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Directions for use 

The key word in context (KWIC) index is based upon program abstracts 

such as: 

Fl8HELP FINDS ALL THE $ZEROS OF A $COMPLEX $POLYNOMIAL BY $LEHMERS 

$METHOD USING $SCHURS $METHOD FOR ISOLATING ONE ZERO. 

The first nine characters ("Fl8HELP ") of each abstract are a code 

to identify the program, while the remaining characters until a period 

comprise a short description of the program (what it does and how it 

does it), only "important" words (preceded by a$ in the above example) 

are used as key words in the KWIC index. 

The first appearance of our above example abstract in the KWIC 

index is: 

FINDS ALL THE ZEROS OF A COMPLEX POLYNOMIAL BY LEHMERS METHOD USING 

SCHURS METHOD FOR ISOLATING ONE ZERO. FI8HELP 

If this program is of interest, you can further identify it as fol­

lows: the first letter of the code is the prograrmning language (F = Fortran, 

C = Compass). The next two digits are the literature reference number 

(18 = Math Science Library, vol. 8, Nonlinear equation solvers); a complete 

list of literature references is given below. The final six characters of 

the code are the name ("HELP" in the example) of the program. 

In case an entry in the KWIC index is not completely readable 

(i.e. truncated at an end of the line), you can find a complete, alpha­

betical listing of all the abstracts following the KWIC index. In our 

example; you would first look under language "F", then reference "18", 

and lastly the program name "HELP"; the complete abstract would follow. ,, 
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i1ATR1X INTO TR1ANGULAR FACTORS USING CROUT$ ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATIONJ A 
MATRIX INTO TR,ANGULAR FACTORS USING CHOLESKYS METHOD; THE DETERMINANT IS AVAILABLE, 
MATRIX INTO TRIANGULAR FACTORS USING CROUT$ ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIERATIO 
MATR•X INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITHOUT PIVOTINGJ THE DETERMINANT IS AVAILABLE 
MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATIONJ T 
MATR,X INTO TRIANGULAR FACTORS WITHOUT PIVOTING, 
MATRIX INTO TRIDIAGONAL FORM USING HOUSEHOLDERS TRANSFORMATION, 
MATR!X INTO UPPER TRIANGULAR FORM BY HOUSEHOLDERS METHOD, 
MATR'X INTO UPPER HESSENBERG FORM ACCORDING TO HOUSEHOLDERS METHOD, 
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MATR•X 'ATRIX MULTIPLICATION, 
MATR!X PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILI 
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MET,-.0D HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BCHSDC, 
11ETHOD HAS BEEN CARR I ED OUT, 
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MINIMIZE THE R,PPLE IN CURVATURE, 
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FINDS THE L£AST COMMON 
ROUTINE TO DO A MATRIX VECTOR 
NE TO PERFORM A MATRIX MATRIX 

MATRIARCH SUBROUTINE TO 
MATRIARCH SUBROUTINE TO 
MATRIARCH SUBROUTINE TO 
MATR1ARCH SUBROUTINE TO 
MATRIARCH SUBROUTINE TO 
MATRIARCH SUBROUTINE TO 

METRIC, NONNCGATIVE DEFINITE, 
COMPUTES Tt-<F. 
COMPUTES Tr<E 
COMPUTES THE 
COMPUTES THE 

DISTRIBUTION FUNCTION OF THE 
DISTRIBUTION FUNCTION OF Tr<E 

RATES RANDOM NUMBERS HAVING A 
ERSE OF THE ERROR FUNCTION EY 
L WI TH REAL COE FF IC I El·ITS W' TH 
RIAL SOLUTION VECTOR W1 TH Tt,E 
EM OF LINEAR EQUAT'ONS IN THE 
LIN~AR [QUATIONS BY USING Tr<E 

SOLVES A SYSTEM Of 
SoLVES 

CONSTRUCTS A 
SOLVES A SYSTEM OF 

AN OVER DETERMINED SYSTEM OF 
SOLVES A SYSTEM Of 
SOLVES A SYSTEM CF 

EIG~NVf.CTORS Of A SYMMETRIC, 
MATRIARCH SUBROUTINE To 

RATES RA~DOM NUM~ERS HAV1NG A 
RATES RANDOM NUMBERS HAV,NG A 
RATES RANDOM NUMBERS HAVING A 

DISTRIBUTION FUNCTION OF THE 
ION FUNCTION OF THE TRUNCATED 
TRl6UTION FUNCTION OF THE LOG 
TRl8UTION FUNCTION OF THE LOG 

DISTRIBUTION FUNCTIO~ OF Tr<E 
ION FUNCTION OF THE TRUNCATED 
DOM NUMBERS HAVING UNIFORM OR 
0 NORMAL,ZE A VECTOR 1N THE 2 
TINE TO COMPUTE THE EUCL1D1AN 
THOO DESCRIBED BY JARRATT ANO 
THOO DESCRIBED BY JARRATT AND 

ORDERS A SET OF COMPLEX 
UNIFORM RANDOM FLOATING pOINT 

GENERATES RANDCM 
GENERATES RANDOM 
GENERATES RANDCM 
GENERATES RANDOM 
GENERATES RANDOM 

HE AC.:CURACY 
HE ACCURACY 
HE ACCURACY 
HE ACCURACY 
HE ACCURACY 

GENERATES RANDOM 
AND THE COND1T:ON 
ANO THF. CONDIT ON 
AND THE CON01T:ON 
ANO THE COND1T'ON 
ANO THE CONOIT,ON 

MULTIPLE OF TWO INTEGERS BV USING SUBROUTINE HCF, 
MULTIP~ICATION, 
MULTIPLICATION, 
MULT:PLIES A POLYNOMIAL BY A LINEAR FACTOR, 
MULTiPLIES TWO FRACTiONS AND EXPRESSES THE RESULT AS A FRACTION IN ITS LOWEST TERMS, 
MULTIPLY A COMPLEX MATRIX BY A COMPLEX VECTOR, 
MULTIPLY A LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT, 
MULTIP~Y A TRANSPOSED MATRIX BY A VECTOR, 
MULT1PLY A TRANSPOSED COMPLEX MATRIX ~y A COMPLEX VECTOR, 
MULTIPLY A TRA~SPOSED MATRIX BY A MATRIX ON THE RIGHT, 
MULTIPLY A TRANSPOSED LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT, 
NARROW EANOMATRIX USlflG THE METHOD OF INVERSE WIELANDT ITERATION WITH PERIODIC RAYLEIGH QUOTIENT SHI 
NATURAL LOGARITHM OF A REAL ARGUMENT, 
NATIIRAL LOGARITHM OF A DOUBLE PRECISION REAL ARGUMENT, 
NATURAL LOGARITHM OF A COMPLEX ARGUMENT, 
ilATURAL LOGARIT~M OF THE GAMMA FUNCTION ,FOR COMPLEX ARGUMENT BY USING CONTINUED FRACTIONS, 
NEGATIVE BINOMIAL DISTRIBUTION, 
NEGATIVE BINOMIAL DISTRIBUTION, 
NEGATIVE EXPONENTIAL DISTRIBUTION, 
NEWTONS METHOD, 
NEWTONS METHOD OR BA1RSTOWS METHOD BY PERFORMING SIMULTANEOUSLY ONE ITERATION OF EACH METHOD ANO DEF 
NEWTON RAPHSON ~ETHOD MODIFYING THIS CORRECTION VECTOR WHEN IT IS TOO LARGE OR WHEN THE CORRECTION 0 
Nf.WTON RAPHSON ~ETHOD AND SWITCHING TO THE STEEPEST DESCENT METHOD IF THE FORMER METHOD GIVES CIVERG 
NEWTON RAPHSON METHOD IN THE FIRST ITERATION AND BY UPDATING THE APPROXIMATION OF THE JACOBIAN IN TH 
NOflL1NEAR ALGEBRAIC ~QUATIONS USING THE GENERALIZED SECANT METHOD MODIFYING THE STEP VECTOR WHEN THE 
NONLINEAR BOUNDARY VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS BY COM61NING AN INITIAL VALUES 
NONLINEAR CUB1C SPLINE INTERPOLATING A SET OF POINTS WITH ARBITRARY SPACING, 
NONLINEAR EQUATIONS BY COMPUTING IN E4CH ITERATION A CORRECTION VECTOR TO THE TRIAL SOLUTION VECTOR 
NONL,NEAR tQUATIONS BY CALCULATING A STEP VECTOR DIRECTION AS A LEAST SQUARES SOLUTION OF THE SYSTE~ 
NONLINEAR EQUATIONS ~y USING THE NEWTON RAPHSON METHOD IN THE FIRST ITERATION AND BY UPDATING THE AP 
NOtiL!NEAR EQUATIONS BY CALLING SUBROUTINE QNWT A NUMBER OF TIMES WITH DIFFERENT INITIAL GUESSES, 
NON~EGATIVE DfFINITE, NARROW BANDMATRIX USING THE METHOD OF INVERSE WIELANOT ITERATION WITH PERIODIC 
NORMALIZE A VECTOR :N THE 2 NORM, 
NORMAL DISTRIBUTION AND STORES THE VALUES IN A MULTIPLEXED ARRAY, 
NORMAL DISTRIBUTION, 
NORMAL CISTRIBUTION, PROVIDING A CONVENIENT WAY OP HANDLING THE TAIL ANO STORES THE VALUES IN A MULT 
NORMAL DISTR'BUTION, 
NOR~AL DISTR,sUTION, 
NORMAL DISTR 1 BUT10N, 
NORMAL DISTRIBUTION, 
NORMAL OISTRIBUT10N, 
NOR•AL OISTR,BUTION, 
NOR~AL DISTRIBUTION, 
NOR~. 
NORM OF A VECTOR, 
tJUODS FOR APPROXIMATION OF ONE ZERO ANO FACTORING OUT PREVIOUSLY FOUND ZEROS, 
tlUDOS FOR APPROXIMATION OF ONE ZERO AND FACTORING OUT PREVIOUSLY FOUND ZEROS, 
tJUMBCRS ACCORDING TO EITHER DECREASING OR INCREASING MAGNITUDE IN A WAY WHICH IS NOT EFFICIENT FOR A 
NUMBERS BETWEEN TWO GIVEN VALUES, 
NUM~ERS HAVING A NEGATIVE EXPONENTIAL DISTRIBUTION, 
NUMBERS HAVING A NORMAL DISTRIBUTION ANO STORES THE VALUES IN A MULTIPLEXED ARRAY, 
NUMBERS HAVING A NORMAL DISTRIBUTION, 
tJUMBERS HAVING A NORMAL DISTRIBUTION, PROVIDING A CONVENIENT WAY OF HANDLING THE TAIL AND STORES THE 
NUMBERS HAVING UNIFORM OR NORMAL DISTRIBUTION, 
NUMPERS HAVING A UNIFORM DISTRIBUTION ANO STORES THE VALUES AS ONE VARIABLE IN A MULTIPLEXED ARRAY, 
NUMBER, 
tlUMBER, 
NUM8ER, 
NUMBER, 
NUMAER, 
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THE DETERMINANT AND CONDITION 
THE DETERMINANT AND CONDITION 
fOR ESTIMATING THE CONDIT,ON 
~OR ESTIMATING THE CO~D1T10N 

THE DETERMINANT AND COND;T,ON 
COMPUTES THE 

THE DETERMiNANT AND CDND1T•ON 
THE DETERMINANT AND CONDIT,ON 
THE DETERMINANT A~D CO~DIT,CN 
THE DETERMINANT AND CDNDIT,CN 

AND ESTIMAT1NG THE CONDIT:cN 
AND ESTIMAT,NG THE COND1TICN 

CALCULATES Tl-'E 
D,FFERENTIATES 
D,FFERENT1ATES 

E PRECISION SUMS OF POWERS OF 
REMOVLS SPECIF ED 

COMPUTES THE NUMBER OF 
RFORMS TRANSFORMAT,ONS ON THE 
HMETIC TRANSFORMAT,ONS ON THE 

SUBTRACTS THE MEAN FROM EACH 
LAGARANGIAN INTERPOLATION IN 

PERFORMS AR•THMETIC 
THE STEP VECTOR D'REC~ION Tl-'E 
IVE REAL ARGUMENT AND 1NTEGER 

FOR REAL ARGUMENT AND •NTEGER 
COMPLEX ARGUMENT AND COMPLEX 

LTIPLEXEO ARRAY 1~ INCREAS·NG 
FOR REAL AR~UMENT ~ND INTEGER 
NE AdSCISSAS REQU1RED; SECO~D 
HE E1GENSYSTEM FOR THE SECOND 

REVERSES TI-E 
REVERSES THE 

SOLVES h SYSTEM OF FIRST 
SOLVES A SYSTfM OF FIRST 
SOLVES A SYSTEM Of FIRST 

( ORO I "!ATES ) , N THEIR STORED 
OLVES A SYSTEM OF FIRST ORDcR 
OLVES A SYSTEM OF FIRST ORDER 
OLVES A SYSTEM OF F"RST ORDFR 
AR BOUNDARY VALUE PROBLEMS IN 
VALUE PROBLEMS ,,IN " SYSTEM OF 
ALUES FOR UP TO 5 VAR•ABLES ( 
ALLIES FOR UP TO 5 VARIABLES ( 
ATTACHED TO EACH F0'NT, USING 

SOLVES AN 
RUCTS THE COEFFICIENTS OF THE 

STEP VECTOR IS C~LCULATED BY 
LVEs A RATIONAL FU~CT'nN INTO 

BY ~AUSSIAN ELIMINAT'ON W TH 
TRIANGULAR DECOMPOSITION W•TH 
TRIANGULAR DECOMPOSIT:ON W,TH 
ING GAUSSIAN ELIMINAT•ON W TH 
ING GAUSSIAN ELIMINAT:ON W,TH 
S USING CROUTS ALGOR1THM W TH 
LLOWING CROUTS ALGOR1THM W1TH 
DING TO CROUTS ALGORITHM W:TH 
S USING CROUTS ALGOR1THM W,TH 
DING TO CROUTS A~GOR,THM WITH 

tJUMBER, 
IWMEER, 
NUMBER AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION, 
NUMEER AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION, 
NUMBER ARE AVAILABLE. 
IJUMPCR CF OBSERVATIONS IN SPECIFIED INTERVALS; USED TO PRODUCE HISTOGRAMS, 
NUMBER CF THE M•TRIX. 
~UMAER CF THE MATRIX. 
NUM~ER Cf THE MATRIX AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION, 
:JUMAER tf THE MATRIX AND THE NUMBER Of CORRECT DIGITS IN THE F1RST COMPUTED SOLUTION, 
NUMBER CF THE MATRIX, 
~UMBER CF THE MATRIX, 
NUMBER CF ZEROS, DECREASED BY THE NUMBER Of POLES, OF A COMPLEX FUNCTION IN AN AREA IN THE COMPLEX P 
NUM~R'CALLY AN EQUALLY SPACED TABULAR FUNCT 10N AT ANY POINT USING AN INTERPOLATING POLYNOMIAL CF SPE 
NUMER'CALLY A FUNCTION GIVEN AS A TABLE WITH EQUISPACED ARGUMENTS, AT A TABULAR POINT OR AT THE MIDP 
oeSERVATIONS. 
OBSERVATIONS FROM A DATA ARRAY, 
OBSERVATIONS IN SPECIFIED INTERVALS; USED TO PRODUCE HISTOGRAMS, 
OBS~RVATIONS OF ONE VARIABLE IN A MULTIPLEXED ARRAY, 
OBSERVATIONS Of TWO VARIABLES IN MULTIPLEXED ARRAVS, 
oeSERVATIQN OF A SET. 
ONE DIMfNSIONAL TABLE; ARBITRARY ORDER, 
OPERATIONS ON THE VALUES Of ONE VARIABLE IN A MULTIPLEXED ARRAY AND A GIVEN CONSTANT, 
OPTIMAL STEP VECTOR IS CALCULATED BY PARABOLIC INTERPOLATION, 
ORDERS, 
ORDERS A SET OF COMPLEX NUMBERS ACCORDING TO EITHER DECREASING OR INCREASING MAGNITUDE IN A WAY WHIC 
ORDERS ey USING BACKWARD RECURSION, 
ORDER, 
ORDfR, 
ORDER BV SUMMATION OF SERIES FOR BESSEL FUNCTIONS, 
ORDf.R CCNTINU•TY, 
ORDER DIFFERENTIAL EQUATION A*X, 
ORDER OF COMPLEX POLYNOMIAL COEFFICIENTS IN AN ARRAY, 
ORDER OF REAL POLYNOMIAL COEFFICIENTS IN AN ARRAV, 
ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A PREDICTOR CORRECTOR METHOD Of EIGHTH ORDER AND PICAROS 
ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNIQUE BASED ON A MODIFIED M 
ORDr.R ORDINARY DIFFERcNTIAL EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TECHNIQUE EFFICIENT FOR LOW 
ORDr.R ( ABSCiSSA ), 
ORDINARY DIFFERENTIAL EQUATIONS USING A PREDICTOR CORRECTOR METHOD OF EIGHT!-' ORDER AND PICARDS METHO 
ORDINARY DIFFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNIQUE BASED ON A MODIFIED MIDPOIN 
ORDINARY DIFFERENTIAL EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TECHNIQUE EFFICIENT FOR LOW ACCURA 
ORDINARY DIFFERENTIAL EQUATIONS BV COMBINING AN INITIAL VALUE SOLVER WITH A NONLINEAR EQUATION SOLVI 
ORD 1NARV DIFFERENTIAL EQUATIONS, WHERE THE SOLUTION IS BASED ON THE PRINCIPLE OF SUPERPOSITION, USiN 
ORDINATES ) AGAINST A S•NGLE VARIABLE ( ABSCISSA ), 
ORD I NA TES l IN THEIR STORED ORDER C ABSCISSA ) , 
ORThOGONAL POLYNOMIALS, 
OVER DETERMINED SYSTEM Of NONLINEAR EQUATIONS BV CALCULATING A STEP VECTOR DIRECTION AS A LEAS~ SQUA 
PADE APPROXIMATION TO A FUNCTION OF WHICH THE MACLAURIN EXPANSION IS GIVEN, 
PARABOLIC INTERPOLATION, . 
PARTIAL FRACTIONS GIVEN THE ROOTS OF THE DENOMINATOR POLYNOMIAL AND THE COEFFICIENTS Of THE NUMERATO 
PART:AL PIVOTING AND IMPLICIT EQUILIBRATION A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTOR 
PART:AL PIVOTING AND IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY ey SUBROUTINE BDECOM, 
PART,AL p:VOTING AND IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCUR 
PART,AL PIVOTING AND IMPLICIT EQUILIBRATION AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION 
PART 1AL PIVOTING AND IMPLICIT EQUILIBRATION! THE DETERMINANT •S ALSO AVAILABLE, 
PAR,.,AL P1VOT1NG AND ROW EQUIL'BRATIONl ALSO COMPUTES ITS DETERMINANT, 
PART!AL PIVOTING AND ROW EQUIL:BRATION HAS BEEN CARRIED OUT, POSSIBLY BY SURROUTINE CDECOM, 
PART,AL PIVOTING AND ROW EQU\LIBRATIO~ HAS BEEN CARRIED OUT; THE DETERMINANT AND CONDITION NUMSER AR 
PART1AL PIVOTING AND ROW EQUILIBRATION, 
PART:AL PIVOTING AND ROW EQUIL'BRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE A~CURACY A 
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5 USING CROUTS ALGORITHM W1TH 
S USING CROUTS ALGOPITHM WITH 
N USING CROUTS ALGORITHM W1TH 
DING TO CROUTS ALGORITHM WITH 
DING TO CROUTS ALGORITHM W1TH 
TRIANGULAR DECOMPOSITION WITH 
tRIANGULAR DECOMPOSITION W;TH 
DING TO CROUTS ALGOR,THM W1TH 
DING TO CROUTS ALGORITHM W TH 
X ·us1NG CROUTS ALGORITHM w:TH 
X US1NG CROUTS ALGORITHM W,TH 

USING CROUTS ALGORITHM WITH 
M US1NG CROUTS ALGORITHM WITH 
N USING CROUTS ALGOR1THM W•TH 
MUSING CROUTS ALGOR1THM W TH 
MUSING CROUTS ALGOR1THM W TH 
PPER TRIANGULAR FACTORS US:NG 
X PROVIDED DECOMPOSITION WITH 
OR A TRIDIAGONAL MATRIX USING 
OOLITTLES METHOD A~D APPLY•NG 
VERSE WIELANDT ITERATION WITH 
OR M!THOD OF EIGHTH ORDER AND 
ANGULAR FACTORS US,NG PARTIAL 
DIAGONAL MATRIX USING PARTIAL 
AR DiCOMPOSITION W TH PARTIAL 
AR DECOMPOSITION WITH PARTIAL 
S METHOD AND APPLYING PART·AL 
SIAN ELIMINATION W,TH PART 1 AL 
AR DECOMPOSITION W:TH PARTIAL 
AR DECOMPOSITION W,TH PARTIAL 
SIAN ELIMINATION WITH PARTIAL 
SIAN ELIMINATION W TH PARTIAL 
CRDUTS ALGORITHM W,TH PARTIAL 
CROUT$ ALGORITHM WITH PART:A~ 
CROUTS A~GORITHM W:TH PARTIAL 
CROUTS ALGORITHM W·TH PART1AL 
CROUTS ALGORITHM W•TH PART 1AL 
CROUTS ALGORITHM W1TH PART'AL 
CROUT$ ALGORITHM W TH PART•AL 
CROUT$ ALGOR1THM W,TH PARTIAL 
CROUTS ALGORITHM W,TH PARTIAL 
CROUTS ALGORITHM W•TH PARTIAL 
CROUTS ALGORITHM W:TH PARTIAL 
CROUTS ALGORITHM W1TH PARTIAL 
CROUTS ALGORITHM WITH PARTIAL 
CROUTS ALGORITHM WITH PARTIAL 
CROUTS ALGORITHM WITH PARTIAL 
CROUTS ALGORITHM W1TH PARTIAL 
ED DECOMPOSITION W1TH PARTIAL 
CROUTS ALGOR,THM W,TH PART;AL 
CROUTS ALGORITHM W TH PARTIAL 
CROllTS ALGOR: THM W: TH PART, AL 

PROVIOES A PRINTER 
PROVIDES A PRINTER 

REAL POLYNOMIAL AT A COMPLEX 
RATES UNIFORM RANDOM FLOATING 

DISTRIBUTION FUNCTION OF T~E 
DISTRIBUTION FUNC7ION OF T~E 

ES RANDOM INTEGERS HAVING THE 
E COMPLEX PLANE ENCLOSED BY A 

PARTIAL PIVOTING WITHOUT ROW EQUILIBR4TIONJ THE DETERMINANT IS AVAILABLE, 
PART AL PIVOTING AND ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE, 
PART 1AL PIVOTING AND ROW EQUILIBRATION HAS BEEN GARRIED OUT av SUBROUTINE DECOM, 
PARTIAL P 1VOT!NG AND ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY ~UBROUTINE DECOM, 
PARTIAL PIVOTING AND ROW EQUILIBRATIOll HAS BEEN CARRIED OUT, 
PARTIAL PIVOTING ACCORDING TO CROUTS ALGORITHM HAS BEEN CARRIED OUT AND PROVIDES DATA FOR CALCULATIN 
PART1AL PIVOTING ACCORDING TO CROUTS ALGORITHM HAS BEEN CARRIED OUT AND PROVIDES DATA FOR CALCULATIN 
PART'AL PIVOTING AND ROW EQUILIBRATIO~. 
PART.AL PIVOTING AND ROW EQUILIBRATIO~. 
PART.AL PIVOTING AND ROW EQUILIBRATION, 
PARTIAL PIVOTING AND ROW EQUILIBRATION, 
PARTIAL PIVOTING AND ROW EQUILIBRATION ANO PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITIO 
PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITIO 
PART,AL PIVOTING ANO ROW CQUILIBRATION HAS BEEN CARRIED OUT, 
PARTIAL PIVOTING Wl~HOUT ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE, 
PART,AL PIVOTING WITHOUT ROW EQUILIBRATl·ON AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT ANO COND 
PART AL PIVOTING, 
PARTIAL PIVOTING HAS REEN CARRIED OUT, 
PART1A~ PIVOTING, 
PARTIAL PIVOTING AND DOUBLE PRECISION ARITHMETIC fOR THE CALCULATION Of INNER PRODUCTS, 
PER 10DiC RAYLE1GH QUOTl;.NT SHIFTING COMBINED WITH A STABLE, BAND-PRESERVING DEFLATION TECHNIQUE, 
P CARDS METHOD Of SUCCESSIVE SUBSTITUTION, 
P VOTING, 
P VOT 1NG, 
P VOTl;lG ACCORDING TO CROUTS ALGORITHM HAS BEEN CARRIED OUT AND PROVIDES DATA FOR CALCULATING THE DE 
P VOTING ACCORDING TO CROUTS ALr.ORITHM HAS BEEN CARRIEO OUT AND PROVIDES DATA FOR CALCULATING THE DE 
P VOT 1NG AND DOUBLE PRECISION ARITHMETIC FOR THE CALCULATION Of INNER PRODUCTS, 
P VOTING AND IMPLICIT EQUILIBRATION A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS, 
P VOTl~G AND 1MPLIC 1T EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BDECOM, 
P VOT 1NG AND IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE POR THE ACCURACY AND 
P VOTING AND IMPLICIT EQUILIBRATION AMO GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER, 
P VOTING AND IMPLICIT EQUILIBRATION; THE DETERMINANT IS ALSO AVAILABLE, 
P VOTING AND ROW EQUlt.lBRATION; ALSO COMPUTES •TS DETERMINANT, 
P VOT 1N~ AND ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE CDECOM, 
P VOTING AND ROW EQUILlaRATION HAS BEEN CARRIED OUT; THE DETERMINANT AND CONDITION NUMBER ARE AVAILA 
P VOTING AND ROW EQUILIBRATION, 
P VOTl!iG AND ROW EQUIL ISRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE C 
P VOTING AND ROW EQU1LIBRATIONJ THE DETERMINANT IS AVAILABLE, 
PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT BY SUBROUTINE OECOM, 
PIVOTING AND ROW EQUILISRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE DECOM, 
PIVOTING AND ROW EQUILl~RATION HAS BEEN CARRIED OUT, 
PIVOTING AND ROW EQUILIBRATION, 
PIVOTING AND ROW EQUILIBRATION, 
PIVOTING AND ROW EQUILIBRATION, 
PIVOTING AND ROW EQUILIBRATION, 
PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NUMBER 
PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION ~UMBER 
PIVOTING A~D ROW EQUILIBRATION HAS BEEN CARRIED OUT, 
PIVOTING HAS BEEN CARRIED OUT, 
PIVOTING WITHOUT ROW EQUILIBRATION! THE DETERMINANT IS AVAILABLE, 
PIVOTING WITHOUT ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE, 
PIVOTING WITHOUT ROW f.QIJILIBRATION AND PROV 1DES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NU 
PLOT OF THE VALUES FOR UP TO 5 VARIABLES ( ORDINATES l IN THEIR STORED ORDER ( ABSCISSA ), 
PLOT or THE VALUES FOR UP TO 5 VARIABLES ( ORDINATES l AGAINST A SINGLE VARIABLE ( ABSCISSA ), 
Po:NT BY FACTORIZING WITH A QUADRATIC TERM, 
POINT NUMBERS BETWEEN TWO GIVEN VALUES, 
POISSO~ DISTRIBUTION, 
P01SSON DISTRIBUTION, 
po,sSON DISTRIBUTION, 
POLYGON, 
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I A'NGULAR LI NEAR SYSTEM hAV I NG 
IANGULAR LINEAR SYSTEM HAVING 
TH PERIODIC RAYLE,GH QUOTIENT 
RIER SERIES BY USE OF LANCZOS 
X MATRIX BY MEANS Of DIAGONAL 

OVER A FINITE INTERVAL USING 
EVALUATES THE ,NTEGRAL eY 

EVAl.U/\TES Ti-,E 
CONSTRUCTS COEFFICIENTS OF A 

EVALUATES A 
COMPUTES Tt,£ 

COMPUTES THE DOU~LE PREC1S10N 
COMPUTES ;HE COMPLEX 

COMPUTES THE HYPERBOLIC 
PERFORMS A 

ROW OF A MATRIX USING EITHER 
ARIANCES, AND COEFFICIENTS OF 
T AND NP FUNCTION VALUES; THE 

PERFORr,<S 
PERFORMS 

F1TS A 
REFINES ITERATIVELY A 

DIRECTION AS A LEAST SQUARES 

SEVERAL RIGHT.HAND SIDES PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUT! 
SEVERAL RIGHT-HAND SIDES WITHOUT USING THE SQUARE ROOT ROUTINE, 
SF.VERAL RIGHT-hAND SIDES USING SQUARE ROOT FREE DECOMPOSITION, 
SEVERAL RIGHT-HANO SIDES, 
SEVERAL RIGHT-hAND SIDES, 
SHiFT 1NG COMB1NED WITH A STABLE, BAND-PRESERVING DEFLATION TECHNIQUE, 
SIGMA FACTORS. 
SIM'LARITY TRANSFORMATIONS, 
S1MPSONS RULE, 
SIMPSONS RULE OF A BOUNDED FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL OF EQUISPACED VALUES, 
SINE AND COSINE INTEGRALS USING CHEBYSHEV APPROXIMATIONS, 
SINE POLYNOMIAL WITH A LINEAR TREND GIVEN,A SET OF (ABSCISSA, ORDINATE) PAIRS WITH ARBITRARY SPACING 
SINE POLYNOMIAL AT A GIVEN POINT, 
S•NE TRIGONOMETRIC FUNCTION, 
SINE TRIGONOMETRIC FUNCTION, 
SINE TRIGONOMETRIC FUNCTION, 
S 1 NE TRIGONOMETRIC FUNCTION, 
SINGLE COMPLEX QR ITERATION ON A HESSENBERG MATRIX HAVING REAL SUBOIAGONAL ELEMENTS, 
SINGLE CR DOUBLE PRECISION! OTHER SUBROUTINES ARE VIPA, VIPS, VIPD, VIPOA, VIPOS, INRPRO, PRDSUM, 
SKEWNESS AND KURTOSIS FOR MULTIPLEXED ARRAYS, 
SMOOTHING IS OBTAINED BY EVALUATING THE LEAST SQUARES POLYNOMIAL OF DEGREE N BASED ON SUCCESSIVE POI 
Sr-<OOTHiNG OF A FOURIER SERIES BY USE OF LANCZOS SIGMA FACTORS, 
SMOOTHING OF A TWO D1MENSIONAL DATA SET BY MOVING EACH OF THE INPUT OATA POINTS TOWARD A CUSIC THROU 
SMOOTHS A SET OF OATAJ EACH SMOOTHED ORDINATE IS OBTAINED AS A WEIGHTED AVERAGE OF A SPECIFIED NUMB! 
Sf'OOTH SURFACE WITH CONTINUOUS FIRST PARTIAL DERIVATIVES TO A SET OF· POINTS DEFINED OVER A RECTANGUL 
SOLUTION OF A LEAST SQUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN CARRIED 
SOLUTION Of THE SYSTEM OF LINEAR EQUATIONS IN THE NEWTON RAPHSON METHOD AND SWITCHING TO THE STEEPES 
SOLVES AN OVER DETERMINED SYSTEM OF NONLINEAR EQUATIONS BY CALCULATING A STEP VECTOR DIRECTION AS A 
SOLVES AN UPPER TRIANGULAR LINEAR SYSTEM, 
SOLVES AN UPPf,R TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT•HAND SIDES, 
SOLVES A LEAST SQUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN CARRIEC OUT, 
SOLVES A I.EAST SQUARES PROBLEM FOR A COMPLEX SYSTEM USING THE METHOD OF CONJUGATE GRADIENT, 
SOLVCS A LINEAR SYSTEM FOR A BANOMATRIX WITH SEVERAL RIGHT•hAND SIDES PROVIDED THE TRIANGULAR CECOMP 
SOLVES A LINEAR SYSTEM FOR A BANOMATRIX WITH SEVERAL RIGHT•HAND SIDES PROVIDED THE TRIANGULAR OECOMP 
SOLVES A LINEAR SVSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT•HANO SIDES USING GAUSSIAN ELIMINATION WIT 
SOLVES A LINEAR SYSTEM FOR A BANOMATRIX WITH SEVERAL RIGHT•HAND SIDES USING GAUSSIAN ELIMINATION WT 
SOLVES A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX W1TH SEVERAL RIGHT•HANO SIDES PR 
SOLVES A L•NEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANOMATRIX WITH SEVERAL RIGHT•HANO SIDES US 
SOLVES A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT•HANO SIDES PROVIDED THE TRIANGULAR DE 
SOLVES A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES US!NG CROUTS ALGORITHM WIT 
SOLVES A LINEAR SYSTEM WITH SEVERAL RIGHT•HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO 
SOLVES A LINE~R SYSTEM PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL 
SOLVES A LINEAR SYSTEM WITH SEVERAL RIGHT•HANO SIPES ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIV 
SOLVES A LINEAR SYSTEM ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING ANO ROW EQUILIBRATION, 
SOLVES A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION! THE D 
SOLVES A LINEAR SYSTEM USING CROUTS ALGORITHM WITHOUT PIVOTINGJ THE DETERMINANT IS AVAILABLE, 
SOLVES A LINEAR LEAST SQUARES PROBLEM USING HOUStHOLPER TRANSFORMATIONS, 
SOLVES A LINEAR LEAST SQUARES PROBLEM WITH SEVERAL RIGHT~HANO SIPES USING HOUSEHOLDER TRANSFOR~ATION 
SOLVES A LINEAR SYSTEM FOR A LARGE SPARSE RECTANGULAR MATRIX USING THE CONJUGATE GRADIENT METHOD, 
SOLVES A LINEAR SYSTEM FOR A TRIOIA~ONAL MATRIX PROVIDED DECOMPOSITION WITH PARTIAL PIVOTING HAS BEE 
SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL' MATRIX USING PARTIAL PIVOTING, 
SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITHOUT PIVOTING HAS BEEN CAR 
SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX WITHOUT PIVOTING, 
SOLVES A LOWER TRIANGULAR LINEAR SYSTEM, 
SOLVES A LOWER TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT•HAND SIDES, 
SOLVES A POSITIVE DEFINITE LINEAR SYSTEM PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE S 
SOLVES A POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT•HANP SID!S PROVIDED THE MATRIX HAS BEE 
SOLVES A POS1TIVE DEFINITE LINEAR SYSTEM WITHOUT USING THE SQUARE ROOT ROUTINE, 
SOLVES A POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT•HAND SIDES WITHOUT USING THE SQUARE RO 
SOLVES A RECTANGULAR LINEA~ REAL SYSTEM IN THE SENSE OP LEAST SQUARES ACCORDING TO THE CONJUGATE GRA 
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UBROUTINE TO MULTIPLY A LARGE 
0 MULTIPLY A TRANSPOSED LARGE 
SA LINEAR SYSTEM FOR A LARGE 

COMPUTES A SWQUENCE OF 
CONSTRUCTS A F<FTH DEGREE 

CONSTRUCTS A NONL,NEAR CUBIC 
CONSTRUCTS CUB<C 

OINTS DETERMINED BY THE CUB 1 C 
TRUCTS, IN THE SENSE OF LEAST 

r I TS, IN THE SENSE OF LEAST 
SYSTEM IN THE SENSE OF LEAST 
FINDS BY THE METHOD OF LEAST 

CONSTRUCTS A LEAST 
CONSTRUCTS A LEAST 

AINED BY EVALUATING THE LEAST 
SOLVES A LEAST 
SOLVES A LEAST 

ATIVELY A SOLUTION OF A LEAST 
SOLVES A L,NEAR LEAST 
SOLVES A LINEAR LEAST 

SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYST~M USING CHOLESKV DECOMPOSITION, 
SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT•HAND SIDES USING CHOLESKY PE 
SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED TRIANGULAR OECOMP-OSITION USING CHOLESKY 
SOLVES A SYMMFTRIC POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT•HAND S10ES PROVIDED TRIANGUL 
SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A PREDICTOR CORRECTOR MET~oo Of 
SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIPFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNI 
SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TEC 
SOLVES A SYSTEM OF NONL'NEAR EQUATIONS BY COMPUTING IN EACH ITERATION A CORRECTION VECTOR TO T~E TRI 
SOLVES A SYSTEM OF LINEAR EQUATIONS OR SEVERAL SYSTEMS WITH THE SAME LEFT HAND SIDE BY GAUSSIAN ELIM 
SOLVES A SYSTEM OF NONLINEAR ALGEBRAIC EQUATIONS USING THE GENERALIZED SECANT METHOD MODIFYING THE S 
SOLVES A SYSTEM OF NONLINEAR EQUATIONS BY USING THE NEWTON RAPHSON METHOD IN THE FIRST ITERATION AND 
SOLVES A SYSTEM OF NONLINEAR EQUATIONS BY CALLING SUBROUTINE QNWT A NUMBER OF TIMES WITH DIFFERENT I 
SOLVES DIFFERENTIAL EQUATIONS AS PROCEDURE RKINIT BUT RUNS FASTER ANO REQUIRES MORE STORAGE, 
SOLVES LINEAR BOUNDARY VALUE PROBLEMS IN A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS, WHERE THE SOLU 
SOLVES NONLINEAR BOUNDARY VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS BY COMBINING AN INITIAL 
SOLVES THE EIGENSYSTEM FOR THE SECOND ORDER DIFFERENTIAL EQUATION A•X, 
SOLVES WITH ITERATIVE REPINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT•HANO SIDES PROV 
SOLVES WITH ITERATIVE REF NEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT•HAND SIDES PROV 
SOLVES WITH ITERATIVE REF NEMENT A LINEAR SYSTEM roR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES US1N 
SOLVES WITH ITERATIVE REF NEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITHS 
SOLVES WITH ITERATIVE REF NEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT•HAND SIDES USI~ 
SOLVES WITH ITERATIVE REF NEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITHS 
SOLVES WITH <TERATIVE REF NEMENT A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT.HANO SIDES 
SOLVES WITH ITERATIVE REF NEMENT A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HANO SIDES 
SOLVES WITH ITERATIVE REF NEMENT A LINEAR SYSTEM WITH SEVERAL RIGHT•HAND SIDES PROVIDED TRIANGULAR 
SOLVES WITH TERATIVE REF NEMENT A LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVO 
SOLVES WITH TERATIVE REF NEMENT A LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES USING CROUTS ALGORIT 
SOLVES WITH TERATIVE REF NEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING ANO RO 
SOLVES WITH TERATIVE REF NEMENT A SYMMETRIC POStTIVE DEPINITE LINEAR SYSTEM PROVIDED DECOMPOSITION 
SOLVES WITH TERATIVE REF NEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT•HAND 
SOLVES WITH TERATIVE REF NEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED SQUARE ROOT FR 
SOLVES WITH TERATIVE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT.HAND 
SOLVES WITH TERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOU 
SOLVES WITH TERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITHOUT PIVOTING AND PROVICE 
SOLVES WITH TERATIVE REFINEMENT A LINEAR LEAST SQUARES PROBLEM USING HOUSEHOLDERS METHOD, 
SOLVES WITH TERATIVE REFINEMENT A LINEAR SYSTEM USING CHOLESKY DECOMPOSITION AND PROVIDES DATA FOR 
SOLVES WITH TERATIVE REFINEMENT A LINEAR SYSTEM HAVING SEVERAL RIGHT.HANO SIDES USING CHOLESKYS DEC 
SOLVES WITH TERATIVE REFINEMENT A POSITIVE DEFINITE LINEAR SYSTEM USING SQUARE ROOT FREE 0EC0MPOSIT 
SOLVES WITH TERATIVE REFINEMENT A POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES U 
SORTS THE VALUES OF ONE VARIABLE IN A MULTIPLEXED ARRAY IN INCREASING ORDER, 
SPARSE MATRIX BY A VECTOR ON THE RIGHT, 
SPARSE MATRIX BY A VECTOR ON THE RIGHT, 
SPARSE RECTANGULAR MATRIX USING THE CONJUGATE GRADIENT METHOD, 
SPHERICAL BESSEL FUNCTIONS OF THE FIRST KIND FOR REAL ARGUMENT BY FORWARD OR BACKWARD RECURSION WITH 
SPL 1 NE INTERPOLATING A SET OF EQUISPACED DATA, 
SPL NE INTERPOLATING A SET OF POINTS WITH ARBITRARY SPACING, 
SPLINE THROUGH N POINTS; MONOTONE ABSCISSAS REQUIRED; SECOND ORDER CONTINUITY, 
SPLINE THROUGH THE WHOLE DATA SET, 
SQUARES, THE BEST APPROXIMATION TO A SET OF DATA POINTS BY A RATIONAL FUNCTION WITH NUMERATOR AND OE 
SQUARES, TO A GIVEN SET OF POINTS THE BEST LINEAR COMBINATION OF A SET OF PRESCRIBED GENERAL FUNCTIO 
SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD, , 
SQUARES A POLYNOMIAL oF SPECIFIED DEGREE WHOSE GRAPH APPROXIMATES A SET OF DATA POINTS WITH WEIGHT A 
SQUARES POLYNOMIAL APPROXIMATION OF SOME PREASSIGNED DEGREE TO A SET DF DATA POINTS WITH GIVEN WEIGH 
SQUARES POLYNOMIAL OF A SPECIFIED DEGREE WHO~~JiJl:V!".JP-f.ROXIMATES A SET OF DATA POINTS WITH WEIGHT A 
SQUARES POLYNOMIAL OF DEGREE N BASED ON SUCCESS'fv~ P61NTS, 
SQUARES PROBLEM PROV10ED DECOMPOSITION WITH HOUSt~OLOERS METHOD HAS BEEN CARRIED OUT, 
SQUARES PROBLEM FOR A COMPLEX SYSTEM USING THE METHOD OF CONJUGATE GRADIENT, 
SQUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT, 
SQUARES PROBLEM USING HOUSEHOLDER TRANSFORMAT10NS, 
SQUARES PROBLEM WITH SEVERAL RIGHT•HAND SIDES USING HOUSEHOLDER TRANSFORMATIONS, 
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REFINEMENT A 
REFINEMENT A 
REFINEMENT A 
REFINEMENT A 

SOLVES A 
SOLVES A 
SOLVES A 

SQUARES PROBLEM USING HOUSEHOLDERS METHOD, 
SQUARES SENSE, TO A SET OF EQUISPACED DATA, 
SQUARES SOLUTION OF THE SYSTEM OF LINEAR EQUATIONS IN THE NEWTON RAPHSON METHOD ANO SWITCHING TO THE 
SQUARE CUMULATIVE DISTRIBUTION fUNCTION, 
SQUARE DISTRIBUTION, 
SQUARE ROOT; THE DETERMINANT IS AVAILABLE, 
SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT, 
SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT, 
SQUARE ROOT FREE DECOMPOSITION, 
SQUARE ROOT FREE DECOMPOSITION, 
SQUARE ROOT OF A REAL ARGUMENT, 
SQUARE ROOT OF A DOUBLE PRECISION REAL ARGUMENT, 
SQUARE ROOT OF A COMPLEX ARGUMENT, , 
SQUARE ROOT ROUTINE, 
SQUARE ROOT ROUTINE, 
SQUARE ROOT ROUTINE, 
SQUARE ROOT ROUTINE, 
SQUARE TEST-STATISTIC FOR GIVEN EXPECTED AND OBSERVED FREQUENCIES, 
SQUARE TEST FOR GOODNESS OP FIT, 
SQUARE TEST FOR SYMMETRY ABOUT ZERO, 
SQUARE TEST FOR RUNS UP AND DOWN, 
STANDARD DEVIATIONS, VARIANCES, AND COEFPICIENTS OP SKEWNESS AND KURTOSIS FOR MULTIPLEXED ARRAYS, 
STEEPEST DESCENT WITH ACCELERATION DEVICES AND USING EXPLICIT DEFLATION WHEN ONE ZERO IS ACCEPTED, 
STEEPEST DESCCNT METHOD IF THE fORMER METHOD GIVES DIVERGENCE; IN THE STEP VECTOR DIRECTION THE OPTI 
STEP VECTOR IS CALCULATED BY PARABOLIC INTERPOLATION, 
STUDENTS T DISTRIBUTION, 
STUDENTS T DISTRIBUTION, 
STURM SEQUENCE PROPERTY OF THE DETERMINANTS Of THE LEADING MINORS, 
STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MINORS, 
STURM SEQUENCE METHOOJ EIGENVECTORS ARE FOUND BY MEANS OF INVERSE ITERATION, 
SUBOIAGONAL ELEMENTS, 
SUBSET OF EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE PET 
SUBSTITUTION ON THE EIGENVECTORS OF A HESSENBERG MATRIX PROVIDED THE TRANSFORMATION TO HESSEBERG FOR 
SUBTRACTS THE MEAN FROM EACH OBSERVATION OF A SET, 
SUBTRACT A CONSTANT TIMES A VECTOR FROM ANOTHER VECTOR, 
SUBTRACT FROM A VECTOR ITS COMPONENT AL.ONG ANOTHER VECTOR, 
SUMS OF POWERS OF OBSERVATIONS, 
SUM OF TWO COMPLEX POL.VNOMIALS, 
SUM OF TWO REAL POLYNOMIALS, 
SUPERPOSITION, USING SUBROUTINE BL.CKDQ TO PERFORM THE SOLUTION OF THE REQUIRED INITIAL VALUE PROBLEM 
SURFACE WITH CONTINUOUS FIRST PARTIAL. DERIVATIVES TO A SET OF POINTS DEFINED OVER A RECTANGULAR GRID 
SYMMETRIC, NONNEGATIVE DEFINITE, NARROW BANDMATRIX USING THE METHOD OF INVERSE WIELANDT ITERATION WI 
SYMMETRIC DISTRIBUTION AND OBSERVED) ABOVE ANO BELOW ZERO OF DIFFERENT LENGTHS FOR A SAMPLE, 
SYMMETR C MATRIX av CALCULATING THE RAYLEIGH QUOTIENT ANO GIVES ERROR BOUNDS, 
SYMMETR C MATRIX, 
SYMMETR C MATRIX, 
SYMMETR C MATRIX INTO TRIDIAGONAL FORM USING HOUSEHOLDERS TRANSFORMATION, 
SYMMETR C POSITIVE DEFINITE BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS, 
SYMMETR C POS TIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT•HAND SIDES PROVIDED TRIANGULAR OECOMPOSITI 
SYMJ'I\ETR C POS TIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT•HAND SIDES USING CHOLESKYS METHOD FOR THE 
SVMMETR C POS TIVE DEFINITE BANDMATRIX WITH SEVERAL. RIGHT•HAND SIDES PROVIDED TRIANGULAR DECOMPOSITI 
SYMMETR C POS TIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT•HANO SIDES USING CHOLESKYS METHOD FOR THE 
SYMMETR C POS TIVE DEFINITE MATRIX INTO TRIANGULAR FACTORS USING CHOL.ESKVS METHODJ THE DETERMINANT I 
SYMMETR C POS TIVE OEFINIT~ LINEAR SYSTEM PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD HAS eEEN CARR 
SYMMETR C POS TIVE DEFINITE LINEAR SYSTEM WITH SEVERAL. RIGHT-HAND SIDES PROVIDED DECOMPOSITION WITH 
SYMMETR C POS TIVE DEFINITE LINEAR SYSTEM PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEE.N CARRIED 0 
SYMMETR C POS TIVE DEFINITE LINEAR SYSTEM WITH S~VERAL RIGHT•HAND SIDES PROVIDED SQUARE ROOT FREED 
SYMMETR C POS TIVE DEFINITE LINEAR SYSTEM USING CHOLESKV DECOMPOSITION, 
SYMMETR C POS TIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT•HANO SIDES USING CHOL.ESKY DECOMPOSfTI 
SYMMETR C POS TIVE DEFINITE LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSI 
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LATE THE INNER PRODUCT OF TWO 
IPLY A TRANSPOSED MATRIX BY A 
A COMPLEX MATRIX BY A COMPLEX 
D COMPLEX MATRIX BY A COMPLEX 
MPUTE THE EUCL1DIAN NORM OF A 
0 SUBTRACT A CONSTANT TIMES A 
RCH SUBROUTINE To NORMALIZE A 
SUBROUTINE TO SUBTRACT FROM A 
RCH SUBROUTINE TO DO A MATRIX 
LY A LARGE SPARSE MATRIX BY A 
OSED LARGE SPARSE MATRIX BY A 

CHANGES A 
CISIONl OTHER SUBROUTINES ARE 
OUTINES ARE VIPA, VIPS, VIPD, 

ARE VIPA, VIPS, ViPD, VIPDA, 
R SUBROUTINES ARE VIPA, VIPS, 
; OTHER SUBROuTINtS ARE VIPA, 

. DISTRIBUTION FUNCTION OF THE 
DISTRIBUTION FUNCTION OF THE 

HED ORDINATE IS OBTAINED AS A 
HESSENBERG MATRIX BY MEANS OF 
X USING THE METHOD OF INVERSE 
ORM HAS BEEN CARRIED OUT W,TH 
0 UPPER rlESSENBERG FORM USiNG 

CALCULATES THE NUMBER OF 
FINDS ALL THE 
FINDS ALL THE 

TRIGONO~ETRIC FUNCTION, 
TR1GONO~ETRIC FUNCTION OF A QUOTIENT U/V, 
TR'GONO~ETRIC FUNCTION, 
TRIGONO~ETRIC FUNCTION OF A QUOTIENT U/V, 
TR,GONO~ETRIC FUNCTION, 
TR•GONOMETRIC FUNCTION, 
TR!GONO~ETRIC PCLYNOM•AL, 
TRIGONO~ETQIC POLYNOMIAL, 
TRUNCATED NORMAL DISTRIBUTION, 
TRUNCATED NORMAL DISTRIBUTION, 
,WO DIMENSIONAL TABLE; ARBITRARY ORDER, 
.,. D'STRIBUTION, 
T O'STRIBUTION, 
UN1FORM DISTRIBUTION, 
UN,FORM DISTRIBUTION, 
UN'FORM DISTRIBUTION, 
UNIFORM DISTRIBUTION. 
UN FORM DISTRIBUTION AND STORES THE VALUES AS ONE VARIABLE IN A MULTIPLEXED ARRAY, 
UNIFORM OR NORMAL DISTRIBUTION, 
UNIFORM RANDOM INTEGERS BETWEEN TWO GIVEN VALUES, 
UNIFORM RANDOM FLOATING POINT NUMBERS BETWEEN TWO GIVEN VALUES, 
UPDATING THE APPROXIMATION OP THE JACOBIAN IN THE NEXT ITERAT;ONS (QUASI NEWTON METHOD), 
UPPER TRIANGULAR LINEAR SYSTEM, 
UPPf.R TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES, 
UPPER TRIANGULAR MATR1X. 
VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS BY COMBINING AN INITIAL VALUE SOLVER WITH A ~ONLIN 
VALUE PROBLEMS IN A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS, WHERE THE SOLUTION IS BASED ON THE PR 
VARIANCES, AND COEFPICIF.NTS OF SKEWNESS AND KURTOSIS FOR MULTIPLEXED ARRAYS, 
VAR'ANCE COEFFICIENTS FOR ONE VARIABLE IN A MULTIPLEXED ARRAY, 
VAR'ANCE ESTIMATES, 
VAR ANCE RAT•o ) DISTRIBUTION, 
VARIANCE RATIO ) DISTRIBUTION, 
VECTORS HAVING COMPLEX ELEMENTS, 
VF.CTORS WHICH MAY BE A COLUMN OR A ROW OF A MATRIX USING EITHER SINGLE OR DOUBLE PRECISIONJ OTHER SU 
VEC.,.OR, 
VECTOR, 
VECTOR, 
VECTOR, 
VECTOR FROM ANOTHER VECTOR, 
VECTOR IN THE 2 NORM, 
VECTOR ITS COMPCNENT ALONG ANOTHER VECTOR, 
VF.CTOR MULTIPL'CATION, 
VECTOR CN THE RIGHT, 
VECTOR CN THE RIGHT. 
VECTOR WITH FRACTIONAL COMPONENTS INTO ONE WITH INTEGER COMPOtJENTS TIMES A SCALAR FUNCTION, 
V1PA, VIPS, V1PD, VIPDA, VIPDS, INRPRD, PRDSUM, 
VI PDA, VI PDS, I NRPRD, PRDSUM, 
VI PDS I I NRPRD, PRDSUM, 
VIPD, VIPDA, VIPDS, INRPRD, PRDSUM, 
V!PS, VIPD, VIPDA, VIPDS, INRPRD, PRDSUM, 
WEIAULL DISTRIBUTION, 
WEIBULL DISTRIBUTION, 
WEIGHTED AVERAGE OF A SPECIFIED NUMBER OF OTHER POINTS IN ITS NEIGHBORHOOD; 
WIELA~DT INVERSE ITERATION, 
WIELANDT ITERATION WITH PERIODIC RAYLEIGH QUOTIENT SHIFTING COMBINED WITH A STABLt, BAND•PRESERVING 
WILKENSCNS METHOD, 
WILKINSON$ METHOD, 
ZEROS, DECREASED BY THE NUMBER OF POLES, OF A COMPLEX FUNCTION IN AN AREA IN THE COMPLEX PLANE ENCLO 
ZEROS OF A COMPLEX POLYNOMIAL BY APPLYING STEEPEST DESCENT WITH ACCELERATION DEVICES AND USING EXPLI 
ZEROS OF A COMPLEX POLYNOMIAL BY LEHMERS METHOD USING SCHURS METHOD FOR ISOLATING ONE ZERO, 

C12ATAN 
C12ATAN2 
C12DATAN 
C12DATAN2 
C12SINH 
C12TANH 
F15TRGDIF 
F15TRGINT 
F17PITRNM 
F17PTRNRM 
F15TBLU2 
F17PIT 
F17PTDIST 
F17PIUNF 
F17PIUNl'D 
F17PRBUNF 
F17PUNFD 
F17URAND 
F17RAND 
F171RAND 
F17XIRAND 
F1BQNWT 
Fl6TR1UPM 
F16TRIUPS 
F16TRUPIN 
F14BVD 
F14LINBVD 
F17DSCRPT 
F17CORCOV 
F17BRTL TT 
F17PFDIST 
F17PIFDIS 
F1bC I NPRD 
C16VIP 
C16FMTVX 
C16FMVCX 
C16FMTVCX 
C16FP.BSV 
C16FCOMB 
C16FNORM1 
C16FPUR 
C16F,.,,VX 
C16SMVX 
C16SMTVX 
F'11FFRAC 
C16VIP 
C16VIP 
C16VIP 
C16VIP 
C16VIP 
F17PIIIIEBL 
F17PWEBL 
F15MILN2 
F16EIGIMP 
F16BANEIG 
F16S1MP 
F16HSSN 
F1BZCOUNT 
F18CPOLRT 
F18HELP 



FINDS A REQUIRED NUMBER CF 
FINDS A REQUIRED NUMBER CF 

F'NDS ALL 
NOS A REQUIRED NUMBER Of REAL 

FINDS ALL THE 

ZERCS Of A COMPLEX FUNCTION USING A METHOD DESCRIBED BY JARRATT AND NUDDS FOR APPROXIMATION OF ONE Z 
ZEROS OF A COMPLEX FUNCTION WITH MULLERS METHOD AND FACTORING OUT PREVIOUSLY FOUND ZEROS, 
ZEROS OF A POLYNOM,AL WITH REAL COEFFICIENTS WITH NEWTONS METHOD OR BAIRSTOWS METHOD BY PfRfOR~ING S 
ZEROS OF A REAL FUNCTION WITH A METHOD DESCRIBED av JARRATT AND NUDDS FOR APPROXIMATION OF ONE ZERO 
ZFROS OR A SINGLE ZERO Of A COMPLEX POLYNOMIAL BY MULLERS METHOD WITH DEFLATION, 

f18ZAFUJ 
f18ZMUM 
F18PRoOT 
F18ZAFUR 
F18MULLP 



C12ACOS 
C12AL.OG10 
C!2AL.OG 
C12ASIN 
C12ATAN2 
C12ATAN 
C12CBRT 
C12CCOS 
C12CEXP 
c12c1.OG 
C12COS 
C12CSIN 
C12CSQRT 
C12OATAN2 
C12DATAN 
C12DCOS 
C12DEXP 
C12D1.OG10 
C12DL.OG 
C12DSIN 
C12DSQRT 
C12EXP 
C12PS1132 

c12s1NH 
C12SIN 
C12SQRT 
C12TANH 
C12TAN 
C16FABSV 
C16FCOM8 
C16FMMX 
C16FMTMX 
C16FMTR 
C16FMTVCX 
C16FMTVX 
C16FMVCX 
C16F"MVX 
C16F"NORM1 
C16F"PUR 
C16SMTVX 
C16SMVX 
C16VIP 

F11FAFRAC 
F11FFRAC 
F11F"MF'RAC 
F'llHCF 
Fl.LI.CM 
F12CBAREX 
F12COSH 
F13ADR 
F13AMCON 
F'138ESNIS 
F136ESNKS 

F'13BS.J 

F'13CADR 

COMPUTES THE ARCOSINE TRIGONOMETRIC FUNCTION. 
COMPUTES THE BASE TEN LOGARITHM OF A REAL ARGUMENT, 
COMPUTES THE NATURAL LOGARIT~M OF A REAL ARGUMENT, 
COMPUTES THE ARCS1NE TRIGQNO~ETRIC FUNCTION, 
COMPUTES THE ARCTANGENT TRIGCNQMETR-C F"UNCTIQN OF A QUOTIENT U/V, 
COMPUTES THE ARCTANGENT TRIGONOMETRIC FUNCTION, . 
COMPUTES THE CUBE ROCT OF A REAi. ARGUMENT, 
COMPUTES THE COMPLEX COS'NE TRIGONOMETRIC FUNCTION, 
COMPUTES THE EXPrNENT,AL FUNCTION OF A COMPLEX ARGUMENT, 
COMPUTES THE NATURAL LOGARIT~M OF A COMPLEX ARGUMENT, 
COMPUTES THE COSINE TRIGONOMETRIC F'UNCT1ON. 
COMPUTES THE COMPI.EX SINE TRIGONOMETRIC FUNCTION, 
COMPUTES THE SQUARE ROOT o• A COMPLEX ARGUMENT, 
COMPUTES THE DCUeLE PREC 1SION ARCTANGENT TRIGONOMETRIC FUNCTION OF A QUOTIENT U/V, 
COMPUTES THE ooue1.E PRECISION ARCTANGENT TRIGONOMETRIC FUNCTION, 
COMPUTES THE QOU~LE PREC,SION COSINE TRIGONOMETRIC FUNCTION, 
COMPUTES THE EXPONENT AL FUNCTION OF" A DOUBLE PRECISION REAL ARGUMENT, 
COMPUTES THE BASE TE~ LOGARITHM OF A OOUBI.E PRECISION REAL ARGUMENT, 
COMPUTES THE NATURAL 1.OGARITHM OF A DOUBLE PRECISION REAL ARGUMENT, 
COMPUTES THE DOUBLE PRECISION SINE TR1GONOMETRIC FUNCTION, 
COMPUTES THE SQUARE ROOT OF A DOUBLE PRECISION REAL ARGUMENT, 
COMPUTES THE EXPONENTIAL FUNCTION OF A REAL ARGUMENT, 
A SET Or PROGRAMS TO PERFORM GENERAL EXPONENTIATION, A••B, FOR VARIOUS COMBINATIONS OF A AND B, INTEGER, REAL, COMPLEX, AND DOUBLE PR 
ECISION, 
COMPUTES THE HYPERSOL,C SINE TRIGONOMETRIC FUNCTION, 
COMPUTES THE SINE TRIGONOMETRIC FUNCTION, 
COMPUTES THE SQUARE ROOT OF A REAL ARGUMENT, 
COMPUTES THE HYPERBOL.C TANGENT TR1GONOMETRIC FUNCTION, 
COMPUTES THE TANGENT TRIGONOMETRIC FUNCTION, 
MATRIARCH SUBROUT,NE TO COMPUTE THE EUCLIDIAN NORM OF A VECTOR, 
MATRIARCH SUSROUT NE TO SUBTRACT A CONSTANT TIMES A VECTOR FROM ANOTHER VECTOR, 
MATRIARCH SUBROUTINE TO PERFORM A MATRIX MATRIX MULTIPLICATION, 
MATRIARCH SUBROUTINE TO MULTIPLY A TRANSPOSED MATRIX BY A MATRIX ON THE RIGHT, 
MATRIARCH SUBROUTINE TO TRANSPOSE A RECTANGULAR MATRIX, 
MATRIARCH SUBROUTINE TO MULTIPLY A TRANSPOSED COMPLEX MATRIX BV A COMPLEX VECTOR~ 
MATRIARCH SUBROUTINE TO MUI.TIPLV A TRANSPOSED MATRIX BV A VECTOR, 
MATRIARCH SUBROUTINE TO MUL.TIPLY A COMPLEX MATRIX BV A COMPLEX VECTOR, 
MATRIARCH SUBROUTINE TO DO A MATRIX VECTOR MULTIPLICATION, 
MATRIARCH SUBROUTINE TC NORMALIZE A VECTOR IN THE 2 NORM, 
MATRIARCH SUBROUTINE TO SUBTRACT FROM A VECTOR ITS COMPONENT ALONG ANOTHER VECTOR, 
MATRIARCH SUBROUT:NE TO MULTIPLY A TRANSPOSED LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT, 
MATqlARCH SUBROUTINE TO MULTIPLY A LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT, 
ONE OF A SET OF sueROUTINES TO CALCULATE THE INNER PRODUCT OF TWO VECTORS WHICH MAY BE A COLUMN OR A ROW OF A MATRIX USING EITHER SIN 
GLE OR DOUBLE PRECISION; OTHER SUBROUTINES ARE VIPA, VIPS, VIPO, VIPDA, VIPOS, INRPRO, PRDSUM, 
ADDS TWO tRACTIONS AND EXPRESSES THE RESULT AS A FRACTION IN ITS LOWEST TERMS, 
CHANGES A VECTOR WITH FRACTIONAL COMPONENTS INTO ONE WITH INTEGER COMPONENTS TIMES A SCALAR FUNCTION, 
MULTIPLIES TWO FRACTIONS AND EXPRESSES THE RESULT AS A FRACTION IN ITS LOWEST TERMS, 
FINDS TIIE HIGHEST COMMON FACTOR OF TWO INTEGERS BY EUCLIOS ALGORITHM, 
FINDS THE LEAST COMMON MULTIPLE OF TWO INTEGERS BY USING SUBROUTINE HCF, 
EVALUATES GENERAL EXPONENTIATION C••R F'OR COMPLEX BASE ANO REAL EXPONENT, 
COMPUTES THE HYPERBOL'C COSINE TRIGONOMETRIC FUNCTION, 
COMPUTES THE COEFFICIENTS OF THE SUM OF TWO REAL POLYNOMIALS, 
PROVIDES CERTAIN MAC~;NE AND MATHEMATICAL CONSTANTS AS SINGLE PRECISION NUMBERS OF MAXIMUM ACCURACY, 
COMPUT!S A SEQUENCE or MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND FOR REAL ARGUMENT BY USING BACKWARD RECURSION, 
COMPUTES• SEQUENCE CF MOOIFIEO BESSEi. FUNCTIONS OF THE SECOND KIND FOR REAL ARGUMENT BY USING POLYNOMIAL APPROXIMATIONS ANO THE SUBR 
OUTINE BESN:S. 
COMPUTES A SWQUENCE OF SPHERICAL BESSEL FUNCTIONS OF THE FIRST KIND FOR REAL ARGUMENT BY FORWARD OR BACKWARD RECURSION WITH STARTING 
VALUES, 
COMPUTES THE COEFFICIENTS OF THE SUM OF TWO COMP~EX PO~YNOMIALS, 



F13CCOMPE 
F13CDERIV 

F'13CEL3 
F13CINT 
F'13Ci.DIV 
F13CMPYR 
f13COMBES 
F'13COMPEV 
F13CPDIV 
F13CPTRAN 
F13CQDIV 
F13CREV 
F'13CSBR 
F13CSHRNK 
F"lJDER IV 
F'13El.3 

F13ELF 
FlJELK 
F13ERF'INV 
F:!.3ERF 
F'13EVREA1. 
F13FMULT1 
F13GAMMA 
F13HANKE1. 
F131NT 
F13LIJIV 
F1,3LOGGA'1 
F'13MPYR 
F13NBESJ 
Fl3PARFAC 

F1.3PDIV 
F'13PTRAN 
F13QDIV 
P13RBESY 
F13REV 
F13SBR 
F13SHRINK 
F13SICI 
F'14BLCKDQ 

F14BVD 

F14DRATEX 

F'14LINBVD 

F14NRKUS 
F14RKINIT 

F15ACF" I 
F15A I TKE ~l 

F15CFQME 
F15CHEBAP 

F15COMCUB 
F15COSEV1.. 

EVALUATES A POLYNOMIAL HAVING COMPLEX COEFFICIENTS AT A COMPLEX POINT BY SUMMING THE PRODUCT OF THE POWERS TIMES THE COEFFICIENTS, 
COMPUTES THE cOEFFICl~NTS OF A POLYNOMIAL WHICH IS THE DERIVATIVE OF ANOTHER COMPLEX POLYNOMIAL GIVEN THE COEFFICIE~TS OF T~E ~ATTER, 

COMPUTES THE COMPLETE ELLIPTIC INTEGRAL OF THE THIRD KIND BY THE LANDEN TRANSFORMATION, 
COMPUTES THE COEFFICIENTS OF A POLYNOMIAL WHICH IS THE INTEGRAL Of ANOTHER COMPLEX POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER, 
DIVIDES A COMPLEX POLYNOMIAL BY A 1.INEAR FACTOR, X+B, WHERE B MAY BE COMPLEX, 
FINDS THE PRODUCT OF TWO COMPLEX POLYNOMIALS, 
COMPUTES SEQUENCES OF THf BESSEL FUNCTIONS OF THE FIRST OR SECOND KINDS FOR COMPLEX ARGUMENT ANO COMPLEX ORDER, 
EVALUATES A REAL POLY:lOM AL AT A COMPLEX POINT BY FACTORIZING WITH A QUADRATIC TERM, 
PROVIDES TH[ QUOTIENT AND RE~AINDER OBTAINED BY DIVIDING ONE COMPLEX POLYNOMIAL BY ANOTHER, 
EFFECTS A C00R0 1NATE TRANSLATION IN THE ARGUMENT OF A COMPLEX POLYNOMIAL, 
OIV1DES A COMPLEX POLYNOMIAL BY A QUADRATIC EXPRESSION, 
REVERS~S THE oRD!R OF COMPLEX POLYNOMIAL COEFFICIENTS IN AN ARRAY, 
COMPUTES THE COEFFICIENTS OF THE DIFFERENCE OF TWO COMPLEX POLYNOMIALS, 
COMPUTES THE cO~FFICl~NTS OF THE COMPLEX POLYNOMIAL P(AX) FROM THE COEFFICIENTS OF P(X), 
COMPUTES THE COEFFICIENTS OF A POLYNOMIAL WHICH IS THE DERIVATIVE OF ANOTHER REAL POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER, 
EVALUATES THE INCOMPLETE ELLIPT'C INTEGRAL OF THE TH'RD KIND 'BY USING THE GAUSS TRANSFORMATIONJ COULD BE USED FOR COMPLETE ELLIPTIC 
NTEGRAL OF THE THIRD K!ND SO~ETIMES, 
EVALUATES THE INCOMPLETE ELLIPTIC 1~TEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION, 
EVALUATES ~HF. COMPLETE ELLIPTIC INTEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION, 
COMPUTES THE 1NVF.RSE OF THE ERROR FUNCTION BY NEWTONS METHOD, 
COMPUTES THE ERROR FUNcT,oN ey EXPANSION IN CHEBYSHEV SERIES, 
EVALUATES A POLYNOMIAL HAVl~G REAL COEFFICIENTS AT A REAL VALUE OF THE INDEPENDENT VARIABLE BV NESTED MULTIPLICATION, 
MULTIPL1ES A POLYNOMIAL BY A LINEAR FACTOR, 
EVALUATES TrlE GAMMA FUNCTiOIJ OF A REAL ARGUMENT BY USING RATIONAL APPROXIMATION, 
EVALUATES THE COMPLEX VALUED HANKEL FUNCTION FOR REAi. ARGUMENT AND INTEGER ORDER BY SUMMATION OF SERIES FOR BESSEL FUNCTIONS, 
COMPUT"S THE COEFFICIENTS OF A POLYNOMIAL WHICH IS THE INTEGRAL OF ANOTHER REAL POLYNOMIAL GIVEN THE COEFFICIENTS OF THc LATTER, 
DIViDES A REAL POLYNCMIAL BY A LINEAR FACTOR, X+B, WHERE B MAY BE COMPLEX, 
COMPUTES THE NATURAL LOGARITHM OF THE GAMMA FUNCTION FOR COMPLEX ARGUMENT BY USING CONTINUED FRACTIONS, 
FINDS THE PRODUCT OF ,WO REAL POLYNOMIALS. 
COMPUTES BF.SSE!. FUNCT10NS OF THE FIRST KIND FOR REAL ARGUMENT AND INTEGER ORDERS BY USING BACKWARD RECURSION, 
RESOLVES A RATIONAL FUNCTION INTO PARTIAL FRACTIONS GIVEN THE ROOTS OF THE DENOMINATOR POLYNOMIAL AND THE COEFFICIENTS OF THE NUMERAT 
OR POI.YNOM!AL, 
PROVIDES THE QUOTiENT AND RE~AINDER OBTAINED BY DIVIDING ONE REAL POLYNOMIAL BY ANOTHER, 
EFFECTS A COORDINATE TRANSLATION IN THE ARGUMENT OF A REAL POLYNOMIAL, 
DIVIDES A REAL POLYNC111AL BY A QUADRATIC EXPRESSION, 
COMPUTES A ScQUENCE Cf BESSEL FUNCTIONS OF THE SECOND KIND FOR POSITIVE REAL ARGUMENT AND INTEGER ORDERS, 
REVERSES THc ORDER Of REAL PCLYNOMIAL COEFFICIENTS !NAN ARRAY, 
COMPUTES THE cOEFrlCIENTS OF THE DIFFERENCE OF' TWO REAL POLYNOMIALS, 
COMPUTES THE COEF'FICIENTS OF THE REAL POLYNOMIAL P(AX) FROM THE COEFFICIENTS OF P(X), 
EVALUATES THE SINE AND COSINE INTEGRALS USING CHEBYSHEV APPROXIMATIONS, 
SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A PREDICTOR CORRECTOR METHOD OF EIGHTH ORDEH AND PICAROS METHOD 
OF SUCCESS'VE SUBSTITUTION, 
SOLV~S NONL,NEAR ~OUNDARY VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS BY COMBINING AN INITIAL VALUE SOLVER WITH A NONLINEAR EQU 
ATION SOLVl~G PROGRAM, 
SOLVES A'SYSTtM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNIQUE BASED ON A MODIFIED MIOPOINT 
RULE; EFFiCIENT FOR H!GH ACCURACY WORK, 
SOLVES LINEAR BOUNDARY VALUE PROBLEMS IN A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS, WHERE THE SOLUTION IS BASED ON THE PRINCIPLE OF 

SUPERPOSITION, USING SUBROUT1NE BLCKDQ TO PERFORM THE SOLUTION OF THE REQUIRED INITIAL VALUE PROBLEMS, 
SOLVES DIFFERENT 1AL EQUATIONS AS PROCEDURE RKINIT BUT RUNS FASTER AND REQUIRES MORE STORAGE, 
SOLVES A svsTtM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TECHNIQUE EF'FICIE~T FOR LOW ACCURACY 

WORK, 
PtRFORMS A SINGLE CONTINUED FRACT ON INTERPOLATION USING INVERTED DIFFERENCES ON TABULAR DATA WITH ARBITRARY SPACING, 
COMPUTFS BY A1TKENS METHOD THE POLYNOMIAL INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY BY A POLYNO~IA~ OF OE 
GREEN•: (N<11), 
CONSTRUCTS, USING THE EXCHANGE ALGORITHM, THE MINIMAX POLYNOMIAL THROUGH A DISCRETE, WEIGHTED SET OF POINTS, 
CONSTRUCTS THE COEFFICIENTS CF THE CHEBYCHEFF POLYNOMIAL THAT GIVES A CLOSE APPROXIMATION TO A MINIMAX F'IT OF A GIVEN FUNCTION OVER A 

GIVEN 1NTERVAL, 
CONSTRUCTS CUBIC SPLINE THROUGH N POINTS; MONOTONE ABSCISSAS REQUIREDI SECOND ORDER CONTINUITY, 
EVALUATtS A COSINE POLYNOMIAL AT A GIVEN POINT, 



F'l5DERIV 
Fl5DIFTA6 

1"15FCLSQ 

f15FDLSQ 

F15FHRNEII/ 

F15FITLIN 

F15Fl.GNEII/ 
F1!iF'l.SQFY 

F15FOURAP 
F15FOURI 
F15GMI 

F15H~RMIT 
F15HRMT1 

F15HRMT2 
F15l.AGDIF 
F15l.AGINT 

F15LAGRAN 
F'15LAGUER 
F15LEGENp 
F15MIGEN 

F15MILN2 

F15MINRAT 
F15NRIC!-1 

f'150RTHFT 

F15PADE 
F'15PARBC 
F'15PRONY 
f'15QUAD 
F15RATL 

F15R1CH 

F15ROMBG 
F15SIGSMT 
F15SIMPRC 
F15SINEVL. 
F15SINSER 
F15SMOCUB 

F15SMOOTH 

F15SPLINE 
F15SURFS 

F15TBL.U1 
F'15TBLU2 
F15TBLU3 

CONSTRUCTS COEFFICIENTS OF A POL.YNOMIAl. WHICH IS THE DERIVATIVE OF ANOTHER POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER, 
DIFF'ERFNT1ATES NUMERICALLY A fUNCTION GIVEN AS A TABLE 1111TH EQUISPACED ARGUMENTS, AT A TABULAR POINT OR AT THE MIDPCINT Of AN INTERVA 
l., 
CONSTRUCTS A LEAST SQUARES PCLYNOMIAl. OF A SPECIF'IED DEGREE WHOSE GRAPH APPROXIMATES A SET Of' OATA•POINTS WITH WEIGHT ATTACr:ED TO EAC 
H POINT AND IS CONSTRAINED TC PASS THROUGH SOME OF THE DATA POINTS, 
CONSTRUCTS A LEAST SGUARES PCLYNOMtAL APPROXIMATION OF SOME PREASSIGNED DEGREE TO A SET Of CATA POINTS WITH GIVEN WEIGHT WHERE THE PO 
l.YNOM;AL IS CONSTAtrT AT N POINTS AND THE DERIVATIVE IS Al.SO CONSTRAINED ATM OF THEN POINTS, 
CONSTUCTS COEFF,c1ENTS OF THE N+M+1 DEGREE HERMITIAN INTERPOLATING PO~YNOMIAl. THROUGH N+1 POINTS 1111TH FIRST DERIVATIVES G1VEN AT THE 
f 1RST M+1 POINTS (M NOT GREATER THAN N), 
CONSTRUCTS A BEST FITTING LINE TO A NUMBER OF' DATA POINTS, IN THE SENSE THAT THE SUM Of THE SQUARES OF THE PERPENDICULAR DISTANCES FR 
OM THE P01NT TO THE LINE JS A MINIMUM, 
CONSTRUCTS COEFFICIENTS OF THE N-TH DEGREE LAGRANGIAN INTERPOLAT.ING PO~YNOMIAl. THROUGH N+1 POINTS, 
FINDS BY THE METHOD CF LEAST SQUARES A POl.yNOMIAL. OF SPECIFIE,D DEGREE II/HOSE GRAPH APPROXIMATES A SET OF DATA POINTS WITH WEIGHT ATTAC 
HED TO EACH POINT, USING ORTHOGONAL POLYNOMIAL.$, 
CONSTRUCTS COEFFICIENTS OF THE BEST FOURIER SERIES WITH LINEAR TREND, IN THE LEAST SQUARES SENSE, TO A SET OF EQUISPACED DATA, 
CONSTRUCTS COEFFICIENTS OF A FINITE FOURIER SERIES W1TH A L.INEAR TREND THROUGH A SET OF EQUISPACED POINTS, 
EVALUATES A M-TUPl.E 1NTEGRAL. (M LESS 11) OF AN INTEGRAND BETWEEN ARBITRARY LIMITS; THE INTEGRATION IS PERFORMED ey USING A 5-POINT GA 
USS LEGENDRE FORMuLA TO A NUMBER OF SUBINTERVAL.$ SPECIFIED BY THE USER, 
EVALUATES AN EXPONENT,AL INTEGRAL. BY HERMITE GAUSS QUADRATURE fORMUL.AS, 
PERFORMS HERMITF. INTERPOLATION AT ONE POINT GIVEN THE ABSCISSA AND A TABLE Of CORRESPONDING VALUES OF THE INDEPENDENT AND DEPENDENT V 
A~IABLES AND ITS FIRST DERIVATIVE, 
PERFORMS HERMITE ,NTERPOLAT1CN FOR SEVERAL VALUES OF INDEPENDENT VARIABLE, 
DIFFERENTIATES NUMER 1 CAl.l.Y AN EQUALLY SPACED TABULAR FUNCTION AT ANY POINT USING AN INTERPOLATING POLYNOMIAL. OF SPECIFIED ORDER, 
COMPUTES THE LAGRANGIAN POLYNOMIAL INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY BY A POL.yNCMIAL. OF DEGREE N. 
1, 
EVALUATES THE INTEGRAL. OF A REAL. FUNCTION OF ONE VARIABLE BASED ON LAGRANGIAN INTERPOLATION, 
EVALUATES AN EXPONENT:Al. INTEGRAL BY LAGUERRE GAUSS QUADRATURE f0RMUL.AS, 
EVALUATES THE INTEGRAL. OF ONE VARIABLE OVER A FINITE INTERVAL USING LEGENDRE GAUSS QUADRATURE FORMULAS, 
CONSTRUCTS A MINIMAX FUNCTION APPROXIMATION TO A SET OP GIVEN POINTS IN TERMS Of A LINEAR COMBINATION OP A PRESCRIBED SET Of AT MOST 
SEVEN FUNCTIONS, 
SMOOTHS A SET OF DATA; EACH SMOOTHED ORDINATE IS OBTAINED AS A 11/EIGHTEO AVERAGE OF A SPECIFIED NUMBER OF OTHER POINTS IN ITS NEIGHBOR 
HOOD, 
CONSTRUCTS A MINIMAX RATIONAL FUNCTION APPROXIMATION OF GIVEN DEGREE TO A DISCRETE DATA SET, 
ENRICHES A SET OF POINTS BY ADDING POINTS ON AN INTERPOLATING CURVE THROUGH THE GIVEN POINTSl POINTS ARE GENERATED ON A CUBIC INTERPO 
LATING CURVE. 
FITS, IN THE SENSE OF LEAST SQUARES, TO A GIVEN SET OP POINTS THE BEST LINEAR COMBINATION OF A SET OF PRESCRIBED GENERAL FUNCTIONS OF 

ONE OR MORE VARIABLES. 
CONSTRUCTS THE COEFFICIENTS CF THE PADE APPROXIMATION TO A FUNCTION OF WHICH THE MACLAURIN EXPANSION IS GIVEN, 
EVALUATES THE INTEGRAL BY SIMPSONS RULE OF A BOUNDED FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL OP EQUISPACED VALUES, 
CONSTRUCTS AN APPROx1r1ATION, WHICH IS THE SUM OP A PRESCRIBED NUMBER OP EXPONENTIALS, TO A SET OF N EQUALLY SPACED CATA POINTS, 
EVALUATES THE INTEGRAL. OF A FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL, USING LEGENDRE GAUSS FORMULAS ANO UNEQUAL SUBINTERVALS, 
CONSTRUCTS, IN THE SENSE OF LEAST SQUARES, THE BEST APPROXIMATION TO A SET OF DATA POINTS BY A RATIONAL FUNCTION WIT~ NUMERATOR ANDO 
ENOMINATOR OF A SPECIFIED DEGREE. 
~NR:CHES A GIVEN CURVE DEFINED BY AN ARRAY OF POINTS SO AS TO SATISFY A SPECIFIED CHORD HEIGHT TOLeRANCE USING AN INTERPOLATING FUNCT 
ION WHICH ATTEMPTS TO M,NIMIZE THE RIPPLE IN CURVATURE, 
EVALUATES THE INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL USING ROMBERG INTEGRATION, 
PERFORMS SMOOTHING Of A FOURIER SERIES BY USE OF L.ANCZOS SIGMA FACTORS, 
EVALUATES THE INTEGRAL Of A FUNCTION OVER A FINITE INTERVAL USING SIMPSONS RUL.E, 
EVALUATES A SINE POLYNOMIAL. AT A GIVEN POINT, 
CONSTRUCTS COEFFICIENTS OF A SINE POLYNOMIAL 1111TH A LINEAR TREND GIVEN A SET OF (ABSCISSA, ORDINATE) PAIRS WITH ARBITRARY SPACING, 
PERFORMS SMOOTHING OF A TWO OIMENSIONAl. DATA SET BY MOVING EACH OF THE INPUT DATA POINTS TOWARD A CUBIC THROUGH THE ADJACENT POINTS H 
AVING SLOPES AT THOSE POINTS DETERMINED BY THE CUBIC SPLINE THROUGH THE WHOLE DATA SET, 
COMPUTES NP SMOOTHEO FUNCTION VALUES GIVEN A SET OF NP ARGUMENT AND NP FUNCTION VALUESl THE SMOOTHING IS OBTAINED BY EVALUATING THE L 
EAST SQUARES POLYNOMIAL OF DEGREE N BASED ON SUCCESSIVE POINTS, 
CONSTRUCTS A FIFTH DEGREE SPLINE INTERPOLATING A SET OF EQUISPACED DATA, 
FITS A SMOOTH SURFACE WITH CONTINUOUS FIRST PARTIAL. DERIVATIVES TO A SET OF POINTS DEFINED OVER A RECTANGULAR GRID WITH ARBITRARY SPA 
CING IN EACH DIRECTION, 
l.AGARANGIArJ INTERPOLATION IN ONE DIMENSIONAL TABL.El ARBITRARY ORDER, 
LAGRANGIAN INTERPOLAT:ON IN TWO DIMENSIONAL TABLE; ARBITRARY ORDER, 
LAGRANGIAN INTERPOLATION IN THREE DIMENSIONAL. TABL.E; ARBITRARY ORDER, 
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CONSTRUCTS COEFFICIENTS OF THE DERIVATIVE Of A FOURIER SERIES, GIVEN THE COEFFICIENTS OF THE TRIGONOMETRIC POLYNOMIAL., 
CONSTRUCTS COEFFICIENTS Of T~E FOURIER SERIES \1/ITH A LINEAR TREND THAT IS OBTAINED BY INTEGRATION OF A TRIGONOMETRIC POLYNOMIAL, 
CONSTRUCTS A NONLINEAR CUBIC SPLINE INTERPOL.ATING A SET OF POINTS \11\TH ARBITRARY SPACING, 
BALANCES A COMPLEX MATRIX BY MEANS OF DIAGONAL. SIMILARITY TRANSFORMATIONS, 
COMPUTES THE SMALLEST EIGENVALUES AND ASSOCIATED EIGENVECTORS OF A SYMMETRIC, NONNEGATIVE DEFINITE, NARRO\!/ BANDMATRIX USING THE METHO 
D OF IMVERSE WIELANDT ITERATION WITH PERIODIC RAYLEIGH QUOTIENT SHIFTING COMBINED \1/ITH A STABLE, BAND•PRESERVING DEFLATION TECHNIQUE, 

DECOMPOSES BY THE CH0LESKY METHOD A REAL, SYMMETRIC POSITIVE DEFINITE BANDMATRIX INTO UPPER AND L0\1/ER TRIANGULAR FACTORS, 
DECOMPOSES BY GAUSSIAN EL.IMINATION \1/ITHOUT PIVOTING A REAL BANDMATRIX INTO UPPER AND L.0\1/F.R TRIANGULAR FACTORSJ THE DETERMINANT IS ALS 
0 AVAILABLE, 
DECOMPOSES BY GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPL.ICIT EQUILIBRATION A REAL. BANDMATRIX INTO UPPER AND L.0\1/ER TRIANGUL.AR 

FACTORS, 
SOL.YES A L.INEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGUL.AR DECOMPOSITION \1/ITHOUT PIVOTING HAS BEEN 

CARRIED OUT, POSSIBLY BY sueROUTINE BDC\1/NP, 
SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL. RIGHT-HANO SIDES PROVIDED THE TRIANGULAR DECOMPOSITION \1/ITH PARTIAL PIVOTING AND 

iMPL.ICiT f.QUIL,BRAT'ON HAS BEEN CARRIED OUT, POSSIBL.Y BY SUBROUTINE BDECOM, 
SOLVES \1/ITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX \1/iTH SEVERAL. RIGHT•HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION 

WITH PARTIAL. PIVOTING AND IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBE 
R • 
SOL.YES \1/ITH ITERATIVE REFINE~ENT A LINEAR SYSTEM FOR A BANDMATRIX \1/ITH SEVERAL RIGHT•HAND SIDES USING GAUSSIAN ELIMINATION WITH PART! 
AL PIVOTING AND IMPLICIT EQUIL.IBRATiCN ANU GIVES AN ESTIMATE roR THE ACCURACY AND THE CONDITION NUMBER, 
SOLVES \1/ITH ITERATIVE REF1NE~ENT A LINEAR SYSTEM FOR A BANDMATRIX \1/ITH SEVERAL. RIGHT-HAND SIDES PROVIDED THE TRIANGUL.AR DECOMPOSITION 

WITHOUT PIVOTING HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE fOR THE ACCURACY AND THE CONDITION NUMBER, 
SOLVES \1/ITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX \1/ITH SEVERAL RIGHT-HA~D SIDES PROVIDED 
TRIANGULAR DECOMP0S1T;oN BY CHOLESKYS METHOD HAS BEEN CARRIED OUT, 
SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FDR A BANOMATRIX \11\TH SEVERAL. RIGHT.HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT Pi 
VOT1NG AND GIVES AM ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER, 
SOLVES A L 1NEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL. RIGHT-HAND SIDES US 1NG GAUSSl~N ELIMINATION WITH PARTIAL PIVOTING ANO IMPLICIT E 
QU1L.IBRAT10NJ THE DETERMINANT IS ALSO AVA1LABL.E, 
SOL.VES ~ LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVOTING; THE DETERMINANT IS 

ALSO AVAILABLE, 
SOLVES~ L 1 NEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX \1/ITH SEVERAL. RIGHT-HANO SIDES PROVIDED TRIANGULAR DECOMPOSITION B 
Y CHOLESKYS METHOD HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BCHSDC, 
SOL.YES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SiDES USING CHO 
L.ESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION, 
SOL.YES A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT-HAND SIDES USING CHOLESKYS METHOD FOR THE TRIA 
NGULAR DECOMPOSITION, 
SOL.YES AL.EAST SQUARES PROBL.EM PROVIDED DECOMPOSITION WITH HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT, 
SOL.YES A LEAST SQUARES PROBLEM FOR A COMPL.EX SYSTEM USING THE METHOD OF CONJUGATE GRADIENT, 
OECc1MPOSES A COMPLEX MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL. PIVOTING hND R0\11 EQUILIBRATIONJ ALSO COMPUTES 

IT$ DETERMINANT, 
SOL.YES A LINEAR SYSTEM FOR A COMPLEX MATRIX \1/ITH SEVERAL. RIGHT•HAND SIDES PROVIDED THE TRIANGUL.AR DECOMPOSITION FOLLOWING CROUT$ ALGO 
RITHM \1/iTH PARTIAL. PIVOTING AND ROW EQUIL.IBRATION HAS BEEN CARRIED ouT, POSSIBL.Y BY SUBROUT!NE CDECOM, 
SOL.YES \1/ITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A COMPL.EX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSI 
TIO~ ACCORDING TO CROUTS ALGORITHM \1/ITH PARTIAL PIVOTING AND R0\11 EQUILIBRATION HAS BEEN CARRIED OUT; THE DETERMINANT ANP CONDITION NU 
MBER ARE, AVAIL.ABLE, 
SOLVES A L. 1NEAR SYSTEM FOR A COMPL.EX MATRIX WITH SEVERAL RIGHT•HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUIL.\ 
BRATION, 
DECOMPOSES A SYMMETRIC POSITIVE DEFINITE MATRIX INTO TRIANGULAR FACTORS USING CHOL.ESKVS METHOD! THE DETERMINANT IS AVAIL.ABLE, 
COMPUTES THE DOUBLE PRECISION INNER PRODUCT Or TWO VECTORS HAVING COMPLEX ELEMENTS, 
SOL.YES \1/ITH ITERATIVE REFINE~ENT A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED TRIAN~UL.AA DECOMPOSITION 

ACCORDING TO CROUT$ ALGORITHM \1/ITH PARTIAL. PIVOTING AND R0\11 EQUIL.IBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE POR THE ACCURAC 
Y AND THE CONDITION NUMBER, 
TRANSFORMS A MATRIX INTO UPPER TRIANGULAR FORM BY HOUSEHOLDERS METHOD, 
DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUIL.IBRATIONJ THE DETERMINANT 
S AVAILABL.E, 
DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM WITHOUT PIVOTING; THE DETERMINANT IS AVAILABLE, 
DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS AL.GORITHM \1/ITH PARTIAL PIVOTING AND R0\11 EQUILIBRATION; THE DETERMINANT IS AV 
AIL.ABL.F., 
SOL.YES THE E1GENSYSTEM FOR THE SECOND ORDER DlrFERENTIAL EQUATION A•X, 
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CALCULATES MANTISSA AND EXPONENT (BASE 2) OF' THE DETERMINANT OF' A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM WIT 
H PARTIAL PIVOT!NG AND ROW EQUILIBRATION HAS BEEN CARRIED OUT BY SUBROUTINE DECOM, 
CALCULATES A GUESS Of AN EIGENVALUE TO A COMPLEX HESSENBERG MATRIX USING HYMANS METHOD TO EVALUATE. THE DETERMINANT, 
CALCULATES SOME EIGENVALUES CF' A REAL MATRIX BY MEANS OF A MODIFICATION OF LAGUERRES METHOD, 
IMPROVES AN APPROXIMATE EIGENVALUE EIGENVECTOR PAIR OF A REAL SYMMETRI.C MATRIX BY CALCULATING THE RAYLEIGH QUOTIENT AND GIVES ERROR B 
OUN0S, 
CALCULATES THE EIGENVALUE f.lGENVECTOR PAIR WHICH IS NEAREST TO AN APPaox1MATION OF' AN EIGENVALUE OF A REAL MATRIX HAVING DISTINCT REA 
L EIGENVALUES, 
REFINES AN EIGENVECTCR BELONGING To A SINGLE REAL EIGENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF' WIELANDT INVERSE ITERATION, 
CALCULATES AL.L EIGENVALUES AND SOME EIGENVECTORS OF A REAL SYMMETRIC MATRIX, 
CALCULATES AN EIGENVECTOR BELONGING TO A SINGLE REAL EIGENVALUE OF A REAL HESSENBERG MATRIX BY MEANS OF' INVERSE ITERATION, 
SOLVES A LINEAR SYSTEM WITH SEVERAL RIGHT•HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL Pl 
VOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE DECOM, 
SOLVES A LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUT$ ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HA 
S BEEN CARRIED OUT, 
SOLVES A RECTANGULAR LINEAR REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CON~UGATE GRADIENT METHOD, 
SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM WITH SEVERAL RIGHT.HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW 
EQUILIBRAT'ON AND PROVIDf.S DATA F'0R ESTIMATING THE DETERMINANT ANO CONPITION NUMBER OF THE MATRIX AND THE NUMBER OF CORRECT DIGITS IN 

THE FINST COMPUTED SOLUT'ON, 
SOLVES WITH ITERATIVE REFINE~ENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING ANO ROW EQUILIBRATION AND PROVIDES DATA 

FOR ESTIMATING THE DETERMINANT ANO CONDITION NUMBER Of THE MATRIX AND THE NUMBER OF CORRECT DIGITS IN THE FIRST CO~PUTED SOLUTION, 
SOLVES A L'NEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION, 
SOLVES A LINEAR SYSTEM ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION, 
TRANSFORMS A REAL MATRIX TO UPPER HESSENBERG FORM USING WILKINSONS METHOD, 
INVERTS A MATRIX USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION, 
INVERTS WITH ,TERAT1VE Rf.FINEMENT A MATRIX USING CROUTS ALGORITHM W1TH PARTIAL PIVOTING AND ROW EQUILIBRATION, 
SOLVES WITH ITERATIVE REFINE~ENT A LINEAR SYSTEM WITH SEVERAL RIGHT.HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTI 
NG ACCORDING TO CROUT$ ALGORITHM HAS BEEN CARRIED OUT AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND CONDITION NUMBER OF THEM 
ATR,X, 
SOLVES WITH ITERATIVE REF'1NE~ENT A LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING ACCORDING TO CROUTS A~GORITH 
M HAS BEEN CARRIED OUT AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND CONDITION NUMBER OF' THE MATRIX, 
REFINES ITERATIVELY THE INVERSE OF A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USING CROUT$ ALGORITHM WITH PARTIAL PIVOTING ANO ROW EQ 
UILIBRAT!ON HAS eEEN ~ARRIED OUT, 
REFINES ITERATIVELY A SOLUTiCN OF A LEAST SQUARES PROBLEM PROVIDED DECOMPOSITION 11TH HOUSEHOLDERS METHOD HAS BEEN CARRIED CUT, 
SOLVES WITH ITERATIVE REFINE~ENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED DECOMPOSITION WITH CHOLESKYS ~ETHOD HAS BEEN CA 
RRIED OIJT AND PROVIDES DATA F'OR ESTIMATING THE CONDITION NUMBER AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SOLUTION, 
SOLVES WITH ITERATIVE REF'INE~ENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT-HAND SIDES PROVIDED DECOMPOSITION WI 
TH CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROVIDES DATA F'OR ESTIMATING THE CONDITION NUMBER AND THE NUMBER OF CORRECT DIGITS IN TH 
E FIRST COMPUTED SOLUTION. 
SOLVES WITH ITERATIVE REFINE~ENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED 

OUT, 
SOLVES WITH ITERATIVE REFINE~ENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM ~ITH SEVERAL RIGHT•HAND SIDES PROVIDED SQUARE ROOT FREE 

DECOMPOS1TIDN HAS BEEN CARRIED OUT, 
CALCULATES THE EIGENVALUES (COMPLEX AND REAL) OF' A REAL MATRIX USING HOUSEHOLDERS TRANSFORMATION FOLLOWED BY DOUBLE QR llERATION, 
SOLVES A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING Wl'THOUT ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE, 
SOLVES• .LINEAR SYSTEM USING CROUTS ALGORITH~ WITHOUT PIVOTING; THE DETERMINANT IS AVAILABLE, 
SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRAilON AND PROVIDES 
DATA FOR ESTIMATING THE DETERMINANT ANO CONDITION NUMBER, 
SOLVES WITH ITERATIVE REFINE~ENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITHOUT PIVOTING ANO PROVIDES DATA F'0R ESTl~ATING THE DETERMI 
NANT AND CONDITION NUMBER, 
SOLVES A L'NEAR LEAST SQUARES PROBLE~ WITH SEVERAL R 1 GHT•HAND SIDES USING HOUSEHOLDER TRANSFORMATIONS, 
SOLVES A LINEAR LEAST SQUARES PROBLE~ USING HOUSEHOLDER TRANSFORMATIONS, 
SOLVES WITH ITERATIVE REF'INE~ENT A LINEAR LEAST SQUARES PROBLEM USING HOUSEHOLDERS METHOD, 
SOLVES WITH ITERATIVE REF1NE~ENT A LINEAR SYSTEM HAVING SEVERAL RIGHT•HAND SIDES USING CHOLESKYS DECOMPOSITION AND PROVIDES DATA FOR 
CALCULATING THE DETERMINANT AND ESTl~ATING THE CONDITION NUMBER OF THE MATRIX, 
SOLVES WITH ITERATIVE REF,NE~ENT A LINEAR SYSTEM USING CHOLESKY DECOMPOSITION ANO PROVIDES DATA F'OR CALCULATING THE DETERMINANT AND E 
STIMATING THE CONDITION NUMBER OF THE MATRIX. 
SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT•HAND SIDES USING CH0LESKY DECOMPOSITION, 
SOLVES A SYMMETR 1 C PCSITIVE DEFINITE LINEAR SYSTEM USING CHOLESKY DECOMPOSITION, 
SOLVES A SYMMETRIC PDS1T•VE OEFINITE LINEAR SYSTEM HAVING SEVERAL R:GHT•HAN0 SIDES PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY D 
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ECOMPOSITION HAS BEEN CARRIED OUT, 
SOL.VES ~ SYMMETRIC POSITIVE DEFINITE L.INEAR SYSTEM PROVIDED TRIANGUL.AR DECOMPOSITION USING CHOL.ESKY DECOMPOSITION HAS BEEN CARRIED au 
T. 
PERFORMS A SINGL.E CO~PLEX QR ITERATION ON A ~ESSENBERG MATRIX HAVING REAL SUBDIAGONAL ELEMENTS, 
CALCULATES Al.L EIGENVALUES AND EIGENVECTORS OF' A COMPL.EX MATRIX BY MEANS OF QR ITERATION ON A SIMIL.AR BALANCED HESSENBERG MATRIX, 
CAL.CUL.ATES THE RAYLEIGH QUOTIENT FOR A RF.AL SYMMETRIC MATRIX, 
RECOVER EIGENVECTORS ~FTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMIL.ARITY TRANSFORMATION USED FOR SOL.VING THE GENERAL. EIGENV 
ALUE PROBL.EM. 
RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGUL.AR MATRIX IN THE SIMIL.ARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EIGENV 
AL.UE PRORL.EM, 
REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM, 
REDUCE ,HE GENERAL EIGENVAL.UE PROBLEM TO A STANDARD EIGENVAL.UE PROBLEM, 
SOLVES A LINEAR SYSTEM FOR A LARGE SPARSE RECTANGUL.AR MATRIX USING THE CONJUGATE GRADIENT METHOD, 
CALCULATES A SUBSET Of EIGENVAL.UES OF A SYMMETRIC TRIDIAGONAL. MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS CF THE LEA 
DING MINORS. 
CALCUL.A,ES Al.L EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX ·USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF ThE LEADING MIN 
ORS, 
PERFORMS THE OESIREO 8ACK sueSTITUTION ON THF. EIGENVECTORS OF A HESSENBERG MATRIX PROVIDED THE TRANSFORMATION TO hESSEBERG FORM HAS B 
EEN CARRIED OUT WITH WILKENSONS METHOD, 
DECOMPOSES A SYMMETRIC POSITIVE DEF:NITE MATRIX INTO L.OWER TRIANGULAR, DIAGONAL. AND UPPER TRIANGULAR FACTORS WITHOUT CALCULATING A SQ 
UARE ROOT; THE DETERMINANT 1S AVAILABLE. 
SOL.VES A POSITIVE DEFIN!TE LINEAR SYSTEM PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUTINE, 
SOL.VE$ A POSITIVE DEFINITE L.INEAR SYSTEM HAVING SEVERAL RIGHT-HAND s•c~s PROVIDED THE MATRI~ HAS BEEN DECOMPOSED WITHOUT USING THE SQ 
UARE ROOT ROUTINE, 
SOL.VES A POSITIVE DEFIN,TE LINEAR SYSTEM WITHOUT USING THE SQUARE ROOT ROUTINE, 
SOL.VES A POSITIVE OEFINl~E LINEAR SYSTEM HAVING SEVERAL. RIGHT-HAND SIDES WITHOUT USING THE SQUARE ROOT ROUTINE, 
SOL.VES WITH ITERATIVf REFINEMENT A POSITIVE DEFINITE LINEAR SYSTEM USING SQUARE ROOT FREE DECOMPOSITION, 
SOLVES W1TH ITERATIVE REFINEMENT A POSITIVE DEFINITE L.INEAR SYSTEM HAVING SEVERAL RIGHT•HANO SIDES USING SQUARE ROOT FREE DECOMPDSITI 
ON, 
REDUCES A COMPL.EX MATRIX TO ~ESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD, 
TRANSFORMS A REAL MATRIX INTO UPPER hESSENBERG F'ORM ACCORDING TO HOUSEHOLDERS METHOD, 
CALCUL.ATES AL.L EIGENVALUES OF A SYMMETRIC TRIDIAGONAL. MATRIX USING LR ITERATION, 
CAL.CUL.ATES ALL E•GENVALUES OF A SYMMETRIC TRIDIAGONAL. MATRIX USING QR ITERATION, 
CAL.CULA7ES A NUMBER OF EIGENVALUES AND EIGENVECTORS OF A HERMITIAN MATRIX USING HOUSEHOL.DERS TRANSFORMATION TO TRIDIAGONAL. FORM fOLLO 
WED BY EITHER QR ITERAT,ON OR L.R ITERATION OR THE STURM SEQUENCE METHOD; EIGENVECTORS ARE FOUND BY MEANS OF INVERSE ITERAT•ON, 
DECOMPOSES A TRIDIAGONAL. MATRIX INTO TRIANGUL.AR FACTORS WITHOUT PIVOTING, 
DECOMPOSES A TRIDIAGONAL MATRIX INTO LOWER ANO UPPER TRIANGULAR FACTORS USING PARTIAL PIVOTING, 
SOL.VES A L.INEAR SYSTEM FOR A TRIDIAGONAL. MATRIX PROVIDED DECOMPOSITION WITH PARTIAL PIVOTING HAS BEEN CARRIED OUT, 
SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX USING PARTIAL. PIVOTING, 
SOL.VES A L.INEAR SYSTEM FOR A TRIDIAGONAL. MATRIX PROVIDED DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT, 
SOL.VE$ A LINEAR SYSTEM FOR A TRIDIAGONAL. MATRIX WITHOUT PIVOTING, 
TRA~SFORMS A SYMMETRIC MATRIX INTO TRIDIAGONAL. PORM USING HOUSEHOLDERS TRANSFORMATION, 
SOLVES A L.OWER TRIANGULAR L.INEAR SYSTEM. 
SOLVES A LOWER TRIANGULAR L.INEAR SYSTEM HAVING SEVERAL. RIGHT•HAND SIDES, 
SDL.VES AN UPPER TRIANGUL.AR L.INEAR SYSTEM, 
SOLVES AN UPPER TRIANGULAR L.INEAR SYSTEM HAVING SEVERA~ RIGHT-HAND SIDES, 
INVERTS A L.OWER TRIANGUL.AR MATRIX, 
INVERTS AN UPPER TRIANGULAR MATRIX, 
CALCULATES THE EIGENVALUES AND A NUMEER OF EIGENVECTORS Of A COMPL.EX MATRIX USING QR ITERATtON ON A SIMIL.AR HESSENBERG MATRIX FOR THE" 

EIGENVAL.UES AND INVERSE ITERATION FOR THE EIGENVECTORS, 
ORDERS A SET OF COMPL.EX NUMBERS ACCORDING TO EITHER DECREASING OR INCREASING MAGNITUDE IN A WAV WHICH IS NOT EFFICl<ENT FOR A LARGE SE 
Tor NUMBERS, 
CAL.CUL.ATES AN EIGENVECTOR BEL.ONGING To A GOOD APPROXIMATION OP AN EIGENVALUE USING INVERSE ITERATION, 
COMPUTES THE INCOMPLETE BETA RATIO, 
PERFORMS BART~ETTS TEST OF T~E HOMOGENEITY OF' A GROUP OF VARIANCE ESTIMATES, 
PERFORMS CH; SQUARE TEST FOR GOODNESS OF FIT, 
COMPUTES CHI SQUARE CUMUL.ATIVE DISTRIBUTION FUNCTION, 
PERFORMS CHI SQUARE TEST FOR SYMMETRY ABOUT ZERO, 
PERFORMS CHI SQUARE TEST FOR RUNS UP ANO DOWN, 
COMPUTES CHI SQUARE TEST-STATISTIC F'OR GIVEN EXPECTED ANO OBSERVED FREQUENCIES, 



F17CONRAY 
F'17CORCOV 
F'17DL.ETE 
~17DSCRP2 
F'17DSCRPT 
F':!.7EXRAND 
F17FII.TER 
F17GAMAIN 
F'17HARM 
F'17HSTGR,'1 
F'171RAND 
F'17NRAND 
F17NRMI. 
F17NRMNO 

F170P1RAY 
F'170P2RAY 
F'17PBETA 
F'17PBI NOii 
F'17PCHY 
F'l7PF'DIST 
F'17PGEOM 
F'17PGMMA 
F17PHYPGE 
F17PIBETA 
F17PIBIN 
F'17PICH 1 
F17PICHV· 
F17P1EXP 
F17P1FDIS 
F'17PIGAM;; 
F17PIGEO 
F'17PIHYPG 
F'17PILGN'1 
F'17PINB11l 
F'17P I NOR\1 
F'17P,P01S 
F'17PIRAV'­
F'17PITRN'1 
F'17P IT 
F'17PIUNFO 
F'17PIUNF 
F17PI\IIEBI. 
F'17Pi.GNR'1 
F'17PNBIN 
F'17PNORM 
F17POIS 
F'17PORANO 
F'17PRAYL 
F'17PRBEXP 
F'17PRBUNF 
F17PTDIST 
F'17PTRNRM 
F'17PUNF'D 
F'17PWEBI. 
F'17RAND 
F'17RUNSAB 

F'17RUNSUO 
F'17SUMPS 

PERF'ORMS ARITHMETIC OPERATIONS ON THE VAI.UES OF' ONE VARIABL.E IN A MUI.TIPi.EXED ARRAY AND A GIVEN CONSTANT, 
COMPUTcS EITHER AUTO CORRELATION COEFFICIENTS OR THE AUTO VARIANCE COEFF'ICIENTS F'OR ONE VARIABI.E IN A MUI.TIPLEXED ARRAY, 
REMOVES SPECIFIED OBSERVATIONS FROM A DATA ARRAY, 
COMPUTES MEDIAN, MINIMUM, MAXIMUM, AND RANGE F'OR ONE OR AL.L VARIABI.ES IN A MUt.TIPt.EXEO ARRAY, 
COMPUTES MEANS, STANDARD DEVIATIONS, VARl~NCES, AND COEFFICIENTS OF SKEWNESS AND KURTOSIS FOR MUI.TIPI.EXEO ARRAYS, 
GENERATES RANDOM NUMBERS HAVING A NEGATIVE EXPONENTIAi. DISTRIBUTION. 
COMPUTES THF. OUTPUTS OF A MOVING AVERAGE AUTO REGRESSIVE FILTER, 
COMPUTES TH~ 1NCOMPLETE GAMMA F'UNCTICN, 
COMPUTES THE FAST FOURIER TRANSFORM OF AN ARRAY OF' COMPI.EX FOURIER AMPL.ITUOES, 
COMPUTES THE NUMBER CF OBSERVATIONS IN SPECIF'IF.0 INTERVAI.S; USED TO PRODUCE HISTOGRAMS, 
GENERATES UNIFORM RANDOM INTEGERS AETWEEN TWO GIVEN VALUES. 
GENERATES RANDOM NUMBERS HAVING A NORMAL DISTRIBUTION AND STORES THE VAi.LIES IN A MULTIPLEXED ARRAY, 
GENERATES RANDOM NUMBERS HAVING A NORMAi. DISTRIBUTION. 
GENERATES RANDOM NUMBERS HAVING A NORMAL DISTRIBUTION, PROVIDING A CONVENIENT WAY OF HANDLING THE TAIL AND STORES T~E VAI.UES IN A MUL 
TIPLEXED ARRAY, 
PERFORMS TRANSFORMATIONS ON THE OBSERVATIONS OF ONE VARIABLE IN A MUI.TIP~EXED ARRAY. 
PERFORMS ARITHMETIC TRANSFOR~ATIONS ON THE OBSERVATIONS OF TWO VARIABLES IN MULTIPI.EXED ARRAYS, 
COMPVTES THE CUMULATIVE DISTRIBUTION FUNCTION OP THE BETA DISTRIBUTION, 
COMPUTES THE CUMULATIVE DISTRIBUTION FUNCTION or THE BINOMIAL. DISTRIBUTION, 
COMPUTES THE CUMUL.ATIVE DISTRIBUTIO~ FUNCTION OF THE CAUCHY DISTRIBUTION. 
COMPUTES THE cUMUL.ATIVE D'STRIBUTIO~ FUNCTION OF THE F ( VARIANCE RATIO ) DISTRIBUTION, 
COMPUTES THE CUMUL.ATIVF. D'STRIBUTION FUNCTION OF' THE GEOMETRIC DISTRIBUTION, 
COMPUTES THE CUMUI.ATIVE DISTRIBUTION FUNCTION OF' THE GAMMA DISTRIBUTION, 
COMPUTES THE CUMUL.AT 1VE D,STRIBUTION FUNCTION OF THE HYPER GEOMETRIC DISTRIBUTION, 
COMPUTES THE INVERSE CUMUL.ATIVE OISTR BUTION F'UNCTION OF THE BETA DISTRIBUTION, 
COMPUTES THE INVERSE CUMUI.ATIVE D1STR BUTloN F'UNCTION OF THE BINOMIAi. DISTRIBUTION, 
COMPUTES THE 1NVERSE CUMUI.ATIVE DISTR BUTION F'UNCT ON OF THE CHI SQUARE DISTRIBUTION, 
COMPUTES THE INVERSE CUMULATIVE D:sTR BUTION F'UNCT ON OF THE CAUCHY DISTRIBUTION, 
COMPUTES THE INVERSE CUMULATIVE DISTR BUTION F'UNCT ON OF THE EXPONENTIAi. OISTRIBUT 10N, 
COMPUTES THE INVERSE CUMUI.ATIVE DISTR BUTION FUNCT ON OF' THE F ( VARIANCE RATIO ) DISTRIBUTION. 
COMPUTES THE INVERSE CUMULATIVE DISTR BUTION FUNCT ON OF THE GAMMA DISTRIBUTION. 
COMPUTES THE INVERSE CUMULATIVE DISTR BUT10N FUNCT ON OP THE GEOMETRIC DISTRIBUTION. 
COMPUTES THF. INVERSE CUMUI.ATIVE DISTR BUTION F'UNCT ON OF THE HYPER GEOMETRIC OISTR!BUTION. 
COMPUTES THE 1NVERSE CUMULATIVE DISTR BUTION F'UNCT ON OF THE 1.0G NORMAi. DISTRIBUTION, 
COMPUTES THE INVERSe CUMULATIVE OISTR BUTION FUNCT ON OF THE NEGATIVE BINOMIAL DISTRIBUTION, 
COMPUTES THE INVERSE CUMUI.ATIVE DISTR BUTION F'UNCT ON OF' THE NORMAL. DISTRIBUTION, 
COMPUTES THE INVERSE CUMUI.ATIVE OISTRiBUT,oN FUNCT ON OF THE POISSON DISTRIBUTION, 
COMPUTlS THE INVERSE CUMULATIVE D1STRIBUTION FUNCT ON OF THE RAYLEIGH DISTRIBUTION. 
COMPUTES THE INVERSE CUMULATIVE D1STRIBUT10N FUNCT ON OF THE TRUNCATED NORMAL DISTRIBUTION, 
COMPUTES THE ,NVERSE CUMULATIVE DISTRIBUTION FUNCT ON OF THE STUDENTS T OISTR1BUT10N, 
COMPUTES THE INVERSE CUMUI.ATIVE DISTRIBUTION FUNCTION OF THE DISCRETE UNIFORM DISTRIBUTION, 
COMPUTES THE INVERSE CUMUI.ATIVE DISTRIBUTION FUNCTION OF THE UNIFORM DISTRIBUTION, 
COMPUTES THE INVERSE CUMUL.ATIVE DISTRIBUTION FUNCTION OF THE WEIBUl.1. DISTRIBUTION, 
COMPUTES THE CUMUI.ATIVE DISTRIBUT:oN FUNCTION Of THE t.OG NORMA~ DISTRIBUTION, 
COMPUTES.THE CUMULATIVE 01STRIBUTION FUNCTION OP THE NEGATIVE BINOMIAi. DISTRIBUTION, 
COMPUTES THt CUMULATIVf. DISTRIBUTION FUNCTION OF THE NORMAL DISTRIBUTION, 
COMPUTES THE CUMULATIVE D,STRIBUTION FUNCTION OF THE POISSON DISTRIBUTION, 
GENERATES RANDOM INTEGERS HAVING THE POISSON DISTRIBUTION. 
COMPUTF.S THF. CUMULATIVE DISTRIBUT10N FUNCTION OP THE RAYLEIGH DISTRIBUTION, 
COMPUTES THE CUMULATIVE D,STRIBUTION FUNCTION OP THE EXPONENTIAL DISTRIBUTION, 
COMPUTES THE CUMUL.ATIVE DISTRIBUTION FUNCTION OF THE UNIFORM DISTRIBUTION, 
COMPUTES THE CUMUL.ATIVf. DISTRIBUTION FUNCTION OF THE STUDENTS T DISTRIBUTION. 
COMPUTES THE CUMUL.ATIVE OISTRIBUT'ON FUNCT10N OF' THE TRUNCATED NORMAL DISTRIBUTION, 
COMPUTES THE CUMUL.ATIVE OISTRIBUT10N F'UNCT•ON OP THE DISCRETE UNIFORM DISTRIBUTION, 
COMPUTES THE CUMUI.ATIVE DISTRIBUTION FUNCTION OF THE WEIBULi. DISTRIBUTION, 
GENERATES RANDOM NUMeERS HAVING UNIFORM OR NORMAL D1STRIBUTION, 
COMPUTES THE NUMBER Of RUNS (EXPECTED IN SYMMETRIC DISTRIBUTION ANO OBSERVED) ABOVE AND BELOW ZERO OF DIFFERENT LENGTHS FOR A SAMPLE, 

COMPUTES THE NUMBER OF RUNS (EXPECTED AND OBSERVED) UP AND DOWN F'OR A SAMPI.E, 
COMPUTES THE D0UBI.E PRECISION SUMS OF POWERS OF OBSERVATIONS, 



F'17URAND 
F'17VARORD 
F'17XIRAND 
F17xYPL.OT 
F'17YPLOT 
F17ZRNM 
F18CNSI.VL. 
'F18CPOL.RT 

F'18HEL.P 
F'18L1Nsvs 

F18MU1.1.P 
F18NE\!IT 

F'18NONL.IQ 

F'18NRSG 

F'18NSL.VL 

F'18PROOT 

F'18QNWT 

F'18RQNWT. 
F'18ZAF'UJ 

F'18ZAF'UM 
F'18ZAF'UR 

F'18ZCOUNT 

GENERATES RANDOM NUMBERS HAVING A UNIF'ORM DISTRIBUTION AND STORES THE VAL.LIES AS ONE VARIABLE IN A MULTIPLEXED ARRAY, 
SORTS THE VALUES OF' ONE VARIABLE IN A MULTIPLEXED ARRAY IN INCREASING ORDER, 
GENERATES UNIF'OR~ RANDOM FLOATING POINT NUMBERS BETWEEN T\110 GIVEN VALUES, 
PROVIDES A PR1NTF.R PLOT OF' THE VALUES FOR UP TO 5 VARIABLES ( ORDINATES ) AGAINST~ SINGLE VARIABLE ( ABSCISSA ), 
PROVIDES A PR1NTER PLOT OF THE VAL.UES FOR UP TO 5 VARIABLES ( ORDINATES ) IN THEIR STORED ORDER ( ABSCISSA ), 
COMPUTES THE VECTOR OF MEANS AND SUBTRACTS THE MEAN FROM EACH OBSERVATION OF' A SET, 
ESTIMATES THE ROUNDING ERROR IN THE EVALUATION OF A COMPLEX POLYNOMIAL NEAR ONE OF' 1TS ROOTS THROUGH F'OR\!IARD ERROR ANALYSIS, 
FINDS ALL THE ZEROS OF A COMPLEX POLYNOMIAL BY APPL.YING STEEPEST DESCENT \!IITH ACCELERATION DEVICES AND USING !XPLICIT DEFLATION \!/HEN 
ONE ZERO IS ACCEPTED, 
F'INDS AL.L THE ZEROS CF A COMPLEX POLYNOMIAL. BY 1.EHMERS METHOD USING SCHURS METHOD FOR ISOLATING ONE ZERO, 
SOLVES A SYSTEM OF LINEAR EQUATIONS OR SEVERAL SYSTEMS \!IITH THE SAME I.EFT HANO SIDE BY GAUSSIAN ELIMINATION USING DOOLITTL.ES METHOD A 
ND APPLYING PARTIAL P,VOTING AND DOUBL.E PRECISION ARITHMETIC FOR THE CALCULATION OF' INNER PRODUCTS, 
FINDS ALL THE ZEROS OR A SINGLE ZERO OF' A COMPLEX POLYNOMIAL BY MULL.ER$ METHOD \!IITH DEF'LATION, 
SOLVES A SYSTEM OF NONL.1NCAR EQUATIONS BY COMPUTING IN EACH ITERATION A CORRECTION VECTOR TO THE TRIAL SOLUTION VECTOR \!IITH THE NE\!ITO 
N RAPHSON METHOD MODIFY;NG THIS CORRECTION VECTOR WHEN IT IS TOO LARGE OR \!/HEN THE CORRECTION DOES NOT IMPROVE THE RESIDUAL OF THE EQ 
UATIONS, 
SOL.VE$ A SYSTEM OF NOllL.·NEAR ALGEBRAIC EQUATIONS USING THE GENERALIZED SECANT METHOD MODIFYING THE STEP VECTOR \!/HEN THE SET OF' GUESSE 
S TEND TO BECOME LINfARLV DEPENDENT OR WHEN THE RESIDUALS DO NOT DECREASE, 
SOLVES AN OVER OETERM,NED SYSTEM OF NONLINEAR EQUATIONS BY CALCULATING A STEP VECTOR DIRECTION AS A LEAST SQUARES SOLUTION OF' THE SYS 
TEM OF LINEAR EQUATIONS IN THE NEWTON RAPHSON METHOD ANO SWITCHING TO THE STEEPEST DESCENT METHOD IF THE FORMER METHOD GIVES OIVERGEN 
CE; IN THE STEP VECTOR DIRECTION THE OPTIMAL STEP VECTOR IS CALCULATED BY PARABOLIC INTERPOLATION, 
ESTIMATES THE ROUNDING ERROR IN THE EVALU~TION OF A POL.YNOMIAL \!IITH REAL COEFF'ICIENTS NEAR ONE OF ITS COMPLEX ROOTS THROUGH FORWARD E 
RROR ANALYSIS, 
FINDS ALL ZEROS OF A POL.VNOMIAL WITH REAL COEFFICIENTS WITH NE\!ITONS METHOD OR BAIRSTO\!IS METHOD eY PERFORMING SIMULTANEOUSLY ONE ITERA 
TION OF EACH METHOD ANO DEFLATING THE ORIGINAL POL.YNOMIAL \!/HEN A LINEAR OR QUADRATIC FACTOR IS FOUND, 
SOLVES A SYSTEM OF' NONLINEAR EQUATIONS BV USING THE NE\!ITON RAPHSON METHOD IN THE F'IRST ITERATION AND BY UPDATING THE APPROXIMATION Of 

THE JACOBIAN IN THE NEXT 1TERATIONS (QUASI NEWTON METHOD), 
SOLVES A SYSTEM OF' NONLINEAR EQUATIONS BY CALLING SUBROUTINE QN\!IT A NUMBER OF Tl~ES \!IITH DIFF'ERENT INITIAL GUESSES, 
FINDS A REQUIRED NUMBER OF ZEROS OF' A COMPLEX F'UNCTION USING A METHOD DESCRIBED BY JARRATT AND NUDDS FOR APPROXIMATION OF ONE ~ERO AN 
D FACTORING OUT PREV'OUSLY FOUND ZEROS, 
FINDS A REQUIRED NUMSER or ZEROS OF' A COMPLEX FUNCTION \!IITH MULL.ER$ METHOD ANO FACTORING OUT PREVIOUSLY FOUND ZEROS, 
FINDS A REQUIRED NUMSCR OF REAL ZEROS OF' A REAL FUNCTION \!IITH A METHOD DESCRIBED BY JARRATT ANO NUOOS FOR APPROXIMATION Cf ONE ZERO A 
ND FACTORING OUT PREV,OUSLY FOUND ZEROS, 
CAL.CUL.ATES THE NUMBER OF' ZEROS, DECREASED BY THE NUMBER OF' POL.ES, OF A COMPLEX FUNCTION IN AN AREA IN THE COMPLEX PLANE ENCLOSED BY A 

POLYGON, 


