F15UNCSPL CONSTRUCTS CUBIC SPLINE THROUGH N POINTS; MONOTONE ABSCISSAS REQUIRED; SECOND ORDER CONTINUITY. F15COMCUB F15SMOCUB O'NTS DETERMINED BY THE CUB'C SPLINE THROUGH THE WHOLE DATA SET. SQUARES, THE BEST APPROXIMATION TO A SET OF DATA POINTS BY A RATIONAL FUNCTION WITH NUMERATOR AND DE TRUCTS. IN THE SENSE OF LEAST F15RATL SQUARES, TO A GIVEN SET OF POINTS THE BEST LINEAR COMBINATION OF A SET OF PRESCRIBED GENERAL FUNCTIC FITS, IN THE SENSE OF LEAST F150RTHFT SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD. F16FCGM2 SYSTEM IN THE SENSE OF LEAST FINDS BY THE METHOD OF LEAST SQUARES A POLYNOMIAL OF SPECIFIED DEGREE WHOSE GRAPH APPROXIMATES A SET OF DATA POINTS WITH WEIGHT A F15FLSOFY SQUARES POLYNOMIAL APPROXIMATION OF SOME PREASSIGNED DEGREE TO A SET OF DATA POINTS WITH GIVEN WEIGH F15FDLSQ CONSTRUCTS A LEAST SQUARES POLYNOMIAL OF A SPECIFIED DEGREE WHOSE GRAPH APPROXIMATES A SET OF DATA POINTS WITH WEIGHT A CONSTRUCTS A LEAST F15FCLSQ AINED BY EVALUATING THE LEAST SQUARES POLYNOMIAL OF DEGREE N BASED ON SUCCESSIVE POINTS. F15SMOOTH 2. 5 SOLVES A LEAST SQUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT. F16BSUBHT SQUARES PROBLEM FOR A COMPLEX SYSTEM USING THE METHOD OF CONJUGATE GRADIENT. SOLVES A LEAST F16CCONGR ATIVELY & SOLUTION OF A LEAST SQUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT. F16ITRLS0 SOLVES A LINEAR LEAST SQUARES PROBLEM USING HOUSEHOLDER TRANSFORMATIONS. F16LSOHTS SOLVES A LINEAR LEAST SQUARES PROBLEM WITH SEVERAL RIGHT-HAND SIDES USING HOUSEHOLDER TRANSFORMATIONS. F16LSQHTM

IVE REFINEMENT A LINEAR LEAST	SQUARES PROBLEM USING HOUSEHOLDERS METHOD.	F16LSQSIT
TH LINEAR TREND, IN THE LEAST	SQUARES SENSE, TO A SET OF EQUISPACED DATA.	F15FOURAP
P VECTOR DIRECTION AS A LEAST	SQUARES SOLUTION OF THE SYSTEM OF LINEAR EQUATIONS IN THE NEWTON RAPHSON METHOD AND SWITCHING TO THE	F18NRSG
COMPUTES CHI	SQUARE CUMULATIVE DISTRIBUTION FUNCTION.	F17CHIPRB
TRIBUTION FUNCTION OF THE CHI	SQUARE DISTRIBUTION.	F17PICHI
FACTORS WITHOUT CALCULATING A	SQUARE ROOT; THE DETERMINANT IS AVAILABLE,	F16SPDCOM
FINITE LINEAR SYSTEM PROVIDED	SQUARE ROOT; THE DETERMINANT IS AVAILABLE, SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED QUT, SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED QUT, SQUARE ROOT FREE DECOMPOSITION, SQUARE ROOT OF A REAL ARGUMENT, SQUARE ROOT OF A COMPLEX ARGUMENT, SQUARE ROOT OF A COMPLEX ARGUMENT, SQUARE ROOT OF A COMPLEX ARGUMENT, SQUARE ROOT ROUTINE,	F16 TRSPM
AL RIGHT-HAND SIDES PROVIDED	SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT.	F16 TRSPS
DEFINITE LINEAR SYSTEM USING	SQUARE ROOT FREE DECOMPOSITION.	F16SPITRM
EVERAL RIGHT-HAND SIDES USING	SQUARE ROOT FREE DECOMPOSITION,	F16SPITRS
COMPUTES THE	SQUARE ROOT OF A REAL ARGUMENT.	C12SORT
COMPUTES THE	SQUARE ROOT OF A DOUBLE PRECISION REAL ARGUMENT,	C12DSQRT
COMPUTES THE	SQUARE ROOT OF A COMPLEX ARGUMENT.	C12CSORT
DECOMPOSED WITHOUT USING THE	SQUARE ROOT ROUTINE.	F16SPDFBM
DECOMPOSED WITHOUT USING THE	SQUARE ROOT ROUTINE.	F16SPDF8S
NEAR SYSTEM WITHOUT USING THE	SQUARE ROOT ROUTINE.	F16SPDSOM
-HAND SIDES WITHOUT USING THE	SQUARE ROOT ROUTINE.	F16SPDSOS
COMPUTES CHI	SQUARE REST-STATISTIC FOR GIVEN EXPECTED AND OBSERVED FREQUENCIES.	F17CHSQ0
PERFORMS CHI	SQUARE TEST FOR GOODNESS OF FIT.	F17CHIDST
PERFORMS CHI	SQUARE TEST FOR SYMMETRY ABOUT ZERO.	F17CHIRAB
PERFORMS CHI	SQUARE TEST FOR RUNS UP AND DOWN.	F17CHIRUD
COMPUTES MEANS,	STANDARD DEVIATIONS, VARIANCES, AND COEFFICIENTS OF SKEWNESS AND KURTOSIS FOR MULTIPLEXED ARRAYS.	F17DSCRPT
OMPLEX POLYNOMIAL BY APPLYING	STEEPEST DESCENT WITH ACCELERATION DEVICES AND USING EXPLICIT DEFLATION WHEN ONE ZERO IS ACCEPTED.	F18CPOLRT
N METHOD AND SWITCHING TO THE	STEEPEST DESCENT METHOD IF THE FORMER METHOD GIVES DIVERGENCE: IN THE STEP VECTOR DIRECTION THE OPTI	F18NRSG
VECTOR DIRECTION THE OPTIMAL	STEP VECTOR IS CALCULATED BY PARABOLIC INTERPOLATION.	FIBNRSG
DISTRIBUTION FUNCTION OF THE	STUDENTS T DISTRIBUTION.	FITPIT
DISTRIBUTION FUNCTION OF THE	STUDENTS T DISTRIBUTION.	F17PTDIST
TRIDIAGONAL MATRIX USING THE	STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MINORS.	F16SEPAR
TRIDIAGONAL MATRIX USING THE	STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MINORS. STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MINORS.	F16SEPAR2
RATION OR LR ITERATION OR THE	STURM SEQUENCE METHOD: EIGENVECTORS ARE FOUND BY MEANS OF INVERSE ITERATION.	F16TCDIAG
HESSENBERG MATRIX HAVING REAL	SUBD AGONAL ELEMENTS.	F169R1
CALCULATES A	SUBSET OF EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DET	F16SEPAR2
PERFORMS THE DESIRED BACK	SUBSTITUTION ON THE EIGENVECTORS OF A HESSENBERG MATRIX PROVIDED THE TRANSFORMATION TO HESSEBERG FOR	F16SIMP
PUTES THE VECTOR OF MEANS AND	SUBTRACTS THE MEAN FROM EACH OBSERVATION OF A SET.	F17ZRNM
MATRIARCH SUBROUTINE TO	SUBTRACT A CONSTANT TIMES A VECTOR FROM ANOTHER VECTOR.	C16FCOMB
MATRIARCH SUBROUTINE TO	SUBTRACT FROM A VECTOR ITS COMPONENT ALONG ANOTHER VECTOR.	C16FPUR
COMPUTES THE DOUBLE PRECISION	SUMS OF POWERS OF OBSERVATIONS.	F17SUMPS
PUTES THE COEFFICIENTS OF THE	SUM OF TWO COMPLEX POLYNOMIALS.	F13CADR
PUTES THE COEFFICIENTS OF THE	SUM OF TWO REAL POLYNOMIALS.	F13ADR
IS BASED ON THE PRINCIPLE OF	SUPERPOSITION, USING SUBROUTINE BLCKDQ TO PERFORM THE SOLUTION OF THE REQUIRED INITIAL VALUE PROBLEM	F14LINBVD
FITS A SMOOTH	SURFACE WITH CONTINUOUS FIRST PARTIAL DERIVATIVES TO A SET OF POINTS DEFINED OVER A RECTANGULAR GRID	F15SURF5
ASSOCIATED EIGENVECTORS OF A	SYMMETRIC, NONNEGATIVE DEFINITE, NARROW BANDMATRIX USING THE METHOD OF INVERSE WIELANDT ITERATION WI	F16BANEIG
E NUMBER OF RUNS (EXPECTED IN	SYMMETRIC DISTRIBUTION AND OBSERVED) ABOVE AND BELOW ZERO OF DIFFERENT LENGTHS FOR A SAMPLE.	F17RUNSAB
UE EIGENVECTOR PAIR OF A REAL	SYMMETRIC MATRIX BY CALCULATING THE RAYLEIGH QUOTIENT AND GIVES ERROR BOUNDS.	F16EIGCHK
D SOME EIGENVECTORS OF A REAL	SYMMETRIC MATRIX.	F16EIGSYM
RAYLEIGH QUOTIENT FOR A REAL	SYMMETRIC MATRIX.	F16RAYLGH
TRANSFORMS A	CUMPETRIC MATRIX INTO TRIDICONAL FORM HEING UNIVERSION PRANESARMATION	F16TRIDI
Y THE CHOLESKY METHOD A REAL,	SYMMETRIC MATRIX INTO INIDIAGONAL FORM OSING DOUGENOUSERS TRANSFORMATION, Symmetric Positive Definite Bandmatrix into upper and lower triangular factors,	FIGBCHSDC
INEMENT A LINEAR SYSTEM FOR A	SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITI	F16BITRPD
INEMENT A LINEAR SYSTEM FOR A	SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE	F16BPDITM
SOLVES A LINEAR SYSTEM FOR A	SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITI	F16BPDFSB
SOLVES A LINEAR SYSTEM FOR A	SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE	F16BPDSOM
DECOMPOSES A	SYMMETRIC POSITIVE DEFINITE MATRIX INTO TRIANGULAR FACTORS USING CHOLESKYS METHOD; THE DETERMINANT I	FIGCHSDEC
S WITH ITERATIVE REFINEMENT A	SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD HAS BEEN CARR	F16ITRPDM
S WITH ITERATIVE REFINEMENT A	SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED DECOMPOSITION WITH	F161TRPDS
S WITH ITERATIVE REFINEMENT A	SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDE SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED O	F161TRSPM
S WITH TERATIVE REFINEMENT A	SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED SQUARE ROOT FREE D	F16ITRSPS
SOLVES A	SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM USING CHOLESKY DECOMPOSITION.	F16PDLSOS
SOLVES A	SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING CHOLESKY DECOMPOSITI	F16PDLSOM
SOLVES A	SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSI	F16PDSFBS

SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMP F16PDSF8M DECOMPOSES A SYMMETRIC POSITIVE DEFINITE MATRIX INTO LOWER TRIANGULAR, DIAGONAL AND UPPER TRIANGULAR FACTORS WITH F16SPDCOM LCULATES ALL EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MI F16SEPAR A SUBSET OF EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MI F16SEPAR2 LCULATES ALL EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING LR ITERATION. F16SYMLR LCULATES ALL EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING OR ITERATION. F16SYMQR PERFORMS CHI SQUARE TEST FOR SYMMETRY ABOUT ZERO. F17CHIRAB F16TRILOM VES A LOWER TRIANGULAR LINEAR SYSTEM. ES AN UPPER TRIANGULAR LINEAR SYSTEM. F16TRIUPM SOLVES A LINEAR SYSTEM ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION. F16GLESOS SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITHOUT F16BFBANP SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PAR F168FBSUM ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITHOUT F16BITRNP SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PAR ITERATIVE REFINEMENT A LINEAR F16BITERM ITERATIVE REFINEMENT & LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITH PARTIAL PIVOTI F16BITRFM ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVOTING AN F16BITWNP SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITH PARTIAL PIVOTI SOLVES A LINEAR F16BLESOM SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVOTING; T SOLVES A LINEAR F168LSWNP SOLVES A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION FOLL F16CFBSUM ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION ACCO F16CGITRF SOLVES A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTI F16CGLESM ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDIN F16CITERF SYSTEM FOR A LARGE SPARSE RECTANGULAR MATRIX USING THE CONJUGATE GRADIENT METHOD. F16SCONG SOLVES A LINEAR ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULA F16BITRPD ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLESKYS ME F16BPDITM SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULA SOLVES A LINEAR F16BPDFS8 SOLVES A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLESKYS ME F16BPDSOM SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITH PARTIAL PIVOTING HAS BEEN CARRIED OUT. SOLVES A LINEAR F16TRDFBM SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX USING PARTIAL PIVOTING. F16TRDSOM SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT. F16TRDSUB SYSTEM FOR A TRIDIAGONAL MATRIX WITHOUT PIVOTING. F16TRDWNP SOLVES A LINEAR F16PDITRM ITERATIVE REFINEMENT A LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING CHOLESKYS DECOMPOSITION AND PROVIDES DATA FOR CALCULATE TRIC POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING CHOLESKY DECOMPOSITION. F16PDLSOM TRIC POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSITIO F16PDSF8M SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQU ES A POSITIVE DEFINITE LINEAR F16SPDF8S SYSTEM HAVING SEVERAL RIGHT-HAND SIDES WITHOUT USING THE SQUARE ROOT ROUTINE. ES A POSITIVE DEFINITE LINEAR F16SPDSOS F16SPITRS NT & POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING SQUARE ROOT FREE DECOMPOSITION. VES A LOWER TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES. F16TRILOS ES AN UPPER TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES. F16TRIUPS VES A RECTANGULAR LINEAR REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD. F16FCGM2 SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A PREDICTOR CORRECTOR METHOD OF EIGHTH O SOLVES A F14BLCKDQ SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNIQUE BASED F14DRATEX SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TECHNIQUE EF SOLVES A F14RKINIT SOLVES A SYSTEM OF LINEAR EQUATIONS OR SEVERAL SYSTEMS WITH THE SAME LEFT HAND SIDE BY GAUSSIAN ELIMINATION U F18LINSYS SYSTEM OF NONLINEAR EQUATIONS BY COMPUTING IN EACH ITERATION A CORRECTION VECTOR TO THE TRIAL SOLUTI SOLVES A F18NEWT SOLVES A SYSTEM OF NONLINEAR ALGEBRAIC EQUATIONS USING THE GENERALIZED SECANT METHOD MODIFYING THE STEP VECTO F18NONL |Q SOLVES AN OVER DETERMINED SYSTEM OF NONLINEAR EQUATIONS BY CALCULATING A STEP VECTOR DIRECTION AS A LEAST SQUARES SOLUTION OF F18NRSG SYSTEM OF NONLINEAR EQUATIONS BY USING THE NEWTON RAPHSON METHOD IN THE FIRST ITERATION AND BY UPDAT SOLVES A F189NWT SOLVES A SYSTEM OF NONLINEAR EQUATIONS BY CALLING SUBROUTINE QNWT A NUMBER OF TIMES WITH DIFFERENT INITIAL GU F18RQNWT SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS, WHERE THE SOLUTION IS BASED ON THE PRINCIPLE OF SUPERPOSI BOUNDARY VALUE PROBLEMS IN A F14LINBVD SYSTEM PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW SOLVES A LINEAR F16F8SUBS ITERATIVE REFINEMENT & LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING ACCORDING TO CROUTS ALGORITHM HAS BEE F16ITERFS TRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROVIDES DATA FOR ESTIM F16ITRPDM TRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT. F16|TRSPM SYSTEM PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSITION HAS BEEN CARRIED OUT. TRIC POSITIVE DEFINITE LINEAR F16PDSFBS SYSTEM PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUTINE. ES A POSITIVE DEFINITE LINEAR F16SPDF8M ITERATIVE REFINEMENT A LINEAR SYSTEM USING CHOLESKY DECOMPOSITION AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND ESTIMATING F16PDITRS TRIC POSITIVE DEFINITE LINEAR SYSTEM USING CHOLESKY DECOMPOSITION. F16PDLSOS ITERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTI F16GITRES SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATIONI THE DETERMINANT IS AV SOLVES A LINEAR F16LESWNE

SOL	VES A LINEAR	SYSTEM USING CROUTS ALGORITHM WITHOUT PIVOTING; THE DETERMINANT IS AVAILABLE.	FIGLESWNP
ITERATIVE REFINEM	IENT A LINEAR	SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION AND PROVIDES DATA FOR	FIGLITWNE
ITERATIVE REFINEN	ENT A LINEAR	SYSTEM USING CROUTS ALGORITHM WITHOUT PIVOTING AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND	F16LITWNP
NT A POSITIVE DEF	INITE LINEAR	SYSTEM USING SQUARE ROOT FREE DECOMPOSITION.	F16SPITRM
ES A POSITIVE DEF	INITE LINEAR	SYSTEM WITHOUT USING THE SQUARE ROOT ROUTINE,	F16SPDSOM
SOL	VES A LINEAR	SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITH	F16FBSUBM
ITERATIVE REFINEM	IENT A LINEAR	SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING ACCORD	F16ITERFM
sou	VES A LINEAR	SYSTEM WITH SEVERAL RIGHT-HAND SIDES ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQ	F16GLESOM
ITERATIVE REFINEN	ENT A LINEAR	SYSTEM WITH SEVERAL RIGHT-MAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRA	F16GITRFM
TRIC POSITIVE DEF	INITE LINEAR	SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD HAS BEEN CARRIED	F16ITRPD5
TRIC POSITIVE DEF	INITE LINEAR	SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT.	F16ITRSPS
ERPOLATION IN ONE	DIMENSIONAL	TABLE; ARBITRARY ORDER.	F15TBLU1
ERPOLATION IN TWO	DIMENSIONAL	TABLE; ARBITRARY ORDER.	F15TBLU2
POLATION IN THREE	DIMENSIONAL	TABLE; ARBITRARY ORDER.	F15TBLU3
OINT GIVEN THE AE	SCISSA AND A	TABLE OF CORRESPONDING VALUES OF THE INDEPENDENT AND DEPENDENT VARIABLES AND ITS FIRST DERIVATIVE,	F15HRMT1
USING INVERTED DI	FFERENCES ON	TABULAR DATA WITH ARBITRARY SPACING.	F15ACF1
ONVENIENT WAY OF	HANDLING THE	TAIL AND STORES THE VALUES IN A MULTIPLEXED ARRAY.	F17NRMNO
	COMPUTES THE	TANGENT TRIGONOMETRIC FUNCTION.	C12TAN
COMPUTES TH	E HYPERBOLIC	TANGENT TRIGONOMETRIC FUNCTION.	C12TANH
SING A RATIONAL E	XTRAPOLATION	SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD HAS BEEN CARRIED SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT. TABLE; ARBITRARY ORDER. TABLE; ARBITRARY ORDER. TABLE; ARBITRARY ORDER. TABLE OF CORRESPONDING VALUES OF THE INDEPENDENT AND DEPENDENT VARIABLES AND ITS FIRST DERIVATIVE. TABLLAR DATA WITH ARBITRARY SPACING. TAIL AND STORES THE VALUES IN A MULTIPLEXED ARRAY. TANGENT TRIGONOMETRIC FUNCTION. TANGENT TRIGONOMETRIC FUNCTION. TECHNIQUE BASED ON A MODIFIED MIDPOINT RULE; EFFICIENT FOR HIGH ACCURACY WORK. TECHNIQUE EFFICIENT FOR LOW ACCURACY WORK. TEN LOGARITHM OF A REAL ARGUMENT. TEN LOGARITHM OF A REAL ARGUMENT. TERMS. TERMS. TEST-STATISTIC FOR GIVEN EXPECTED AND OBSERVED FREQUENCIES. TEST FOR GOODNESS OF FIT. TEST FOR RUNS UP AND DOWN. TEST FOR RUNS UP AND DOWN. TEST FOR SYMMETRY ABOUT ZERO. TEST OF THE HOMGGENEITY OF A GROUP OF VARIANCE ESTIMATES.	F14DRATEX
G A VARIABLE STEP	RUNGE KUTTA	TECHNIQUE EFFICIENT FOR LOW ACCURACY WORK,	F14RKINIT
COMPL	ITES THE BASE	TEN LOGARITHM OF A REAL ARGUMENT.	C12ALOG10
COMPL	ITES THE BASE	TEN LOGARITHM OF A DOUBLE PRECISION REAL ARGUMENT.	C12DLOG10
T AS A FRACTION I	N ITS LOWEST	TERMS.	F11FAFRAC
T AS A FRACTION I	N ITS LOWEST	TERMS,	F11FMFRAC
COMPUTE	S CHI SQUARE	TEST-STATISTIC FOR GIVEN EXPECTED AND OBSERVED FREQUENCIES.	F17CHS00
	S CHI SQUARE	TEST FOR GOODNESS OF FIT.	F17CHIDST
	S CHI SQUARE	TEST FOR RUNS UP AND DOWN.	F17CHIRUD
	S CHI SQUARE	TEST FOR SYMMETRY ABOUT ZERO.	F17CHIRAB
			F17BRTLTT
LETE ELLIPTIC INT			F13CEL3
LETE ELLIPTIC INT	EGRAL OF THE	THIRD KIND BY USING THE GAUSS TRANSFORMATION; COULD BE USED FOR COMPLETE ELLIPTIC INTEGRAL OF THE TH	F13EL3
LETE ELLIPTIC INT	EGRAL OF THE	THIRD KIND SOMETIMES.	F13EL3
LAGRANGIAN INTE		THREE DIMENSIONAL TABLE; ARBITRARY ORDER.	F15TBLU3
RES PROBLEM USING		TRANSFORMATIONS.	F16LSQHTS
-HAND SIDES USING		TRANSFORMATIONS.	F16LSQHTM
MEANS OF D'AGONA		TRANSFORMATIONS, TRANSFORMATIONS ON THE OBSERVATIONS OF ONE VARIABLE IN A MULTIPLEXED ARRAY, TRANSFORMATIONS ON THE OBSERVATIONS OF TWO VARIABLES IN MULTIPLEXED ARRAYS, TRANSFORMATION, TRANSFORMATION,	F16BALANC
_	PERFORMS	TRANSFORMATIONS ON THE OBSERVATIONS OF ONE VARIABLE IN A MULTIPLEXED ARRAY.	F170P1RAY
	S ARITHMETIC	TRANSFORMATIONS ON THE OBSERVATIONS OF TWO VARIABLES IN MULTIPLEXED ARRAYS.	F170P2RAY
THE THIRD KIND E		TRANSFORMATION	F13CEL3
SECOND KINDS BY U		TRANSFORMATION.	F13ELK
SECOND KINDS BY U		TRANSFORMATION.	F13ELF
GONAL FORM USING		TRANSFORMATION,	F16TRIDI
THIRD KIND BY USI		TRANSFORMATION; COULD BE USED FOR COMPLETE ELLIPTIC INTEGRAL OF THE THIRD KIND SOMETIMES.	F13EL3
EAL MATRIX USING		TRANSFORMATION FOLLOWED BY DOUBLE OR ITERATION.	F16LATNTR
IAN MATRIX USING	HOUSEHOLDERS	TRANSFORMATION TO TRIDIAGONAL FORM FOLLOWED BY EITHER OR ITERATION OR LR ITERATION OR THE STURM SEQU	F16TCDIAG
		TRANSFORMS A MATRIX INTO UPPER TRIANGULAR FORM BY HOUSEHOLDERS METHOD.	F16DCBHT
		TRANSFORMS A REAL MATRIX TO UPPER HESSENBERG FORM USING WILKINSONS METHOD,	F16HSSN
		TRANSFORMS A REAL MATRIX TO UPPER HESSENBERG FORM USING WILKINSONS METHOD. Transforms a real matrix into upper hessenberg form according to householders method. Transforms a symmetric matrix into tridiagonal form Using Householders transformation. Transform of an array of complex fourier amplitudes.	F16SUBDIR
		IRANSTURMS A STMPLIKIC MATKIX INTO INIDIAGONAL FURM USING HOUSEHOLDERS TRANSFORMATION.	F16TRIDI
COMPUTES THE		IRANSFORM OF AN ARKAT OF COMPLEX FOURIER AMPLITURES.	F17HARM
	A COORDINATE	INANSLATION IN THE ARGUMENT OF A REAL POLYNOWIAL,	F13PTRAN
	A COORDINATE	IRANSLATION IN THE ARGUMENT OF A COMPLEX POLYNOMIAL,	F13CPTRAN
ARCH SUBROUTINE T		INANSPUSED COMPLEX MATRIX BY A COMPLEX VECTOR.	C16FMTVCX
ARCH SUBROUTINE T		IKANSTUSED LANGE SPARSE MATRIX BY A VECTOR UN THE RIGHT,	C16SMTVX
ARCH SUBROUTINE T		IRANSFUSED MAINIX BY A VECTUR,	C16FMTVX
ARCH SUBROUTINE T		TRANSFORMS A SYMMETRIC MATRIX INTO TRIDIAGONAL FORM USING HOUSEHOLDERS TRANSFORMATION. TRANSFORM OF AN ARRAY OF COMPLEX FOURIER AMPLITUDES. TRANSLATION IN THE ARGUMENT OF A REAL POLYNOMIAL. TRANSPOSED COMPLEX MATRIX BY A COMPLEX VECTOR. TRANSPOSED LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT. TRANSPOSED MATRIX BY A MATRIX ON THE RIGHT. TRANSPOSED MATRIX BY A MATRIX ON THE RIGHT. TRANSPOSED MATRIX BY A MATRIX.	C16FMTMX
	UBROUTINE TO	IKANSYUSE A KELIANGULAK MATKIX, Torno in the frage conner of a set of fourtainer ofta	C16FMTR
ST FOURIER SERIES		IRENU, IN THE LEAST SWORRS SENDE, TO A SET OF EVUISFACED DATA. Thend clubm a set of faberlean oblinates gauge with application cracing	F15FOURAP
SINE POLYNOMIAL W	HIN A LINGAR	TRANSPOSE A RECTANGULAR MATRIX, Trend, in the least squares sense, to a set of equispaced data. Trend given a set of (abscissa, ordinate) pairs with arbitrary spacing,	F15SINSER

FOURIER SERIES WITH A LINEAR TREND THAT IS OBTAINED BY INTEGRATION OF A TRIGONOMETRIC POLYNOMIAL. FISTRGINT FOURIER SERIES WITH A LINEAR TREND THROUGH A SET OF EQUISPACED POINTS. FISFOURI RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BDCWNP. F16BFBANP RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT, POSS F16BFBSUM RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURAC F16BITRNP RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT AND G F16BITERM RAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION BY CHOLESKYS METHOD HAS BEEN CARRIED OUT. F16BITRPD SING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION. F16BPDITM RAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION BY CHOLESKYS METHOD HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BCHSDC. F168PDFS8 SING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION. F168PDSOM RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION FOLLOWING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS F16CFBSUM RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION H F16CG|TRF RAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION H F16CITERF TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN ERMINANT OF A MATRIX PROVIDED F16DETERM TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION H AL RIGHT-HAND SIDES PROVIDED F16FBSUBM LVES A LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION H F16FBSUBS AL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING ACCORDING TO CROUTS ALGORITHM HAS BEEN CARRIED CUT AN F16ITERFM MENT A LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING ACCORDING TO CROUTS ALGORITHM HAS BEEN CARRIED OUT AN F16|TERFS INVERSE OF A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN F16ITERIN FINITE LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSITION HAS BEEN CARRIED OUT. F16PDSF85 TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSITION HAS BEEN CARRIED OUT. RAL RIGHT-HAND SIDES PROVIDED F16PDSF8M NDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS. F168CHSDC NDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS; THE DETERMINANT IS ALSO AVAILABLE. F16BDCWNP NDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS. F16BDECOM TRIANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION; ALSO COMPUTES OMPOSES A COMPLEX MATRIX INTO F16CDECOM POSITIVE DEFINITE MATRIX INTO TRIANGULAR FACTORS USING CHOLESKYS METHOD; THE DETERMINANT IS AVAILABLE. F16CHSDEC DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION; THE DETER F16DCWNE DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITHOUT PIVOTING; THE DETERMINANT IS AVAILABLE. F16DCWNP TRIANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION: THE DETERMINA DECOMPOSES A MATRIX INTO F16DECOM L MATRIX INTO LOWER AND UPPER TRIANGULAR FACTORS USING PARTIAL PIVOTING. F16TRDCOM SES A TRIDIAGONAL MATRIX INTO TRIANGULAR FACTORS WITHOUT PIVOTING. F16TRDCNP RANSFORMS & MATRIX INTO UPPER TRIANGULAR FORM BY HOUSEHOLDERS METHOD. F16DCBHT SOLVES A LOWER TRIANGULAR LINEAR SYSTEM. F16TRILOM SOLVES A LOWER TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES. F16TRILOS F16TRIUPM SOLVES AN UPPER TRIANGULAR LINEAR SYSTEM. SOLVES AN UPPER TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES. F16TRIUPS INVERTS A LOWER TRIANGULAR MATRIX. F16TRLOIN INVERTS AN UPPER TRIANGULAR MATRIX. F16TRUPIN OUSEHOLDERS TRANSFORMATION TO TRIDIAGONAL FORM FOLLOWED BY EITHER OR ITERATION OR LE ITERATION OR THE STURM SEQUENCE METHOD; EIGEN F16TCDIAG FORMS A SYMMETRIC MATRIX INTO TRIDIAGONAL FORM USING HOUSEHOLDERS TRANSFORMATION. F16TRIDI LL EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MINORS. F16SEPAR OF EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MINORS. F16SEPAR2 LL EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING LR ITERATION. F16SYMLR LL EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING OR ITERATION, F16SYMOR F16TRDCOM DECOMPOSES A TRIDIAGONAL MATRIX INTO LOWER AND UPPER TRIANGULAR FACTORS USING PARTIAL PIVOTING. SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITH PARTIAL PIVOTING HAS BEEN CARRIED OUT. F16TRDFBM SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX USING PARTIAL PIVOTING. F16TRDSOM DECOMPOSES A TRIDIAGONAL MATRIX INTO TRIANGULAR FACTORS WITHOUT PIVOTING. F16TRDCNP SOLVES A LINEAR SYSTEM FOR A TR DIAGONAL MATRIX PROVIDED DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT. F16TRDSUB SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX WITHOUT PIVOTING. F16TRDWNP OMPUTES THE HYPERBOLIC COSINE TRIGONOMETRIC FUNCTION. F12COSH COMPUTES THE SINE TRIGONOMETRIC FUNCTION. C12SIN TES THE DOUBLE PRECISION SINE TRIGONOMETRIC FUNCTION. C12DSIN COMPUTES THE COMPLEX SINE TRIGONOMETRIC FUNCTION. C12C5 IN COMPUTES THE COSINE TRIGONOMETRIC FUNCTION. C12C05 S THE DOUBLE PRECISION COSINE TRIGONOMETRIC FUNCTION. C12DCOS COMPUTES THE COMPLEX COSINE TRIGONOMETRIC FUNCTION. C12CCOS COMPUTES THE TANGENT TRIGONOMETRIC FUNCTION. C12TAN TRIGONOMETRIC FUNCTION. COMPUTES THE ARCSINE C12ASIN COMPUTES THE ARCOS NE TRIGONOMETRIC FUNCTION. C12ACOS

·		
COMPUTES THE ARCTANGENT Computes the arctangent	TRIGONOMETRIC FUNCTION,	C12ATAN
E DOUBLE PRECISION ARCTANGENT	TRIGONOMETRIC FUNCTION OF A QUOTIENT U/V. Trigonometric function.	C12ATAN2 C12DATAN
E DOUBLE PRECISION ARCTANGENT	TRIGONOMETRIC FUNCTION OF À QUOTIENT U/V.	C12DATAN2
COMPUTES THE HYPERBOLIC SINE	TR GONOMETRIC FUNCTION.	C12SINH
MPUTES THE HYPERBOLIC TANGENT	TRIGONOMETRIC FUNCTION.	C12TANH
GIVEN THE COEFFICIENTS OF THE	TREGONDMETRIC POLYNOMEAL.	F15TRGDIF
OBTAINED BY INTEGRATION OF A	TRIGONOMETRIC POLYNOMIAL.	F15TRGINT
DISTRIBUTION FUNCTION OF THE	TRUNCATED NORMAL DISTRIBUTION.	F17PITRNM
DISTRIBUTION FUNCTION OF THE	TRUNCATED NORMAL DISTRIBUTION,	F17PTRNRM
LAGRANGIAN INTERPOLATION IN	TWO DIMENSIONAL TABLE; ARBITRARY ORDER.	F15TBLU2
TION FUNCTION OF THE STUDENTS TION FUNCTION OF THE STUDENTS	T D'STRIBUTION, T D'STRIBUTION,	F17PIT
DISTRIBUTION FUNCTION OF THE	UN FORM DISTRIBUTION.	F17PTDIST F17PIUNF
TION FUNCTION OF THE DISCRETE	UN FORM DISTRIBUTION.	F17PIUNFD
DISTRIBUTION FUNCTION OF THE	UN FORM DISTRIBUTION.	F17PRBUNF
TION FUNCTION OF THE DISCRETE	UNIFORM DISTRIBUTION.	F17PUNFD
RATES RANDOM NUMBERS HAVING A	UN FORM DISTRIBUTION AND STORES THE VALUES AS ONE VARIABLE IN A MULTIPLEXED ARRAY.	F17URAND
NERATES RANDOM NUMBERS HAVING	UNIFORM OR NORMAL DISTRIBUTION.	F17RAND
GENERATES	UNIFORM RANDOM INTEGERS BETWEEN TWO GIVEN VALUES.	F17IRAND
GENERATES	UNIFORM RANDOM FLOATING POINT NUMBERS BETWEEN TWO GIVEN VALUES,	F17XIRAND
SCLVES AN	UPDATING THE APPROXIMATION OF THE JACOBIAN IN THE NEXT ITERATIONS (QUASI NEWTON METHOD). Upper triangular linear system.	F18QNWT F16TRIUPM
SOLVES AN	UPPER TRIANGULAR LINEAR STATEM HAVING SEVERAL RIGHT-HAND SIDES.	F16TRIUPS
INVERTS AN	UPPER TRIANGULAR MATRIX	F16TRUPIN
SOLVES NONLINEAR BOUNDARY	VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS BY COMBINING AN INITIAL VALUE SOLVER WITH A NONLIN	F14BVD
SOLVES LINEAR BOUNDARY	VALUE PROBLEMS IN A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS, WHERE THE SOLUTION IS BASED ON THE PR	F14LINBVD
S MEANS, STANDARD DEVIATIONS,	VARIANCES, AND COEFFICIENTS OF SKEWNESS AND KURTOSIS FOR MULTIPLEXED ARRAYS.	F17DSCRPT
TION COEFFICIENTS OR THE AUTO	VAR'ANCE COEFFICIENTS FOR ONE VARIABLE IN A MULTIPLEXED ARRAY,	F17CORCOV
THE HOMOGENEITY OF A GROUP OF TRIBUTION FUNCTION OF THE F (VAR'ANCE ESTIMATES. Var'ance ratio) distribution.	F17BRTLTT F17BFD15T
TRIBUTION FUNCTION OF THE F (VAR ANCE RATIO) DISTRIBUTION.	F17PFDIST F17Pifdis
RECISION INNER PRODUCT OF TWO	VECTORS HAVING COMPLEX ELEMENTS.	F16CINPRD
LATE THE INNER PRODUCT OF TWO	VECTORS WHICH MAY BE A COLUMN OR A ROW OF A MATRIX USING EITHER SINGLE OR DOUBLE PRECISION OTHER SU	C16VIP
IPLY A TRANSPOSED MATRIX BY A	VECTOR,	C16FMTVX
A COMPLEX MATRIX BY A COMPLEX	VECTOR.	C16FMVCX
D COMPLEX MATRIX BY A COMPLEX	VECTOR.	C16FMTVCX
MPUTE THE EUCLIDIAN NORM OF A	VECTOR.	C16FABSV
O SUBTRACT A CONSTANT TIMES A	VECTOR FROM ANOTHER VECTOR,	C16FCOMB
RCH SUBROUTINE TO NORMALIZE A SUBROUTINE TO SUBTRACT FROM A	VECTOR IN THE 2 NORM. VECTOR ITS COMPONENT ALONG ANOTHER VECTOR.	C16FNORM <u>1</u> C16FPUR
RCH SUBROUTINE TO DO A MATRIX	VECTOR MULTIPLICATION	C16FMVX
LY A LARGE SPARSE MATRIX BY A	VECTOR ON THE RIGHT.	C16SMVX
OSED LARGE SPARSE MATRIX BY A	VECTOR CN THE RIGHT.	CI6SMTVX
CHANGES A	VECTOR WITH FRACTIONAL COMPONENTS INTO ONE WITH INTEGER COMPONENTS TIMES A SCALAR FUNCTION.	F11FFRAC
CISION; OTHER SUBROUTINES ARE	VIPA, VIPS, VIPD, VIPDA, VIPDS, INRPRD, PROSUM.	C16VIP
APE VIDA, VIPS, VIPS, VIPD,	VIPDA, VIPDS, INRPRD, PROSUM	C16VIP
ARE VIPA, VIPS, VIPD, VIPDA, R SUBROUTINES ARE VIPA, VIPS,	VIPDS, INRPRD, PROSUM, VIPD, VIPDA, VIPDS, INRPRD, PROSUM.	C16VIP C16VIP
; OTHER SUBROUTINES ARE VIPA,	VIPD, VIPDA, VIPDS, INRPRD, PRDSUM.	C16VIP
DISTRIBUTION FUNCTION OF THE	WEIBULL DISTRIBUTION.	F17PIWEBL
DISTRIBUTION FUNCTION OF THE	WEIBUL DISTRIBUTION.	F17PWEBL
HED ORDINATE IS OBTAINED AS A	WEIGHTED AVERAGE OF A SPECIFIED NUMBER OF OTHER POINTS IN ITS NEIGHBORHOOD.	F15MILN2
HESSENBERG MATRIX BY MEANS OF	WIELANDT INVERSE ITERATION.	F16EIGIMP
X USING THE METHOD OF INVERSE	WIELANDT ITERATION WITH PERIODIC RAYLEIGH QUOTIENT SHIFTING COMBINED WITH A STABLE, BAND-PRESERVING	F16BANEIG
ORM HAS BEEN CARRIED OUT WITH	WILKENSONS METHOD.	F16SIMP
O UPPER HESSENBERG FORM USING CALCULATES THE NUMBER OF	WILKINSONS METHOD, Jedog Decreated by the number of Boles, of a complex punction in an apea in the complex plane fucio.	F16HSSN F487COUNT
FINDS ALL THE	ZEROS, DECREASED BY THE NUMBER OF POLES, OF A COMPLEX FUNCTION IN AN AREA IN THE COMPLEX PLANE ENCLO ZEROS OF A COMPLEX POLYNOMIAL BY APPLYING STEEPEST DESCENT WITH ACCELERATION DEVICES AND USING EXPLI	F18ZCOUNT F18CPOLRT
	Terra as a survey refinering of branche everyal become ship wasarebuilde affices we aging EVER.	· The cheve

•

FINDS A REQUIRED NUMBER OF ZEROS OF A COMPLEX FUNCTION USING A METHOD DESCRIBED BY JARRATT AND NUDDS FOR APPROXIMATION OF ONE Z F18ZAFUJ FINDS A REQUIRED NUMBER OF ZEROS OF A COMPLEX FUNCTION WITH MULLERS METHOD AND FACTORING OUT PREVIOUSLY FOUND ZEROS, F18ZAFUM F'NDS ALL ZEROS OF A POLYNOMIAL WITH REAL COEFFICIENTS WITH NEWTONS METHOD OR BAIRSTOWS METHOD BY PERFORMING S F18PROOT NDS A REQUIRED NUMBER OF REAL ZEROS OF A REAL FUNCTION WITH A METHOD DESCRIBED BY JARRATT AND NUDDS FOR APPROXIMATION OF ONE ZERO F18ZAFUR FINDS ALL THE ZEROS OR A SINGLE ZERO OF A COMPLEX POLYNOMIAL BY MULLERS METHOD WITH DEFLATION, F18MULLP

.

COMPUTES THE ARCOSINE TRIGONOMETRIC FUNCTION. C12ACOS COMPUTES THE BASE TEN LOGARITHM OF A REAL ARGUMENT. C12ALOG10 COMPUTES THE NATURAL LOGARITHM OF A REAL ARGUMENT. C? 2ALOG COMPUTES THE ARCSINE TRIGONOMETRIC FUNCTION. C12ASIN C12ATAN2 COMPUTES THE ARCTANGENT TRIGONOMETRIC FUNCTION OF A QUOTIENT U/V. COMPUTES THE ARCTANGENT TRIGONOMETRIC FUNCTION. C12ATAN C12CBRT COMPUTES THE CUBE ROCT OF A REAL ARGUMENT. C12CCOS COMPUTES THE COMPLEX COSINE TRIGONOMETRIC FUNCTION, COMPUTES THE EXPENENT AL FUNCTION OF A COMPLEX ARGUMENT. C12CEXP C12CLOG COMPUTES THE NATURAL LOGARITHM OF A COMPLEX ARGUMENT. C12C05 COMPUTES THE COSINE TRIGONOMETRIC FUNCTION. C12CSIN COMPUTES THE COMPLEX SINE TRIGONOMETRIC FUNCTION. COMPUTES THE SQUARE ROOT OF A COMPLEX ARGUMENT. C12CSQRT C12DATAN2 COMPUTES THE DOUBLE PRECISION ARCTANGENT TRIGONOMETRIC FUNCTION OF A GUOTIENT U/V. COMPUTES THE DOUBLE PRECISION ARCTANGENT TRIGONOMETRIC FUNCTION. C12DATAN C12DCOS COMPUTES THE DOUBLE PRECISION COSINE TRIGONOMETRIC FUNCTION. COMPUTES THE EXPONENTIAL FUNCTION OF A DOUBLE PRECISION REAL ARGUMENT. C12DEXP C12DLOG10 COMPUTES THE BASE TEN LOGARITHM OF A DOUBLE PRECISION REAL ARGUMENT. COMPUTES THE NATURAL LOGARITHM OF A DOUBLE PRECISION REAL ARGUMENT. C12DLOG C12DSIN COMPUTES THE DOUBLE PRECISION SINE TRIGONOMETRIC FUNCTION. C12DSQRT COMPUTES THE SQUARE ROOT OF A DOUBLE PRECISION REAL ARGUMENT. COMPUTES THE EXPONENTIAL FUNCTION OF A REAL ARGUMENT. C12EXP A SET OF PROGRAMS TO PERFORM GENERAL EXPONENTIATION, A**B, FOR VARIOUS COMBINATIONS OF A AND B, INTEGER, REAL, COMPLEX, AND DOUBLE PR C12PS1132 ECISION. C12SINH COMPUTES THE HYPERBOLIC SINE TRIGONOMETRIC FUNCTION. COMPUTES THE SINE TRIGONOMETRIC FUNCTION. C125 | N COMPUTES THE SQUARE ROOT OF A REAL ARGUMENT. C12SORT COMPUTES THE HYPERBOL C TANGENT TRIGONOMETRIC FUNCTION. C12TANH C12TAN COMPUTES THE TANGENT TRIGONOMETRIC FUNCTION. MATRIARCH SUBROUTINE TO COMPUTE THE EUCLIDIAN NORM OF A VECTOR. C16FABSV MATRIARCH SUBROUTINE TO SUBTRACT A CONSTANT TIMES A VECTOR FROM ANOTHER VECTOR. C16FCOMB C16FMMX MATRIARCH SUBROUTINE TO PERFORM A MATRIX MATRIX MULTIPLICATION. C16FMTMX MATRIARCH SUBROUTINE TO MULTIPLY A TRANSPOSED MATRIX BY A MATRIX ON THE RIGHT. C16FMTR MATRIARCH SUBROUTINE TO TRANSPOSE & RECTANGULAR MATRIX. MATRIARCH SUBROUTINE TO MULTIPLY A TRANSPOSED COMPLEX MATRIX BY A COMPLEX VECTOR. C16FMTVCX C16FMTVX MATRIARCH SUBROUTINE TO MULTIPLY A TRANSPOSED MATRIX BY A VECTOR. C16FMVCX MATRIARCH SUBROUTINE TO MULTIPLY A COMPLEX MATRIX BY A COMPLEX VECTOR. MATRIARCH SUBROUTINE TO DO A MATRIX VECTOR MULTIPLICATION. C16FMVX MATRIARCH SUBROUTINE TO NORMALIZE & VECTOR IN THE 2 NORM. C16FNORM1 MATRIARCH SUBROUTINE TO SUBTRACT FROM A VECTOR ITS COMPONENT ALONG ANOTHER VECTOR. C16FPUR MATRIARCH SUBROUTINE TO MULTIPLY A TRANSPOSED LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT. C16SMTVX MATRIARCH SUBROUTINE TO MULTIPLY A LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT. C16SMVX ONE OF A SET OF SUBROUTINES TO CALCULATE THE INNER PRODUCT OF TWO VECTORS WHICH MAY BE A COLUMN OR A ROW OF A MATRIX USING EITHER SIN C16VIP GLE OR DOUBLE PRECISION; OTHER SUBROUTINES ARE VIPA, VIPS, VIPD, VIPDA, VIPDS, INRPRD, PRDSUM. F11FAFRAC ADDS TWO FRACTIONS AND EXPRESSES THE RESULT AS A FRACTION IN ITS LOWEST TERMS. CHANGES A VECTOR WITH FRACTIONAL COMPONENTS INTO ONE WITH INTEGER COMPONENTS TIMES A SCALAR FUNCTION. F11FFRAC MULTIPLIES TWO FRACTIONS AND EXPRESSES THE RESULT AS A FRACTION IN ITS LOWEST TERMS. F11FMFRAC FINDS THE HIGHEST COMMON FACTOR OF TWO INTEGERS BY EUCLIDS ALGORITHM. F11HCF FINDS THE LEAST COMMON MULTIPLE OF TWO INTEGERS BY USING SUBROUTINE HCF. FILCM F12CBAREX EVALUATES GENERAL EXPONENTIATION C**R FOR COMPLEX BASE AND REAL EXPONENT. COMPUTES THE HYPERBOLIC COSINE TRIGONOMETRIC FUNCTION. F12COSH COMPUTES THE COEFFICIENTS OF THE SUM OF TWO REAL POLYNOMIALS. F13ADR PROVIDES CERTAIN MACHINE AND MATHEMATICAL CONSTANTS AS SINGLE PRECISION NUMBERS OF MAXIMUM ACCURACY. F13AMCON COMPUTES A SEQUENCE OF MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND FOR REAL ARGUMENT BY USING BACKWARD RECURSION. F13BESNIS COMPUTES A SEQUENCE OF MODIFIED BESSEL FUNCTIONS OF THE SECOND KIND FOR REAL ARGUMENT BY USING POLYNOMIAL APPROXIMATIONS AND THE SUBR F13BESNKS OUTINE BESNIS. COMPUTES A SWQUENCE OF SPHERICAL BESSEL FUNCTIONS OF THE FIRST KIND FOR REAL ARGUMENT BY FORWARD OR BACKWARD RECURSION WITH STARTING F138SJ VALUES. F13CADR COMPUTES THE COEFFICIENTS OF THE SUM OF TWO COMPLEX POLYNOMIALS.

FI3CCOMPE EVALUATES A POLYNOMIAL HAVING COMPLEX COEFFICIENTS AT A COMPLEX POINT BY SUMMING THE PRODUCT OF THE POWERS TIMES THE COEFFICIENTS. FI3CDERIV COMPUTES THE COEFFICIENTS OF A POLYNOMIAL WHICH IS THE DERIVATIVE OF ANOTHER COMPLEX POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER. F13CEL3 COMPUTES THE COMPLETE ELLIPTIC INTEGRAL OF THE THIRD KIND BY THE LANDEN TRANSFORMATION. F13CINT COMPUTES THE COEFFICIENTS OF A POLYNOMIAL WHICH IS THE INTEGRAL OF ANOTHER COMPLEX POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER. F13CLDIV DIVIDES A COMPLEX POLYNOMIAL BY A LINEAR FACTOR, X+B, WHERE B MAY BE COMPLEX. F13CMPYR FINDS THE PRODUCT OF TWO COMPLEX POLYNOMIALS. #13COMBES COMPUTES SEQUENCES OF THE BESSEL FUNCTIONS OF THE FIRST OR SECOND KINDS FOR COMPLEX ARGUMENT AND COMPLEX ORDER. F13COMPEV EVALUATES A REAL POLYNOMIAL AT A COMPLEX POINT BY FACTORIZING WITH A QUADRATIC TERM. F13CPDIV PROVIDES THE QUOTIENT AND REMAINDER OBTAINED BY DIVIDING ONE COMPLEX POLYNOMIAL BY ANOTHER. FI3CPTRAN EFFECTS A COORDINATE TRANSLATION IN THE ARGUMENT OF A COMPLEX POLYNOMIAL. F13CQDIV DIVIDES A COMPLEX POLYNOMIAL BY A QUADRATIC EXPRESSION. F13CREV REVERSES THE ORDER OF COMPLEX POLYNOMIAL COEFFICIENTS IN AN ARRAY. COMPUTES THE COEFFICIENTS OF THE DIFFERENCE OF TWO COMPLEX POLYNOMIALS. F13CS8R FI3CSHRNK COMPUTES THE COEFFICIENTS OF THE COMPLEX POLYNOMIAL P(AX) FROM THE COEFFICIENTS OF P(X), F13DERIV COMPUTES THE COEFFICIENTS OF A POLYNOMIAL WHICH IS THE DERIVATIVE OF ANOTHER REAL POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER. EVALUATES THE INCOMPLETE ELLIPTIC INTEGRAL OF THE THIRD KIND BY USING THE GAUSS TRANSFORMATION; COULD BE USED FOR COMPLETE ELLIPTIC I F13EL3 NTEGRAL OF THE THIRD KIND SOMETIMES. EVALUATES THE INCOMPLETE ELLIPTIC INTEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION. F13E∟F F13ELK EVALUATES THE COMPLETE ELLIPTIC INTEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION. F13ERFINY COMPUTES THE INVERSE OF THE ERROR FUNCTION BY NEWTONS METHOD. COMPUTES THE ERROR FUNCTION BY EXPANSION IN CHEBYSHEV SERIES. F13ERF FISEVREAL EVALUATES A POLYNOMIAL HAVING REAL COEFFICIENTS AT À REAL VALUE OF THE INDEPENDENT VARIABLE BY NESTED MULTIPLICATION. F13FMULTI MULTIPLIES A POLYNOMIAL BY A LINEAR FACTOR. F13GAMMA EVALUATES THE GAMMA FUNCTION OF A REAL ARGUMENT BY USING RATIONAL APPROXIMATION. FI3HANKEL EVALUATES THE COMPLEX VALUED HANKEL FUNCTION FOR REAL ARGUMENT AND INTEGER ORDER BY SUMMATION OF SERIES FOR BESSEL FUNCTIONS. F13INT COMPUTES THE COEFFICIENTS OF A POLYNOMIAL WHICH IS THE INTEGRAL OF ANOTHER REAL POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER. F13LD1V DIVIDES A REAL POLYNCMIAL BY A LINEAR FACTOR, X+B, WHERE B MAY BE COMPLEX. F13LOGGAY COMPUTES THE NATURAL LOGARITHM OF THE GAMMA FUNCTION FOR COMPLEX ARGUMENT BY USING CONTINUED FRACTIONS. F13MPYR FINDS THE PRODUCT OF TWO REAL POLYNOMIALS. F13NBESJ COMPUTES BESSEL FUNCTIONS OF THE FIRST KIND FOR REAL ARGUMENT AND INTEGER ORDERS BY USING BACKWARD RECURSION. F13PARFAC RESOLVES A RATIONAL FUNCTION INTO PARTIAL FRACTIONS GIVEN THE ROOTS OF THE DENOMINATOR POLYNOMIAL AND THE COEFFICIENTS OF THE NUMERAT OR POLYNOM AL. F13PDIV PROVIDES THE QUOTIENT AND REMAINDER OBTAINED BY DIVIDING ONE REAL POLYNOMIAL BY ANOTHER, F13PTRAN EFFECTS A COORDINATE TRANSLATION IN THE ARGUMENT OF A REAL POLYNOMIAL. F13QDIV DIVIDES A REAL POLYNCHIAL BY A QUADRATIC EXPRESSION. F13PBFSY COMPUTES A SEQUENCE OF BESSEL FUNCTIONS OF THE SECOND KIND FOR POSITIVE REAL ARGUMENT AND INTEGER ORDERS. F13REV REVERSES THE ORDER OF REAL POLYNOMIAL COEFFICIENTS IN AN ARRAY. F1358R COMPUTES THE COEFFICIENTS OF THE DIFFERENCE OF TWO REAL POLYNOMIALS. F13SHRINK COMPUTES THE COEFFICIENTS OF THE REAL POLYNOMIAL P(AX) FROM THE COEFFICIENTS OF P(X). EVALUATES THE SINE AND COSINE INTEGRALS USING CHEBYSHEV APPROXIMATIONS. FIJSICE F14BLCKDQ SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A PREDICTOR CORRECTOR METHOD OF EIGHTH ORDER AND PICARDS METHOD OF SUCCESSIVE SUBSTITUTION. SOLVES NONLINEAR BOUNDARY VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS BY COMBINING AN INITIAL VALUE SOLVER WITH A NONLINEAR EQU F14BVD ATION SOLVING PROGRAM. F14DRATEX SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNIQUE BASED ON A MODIFIED MIDPOINT RULE; EFFICIENT FOR HIGH ACCURACY WORK. F14LINBVD SOLVES LINEAR BOUNDARY VALUE PROBLEMS IN A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS, WHERE THE SOLUTION IS BASED ON THE PRINCIPLE OF SUPERPOSITION, USING SUBROUTINE BLCKDO TO PERFORM THE SOLUTION OF THE REQUIRED INITIAL VALUE PROBLEMS. F14NRKUS SOLVES DIFFERENTIAL EQUATIONS AS PROCEDURE RKINIT BUT RUNS FASTER AND REQUIRES MORE STORAGE. F14RKINIT SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TECHNIQUE EFFICIENT FOR LOW ACCURACY WORK PERFORMS A SINGLE CONTINUED FRACT ON INTERPOLATION USING INVERTED DIFFERENCES ON TABULAR DATA WITH ARBITRARY SPACING. F15ACFI FISALTKEN COMPUTES BY ALTKENS METHOD THE POLYNOMIAL INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY BY A POLYNOMIAL OF DE GREE N=1 (N<11). F15CFQME CONSTRUCTS, USING THE EXCHANGE ALGORITHM, THE MINIMAX POLYNOMIAL THROUGH A DISCRETE, WEIGHTED SET OF POINTS. FISCHEBAP CONSTRUCTS THE COEFFICIENTS OF THE CHEBYCHEFF POLYNOMIAL THAT GIVES A CLOSE APPROXIMATION TO A MINIMAX FIT OF A GIVEN FUNCTION OVER A GIVEN NTERVAL. FISCONCUB CONSTRUCTS CUBIC SPLINE THROUGH N POINTS; MONOTONE ABSCISSAS REQUIRED) SECOND ORDER CONTINUITY. F15COSEVE EVALUATES A COSINE POLYNOMIAL AT A GIVEN POINT.

F15DERIV CONSTRUCTS COEFFICIENTS OF A POLYNOMIAL WHICH IS THE DERIVATIVE OF ANOTHER POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER. F15DIFTAB DIFFERENTIATES NUMERICALLY A FUNCTION GIVEN AS A TABLE WITH EQUISPACED ARGUMENTS, AT A TABULAR POINT OR AT THE MIDPOINT OF AN INTERVA

L. P15FCLSQ CONSTRUCTS A LEAST SQUARES PCLYNOMIAL OF A SPECIFIED DEGREE WHOSE GRAPH APPROXIMATES A SET OF DATA POINTS WITH WEIGHT ATTACHED TO EAC

H POINT AND 'S CONSTRAINED TO PASS THROUGH SOME OF THE DATA POINTS.

F15FDLSQ CONSTRUCTS A LEAST SQUARES PCLYNOMIAL APPROXIMATION OF SOME PREASSIGNED DEGREE TO A SET OF DATA POINTS WITH GIVEN WEIGHT WHERE THE PO LYNOMIAL IS CONSTANT AT N POINTS AND THE DERIVATIVE IS ALSO CONSTRAINED AT M OF THE N POINTS.

F15FHRNEW CONSTUCTS COEFFICIENTS OF THE N+M+1 DEGREE HERMITIAN INTERPOLATING POLYNOMIAL THROUGH N+1 POINTS WITH FIRST DERIVATIVES GIVEN AT THE FIRST M+1 POINTS (M NOT GREATER THAN N).

F15FITLIN CONSTRUCTS A BEST FITTING LINE TO A NUMBER OF DATA POINTS, IN THE SENSE THAT THE SUM OF THE SQUARES OF THE PERPENDICULAR DISTANCES FR OM THE POINT TO THE LINE IS A MINIMUM.

F15FLGNEW CONSTRUCTS COEFFICIENTS OF THE N-TH DEGREE LAGRANGIAN INTERPOLATING POLYNOMIAL THROUGH N+1 POINTS.

F15FLSQFY FINDS BY THE METHOD OF LEAST SQUARES A POLYNOMIAL OF SPECIFIED DEGREE WHOSE GRAPH APPROXIMATES A SET OF DATA POINTS WITH WEIGHT ATTAC Hed to each point, using orthogonal polynomials.

F15FOURAP CONSTRUCTS COEFFICIENTS OF THE BEST FOURIER SERIES WITH LINEAR TREND, IN THE LEAST SQUARES SENSE, TO A SET OF EQUISPACED DATA.

F15FOURI CONSTRUCTS COEFFICIENTS OF A FINITE FOURIER SERIES WITH A LINEAR TREND THROUGH A SET OF EQUISPACED POINTS,

F15GMI EVALUATES A M-TUPLE INTEGRAL (M LESS 11) OF AN INTEGRAND BETWEEN ARBITRARY LIMITS; THE INTEGRATION IS PERFORMED BY USING A 5-POINT GA USS LEGENDRE FORMULA TO A NUMBER OF SUBINTERVALS SPECIFIED BY THE USER.

F15HERMIT EVALUATES AN EXPONENTIAL INTEGRAL BY HERMITE GAUSS QUADRATURE FORMULAS,

F15HRMT1 PERFORMS HERMITE INTERPOLATION AT ONE POINT GIVEN THE ABSCISSA AND A TABLE OF CORRESPONDING VALUES OF THE INDEPENDENT AND DEPENDENT V ARIABLES AND ITS FIRST DERIVATIVE.

F15HRMT2 PERFORMS HERMITE INTERPOLATION FOR SEVERAL VALUES OF INDEPENDENT VARIABLE.

F15LAGDIF DIFFERENTIATES NUMERICALLY AN EQUALLY SPACED TABULAR FUNCTION AT ANY POINT USING AN INTERPOLATING POLYNOMIAL OF SPECIFIED ORDER.

FISLAGINT COMPUTES THE LAGRANGIAN POLYNOMIAL INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY BY A POLYNOMIAL OF DEGREE N. 1.

F15LAGRAN EVALUATES THE INTEGRAL OF A REAL FUNCTION OF ONE VARIABLE BASED ON LAGRANGIAN INTERPOLATION.

F15LAGUER EVALUATES AN EXPONENTIAL INTEGRAL BY LAGUERRE GAUSS QUADRATURE FORMULAS,

F15LEGEND EVALUATES THE INTEGRAL OF ONE VARIABLE OVER A FINITE INTERVAL USING LEGENDRE GAUSS QUADRATURE FORMULAS,

F15MIGEN CONSTRUCTS A MINIMAX FUNCTION APPROXIMATION TO A SET OF GIVEN POINTS IN TERMS OF A LINEAR COMBINATION OF A PRESCRIBED SET OF AT MOST Seven functions.

F15MILN2 SMOOTHS A SET OF DATA; EACH SMOOTHED ORDINATE IS OBTAINED AS A WEIGHTED AVERAGE OF A SPECIFIED NUMBER OF OTHER POINTS IN ITS NEIGHBOR HOOD.

F15MINRAT CONSTRUCTS A MINIMAX RATIONAL FUNCTION APPROXIMATION OF GIVEN DEGREE TO A DISCRETE DATA SET.

F15NRICH ENRICHES A SET OF POINTS BY ADDING POINTS ON AN INTERPOLATING CURVE THROUGH THE GIVEN POINTS; POINTS ARE GENERATED ON A CUBIC INTERPOLATING CURVE.

F150RTHFT FITS, IN THE SENSE OF LEAST SQUARES, TO A GIVEN SET OF POINTS THE BEST LINEAR COMBINATION OF A SET OF PRESCRIBED GENERAL FUNCTIONS OF ONE OR MORE VARIABLES.

F15PADE CONSTRUCTS THE COEFFICIENTS OF THE PADE APPROXIMATION TO A FUNCTION OF WHICH THE MACLAURIN EXPANSION IS GIVEN,

F15PARBC EVALUATES THE INTEGRAL BY SIMPSONS RULE OF A BOUNDED FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL OF EQUISPACED VALUES,

F15PRONY CONSTRUCTS AN APPROXIMATION, WHICH IS THE SUM OF A PRESCRIBED NUMBER OF EXPONENTIALS, TO A SET OF N EQUALLY SPACED DATA POINTS.

FISQUAD EVALUATES THE INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL, USING LEGENDRE GAUSS FORMULAS AND UNEQUAL SUBINTERVALS.

F15RATL CONSTRUCTS, IN THE SENSE OF LEAST SQUARES, THE BEST APPROXIMATION TO A SET OF DATA POINTS BY A RATIONAL FUNCTION WITH NUMERATOR AND D ENOMINATOR OF A SPECIFIED DEGREE.

F15RICH ENRICHES A GIVEN CURVE DEFINED BY AN ARRAY OF POINTS SO AS TO SATISFY A SPECIFIED CHORD HEIGHT TOLERANCE USING AN INTERPOLATING FUNCT ION WHICH ATTEMPTS TO MINIMIZE THE RIPPLE IN CURVATURE.

F15ROMBG EVALUATES THE INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL USING ROMBERG INTEGRATION.

F15SIGSMT PERFORMS SMOOTHING OF A FOURIER SERIES BY USE OF LANCZOS SIGMA FACTORS,

F15SIMPRC EVALUATES THE INTEGRAL OF A FUNCTION OVER A FINITE INTERVAL USING SIMPSONS RULE.

F15SINEVL EVALUATES A SINE POLYNOMIAL AT A GIVEN POINT.

F15SINSER CONSTRUCTS COEFFICIENTS OF A SINE POLYNOMIAL WITH A LINEAR TREND GIVEN A SET OF (ABSCISSA, ORDINATE) PAIRS WITH ARBITRARY SPACING.

F15SMOCUB PERFORMS SMOOTHING OF A TWO DIMENSIONAL DATA SET BY MOVING EACH OF THE INPUT DATA POINTS TOWARD A CUBIC THROUGH THE ADJACENT POINTS H AVING SLOPES AT THOSE POINTS DETERMINED BY THE CUBIC SPLINE THROUGH THE WHOLE DATA SET.

F15SMOOTH COMPUTES NP SMOOTHED FUNCTION VALUES GIVEN A SET OF NP ARGUMENT AND NP FUNCTION VALUES; THE SMOOTHING IS OBTAINED BY EVALUATING THE L EAST SQUARES POLYNOMIAL OF DEGREE N BASED ON SUCCESSIVE POINTS.

F15SPLINE CONSTRUCTS A FIFTH DEGREE SPLINE INTERPOLATING A SET OF EQUISPACED DATA,

F15SURFS FITS A SMOOTH SURFACE WITH CONTINUOUS FIRST PARTIAL DERIVATIVES TO A SET OF POINTS DEFINED OVER A RECTANGULAR GRID WITH ARBITRARY SPA CING IN EACH DIRECTION.

- F15TBLU1 LAGARANGIAN INTERPOLATION IN ONE DIMENSIONAL TABLE; ARBITRARY ORDER.
- F15TBLU2 LAGRANGIAN INTERPOLATION IN TWO DIMENSIONAL TABLE; ARBITRARY ORDER.

F15TBLU3 LAGRANGIAN INTERPOLATION IN THREE DIMENSIONAL TABLE; ARBITRARY ORDER,

F15TRGDIF CONSTRUCTS COEFFICIENTS OF THE DERIVATIVE OF A FOURIER SERIES, GIVEN THE COEFFICIENTS OF THE TRIGONOMETRIC POLYNOMIAL.

- F15TRGINT CONSTRUCTS COEFFICIENTS OF THE FOURIER SERIES WITH A LINEAR TREND THAT IS OBTAINED BY INTEGRATION OF A TRIGONOMETRIC POLYNOMIAL.
- FISUNCEPE CONSTRUCTS A NONLINEAR CUBIC SPLINE INTERPOLATING A SET OF POINTS WITH ARBITRARY SPACING.
- F16BALANC BALANCES A COMPLEX MATRIX BY MEANS OF DIAGONAL SIMILARITY TRANSFORMATIONS.
- F16BANEIG COMPUTES THE SMALLEST EIGENVALUES AND ASSOCIATED EIGENVECTORS OF A SYMMETRIC, NONNEGATIVE DEFINITE, NARROW BANDMATRIX USING THE METHO D OF INVERSE WIELANDT ITERATION WITH PERIODIC RAYLEIGH QUOTIENT SHIFTING COMBINED WITH A STABLE, BAND-PRESERVING DEFLATION TECHNIQUE.
- F16BCHSDC DECOMPOSES BY THE CHOLESKY METHOD A REAL, SYMMETRIC POSITIVE DEFINITE BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS.
- F16BDCWNP DECOMPOSES BY GAUSSIAN ELIMINATION WITHOUT PIVOTING A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS; THE DETERMINANT IS ALS O AVAILABLE.
- F16BDECOM DECOMPOSES BY GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS.
- F16BFBAND SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BDCWNP.

F16BFBSUM SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING AND IMPLICIT EQUIL BRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BDECOM.

- F16BITERN SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBE R.
- F16BITREM SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-MAND SIDES USING GAUSSIAN ELIMINATION WITH PARTI-AL PIVOTING AND IMPLICIT EQUILIBRATION AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER.
- F16BITRNP SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER,
- F16BITRED SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION BY CHOLESKYS METHOD HAS BEEN CARRIED OUT.
- F16BITWNP SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PI VOTING AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER.
- F16BLESOM SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT E QUILIBRATION; THE DETERMINANT IS ALSO AVAILABLE.
- F16BLSWNP SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVOTING; THE DETERMINANT IS ALSO AVAILABLE.
- F168PDFSB SOLVES A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION B Y CHOLESKYS METHOD HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BCHSDC.
- F16BPDITM SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHO-LESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION.
- F16BPDSOM SOLVES A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIA NGULAR DECOMPOSITION.
- F16BSUBHT SOLVES A LEAST SQUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT.
- FISCONGE SOLVES A LEAST SQUARES PROBLEM FOR A COMPLEX SYSTEM USING THE METHOD OF CONJUGATE GRADIENT.
- F16CDECOM DECOMPOSES A COMPLEX MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION; ALSO COMPUTES ITS DETERMINANT.
- FIGCEBSUM SOLVES A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION FOLLOWING CROUTS ALGO RITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE CDECOM.
- F16CGITRE SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSE TION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT; THE DETERMINANT AND CONDITION NU MBER ARE AVAILABLE,
- F16CGLESM SOLVES A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILI BRATION.
- FIGCHSDEC DECOMPOSES A SYMMETRIC POSITIVE DEFINITE MATRIX INTO TRIANGULAR FACTORS USING CHOLESKYS METHOD; THE DETERMINANT IS AVAILABLE.
- F16CINPRD COMPUTES THE DOUBLE PRECISION INNER PRODUCT OF TWO VECTORS HAVING COMPLEX ELEMENTS.
- FIGCITERF SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURAC Y AND THE CONDITION NUMBER.
- F16DCBHT TRANSFORMS A MATRIX INTO UPPER TRIANGULAR FORM BY HOUSEHOLDERS METHOD,
- F16DCWNE DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION; THE DETERMINANT + S AVAILABLE.
- F16DCWNP DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITHOUT PIVOTING; THE DETERMINANT IS AVAILABLE.
- FIGDECOM DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION; THE DETERMINANT IS AV AILABLE.
- F16DEIG SOLVES THE EIGENSYSTEM FOR THE SECOND ORDER DIFFERENTIAL EQUATION A*X.

F16DETERM CALCULATES MANTISSA AND EXPONENT (BASE 2) OF THE DETERMINANT OF A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM WIT H PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT BY SUBROUTINE DECOM.

F16DTSHFT CALCULATES A GUESS OF AN EIGENVALUE TO A COMPLEX HESSENBERG MATRIX USING HYMANS METHOD TO EVALUATE THE DETERMINANT.

FIGEIG5 CALCULATES SOME E:GENVALUES OF A REAL MATRIX BY MEANS OF A MODIFICATION OF LAGUERRES METHOD.

F16EIGCHK IMPROVES AN APPROXIMATE EIGENVALUE EIGENVECTOR PAIR OF A REAL SYMMETRIC MATRIX BY CALCULATING THE RAYLEIGH QUOTIENT AND GIVES ERROR B OUNDS.

- F16EIGCO1 CALCULATES THE EIGENVALUE EIGENVECTOR PAIR WHICH IS NEAREST TO AN APPROXIMATION OF AN EIGENVALUE OF A REAL MATRIX HAVING DISTINCT REAL LEIGENVALUES.
- FIGEIGIMP REFINES AN EIGENVECTOR BELONGING TO A SINGLE REAL EIGENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF WIELANDT INVERSE ITERATION.
- F16EIGSYM CALCULATES ALL EIGENVALUES AND SOME EIGENVECTORS OF A REAL SYMMETRIC MATRIX.
- F16EIGVCH CALCULATES AN EIGENVECTOR BELONGING TO A SINGLE REAL EIGENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF INVERSE ITERATION.

F16FBSUBM SOLVES A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PI Voting and row equilibration has been carried out, possibly by subroutine decom.

- F16FBSUBS SOLVES A LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HA S BEEN CARRIED OUT.
- F16FCGM2 SOLVES A RECTANGULAR LINEAR REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD.

F16GITREM SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW Equilibration and provides data for estimating the determinant and condition number of the matrix and the number of correct digits in The first computed solution.

F16GITRES SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NUMBER OF THE MATRIX AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SCLUTION.

F10GLESOM SOLVES A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION,

- FIGGLESOS SOLVES A LINEAR SYSTEM ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION.
- F16HSSN TRANSFORMS A REAL MATRIX TO UPPER HESSENBERG FORM USING WILKINSONS METHOD.
- FIGINVERS INVERTS A MATRIX USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION.
- F16 NVITE INVERTS WITH ITERATIVE REFINEMENT A MATRIX USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION,

FIGITEREM SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTI NG ACCORDING TO CROUTS ALGORITHM HAS BEEN CARRIED OUT AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND CONDITION NUMBER OF THE M ATRIX.

FIGITERES SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING ACCORDING TO CROUTS ALGORITH M HAS BEEN CARRIED OUT AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND CONDITION NUMBER OF THE MATRIX.

F16ITERIN REFINES ITERATIVELY THE INVERSE OF A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT.

- F16ITRLSQ REFINES ITERATIVELY & SOLUTION OF A LEAST SQUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN CARRIED CUT,
- F16 TRPDM SOLVES WITH ITERATIVE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD HAS BEEN CA RRIED OUT AND PROVIDES DATA FOR ESTIMATING THE CONDITION NUMBER AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION,
- F16 TRPDS SOLVES WITH ITERATIVE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED DECOMPOSITION WI TH CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROVIDES DATA FOR ESTIMATING THE CONDITION NUMBER AND THE NUMBER OF CORRECT DIGITS IN TH E FIRST COMPUTED SOLUTION.
- F16ITRSPM SOLVES WITH ITERATIVE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED
- FIGHTRSPS SOLVES WITH ITERATIVE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT.
- FIGLATHTE CALCULATES THE EIGENVALUES (COMPLEX AND REAL) OF A REAL MATRIX USING HOUSEHOLDERS TRANSFORMATION FOLLOWED BY DOUBLE OR ITERATION.
- F16LESWNE SOLVES A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE.

FIGLESWAP SOLVES A LINEAR SYSTEM USING CROUTS ALGORITHM WITHOUT PIVOTING; THE DETERMINANT IS AVAILABLE.

F16LITWNE SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NUMBER.

- F16LITWNP SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITHOUT PIVOTING AND PROVIDES DATA FOR ESTIMATING THE DETERM)
- FIGLSQHTM SOLVES A LINEAR LEAST SQUARES PROBLEM WITH SEVERAL RIGHT-HAND SIDES USING HOUSEHOLDER TRANSFORMATIONS.
- FIGLSQHTS SOLVES A LINEAR LEAST SQUARES PROBLEM USING HOUSEHOLDER TRANSFORMATIONS,

FIGLSQSIT SOLVES WITH ITERATIVE REFINEMENT A LINEAR LEAST SQUARES PROBLEM USING HOUSEHOLDERS METHOD.

F16PDITRM SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING CHOLESKYS DECOMPOSITION AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND ESTIMATING THE CONDITION NUMBER OF THE MATRIX,

F16PDITRS SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM USING CHOLESKY DECOMPOSITION AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND E STIMATING THE CONDITION NUMBER OF THE MATRIX.

F16PDLSOM SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT HAND SIDES USING CHOLESKY DECOMPOSITION.

F16PDLSOS SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM USING CHOLESKY DECOMPOSITION.

F16PDSFBM SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY D

ALUE PROBLEM. FIGREDSY1 REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. FIGREDSY2 REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM. SOLVES A LINEAR SYSTEM FOR A LARGE SPARSE RECTANGULAR MATRIX USING THE CONJUGATE GRADIENT METHOD. F16SCONG F16SEPAR2 CALCULATES A SUBSET OF EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEA DING MINORS. F16SEPAR CALCULATES ALL EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MIN ORS. F10SIMP PERFORMS THE DESIRED BACK SUBSTITUTION ON THE EIGENVECTORS OF A HESSENBERG MATRIX PROVIDED THE TRANSFORMATION TO HESSEBERG FORM HAS B EEN CARRIED OUT WITH WILKENSONS METHOD. F16SPDCOM DECOMPOSES A SYMMETRIC POSITIVE DEFINITE MATRIX INTO LOWER TRIANGULAR, DIAGONAL AND UPPER TRIANGULAR FACTORS WITHOUT CALCULATING A SO UARE ROOT; THE DETERMINANT IS AVAILABLE. F16SPDFBM SOLVES A POSITIVE DEFINITE LINEAR SYSTEM PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUTINE. F16SPDFBS SOLVES A POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SO UARE ROOT ROUTINE. F16SPDSOM SOLVES A POSITIVE DEFINITE LINEAR SYSTEM WITHOUT USING THE SQUARE ROOT ROUTINE. F16SPDSOS SOLVES A POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES WITHOUT USING THE SQUARE ROOT ROUTINE. F16SPITRM SOLVES WITH ITERATIVE REFINEMENT A POSITIVE DEFINITE LINEAR SYSTEM USING SQUARE ROOT FREE DECOMPOSITION. F10SPITRS SOLVES WITH ITERATIVE REFINEMENT A POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES USING SQUARE ROOT FREE DECOMPOSITI ON. F16SUBDIA REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD. F16SUBDIR TRANSFORMS A REAL MATRIX INTO UPPER HESSENBERG FORM ACCORDING TO HOUSEHOLDERS METHOD. F16SYMLR CALCULATES ALL EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING LR ITERATION. F16SYMQR CALCULATES ALL EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING OR ITERATION. F16TCDIAG CALCULATES A NUMBER OF EIGENVALUES AND EIGENVECTORS OF A HERMITIAN MATRIX USING HOUSEHOLDERS TRANSFORMATION TO TRIDIAGONAL FORM FOLLO WED BY EITHER OR ITERATION OR LE ITERATION OR THE STURM SEQUENCE METHOD; EIGENVECTORS ARE FOUND BY MEANS OF INVERSE ITERATION. FIGTRDENP DECOMPOSES A TRIDIAGONAL MATRIX INTO TRIANGULAR FACTORS WITHOUT PIVOTING. FIGTRDCOM DECOMPOSES A TRIDIAGONAL MATRIX INTO LOWER AND UPPER TRIANGULAR FACTORS USING PARTIAL PIVOTING. F10TRDFBM SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITH PARTIAL PIVOTING HAS BEEN CARRIED OUT. F16TRDSOM SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX USING PARTIAL PIVOTING. FIGTRDSUB SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT. FIGTROWNP SOLVES A LINEAR SYSTEM FOR A TRIDIAGCNAL MATRIX WITHOUT PIVOTING. F16TRIDI TRANSFORMS A SYMMETRIC MATRIX INTO TRIDIAGONAL FORM USING HOUSEHOLDERS TRANSFORMATION. F16TRILOM SOLVES A LOWER TRIANGULAR LINEAR SYSTEM. FIGTRILOS SOLVES A LOWER TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES. FIGTRIUPM SOLVES AN UPPER TRIANGULAR LINEAR SYSTEM. F16TRIUPS SOLVES AN UPPER TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES. F16TRLOIN INVERTS & LOWER TRIANGULAR MATRIX. F16TRUPIN INVERTS AN UPPER TRIANGULAR MATRIX. F16VALVEC CALCULATES THE EIGENVALUES AND A NUMBER OF EIGENVECTORS OF A COMPLEX MATRIX USING OR ITERATION ON A SIMILAR HESSENBERG MATRIX FOR THE EIGENVALUES AND INVERSE ITERATION FOR THE EIGENVECTORS. F16VECORD ORDERS A SET OF COMPLEX NUMBERS ACCORDING TO EITHER DECREASING OR INCREASING MAGNITUDE IN A WAY WHICH IS NOT EFFICIENT FOR A LARGE SE T OF NUMBERS.

F16VECTOR CALCULATES AN EIGENVECTOR BELONGING TO A GOOD APPROXIMATION OF AN EIGENVALUE USING INVERSE ITERATION,

F17BETAR COMPUTES THE INCOMPLETE BETA RATIO.

F17BRTLTT PERFORMS BARTLETTS TEST OF THE HOMOGENEITY OF A GROUP OF VARIANCE ESTIMATES.

F17CHIDST PERFORMS CHI SQUARE TEST FOR GOODNESS OF FIT.

F17CHIPRE COMPUTES CHI SQUARE CUMULATIVE DISTRIBUTION FUNCTION.

F17CHIRAB PERFORMS CHI SQUARE TEST FOR SYMMETRY ABOUT ZERO.

F17CHIRUD PERFORMS CHI SQUARE TEST FOR RUNS UP AND DOWN.

F17CHSQ0 COMPUTES CHI SQUARE TEST-STATISTIC FOR GIVEN EXPECTED AND OBSERVED FREQUENCIES.

ECOMPOSITION HAS BEEN CARRIED OUT.

ALUE PROBLEM.

F16RAYLGH CALCULATES THE RAYLEIGH QUOTIENT FOR A REAL SYMMETRIC MATRIX.

F16QR1

F16PDSF8S SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSITION HAS BEEN CARRIED OU

E16RECOVI RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EIGENV

FIGRECOVE RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EIGENV

FIGOREIGN CALCULATES ALL EIGENVALUES AND EIGENVECTORS OF A COMPLEX MATRIX BY MEANS OF OR ITERATION ON A SIMILAR BALANCED HESSENBERG MATRIX.

PERFORMS A SINGLE COMPLEX OR ITERATION ON A MESSENBERG MATRIX HAVING REAL SUBDIAGONAL ELEMENTS.

F17CONRAY PERFORMS ARITHMETIC OPERATIONS ON THE VALUES OF ONE VARIABLE IN A MULTIPLEXED ARRAY AND A GIVEN CONSTANT. F17CORCOV COMPUTES EITHER AUTO CORRELATION COEFFICIENTS OR THE AUTO VARIANCE COEFFICIENTS FOR ONE VARIABLE IN A MULTIPLEXED ARRAY. F17DLETE REMOVES SPECIFIED OBSERVATIONS FROM A DATA ARRAY. F17DSCRP2 COMPUTES MEDIAN, MINIMUM, MAXIMUM, AND RANGE FOR ONE OR ALL VARIABLES IN A MULTIPLEXED ARRAY. F17DSCRPT COMPUTES MEANS, STANDARD DEVIATIONS, VARIANCES, AND COEFFICIENTS OF SKEWNESS AND KURTOSIS FOR MULTIPLEXED ARRAYS. F17EXRAND GENERATES RANDOM NUMBERS HAVING A NEGATIVE EXPONENTIAL DISTRIBUTION. F17FILTER COMPUTES THE OUTPUTS OF A MOVING AVERAGE AUTO REGRESSIVE FILTER. F17GAMAIN COMPUTES THE INCOMPLETE GAMMA FUNCTION. F17HARM COMPUTES THE FAST FOURIER TRANSFORM OF AN ARRAY OF COMPLEX FOURIER AMPLITUDES. F17HSTGRM COMPUTES THE NUMBER OF OBSERVATIONS IN SPECIFIED INTERVALS; USED TO PRODUCE HISTOGRAMS, F17IRAND GENERATES UNIFORM RANDOM INTEGERS BETWEEN TWO GIVEN VALUES. F17NRAND GENERATES RANDOM NUMBERS HAVING A NORMAL DISTRIBUTION AND STORES THE VALUES IN A MULTIPLEXED ARRAY. F17NRML GENERATES RANDOM NUMBERS HAVING A NORMAL DISTRIBUTION. GENERATES RANDOM NUMBERS HAVING A NORMAL DISTRIBUTION, PROVIDING A CONVENIENT WAY OF HANDLING THE TAIL AND STORES THE VALUES IN A MUL F17NRMNO TIPLEXED ARRAY. F170P1RAY PERFORMS TRANSFORMATIONS ON THE OBSERVATIONS OF ONE VARIABLE IN A MULTIPLEXED ARRAY. F170P2RAY PERFORMS ARITHMETIC TRANSFORMATIONS ON THE OBSERVATIONS OF TWO VARIABLES IN MULTIPLEXED ARRAYS. F17PBETA COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE BETA DISTRIBUTION. F17PBINOM COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE BINOMIAL DISTRIBUTION. F17PCHV COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE CAUCHY DISTRIBUTION. F17PFDIST COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE F (VARIANCE RATIO) DISTRIBUTION. F17PGEOM COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE GEOMETRIC DISTRIBUTION. F17PGMMA COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE GAMMA DISTRIBUTION. F17PHYPGE COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE HYPER GEOMETRIC DISTRIBUTION. F17PIBETA COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE BETA DISTRIBUTION. F17PIBIN COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE BINOMIAL DISTRIBUTION. COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE CHI SQUARE DISTRIBUTION. F17PICH F17PICHY COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE CAUCHY DISTRIBUTION. F17PIEXP COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE EXPONENTIAL DISTRIBUTION. F17PIFDIS COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE F (VARIANCE RATIO) DISTRIBUTION. F17PIGAMA COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE GAMMA DISTRIBUTION. F17PIGEO COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE GEOMETRIC DISTRIBUTION. F17PIHYPG COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE HYPER GEOMETRIC DISTRIBUTION. F17PILGNM COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE LOG NORMAL DISTRIBUTION. F17PINBIN COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE NEGATIVE BINOMIAL DISTRIBUTION. F17PINORM COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE NORMAL DISTRIBUTION, F17P POIS COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE POISSON DISTRIBUTION. F17PIRAYL COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE RAYLEIGH DISTRIBUTION. F17PITRNM COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE TRUNCATED NORMAL DISTRIBUTION. F17PIT COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE STUDENTS T DISTRIBUTION. F17PIUNED COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE DISCRETE UNIFORM DISTRIBUTION. COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE UNIFORM DISTRIBUTION. F17PIUNE F17PIWEBL COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE WEIBULL DISTRIBUTION. F17PLGNRM COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE LOG NORMAL DISTRIBUTION. COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE NEGATIVE BINOMIAL DISTRIBUTION. F17PNBIN F17PNORM COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE NORMAL DISTRIBUTION. F17POIS COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE POISSON DISTRIBUTION. F17PORAND GENERATES RANDOM INTEGERS HAVING THE POISSON DISTRIBUTION. COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE RAYLEIGH DISTRIBUTION. F17PRAYL F17PRBEXP COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE EXPONENTIAL DISTRIBUTION. F17PRBUNE COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE UNIFORM DISTRIBUTION. F17PTDIST COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE STUDENTS T DISTRIBUTION. F17PTRNRM COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE TRUNCATED NORMAL DISTRIBUTION. COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE DISCRETE UNIFORM DISTRIBUTION. F17PUNFD COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION OF THE WEIBULL DISTRIBUTION. F17PWE8L GENERATES RANDOM NUMBERS HAVING UNIFORM OR NORMAL DISTRIBUTION. F17RAND F17RUNSAB COMPUTES THE NUMBER OF RUNS (EXPECTED IN SYMMETRIC DISTRIBUTION AND OBSERVED) ABOVE AND BELOW ZERO OF DIFFERENT LENGTHS FOR A SAMPLE.

F17RUNSUD COMPUTES THE NUMBER OF RUNS (EXPECTED AND OBSERVED) UP AND DOWN FOR A SAMPLE. F17sumps Computes the double precision sums of powers of observations.

F17URAND	GENERATES RANDOM NUMBERS HAVING A UNIFORM DISTRIBUTION AND STORES THE VALUES AS ONE VARIABLE IN A MULTIPLEXED ARRAY.

- F17VARORD SORTS THE VALUES OF ONE VARIABLE IN A MULTIPLEXED ARRAY IN INCREASING ORDER.
- F17XIRAND GENERATES UNIFORM RANDOM FLOATING POINT NUMBERS BETWEEN TWO GIVEN VALUES,

F17xyplot Provides a printer plot of the values for up to 5 variables (ordinates) against a single variable (abscissa).

F17yplot Provides a printer plot of the values for up to 5 variables (ordinates) in their stored order (abscissa).

F17ZRNM COMPUTES THE VECTOR OF MEANS AND SUBTRACTS THE MEAN FROM EACH OBSERVATION OF A SET.

F18CNSLVL ESTIMATES THE ROUNDING ERROR IN THE EVALUATION OF A COMPLEX POLYNOMIAL NEAR ONE OF ITS ROOTS THROUGH FORWARD ERROR ANALYSIS.

F18CPOLRT FINDS ALL THE ZEROS OF A COMPLEX POLYNOMIAL BY APPLYING STEEPEST DESCENT WITH ACCELERATION DEVICES AND USING EXPLICIT DEFLATION WHEN ONE ZERO IS ACCEPTED.

F18HELP FINDS ALL THE ZEROS OF A COMPLEX POLYNOMIAL BY LEHMERS METHOD USING SCHURS METHOD FOR ISOLATING ONE ZERO,

F18LINSYS SOLVES A SYSTEM OF LINEAR EQUATIONS OR SEVERAL SYSTEMS WITH THE SAME LEFT HAND SIDE BY GAUSSIAN ELIMINATION USING DOOLITTLES METHOD A ND APPLYING PARTIAL PROVING AND DOUBLE PRECISION ARITHMETIC FOR THE CALCULATION OF INNER PRODUCTS.

F18MULLP FINDS ALL THE ZEROS OR A SINGLE ZERO OF A COMPLEX POLYNOMIAL BY MULLERS METHOD WITH DEFLATION.

F18NEWT SOLVES A SYSTEM OF NONLINEAR EQUATIONS BY COMPUTING IN EACH ITERATION A CORRECTION VECTOR TO THE TRIAL SOLUTION VECTOR WITH THE NEWTO N RAPHSON METHOD MODIFYING THIS CORRECTION VECTOR WHEN IT IS TOO LARGE OR WHEN THE CORRECTION DOES NOT IMPROVE THE RESIDUAL OF THE EQUATIONS.

FISNONLIQ SOLVES A SYSTEM OF NONLINEAR ALGEBRAIC EQUATIONS USING THE GENERALIZED SECANT METHOD MODIFYING THE STEP VECTOR WHEN THE SET OF GUESSE S TEND TO BECOME LINEARLY DEPENDENT OR WHEN THE RESIDUALS DO NOT DECREASE.

F18NRSG SOLVES AN OVER DETERMINED SYSTEM OF NONLINEAR EQUATIONS BY CALCULATING A STEP VECTOR DIRECTION AS A LEAST SQUARES SOLUTION OF THE SYS TEM OF LINEAR EQUATIONS IN THE NEWTON RAPHSON METHOD AND SWITCHING TO THE STEEPEST DESCENT METHOD IF THE FORMER METHOD GIVES DIVERGEN CE: IN THE STEP VECTOR DIRECTION THE OPTIMAL STEP VECTOR IS CALCULATED BY PARABOLIC INTERPOLATION.

F18NSLVL ESTIMATES THE ROUNDING ERROR IN THE EVALUATION OF A POLYNOMIAL WITH REAL COEFFICIENTS NEAR ONE OF ITS COMPLEX ROOTS THROUGH FORWARD E REAL ANALYSIS

F18PROOT FINDS ALL ZEROS OF A POLYNOMIAL WITH REAL COEFFICIENTS WITH NEWTONS METHOD OR BAIRSTOWS METHOD BY PERFORMING SIMULTANEOUSLY ONE ITERA TION OF EACH METHOD AND DEFLATING THE ORIGINAL POLYNOMIAL WHEN A LINEAR OR QUADRATIC FACTOR IS FOUND.

F18GNWT SOLVES A SYSTEM OF NONLINEAR EQUATIONS BY USING THE NEWTON RAPHSON METHOD IN THE FIRST ITERATION AND BY UPDATING THE APPROXIMATION OF The Jacobian in the Next Tterations (quasi Newton Method).

FIBRONWT. SOLVES A SYSTEM OF NONLINEAR EQUATIONS BY CALLING SUBROUTINE ONWT A NUMBER OF TIMES WITH DIFFERENT INITIAL GUESSES.

F18ZAFUJ FINDS A REQUIRED NUMBER OF ZEROS OF A COMPLEX FUNCTION USING A METHOD DESCRIBED BY JARRATT AND NUDDS FOR APPROXIMATION OF ONE ZERO AN D FACTORING OUT PREVIOUSLY FOUND ZEROS.

F18ZAFUM FINDS A REQUIRED NUMBER OF ZEROS OF A COMPLEX FUNCTION WITH MULLERS METHOD AND FACTORING OUT PREVIOUSLY FOUND ZEROS.

F18ZAFUR FINDS A REQUIRED NUMBER OF REAL ZEROS OF A REAL FUNCTION WITH A METHOD DESCRIBED BY JARRATT AND NUDDS FOR APPROXIMATION OF ONE ZERO A NO FACTORING OUT PREVIOUSLY FOUND ZEROS.

F18ZCOUNT CALCULATES THE NUMBER OF ZEROS, DECREASED BY THE NUMBER OF POLES, OF A COMPLEX FUNCTION IN AN AREA IN THE COMPLEX PLANE ENCLOSED BY A POLYGON.