stichting
mathematisch
centrum MC

AFDELING NUMERIEKE WISKUNDE ND 1/74 MARCH

J.D. ALANEN (ed.)
KWIC INDEX FOR CDC AND CERN MATHEMATICAL SOFTWARE
AVAILABLE ON THE SARA COMPUTER

2e boerhaavestraat 49 amsterdam



Printed at the Mathematical Centre, 49, 2¢ Boerhaavestraot, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
profit institution aiming at the promotfion of pwie mathematics and Ats
applications. 1t is sponsored by the Netherlands Government through ihe
Netherlands Onganization §orn the Advancement of Pure Research (Z.W.0),
by the Municipality of Amsterndam, by the University of Amsterdam, by
the Free University at Amsterdam, and by industries.



Directions for use

The key word in context (KWIC) index is based upon program abstracts

such as:

F18HELP FINDS ALL THE $ZEROS OF A $COMPLEX $POLYNOMIAL BY $LEHMERS
$METHOD USING $SCHURS $METHOD FOR ISOLATING ONE ZERO.

The first nine characters ("FIBHELP ") of each abstract are a code
to identify the program, while the remaining characters qntil a period
comprise a short description of the program (what it does and how it
does it), only "important" words (preceded by a $ in the above example)
are used as key words in the KWIC index.

The first appearance of our above example abstract in the KWIC

index is:
FINDS ALL THE ZEROS OF A COMPLEX POLYNOMIAL BY LEHMERS METHOD USING

SCHURS METHOD FOR ISOLATING ONE ZERO. F18HELP

If this program is of interest, you can further identify it as fol-
lows: the first letter of the code is the programming language (F = Fortran,
C = Compass). The next two digits are the literature reference number
(18 = Math Science Library, vol. 8, Nonlinear equation solvers); a complete
list of literature references is given below. The final six characters of

the code are the name ("HELP" in the example) of the program.

In case an entry in the KWIC index is not completely readable
(i.e. truncated at an end of the line), you can find a complete, alpha-
betical listing of all the abstracts following the KWIC index, In our
example; you would first look under language "F", then reference "18",

and lastly the program name "HELP"; the complete abstract would follow.
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THE CUMULATIVE D STRIBUT'ON
THE CUMULATIVE ©-STRIBUTION
THE CUMULATIVE D.STRIBUTICN
NUMBER OF ZEROS OF A COMPLEX
ERANCE WUSING AN INTERPOLATING
UMBER OF REAL ZERGS OF A REAL
NUMBER OF ZEROS 0OF A COMPLEX
OF DATA POINTS BY A RaTIONAL
DISTRIBUTION FUNCTION OF THE
DISTRIBUTION FUNCTION OF THE
DISTRIBUTION FUNCTION OF THE
DISTRIBYTION FUNCT1ON OF THE
COMPUTES THE INCOMPLETE
EVALUATES THE

THE NATURAL LOGAR!THM OF THE
NDECOMPOSES BY

DECOMPOSES BY

EVERAL RIGHT«HAND SIDES USING
EVERAL RIGHT=MAND SIDES US /NG
EVERAL RIGHT=HAND SIDES USING
EVERAL RIGHT=HAND SIDES USiNG
TH THE SAME LEFT WAND SIDE BY
NITE INTERVAL, USING LEGENDRE

nuouooonnmunoonon
]
I
m

FUNCTION INTO PARTIAL FRACTIONS GIVEN THE ROOTS OF THE DENOMINATOR POLVNOMIAL AND THE COEFFICIENTS ©
FUNCTION IN AN AREA IN THE COMPLEX PLANE ENCLOSED BY A POLYGON,

FUNCTION OF A REAL ARGUMENT BY USING RATIONAL APPROXIMATION,

FUNCTION QF THE BETA DISTRIBUTION,

FUNCT!ON OF THE BINOMIAL DISTRIBUTION,

FUNCTION OF THE CAUCHY DISTRIBUTION,

FUNCTION OF THE F { VARIANCE RATIO ) DISTRIBUTION,

FUNCTION OF THE GEOMETRIC DISTRIBUTION,

FUNCTION OF THE GAMMA DISTRIBUTION,

FUNCTION OF THE HYPER GEOMETRIC DlSTRlBUTION

FUNCT!ON QF THE UNIFORM DISTRIBUTION,

FUNCTION OF THE NORMAL DISTRIBUTION,

FUNCTI1ON OF THE EXPONENTIAL DISTRIBUTION,

FUNCTTON OF THE TRUNCATED NORMAL DISTRIBUT{ION,

FUNCTION OF THE LOG NORMAL DISTRIBUTION,

FUNCTION OF THE WEIBULL DISTRIBUTION,

FUNCTION OF THE GAMMA DiSTRIBUTION,

FUNCTION OF THE BETA DISTRIBUTION,

FUNCTION QF THE CAUCHY DISTRIBUTION,

FUNCTION OF THE RAYLE'GH Di{STRIBUTION,

FUNCTION QF THE CH: SQUARE DISTRIBUTION,

FUNCT1ON OF THE F ( VARIANCE RATI{O ) DISTRiBUTION,

FUNCTION OF THE STUDENTS T D!STRIBUTION,

FUNCTION OF THE DISCRETE UNIFORM DISTRIBUTION,

FUNCTION OF THE BINOMIiAL DISTRIBUTION,

FUNCTION OF THE POISSON DISTRIBUTION,

FUNCT!ION OF THE HYPER GEOMETR!IC DISTRIBUT!ON

FUNCTION OF THE NEGATIVE BINOMIAL DISTRIBUTION,

FUNCT!ON OF THE GEOMETRIC DISTRIBUTION,

FUNCT!ON OF THE LOG NORMAL DISTRIBUTION,

FUNCTION OF THE NEGATIVE BINOMIAL DISTRIBUTION,

FUNCTION OF THE NORMAL DISTRIBUTION,

FUNCTION OF THE POISSON DISTRIBUTION,

FUNCTION OF THE RAYLEIGH DISTRIBUTION.

FUNCTION OF THE EXPONENTIAL DISTRIBUTION,

FUNCTION OF THE UNIFORM DISTRIBUTION,

FUNCTION OF THE STUDENTS T DISTRIBUTION,

FUNCT ' ON OF THE TRUNCUATED NORMAL DISTRIBUTION,

FUNCTION OF THE DISCRETE UNIFORM DISTRIBUT{ON,

FUNCTION OF THE WEIBULL DISTRIBUTION,

FUNCTION USING A METHOD DESCRIBED BY JARRATT AND NUDDS FOR APPROXIMATION OF ONE ZERQ AND FACTORING O
FUNCTION WHICH ATTEMPTS TO MINIMIZE THE RIPPLE IN CURVATURE,

FUNCTION WITH A METHOD DESCRIBED BY JARRATT AND NUDDS FOR APPROXIMATION OF ONE ZERO AND FACTORING QU
FUNCTION WIiTH MULLERS METHOD AND FACTORING OUT PREVIOUSLY FOUND ZEROS,

FUNCTION Wi1TH NUMERATOR AND DENOMINATOR OF A SPECIFIED DEGREE.

F ( VARIANCE RATIO ) DISTR|BUTION,

F ( VARIANCE RATIO ) DISTRIBUTION,

GAMMA DISTRIBUTION,

GAMMA DISTRIBUTION,

GAMMA FUNCTION,

GAMMA FUNCTION OF A REAL ARGUMENT BY USING RATIONAL APPROXIMATION,

GAMMA FUNCT!ON FOR COMPLEX ARGUMENT BY USING CONTINUED FRACTIONS,

GAUSSTAN ELIMINATION WITHOUT PIVOTING A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS' THE
GAUSS AN ELIMINATION WiTH PARTIAL PIVOTING AND IMPLICIT EQUIL'BRATION A REAL BANDMATRIX INTO UPPER A
GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION AND GIVES AN ESTIMATE FOR THE

GAUSSIAN ELIMINATION WITHOUT PIVOTING AND GIVES AN ESTIMATE FQR THE ACCURACY AND THE CONDITION NUMBE
GAUSSTAN ELIMINATION WITH PARTIAL PIVOTING AND IMPL1CIT EQUIL!IBRATIONg THE DETERMINANT. 1S ALSC AVAIL
GAUSS AN ELIMINATION WITHOUT PIVOTING; THE DETERMINANT 1S ALSO AVAILABLE,

GAUSSIAN ELIMINATION USING DOOLITTLES METHOD AND APPLYING PARTIAL PIVOTING AND DOUBLE PRECISION ARIT
GAUSS FORMULAS AND UNEQUAL SUBINTERVALS,

FL3PARFAC
F18ZCOUNT
F13GAMMA
F17PBETA
FL7PBINOM
F147PCHY
F17PFDIST
F17PGEOM
FL7PGMMA.
FL17PHYPGE
F17P | UNF
F17P I NORM
FL7PIEXP
F47P I TRNM
FL7PILGNM
FL7PIWEBL
FL7P I GAMA
FL7P IBETA
F47P i CHY
F17P I RAYL
FL7PICHI
FL7PIFDIS
Fi7pIT
F47PIUNFD
Fi7PIBIN
FL7PiPOIS
FL7PIHYPG
FL7PINBIN
F47P1GED
FL7PLGNRM
FL7PNBIN
F17PNORM
F17P0 (S
F17PRAYL
F17PRBEXP
FL7PRBUNF
F17PTDIST
F17PTRNRM
F17PUNFD
F17PwEBL
F48ZAFUY
F15R1ICH
F18ZAFUR
F18ZAFUM
F15RATL
F17PFDISYT
F17PIFDIS
F{7PGMMA
FL7PiGAMA
FL7GAMAIN
F13GAMMA
FL3LOGGAM
FL6BDCYNP
FL16BDECOM
F168!TRFM
FL68) TWNP
F16BLESOM
FL6BLSWNP
FLBLINSYS
F15QUAD



PERFORMED BY USING A 5=pOINT
PONENTIAL [INTEGRAL 8Y HERM(TE
ONENTIAL INTEGRAL 3Y LAGUERRE
INITE INTERVAL USING LEGENDRE
F THE THIRD KIND BY USING THE
ALGEBRAI1C EQUATIONS USING THE

REDUCE THE

REDUCE THE

A SET OF PROGRAMS TO PERFORM
EVALUATFS

-

DISTRIBUTION FUNCT!ON OF THE
1BUTION FUNCTION OF THE HYPER
IBUTION FUNCTITON OF THE HYPER
DiSTRIBUTION FUNCT'ON OF THE
RERFORMS CHi SQUARE TEST FOR
USiNG THE METHOD OF CONJUGATE
€9 ACCORDING TO THE CONJUGATE
AR MATRIX USING THE COMNJUGATE
TIMES WITH DIFFERENT NiTiAL
CALCULATES A

EVALUATES THE COMPLEX VALUED
INTEGERS BY USING SUBROUT!NE
ES AN EXPONENTIAL MNTEGRAL BY
PERFORMS

PERFORMS

FFICIENTS OF THE N+Ma1 DEGREE
NVALUES aND EJIGENVECTORS OF a
SFORMS 4 REAL MATR.X TO UPPER
ORMS A REAL MATRIX INTO UPPER
REDUCES A COMPLEX MATR|X TO
GLE REAL EIGENVALUE OF A REAL
GLE REAL EIGENVALUE OF A REAL
ERATION ON A SiMILAR BALANCED
GLE COMPLEX QR ITERATION ON A
OF AN EIGENVALUE TO A COMPLEX
TION ON THE EIGENVECTORS OF A
ING QR 'TERATION CN A SIM!LAR
FiNDS THE

ED INTERVALS; USED TO PRODUCE
ERFORMS BARTLETTS TEST OF THE
M PROVIDED DECOMPOSITION WiTH
INTO UPPER TRIANGULAR FORM BY
M PROVIDED DECOMPOSITION WiTH
HESSENBEZRG FORM ACCORDING TO
R LEAST SQUARES PROBLEM U5:NG
FORM US.NG A MODIFICATION ©CF
REAL) OF A REAL MATR'X US:NG
S OF A HERMITIAN MATRIX USING
X INTO TRIDIAGONAL FORM USING
R LEAST SQUARES PROBLEM US:NG
EVERAL RIGHT=HAND S!DES UyS: NG

GAUSS LEGENDRE FORMULA TO A NUMBER OF SUBINTERVALS SPECIFIED BY THE USER,

GAUSS QUADRATURE FORMULAS,

GAUSS QUADRATURE FORMULAS,

GAUSS QUADRATURE FORMULAS,

GAUSS TRANSFORMATION; COULD BE USED FOR COMPLETE ELLIPTIC INTEGRAL OF THE THIRD KIND SOMETIMES,
GENERAL I ZED SECANT METHOD MODIFYING THE STEP VECTOR WHEN THE SET OF GUESSES TEND TO BECOME L INEARLY
GENERAL EI1GENVALUE PROBLEM TO A STANDARD E|GENVALUE PROBLEM,

GENERAL E!GENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM,

GENERAL EXPONENTIATION, AssB, FOR VAR!OUS COMBINATIONS OF A AND B, INTEGER, REAL, COMPLEX, AND DOUBL
GENFERAL EXPONENTIATION C##R FOR COMPLEX BASE AND REAL EXPONENT,

GENERATES RANDOM NUMBERS HAVING A NEGATIVE EXPONENTIAL DISTRIBUTION,

SENERATES RANDOM NUMBERS HAVING A NORMAL DISTRIBUTION AND STORES THE VALUES IN A MULTIPLEXED ARRAY,
GENERATES RANDOM NUMBERS HAVING A NORMAL DISTRIBUTION,

GENERATES RANDOM NUMBERS HAVING A NORMAL D|STRIBUTION, PROVIDING A CONVENIENT WAY OF HANDLING THE TA
GENERATES RANDOM INTEGERS WAVING THE POISSON DISTRIBUTION,

GENERATES RANDOM NUMBERS MAVING UNIFORM OR NORMAL DISTRIBUTION,

GENERATES RANDOM NUMBERS HAVING 4 UNIFORM DISTRIBUTION AND STORES THE VALUES AS ONE VARIABLE iIn A MU
SENERATES UN:FORM RANDOM INTEGERS BETWEEN TWO GIVEN VALUES,

GENERATES UN:FORM RANDOM FLOATING POINT NUMBERS BETWEEN TWO GIVEN VALUES,

GEOMETRIC DISTRIBUT!ON,.

GEOMETRIC DISTRIBUTION,

GEOMETRIC DISTRIBUTION,

GEOMETRIC DISTRIBUTION,

GOODNESS QF F: 7T,

GRAD VENT,

GRAD JENT METHOD,

GRADIENT METHOD,

GUESSES,

GUESS OF AN E:!GENVALUE TO A COMPLEX HESSENBERG MATRIX USING HYMANS METHOD TO EVALUATE THE DETERMINAN
HANKEL FUNCTION FOR REAL ARGUMENT AND INTEGER ORDER BY SUMMATION OF SERIES FOR BESSEL FUNCTIONS,
HCF,

HERMITE GAUSS QUADRATURE FORMULAS,

HERMITE INTERPOLAT!ON AT ONE POINT GIVEM THE ABSCISSA AND A TABLE OF CORRESPONDING VALUES OF THE IND
HERMITE INTERPOLATION FOR SEVERAL VALUES OF INDEPENDENT VARIABLE,

HERM!IT AN INTERPOLATING POLYNOMIAL THROUGH N+i POINTS WITH FIRST DERIVATIVES GIVEN AT THE FI1RST M+l
HERMITIAN MATR!X USING HOUSEHOLDERS TRANSFORMATION TO TRiDIiAGONAL FORM FOLLOWED BY EITHER QR ITERAT!
HESSENBERG FORM USING WILKINSONS METHOD,

HESSENBERG FORM ACCORDING TO HOUSEHOLDERS METHOD,

HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD,

HESSENBERG MATRIX BY MEANS OF WIELANDT INVERSE ITERATION,

HESSENBERG MATRIX BY MEANS OF INVERSE ITERATION,

HESSENBERG MATRIX,

HESSENSERG MATRIX HAVING REAL SUBDIAGONAL ELEMENTS,

HESSENBERG MATRIX USiNG HYMANS METHOD TO EVALUATE THE DETERMINANT,

HESSENBERG MATRIX PROVIDED THE TRANSFORMATION TO MESSEZERG FORM HAS BEEN CARRIED OUT WITH WILKENSONS
HESSENBERG MATRIX FOR THE EIGENVALUES AND INVERSE ITERATION FOR THE EIGENVECTORS,

HIGHEST COMMON FACTOR OF TWO INTEGERS BY EUCLIDS ALGORITHM,

HiSTOGRAMS,

HOMCGENEITY OF A GROUP OF VARVANCE ESTIMATES,

HOUSEHOLDERS METHOD HAS BEEN CARRTED OQUT,

HOUSEHOLDERS METHOD, .
HOUSEHOLDERS METHOD HAS BEEN CARRIED OUT,

HCUSEHOLDERS METHOD,

HOUSEHOLDERS METHOD,

HOUSEHOLDERS METHOD,

AQUSEHOLDERS TRANSFORMATION FOLLOWED BY DOUBLE QR |TERATION,

HOUSEHOLDERS TRANSFORMATION TO TRID!AGONAL FORM FOLLOWED BY E/THER QR JTERATION OR LR JTERATION OR T
HOUSEHOLDERS TRANSFORMATION,

HOUSEHOLDER TRANSFORMATIONS,

HOUSEHOLDER TRANSFORMATIONS,

FL15GMI
FLSHERMIT
FI5LAGUER
F415LEGEND
F13EL3
F1B8NONL I @
FL6REDSY]
F16REDSY2
C12PS1132
F12CBAREX
F17EXRAND
F17NRAND
FL7NRML
F17NRMNO
F17PORAND
F17RAND
F47URAND
F471RAND
F17XI1RAND
F17PGEOM
FL7PHYPGE
FL7PIHYPG
F17PIGEOD
F17CHIDSY
F16CCONGR
Fle6FCGM2
F16SCONG
F18RONWT
FL6DTSHET
F{3HANKEL
Fl1lLCMm
FL5HERMIT
FLSHRMT
F15HRMT2
FASFHRNEW
FL6TCD I AG
FL6HSSN
FL6SUBD IR
F16SUBD A
FL6E1GIMP
FL6EIGVCH
FL16QRE IGN
F16QRY
FL6DTSHFT
F16S1IMP
FLOVALVEC
FL1HCF
F17HSTGRM
FL7BRTLTY
FL6BSUBHT
F16DCBHT
F161TRLSQ
F16SUBD IR
FL6LSQSIT
FiéesuBDiA
FL1O6LATNTR
F16TCD1AG
FL6TRIDI
FL6LSQHTS
F16LSQHTM



MPLEX HESSENBERG MATRIX USING
COMPUTES THE
COMPUTES TRE
COMPUTES THE
DISTRIBUTION FUNCTION OF THE
DISTRIBYTION FUNCTIOM OF TKE
ION WITH PARTIAL PiVOTING AND
ION WiTH PARTIAL P:VOTING AND
ION WiTH PARTIAL PIVOTING AMD
ION WITH PARTIAL P!VOTING AND
ION WiTH PARTIAL PIVOTING AND

®

COMPUTES THE

EVALUATES THE

EVALUATES THE

COMPUTES THE

RDING TO E:iTHER DECREASING OR
BLE IN A MULTIPLEXED ARRAY IN
UMBER OF TIMES WiTH DI!FFERENT
COMPUTES THE DOUBLE PRECIS . CN
SUBROUT iNES TO CALCULATE TKE
PA, VIPS, VIPD, VIPDA, VIiPDS,
GENERATES UNIFORM RANDOM
GENERATES RaNDOM

10US COMBINATIONS ofF A AND B,
OR POSITIVE REAL ARGUMENT AND
ST KIND FOR REAL ARGUMENT AND
UNCTiON FOR REaL ARGUMENT AND
EVALUATES THE SINE AND COSiNE
EVALUATES AN EXPONENT AL
EVALUATES AN EXPONENT AL
EVALUATES THE

OF A POLYNOMtAL WHICH |'S TRE
OF A POLYNOMIAL WHICH 1S THE
EVALUATES THE

EVALUATES THE

EVALUATES THE

EVALUATES THE

EVALUATES THE

OMPUTES THE COMPLETE ELLIPTIC
ALUATES THE COMPLETE ELLIPTIC
UATES THE 1NCOMPLETE ELLIPTIC
UATES THE INCOMPLETE ELLIPTIC
BE USED FOR COMPLETE ELLIPTIC
EVALUATES A M=TUFLE

FINITE INTERVAL USING ROMBERG
BETWEEN aRB!'TRaARY LIMITS; THE
EAR TREND THAT 1S OBTAINED BvY
TES THE LAGRANGIAN POLYNOMIAL
ATTKENS METHOD THE POLYNOMIAL
STRUCTS 4 FIFTH DEGREE SPLINE
UCTS A NONL INEAR CUBIC SPLINE
INTS ARE GENERATED ON A CUBIC
ORD HMEIGHT TOLERANCE USING AN
OF THE N~TH DEGREE LAGRANGIAN
OF THE N+M+l DEGREE HERMITIAN
UNCTION AT ANY POINT USING AN
VARIABLE BASED OM LAGRANGIAN
OR 1S CALCULATED BY PARABOLIC
PERFORMS HERMITE

HYMANS METHOD TO EVALUATE THE DETERMINANT,
HYPERBOL IC COS!NE TRIGONOMETR!C FUNCTION,
HYPERBOLIC SINE TRIGONOMETRIC FUNCTION,
HYPERBOLIC TANGENT TRIGONOMETRIC FUNCTION,
HYPER GEOMETR'C DISTRIBUTION,
HYPER GEOMETRIC DISTRIBUTION,

IMPLICIT EQUILIBRATION A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS,
IMPLICIT EQU'LIBRATION HAS BEEN CARRIED OUT, POSSI8LY BY SUBROUTINE BDECOM,
iMPLICIT EQUiLiBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION
IMPLICIT EQUILIBRATION AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDIT:CN NUMBER,

IMPLICIT EQUILIBRATIONS THE DETERMINANT |S ALSO AVAILABLE,

{MPROVES AN APPROXIMATE EIGENVALUE EIGENVECTOR PAIR OF A REAL SYMMETRIC MATRIX BY CALCULATING THE RA
INCOMPLETE BETA RATIO,

INCOMPLETE ELL'PTIC INTEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFQRMAT!ON,
CNCOMPLETE ELLIPTIC I NTEGRAL OF THE THIRD KIND BY USING THE GAUSS TRANSFORMATION; COULD BE USED FOR
INCOMPLETE GAMMA FUNCTION,

INCREASING MAGNITUDE N A WAY WHICH IS NOT EFFICIENT FOR A LARGE SET OF NUMBERS,

INCREASING ORDER,

INITiAL GUESSES,

INNER PRODUCT ©F TWO VECTORS HAVING COMPLEX ELEMENTS,

/NNER PRODUCT OF TWO VECTORS WHICH MAY BE A COLUMN OR A ROW OF A MATRIX USING EITHER SINGLE OR DOUBL
{NRPRD, PRDSUM,

INTEGERS BETWEEN TWO GIVEN VALUES,

INTEGERS HAVING THE POISSON DISTRIBUTION,

iNTEGER, REAL, COMPLEX, AND DOUBLE PRECISION,

iNTEGER ORDERS.,

INTEGER ORDERS BY USING BACKWARD RECURSION,

INTEGER ORDER BY SUMMAT|ON OF SERIES FOR BESSEL FUNCTIONS,

' NTEGRALS USING CHEBYSHEV APPROXIMATIONS,

INTEGRAL BY HERMITE GAUSS QUADRATURE FORMULAS,

INTEGRAL BY LAGUERRE GAUSS QUADRATURE FORMULAS,

iNTEGRAL BY S:IMPSONS RULE OF A BOUNDED FUNCT!ON OF ONE VARIABLE OVER A FINITE
I NTEGRAL OF ANOTHER REAL POLYNOMIAL GIVEN THE COEFPICIENTS OF THE LATTER,
INTEGRAL OF ANOTHER COMPLEX POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER,
INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL USING ROMBERG INTEGRATION,

INTEGRAL OF A FUNCT!ION OF ONE VARIABLE OVER A FINITE INTERVAL, USING LEGENDRE GAUSS FORMULAS AND UNE
INTEGRAL OF A FUNCT!ION OVER A FINITE INTERVAL USING SIMPSONS RULE,

NTEGRAL OF A REAL FUNCTION OF ONE VARIABLE BASED ON LAGRANGIAN INTERPOLATION,

INTEGRAL OF ONE VARIABLE OVER A FINITE INTERVAL USING LEGENDRE GAUSS QUADRATURE FORMULAS,

INTEGRAL OF THE THIRD KIND By THE LANDEN TRANSFORMATION,

INTEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION,

INTEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION,

 NTEGRAL OF THE THIRD KIND BY USING THE GAUSS TRANSFORMATION; COULD BE USED FOR COMPLETE ELLIPTIC N
INTEGRAL OF THE THIRD K!ND SOMETIMES,

INTEGRAL (M LESS 11) OF AN INTEGRAND BETWEEN ARBITRARY LIMITS; THE
' NTEGRATION,

INTEGRATION 1S PERFORMED BY USING A 5~POINT GAUSS LEGENDRE FORMULA TO A NUMBER OF SUBINTERVALS SPEC!
INTEGRATION OF A TRIGONOMETRIC POLYNOMIAL,

INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY BY A POLYNOMIAL OF DEGREE Nwi,
INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY BY A POLYNOMIAL OF DEGREE Nmi
iNTERPOLATING A SET OF EQUISPACED DATA,

NTERPOLATING A SET OF POINTS WITH ARBITRARY SPACING,
 NTERPOLAT!NG CURVE,

INTERPOLATING FUNCT!ON WHIGH ATTEMPTS TO MINIM|ZE THE RIPPLE
\NTERPOLAT /NG POLYNOMIAL THROUGH N+1 POINTS,

INTERPOLAT NG PCLYNOMIAL THROUGH N+i POINTS W!TH FIRST DERIVATIVES GIVEN AT THE FIRST M+1 POINTS (M
INTERPOLATING POLYNOMIAL OF SPEC|FILED ORDER,

INTERPOLAT!ION,

INTERPOLATION,

INTERPOLATION AT ONE POINT GIVEN THE ABSCISSA AND A TABLE OF CORRESPONDING VALUES OF THE

INTERVAL OF EQUISPACED

'NTEGRATION |S PERFORMED BY USING

'N CURVATURE,

INDEPENDENT

FL6DTSHFY
F12¢C0SH
C12S INH
CL2TANH
FA7PHYPGE
F17PIHYPG
F16BDECOM
F16BFBSUM
F1681 TERM
F16BITRFM
F16BLESOM
F16E1GCHK
F17BETAR
FL3ELF
FL3ELY
FL7GAMAIN
F16VECORD
F17VARORD
FL18RANWT
F16CINPRD
CL6VIP
CLeVviP
F17 IRAND
F17PORAND
C12PS1132
F43RBESY
F13NBESJ
F13HANKEL
F1381ct
FLSHERMIT
FYSLAGUER
F15PARBC
FL3INT
FL3CINT
F15ROMBG
F15QUAD
F15S IMPRC
F{5LAGRAN
F15LEGEND
F13CEL3
FY13ELK
FeL3ELF
FL3EL3
FL3EL3
F15GM|
F15ROMBG
Fe56M1
FLS5TRGINT
FLBLAGINT
F15A1 TKEN
F15SPLINE
F15UNCSPYL
FL5NRICH
FA5R1iCH
F15FLGNEW
F15FHRNEW
FL1SLAGD I F
FLS5LAGRAN
F18NRSG
F15HRMTY



PERFORMS HERMITE INTERPOLATION FCR SEVERAL VALUES OF INDEPENDENT VAR{ABLE, F15HRMT2

LAGARANG ! AN INTERPOLATION IN ONE DIMENS|ONAL TABLE} ARB!TRARY ORDER, F15TeLul
LAGRANG | AN 'NTERPOLATYON IN TWO DIMENSIONAL TABLE; ARB!ITRARY ORDER, F15TBLUD
LAGRANG . AN {NTERPOLATION IN THREE DIMENSIONAL TABLE; ARB!TRARY ORDER, . FL5TBLUI
S A SINGLE CONTINUED FRACTION 'NTERPOLATION USING INVERTED DIFFERENCES ON TABULAR DATA WITH ARB!TRARY SPACING, FASACF |
OF OBSERVATIONS IN SPECIFIED INTERVALS; USED TO PRODUCE HISTOGRAMS, F17HSTGRM
. COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE UNIFQORM DISTRIBUTION, F17P | UNF
i COMPUTES THE CNVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE NORMAL D{ISTRIBUTION, F17P INORM
COMPUTES THE 'NVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE EXPONENTIAL D'STRIBUTION, FL7PLEXP -
COMPUTES THE 'NVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE TRUNGATED NORMAL DISTRIBUTION, FL7P i TRNM
COMPUTES THE {NVERSE CUMULATIVE DISTRIBUTION FUNCT!ON OF THE LOG NORMAL DISTRIBUTION, FL7P ILGNM
COMPUTES THE YNVFRSE CUMULATIVE DISTRIBUTION FUNCTION OF THE WEIBULL DISTRIBUTION, FL7PIWEBL
COMPUTES THE {NVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE GAMMA DISTRIBUTION, FL7PIGAMA
COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE BETA DISTRIBUTION, F17PIBETA
COMPUTES THE NVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE CAUCHY DISTRIBUTION, F17P I CRHY
COMPUTES THE 'NVERSE CUMULATIVE Di§STRIBUTION FUNCTION.OF THE RAYLEIGH DISTRIBUTION, F17P IRAYL
COMPUTES THE NVERSE CUMULATIVE DiSTRIBUTION FUNCTION OF THE GCHI SQUARE DISTRIBUTION, FL7PICHY
COMPUTES THE {NVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE F ( VARIANCE RATIO ) DISTRIBUTION, FL7PIFDIS§
COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE STUDENTS T DISTRIBUTION, F17PIT
COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE DISCRETE UNIFORM DISTRIBUT!ION, F17P{UNFD
COMPUTES THE INVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE BINOMIAL D|STRIBUTION, FL7PI1BIN
COMPUTES THE INVFRSE CUMULATIVE DISTRIBUTION FUNCTION OF THE POISSON DISTRIBUTION, FL17PIPOIS
COMPUTES THE NVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE HYPER GEOMETR'C DISTRIBUTION, FL7P IHYPG
COMPUTES THE INVERSE CUMULATIVE DiSTRIBUTION FUNCTION OF THE NEGATIVE BINOMjAL DISTRIBUTION, F17PINBIN
COMPUTES TKE iMVERSE CUMULATIVE DISTRIBUTION FUNCTION OF THE GEOMETRIC DISTRIBUTION, F17P1GEQD
G MATRIX BY MEANS OF WIELANDT {NVERSE I TERATION, FLOEIGIMP
HESSENBERG MATRIX BY MEANS OF 'NVERSE ITERATION, FLOEIGVCH
VECTORS aRE FOUND BY MEANS CF  NVERSE ITERATION, FL6TCDIAG
ATRIX FOR THE EIGENVALUES AND iINVFRSE [TERATICN FOR THE EIGENVECTORS, FL6VALVEC
MATION OF AN E|GENVALUE USING {NVERSE I TERATION, FL16VECTOR
REFINES ITERATIVELY THE iNVERSE OF A MATR'X PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM W!TH PARTIAL PIVOTING A FL6ITERIN
COMPUTES THE . NVERSE OF THE ERROR FUNCTION BY NEWTONS METHOD, FLIERF INV
ANDMATRIX USiING THE METHOD OF (NVERSE WIELANDT ITERATION WiTH PERIODIC RAYLEIGH QUOTIENT SHIFT{NG COMBINED WITH A STABLE, BAND«PRE FL6BANE I G
FRACTION INTERPOLATION USING 'NVERTED D:FFERENCES ON TABULAR DATA WITH ARBITRARY SPACING, F15ACF |
‘NVERTS AN UPPER TRIANGULAR MATRIX, FL16TRUPIN
INVERTS A LOWER TRIANGULAR MATRIX, FL16TRLOIN
INVERTS A MATR:X USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION, F16 INVERS
(NVERTS WITH 1 TERATIVE REFINEMENT A MATRIX USING CROUTS ALGOR'THM WITH PARTIAL PIVOTING AND ROw EQU! F16INVITR
BY MEANS OF WIELANDT INVERSE i TERATICN, FL6E1GIMP
RG MATRIX BY MEANS OF INVERSE | TERATION, F16E1GVCH
RMATION FOLLOWED BY DOUBLE QR {TERATION, FLOLATNTR
C TRIDIAGONAL MATR.X USING LR [ TERATION, FL6SYMLR
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MATRIX BY MEANS OF INVERSE |TERATION,

MATRIX By MEANS OF A MODIF{CATION OF LAGUERRES METHOD,
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NARROW BANDMATRIX USING THE METHOD OF INVERSE wIELANDT ITERATION WITH PERIODIC RAYLEIGH QUOTIENT SHI
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OF FIRST ORDER
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SYSTEM OF
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USING

SOLVES AN
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FUNCT'ON
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MPOS I TION
MePOSITION
IMINAT!ION
tMINAT | ON
ALGOR ! THM
ALGOR i THM
ALGOR | THM
ALGOR I THM
ALGOR i THM

IS CALCULATED BY

INTO
W:TH
WiTH
W.TH
W:iTH
W.TH
Wt
WiTH
WiTH
WiTH
WiTH

NUMBER,
HUMBER,

NUMBER AND THE NUMBER OF CORRECT DIGITS
NUMBER AND THE NUMBER OF CORRECT DIGITS
ARE AVAILABLE.

OBSERVATIONS

NUMBER
NUMBER CF
NUMBER CF
NUMBER CF
HUMRBER CF
WUMBER CF
MUMBER CF
WUMBER CF

THE
THE
THE
THE
THE
THE

IN THE
IN THE

I'N SPECIFIED INTERVALSS

MATRIX.
MATRIX.
MATRIX AND THE NUMBER OF CORRECT
MATRIX AND THE NUMBER OF CORRECT
MATREX,
MATRIX,

FIRST COMPUTED SOLUTION,
FIRST COMPUTED SOLUTION,

USED TO PRODUCE HISTOGRAMS,

DIGITS
DIGITS

IN THE F1RST COMPUTED SOLUTION,
IN THE FIRST COMPUTED SOLUT{ON,

NUMBER CF ZEROS, DECREASED 8Y THE NUMBER OF POLES, OF A COMPLEX FUNCTION IN AN AREA IN THE COMPLEX P

NUMER'CALLY AN EQUALLY SPACED TABULAR FUNCT!'ON AT ANY POINT USING AN
NUMER!CALLY A FUNCTION GIVEN AS A TABLE WITH EQUISPACED ARGUMENTS,

OBSERVATIONS,
OBSERVATIONS
OBSERVATIONS
OBSERVATIONS
OBSERVATIONS

INTERPOLATING POLYNOMIAL CF SPE
AT A TABULAR POINT OR AT THE MIDP

FROM A DATA ARRAY,

IN
OF
oF

SPECIFIED TNTERVALS;
ONE VARIABLE
TWO VARIABLES

ORSERVATION OF A SET,

ONE DIMFNSI1ONAL TABLE;
OPERATICNS ON THE VALUES OF ONE VARIASLE
OPTIMAL STEP VECTOR

ORDERS,

ORDERS A SET OF COMPLEX NUMBERS ACCORDING TO EITHER DECREASING OR

ARB!TRARY ORDER,

I's CALCULATED BY PARABOL!C

ORDERS BY USING BACKWARD RECURSION,

ORDER,
ORDER,
ORDER

USED TO PRODUCE HISTOGRAMS,
IN A MULTIPLEXED ARRAY,
IN MULTIPLEXED ARRAYS,

IN A MULTIPLEXED ARRAY AND A GIVEN CONSTANT,

INTERPOLATION,

INCREASING MAGNITUDE IN A WAY WHIC

BY SUMMATION OF

ORDER CCNTINU!ITY,
ORDER DIFFERENTIAL EQUATION A#X,

ORDER
ORDER

SERIES FOR BESSEL FUNCTIONS,

OF COMPLEX POLYNOMIAL COEFFICIENTS
OF REAL POLYNOMIAL COEFFICIENTS

IN AN ARRAY,
IN AN ARRAY,

ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A PRED|CTOR CORRECTOR METHOD OF EIGHTH ORDER AND PICARDS
ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNIQUE BASED ON A MCDIFIED M
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EQUATIONS USING A PREDICTOR CORRECTOR METHOD OF EIGHMTH ORDER AND PICARDS METHO
EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNIQUE BASED ON A MODIFI{ED MIDPOIN
EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TECHNIQUE EFFICIENT FOR LOW ACCURA

EQUATIONS
EQUATIONS,

BY COMBINING AN
WHERE THE SOLUTION

INITIAL VALUE SOLVER WITH A NONLINEAR EQUATION soOLVH
I'S BASED ON THE PRINCIPLE OF SUPERPOSITION, USIN

SINGLE VARIABLE ( ABSCISSA ),

ORTHOGONAL POLYNOMIALS,
OVER DETERMINED SYSTEM OF NONLINEAR EQUATIONS BY CALCULATING A STEP VECTOR DIRECTION AS A LEAST SQUA

PADE APPROXIMATION TO A FUNCTION OF wHICH THE MACLAURIN EXPANS|ON

ABSCISSA ),

I'S GIVEN,

FRACTIONS GIVEN THE ROOTS OF THE DENOMINATOR POLYNOM[AL AND THE COEFFICIENTS OF THE NUNERATO

INTO UPPER AND LOWER TRIANGULAR FACTOR
POSEIBLY BY SUBROUTINE BDECOM,

IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCUR
IMPLICIT EQUILIBRATION AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION

THE DETERMINANT 1S ALSO AVAILABLE.
ITS DETERMINANT,
POSSIBLY BY SUBROUTINE CDECOM,

EQUiL I BRATION HAS BEEN CARRIED OUT3 THE DETERMINANT AND CONDITION NUMBER AR

PARABOL!C INTERPOLATION,

PART AL

PART:AL PIVOTING AND IMPLICIT EQUILIBRATION A REAL BANDMATRIX
PARTIAL PiIVOTING AND IMPLICIT EQUILIBRATION HAS BEEN CARRIED OuT,
PART AL P!VOTING AND

PART AL PIVOTING AND

PART!IAL PIVOTING AND (MPLICIT EQUILIBRATION}

PART AL PIVOTING AND ROW EQUIL'BRATION; ALSO COMPUTES

PART!AL PIVOTING AND ROW EQUIL:BRATION HAS BEEN CARRIED OUT,
PART AL PI{VOTING AND ROW

PARTIAL PIVOTING AND ROW EQUIL !BRATION,

PARTIAL PIVOTING AND ROV

EQUIL'BRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY A
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S USING
S USING
N USiNG

CROVTS
CROUTS
CROUTS

ALGOR I THM
ALGOP | THM
ALGOR 1 THM
DING TO CROUTS ALGORITHM
DING TO CROUTS ALGOR!THM
TRIANGULAR DECOMPOSITION
TRIANGULAR DECOMPOS!TION
DING TO CROVUTS ALGOR, THM
DING TO CROUTS ALGORITHM
X USING CROUTS ALGORIiTHM
X USING CROUTS ALGORITHM
USING CROUTS ALGORITHM wi'TH
USING CROVUTS ALGORITHM W:TH
USING CROVUTS ALGORITHM W.TH
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AR DECOMPOSITION WiTH PART!AL
S METHOD AND APPLYING PART AL
SIAN ELIMINATION W, TH PART AL
AR DECOMPOSITIUON W:TH PART AL
AR DECOMPOSITION wiTH PART!AL
S1AN ELIMINATION WiTH PARTIAL
S!'AN ELIMINATION W.TH PARTIAL
CROUTS ALGORITHM w.TH PARTIAL
CROUTS ALGORITHM WITH PART AL
CROUTS ALGORITHM w;TH PART AL
CROUTS ALGOR:ITHM W.TH PART:AL
CROUTS ALGORITHM w:TH PART'AL
CROUTS ALGORITHM WiTH PART AL
CROUTS ALGORITHM w.TH PART:IAL
CROUTS ALGOR:ITHM w.TH PARTIAL
CROUTS ALGORITHM w:TH PARTIAL
CROUTS ALGORITHM W:TH PARTIAL
CROUTS ALGORITHM W!T™H PARTIAL
CROUTS ALGORITHM Wi TH PARTIAL
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PIVOTING
PIVOT!NG
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AND ROW
AND ROW

ROW EQUILIBRATION; THE DETERMINANT
EQU|L I BRATION; THE DETERM|NANT
EQUIL IBRATION HAS BEEN GARRIED
AND ROW EQUIL IBRATION HAS BEEN CARRIED
AND ROW EQUILIBRATIOMN HAS BEEN CARRIED
ACCORDING TO CROUTS ALGOR|THM HAS BEEN
ACCORDING TO CROUTS ALGORI|THM HAS BEEN
AND ROW EQUILIBRATION,

AND ROW EQUIL I BRATION,

AND ROW EQUIL IBRATION,

AND ROW EQUIL IBRATION,

AND ROW EQU!ILiBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITIO
AND ROW EQUIL IBRATION AND PROVIDES PATA FOR ESTIMATING THE DETERMINANT AND CONDITIO
AND ROW EQUILIBRAT!ON HAS BEEN CARRIED OuT,
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OUT BY SUBROUTINE DECOM,

OUT, POSSIBLY BY SUBROUTINE DECOM,
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CARRIED OUT AND PROVIDES DATA FOR CALCULATIN
CARRIED OUT AND PROVIDES DATA FOR CALCULATIN

PIVOT!NG,
PIVOTING HAS BEEN CARRIED OUT,
PIVOTING,

PIVOTING AND DOUBLE PRECISION ARITHMETIiC FOR THE CALCULATION OF
PERIODIC RAYLEIGH QUOTIENT SHIFTING COMBINED WiT™H A STABLE,

I'NNER PRODUCTS,
BAND~PRESERVING DEFLATION TECHN|QUE,
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PIVOTING
PIVCTING
PIVOTING
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WiTHOUT ROW EQUILIBRATION}
WITHOUT ROW EQUILIBRATION;

DOUBLE PRECISION ARITHMETIC FOR THE CALCULATION OF INNER PRODUCTS,

'MPLICIT EQUILIBRATION A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS,
IMPLIC!T EQUILIBRATION HAS BEEN CARRIED OUT, POSSiBLY BY SUBROUTINE BDECOM,

IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY AND
IMPLICIT EQUILIBRATION AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER,
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ROW EQUILIBRATION; ALSO COMPUTES 'TS DETERMINANT,
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ROW EQUIL I BRATION,
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ROW EQUILIBRATION HAS BEEN CARRIED OUT BY SUBROUTINE DECOM,

ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE DECOM,

ROV EQUILTARATION HAS BEEN CARRIED OUT,

ROW EQUiILI8BRATION,

ROW EQUILTBRATION,

ROW EQUILTBRATION,

ROW EQUILIBRATION,
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ROW EQUILIBRATION HAS BEEN CARRIED OUT,
BEEN CARRIED QUT,

THE DETERMINANT
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IN THE'R STORED ORDER ( ABSCISSA ),

THE VALUES FOR UP TO 5 VARIABLES ( ORDINATES ) AGAINST A SINGLE VAR'ABLE ( ABSCISSA ),
POINT BY FACTORIZING WITH A QUADRATIC TERM,

POINT NUMBERS BETWEEN TWO GIVEN VALUES,

POISSON DISTRIBUTION,

POISSON DISTRIBUTION,

PO!SSON DISTRIBUTION,
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E COEFFICIENTS OF THE COMPLEX
OEFFICIENTS OF THE CHEBYCHEFF
GREE LAGRANG:AN INTERPOLATING
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ERROR N THE EVALUAT!ON OF a
FINDS ALl ZERDS OF A
ESKY METHOD A REAL, SYMMETRIC
LINEAR SYSTEM FOR A SYMMETR:C
LINEAR SYSTEM FOR a4 SYMMETRIC
LINEAR SYSTEM FOR u SYMMETRIC
A
A

OF TwO REAL
TWO COMPLEX
OF TWO REAL
TWO COMPLEX
OF TWO REAL

LINEAR SYSTEM FOR SYMMETRIC
DECOMPOSES SYMMETR I'C
REF INEMENT o SYMMETR!IC
REFINEMENT A SYMMETRIC

RATIVE
RATIVE

POLYNOMIALS
POLYNOMIALS
POLYNOMLIALS
POLYNOMIALS
POLYNOMIALS
POLYNOM!IALS
POLYNOMIALS
POLYNOMIAL,
POLYNOMI AL,
POLYNOMI AL,
POLYNOMI AL,
POLYNOMI AL,
POLYNOM I AL
POLYNOMIAL
POLYNOMEAL
POLYNOMLAL
POLYNOMIT AL
POLYNOMI AL,
POLYNOMI AL
POLYHNOMI AL
POLYNOMIAL
POLYNOM!tAL
POLYNOMITAL
POLYNOMIAL
POLYNOMIAL
POLYNOMEAL
POLYNOMIAL
POLYNOMI AL
POLYNOMI AL
POLYNOMIAL
POLYNOMI AL
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POLYNOMIAL
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POLYNOMIAL
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AND THE COEFFICIENTS OF THE NUMERATOR POLYNOMIAL,
APPROXIMATIONS AND THE SUBROUTINE BESNIS,
APPROX!MATION OF SOME PREASSIGNED DEGREE TO A SET OF DATA POINTS WITH GIVEN WEIGHT WHERE

AT A COMPLEX POINT BY FACTORIZING WITH A QUADRATIC TERM,
AT A GIVEN POINT,

AT A GIVEN POINT,

8Y A LINEAR FACTOR,

BY a LINEAR FACTOR, X«B, WHERE B MAY BE COMPLEX,

BY A LINEAR FACTOR, X+B, WHERE B MAY BE COMPLEX,

BY ANOTHER,

B8Y ANOTHER,

BY A QUADRATIC EXPRESSION,

BY A QUADRATIC EXPRESSION,

BY APPLYING STEEPEST DESCENT WITH ACCELERATION DEVICES AND USING EXPLIC!T DEFLATION
BY LEHMERS METHOD USING SCHURS METHOD FOR ISOLATING ONE ZERO,

BY MULLERS METHOD WITH DEFLATION,

COEFFICIENTS |IN AN ARRAY,

COEFFICIENTS IN AN ARRAY,

GIVEN THE COEFFICIENTS OF THE LATTER,

GIVEN THE COEFFICIENTS OF THE LATTER,

GIVEN THE COEFFICIENTS OF THE LATTER,

GIVEN THE COEFFICIENTS OF THE LATTER,

HAVING COMPLEX COEFFICIENTS AT A COMPLEX POINT BY SUMMING THE PRODUCT OF THE POWERS TIMES
HAVING REAL COEFFICIENTS AT A REAL VALUE OF THE INDEPENDENT VARIASLE BY NESTED MULTIPLICA
INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY BY A POLYNCMiaL OF
INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY BY A POLYNOMIAL OF
NEAR ONE OF 1TS ROOTS THROUGH FORWARD ERROR ANALYS'S,

OF A SPECIFIED DEGREE WHOSE GRAPH APPROXIMATES A SET OF DATA PO!NTS WITH WEIGHT ATTACHED
OF DEGREE N BASED ON SUCCESSIVE POINTS,

OF SPECIFIED DEGREE WHOSE GRAPH APPROXIMATES A SET OF DATA POINTS WITH WEIGHT ATTACHED TO
OF SPECIFIED ORDER,

P{aAX) FROM THE COEFFICI!ENTS OF P({X),

P(aX) FROM THE COEFFICIENTS OF P(X),

THAT GIVES A CLOSE APPROXIMATION TO A MINIMAX FIT OF A GIVEN FUNCTION OVER A GIVEN
THROUGH N+1 POINTS,

THROUGH N+, POINTS WITH FIRST DERIVATIVES GIVEN AT THE FIRST M#1 POINTS (M NOT GREATER TH
THROUGH A DISCRETE, WEIGHTED SET OF POINTS,

WHICH 1S THE DERIVATIVE OF ANOTHER POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER,

WITH A LINEAR TREND GIVEN A SET OF (ABSCISSA, ORDIMNATE) PA|RS WITH ARB|TRARY SPACING,
WITH REAL COEFFICIENTS NEAR ONE OF T8 COMPLEX ROOTS THROUGH FORWARD ERROR ANALYSIS,

WITH REAL COEFFICIENTS WITH NEWTONS METHOD OR BA!'RSTOWS METHOD BY PERFORMING SIMULTANEOUS
FINITE BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS,

FINVTE BANDMATRIX WITH SEVERAL RIGHT-~HAND SIDES PROV!IDED TRIANGULAR DECOMPOSITION BY CHOL
FINITE BANDMATRIX WITH SEVERAL RIGHT=HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR
FINITE BANDMATRIX WITH SEVERAL RIGHT=MAND SIDES PROVIDED TRTANGULAR DECOMPOSITION By CHOL
FINITE BANDMATRIX W!TH SEVERAL RIGHT=-MAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR
FINITE MATRIX INTO TRIANGULAR FACTORS USING CHOLESKYS METHOD; THE DETERMINANT 18 AVAILABL
FINITE L'NEAR SYSTEM PROVIDED DECOMPOS{TION WITH CHOLESKYS METHOD HAS BEEN CARRIED oUT AN
FINITE LINEAR SYSTEM W1TH SEVERAL RIGHT~HAND SIDES PROVIDED DECOMPOSITION WITH CHOLESKYS

WHEN

INTERV
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RATIVE REFINEMENT A SYMMETRIC

SOLVES A SYMMETRIC

SOLVES A SYMMETR!C

SOLVES A SYMMETRIC

SOLVES A SYMMETR!C

DECOMPOSES A SYMMETRIC

SOLVES A

SOLVES A

SOLVES A

SOLVES A
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USING GAUSS|AN ELIMINATION WiTH PART!AL PIVOTING AND IMPLIC|T EQUILIBRATION AND GIV
PROVIDED TRIANGULAR DECOMPOSITION BY CHOLESKYS METHOD HAS BEEN CARRIED OUT,

USING GAUSSIAN ELIMINATION WITHOUT PIVOTING AND GIVES AN ESTHMATE FOR THE ACCURACY

USING GAUSSIAN ELIMINATION WiTH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION; THE DE

USING GAUSSIAN ELIMINATION W'THOUT PIVOTING; THE DETERMINANT 1S ALSO AVAILABLE,

USING cHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSIT(ON,

PROVIDED TRIANGULAR DECOMPOSITION BY CHOLESKYS METHOD HAS BEEN CARRIED OUT, PCSSiEl

USING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION,

PROVIDED THE TRIANGULAR DECOMPOS!ITION FOLLOW!NG CROUTS ALGORITHM WITH PARTIAL pP1VOT

PROVIDED THE TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PI

USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION,

PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WiTH PARTIAL PIVOTI
PROVIDED TRIANGULAR DECOMPOS!ITION ACCORDING TO CROUTS ALGORITHM WiTH PARTIAL PIVOT
PROVIDED TRIANGULAR DECOMPOSITION WiTH PART AL PIVOTING ACCORDING TO CROUTS ALGORY
ACCORDING TD CROUTS ALGOR!ITHM WITH PARTIAL PIVOTING AND RCW EQUILIBRATION,

USING CROUTS ALGORITHM WITH PART|AL PIVOTING AND ROW EQUILIBRATION AND PRCVIDES DA
PROVIDED DECOMPOSITION W|TH CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROVIDES DAT
PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT,

USING HOUSEHOLDER TRANSFORMATIONS,

USING CHOLESKYS DECOMPOSITION AND PROVIDES DATA FOR CALCULATING THE DETERMINANT ANE

USTNG CHOLESKY DECOMPOSITION,

PROVIDED TRiANGULAR DECOMPOS!TION USING CHOLESKY DECOMPOSITION HAS BEEN CARRIED OUT

PROVIDED THE MATR!X HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE RQOT ROUTINE,

WiTHOUT USING THE SQUARE ROOT ROUTINE,

US ING SQUARE ROOT FREE DECOMPOSITION,

RIPPLE IN CURVATURE,
RKiNIT BUT RUNS FASTER AND REQUIRES MORE STORAGE,

ROMBERG INTEGRAT]

ON,

RCOTS OF THE DENOMINATOR POLYNOMIAL AND THE COEFFICIENTS OF THE NUMERATOR POLYNOMIAL,
ROOTS THROUGH FORWARD ERROR ANALYSIS,
ROOTS THROUGH FORWARD ERROR ANALYSIS,

ROOT; THE DETERM)

NANT 1S AVAILABLE,

ROOT FREE DECOMPOSITION HAS BEEN CARRIED OUT,
RCOT FREE DECOMPOSiITION HMAS BEEN CARRIED QUT,
ROOT FREE DECOMPOSITION,

ROOT FREE DECOMPOSITION,

ROOT OF A COMPLEX ARGUMENT,

ROOT OF A DOUBLE

PRECIS1ON REAL ARGUMENT,

ROOT OF A REAL ARGUMENT,
ROOT OF A REAL ARGUMENT,

ROOT ROUTINE.,
ROOT ROUTINE,
ROOT ROUT!INE
ROOT ROUTINE,

ROUNDING ERROR IN THE EVALUATION OF A COMPLEX POLYNOMIAL NEAR ONE OF ITS ROOTS THROUGH FORWARD 'ERROR
ROUNDING ERROR IN THE EVALUATION OF A POLYNOMIAL WITH REAL COEFF|CIENTS NEAR ONE OF ITS COMPLEX ROCT
ROW EQUILIBRATICN] ALSO COMPUTES ITS DETERMINANT,

ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE CDECOM,

ROW EQUILIBRATION HAS BEEN CARRIED OUT}; THE DETERMINANT AND COND{|TION NUMBER ARE AVAILABLE,

ROW EQUILBRATION,

THM WITH PARTLAL PIVOTING AND

THM WiTH
THM W|TH
THM Wi TH
THM Wi TH
THM WiTH
THM WITH

PART I AL
PARTI AL
PART | AL
PaRTI AL
PARTI AL
PARTI AL

PiVOTING
P:VOTING
P:VOTING
PIVOTING
PIVOTING
PiVOTING

AND
AND
AND
AND
AND
AND

ROW EQUILVBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMB

ROW EQUILIBRATION; THE DETERMINANT IS AVAILABLE,

ROW EQUILIBRATICN HAS BEEN CARRI'ED OuT BY SUBROUTINE DECOM,

ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE DECOM,
ROW EQUILIBRATION HAS BEEN CARRIED OUT,

ROW EQUIL1BRATION, ’

ROW

EQUILIBRATION,
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F46SPDCOM
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F461TRSPS
F46SP I TRM
F16SP | TRS
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F46GLESOS



THM WITH PARTIAL P VOTING AND
THM WITH PARTIAL P'VOTING AND
THM WITH PARTIAL PIVOTING AND
THM WITH PARTIAL PIVOTING AND
THM WITH PARTIAL PiVOTING AND
RS wHICH MAY BE A COLUMN OR A
INITE INTERVAL USING SIMPSONS
ATES THE INTEGRAL BY SiMPSONS
UATIONS USING A VARIABLE STEP
PERFORMS CHI SQUARE TEST FOR
COMPUTES THE NUMBER CF
COMPUTES THE NUMBER CF

RO OF DIFFERENT LENGTHS FOR A
D OBSERVED) UP ANG DOWN FOR A
TH INTEGER COMPONENTS TIMES A
OMIAL BY LEHMERS METHOD USING
UATIONS USTNG THE GENERAL1ZED
TIC INTEGRAL OF THE FIRST AND
TIC INTEGRAL OF THE F!RST AND
SEL FUNCTIONS OF THE F:RST OR
IF1ED BESSEL FUNCTIONS OF THE
CE OF BESSEL FUNCTIONS OF THE
MONOTONE ABSC|SSAS REQUIRED;
OLVES THE EIGENSYSTEM FOR THE
OR LR ITERATION OR THE STURM
AGONAL MATR!X USING THE STURM
AGONAL MATRIX USING THE STURM
F THE DER!VAT(VE OF A FOUR:FR
ION BY EXPANSION IN CHEBYSHEV
RFORMS SMOOTHING OF A FOURIER
FFICIENTS OF A FINITE FOUR'ER
S COEFFICIENTS OF THE FOURIER
FFICIENTS OF THE BEST FOURIER
ONE OF a

SYSTEM FOR A BANDMATRIX WiTH
SYSTEM FOR A BANDMATR:!X WiTH
SYSTEM FOR A BANDMATRIX WITH
SYSTEM FOR A BANDMATRIX WITH
SYSTEM FOR A BANDMATRIX WITH
TIVE DEFIN;TE BANDMATRIX WITH
SYSTEM FOR A BANDMATRIX WiTH
SYSTEM FOR A BANDMATRIX WiTH
SYSTEM FOR A BANDMATRIX W.TH
TIVE DEFINITE BANDMATRIX WITH
TIVE DEFINITE BANDMATRIX WiTH
TIVE DEFINITE BANDMATRIX WITH
TEM FOR A COMPLEX MATRIX WITH
TEM FOR A COMPLEX MATRiX WiTH
TEM FOR A COMPLEX MATRIX WiTH
TEM FOR A COMPLEX MATR!X WiTH
SOLVES A LINEAR SYSTEM WiTH
FINEMENT A LINEAR SYSTEM wiTH
SOLVES A LINEAR SYSTEM WiTH
FINEMENT A LINEAR SYSTEM WiTH
E DEFINITE LiNEAR SYSTEM WiTH
E DEFINITE LiNEAR SYSTEM WiTH
AR LEAST SQUARES PROBLEM WiTH
NEMENT A LINEAR SYSTEM HAViNG
DEFINITE LiINEAR SYSTEM HAVING
DEFINITE LINEAR SYSTEM HAVING

ROW EQUIL I'BRAT!ON,

ROW EQUIL IBRATION,

ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NUMBER OF THE MATRI
ROW EQUILIBRATION AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NUMBER OF THE MATRI
ROW EQUIL!BRATION HAS BEEN CARRIED OUT,

ROW OF A MATRIX USING E!THER SINGLE OR DOUBLE PRECISION} OTHER SUBROUTINES ARE VIPA, VIPS, V{PC, VIP
RULE,

RULE OF A BOUNDED FUNCTION OF ONE VARIABLE OVER A FINITE
RUNGE KUTTA TECHENIQUE EFFICIENT FOR LOW ACCURACY WORK,
RUNS UP AND DOWN,

RUNS (EXPECTED !N SYMMETRIC DISTRIBUTION AND OBSERVED) ABOVE AND BELOy ZERO OF DIFFERENT LENGTRS FOR
RUNS (EXPECTED AND OBSERVED) UP AND DOWN FOR A SAMPLE,

SAMPLE,

SAMPLE,

SCALAR FUNCT'ON,

SCHURS METHOD FOR 1SOLATING ONE ZERO,

SECANT METHOD MODIFYING THE STEP VECTOR WHEN THE SET OF GUESSES TEND TO BECOME LINEARLY DEPENDENT OR
SECOND KINDS BY USING LANDENS TRANSFORMATION,

SECCHD KINDS RY USING LANDENS TRANSFORMATION,

SECOND KiNDS FOR COMPLEX ARGUMENT AND COMPLEX ORDER,

SECOND KiND FOR REAL ARGUMENT BY USING POLYNOMIAL APPROXIMAT|ONS AND THE SUBROUTINE BESNIS,

SECOND KIND FOR POS'TIVE REAL ARGUMENT AND INTEGER ORDERS,
SECOND CRDER CONTINUITY,

SECOND CRDER DIFFERENTIAL EQUATION AxX,

SEQUENCE METHOD; EIGENVECTORS ARE FOUND BY MEANS OF INVERSE
SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MINORS,
SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MINORS,
SER!'ES, GIVEN THE COEFFICIENTS OF THE TR|GONOMETRIC POLYNOMIiAL,

SERIES,

SER:ES BY USE OF LANCZOS SIGMA FACTORS,

SER'ES WITH A LINEAR TREND THROUGH A SET OF EQUISPACED POINTS,

SER'ES WITH A LINEAR TREND THAT IS OBTAINED B8Y INTEGRATION OF A TRIGONOMETRIC POLYNOMIAL,

SER'ES WITH LINEAR TREND, IN THE LEAST SQUARES SENSE, TO A SET OF EQUISPACED DATA,

SET OF SUBROUTINES TO CALCULATE THE INNER PRODUCT OF TWO VECTORS WHICH MAY BE A COLUMN OR A ROW OF A
SEVERAL RiGHMT=HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION W THOUT PIVOTING HAS BEEN CARRIED QUT
SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING AND [MPLICIT EQ
SEVERAL RIGHT.MAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARR!ED OUT
SEVERAL RIGHT-MAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WiTH PARTIAL PIVOTING AND IMPLICIT EQ
SEVERAL RIGHT-HAND SIiDES USING GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUIL IBRATION
SEVERAL RIGHT.MHAND SIDES PROVIDED TRIANGULAR DECQMPOSITION By CHOLESKYS METHOD HWAS BEEN CARRIED OUT,
SEVERAL RIGHTHAND S!DES USING GAUSSHAN ELIMINATION WITHOUT P!VOTING AND GIVES AN ESTIMATE FOR THE A
SEVERAL RIGHT<HAND SIDES USING GAUSSIAN ELIMINATION WITH PART!AL PIVOTING AND IMPLICIT EQUILIBRATION
SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVOTING} THE DETERMINANT 'S ALSO AVAILA
SEVERAL RIGHT.HAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION,

SEVFRAL RIGHTLHAND SIDES PROVIDED TRIANGULAR DECOMPOSITION By CHOLESKYS METHOD MAS BEEN CARRIED OUT,
SEVERAL RIGHTwHAND SIDES USING CHOLESKYS METHOD FOR THE TRIANGULAR DECOMPOSI|ITION,

SEVERAL RIGHT~HAND S1DES PROVIDED THE TRIANGULAR DECOMPOS|T|ON FOLLOWING CROUTS ALGORITHM WITH PART!
SEVERAL RIGHTHAND SiDES PROVIDED THE TRIANGULAR DECOMPOSTITION ACCORDING TO CROUTS ALGORITHM WITH PA
SEVERAL RIGHT=HAND SiDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION,

SEVERAL RIGHT=-HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIA
SEVERAL RIGHT=HAND S:iDES PROVIDED TRIANGULAR DECOMPOSiTION ACCORDING TO CROUTS ALGOR|ITHM WI!TH, PART!
SEVERAL RIGHT=HAND SIDES PROVIDED TRIANGULAR DECOMPOS|[TION WiTH PARTIAL PIVOTING ACCORDING TO CROUT
SEVERAL RIGHT=HAND SIDES ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOT!ING AND ROW EQUILIBRATION,
SEVERAL RIGHThRAND SIiDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PRO
SEVERAL RIGHT-HAND SIDES PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROV
SEVERAL R!GHT-HAND SIDES PROVIDED SQUARE ROOT FREE DECOMPOSiTION MAS BEEN CARRIED OUT,

SEVERAL RIGHT~-HAND SIiDES USING HOUSEHOLDER TRANSFORMAT|ONS,

SEVERAL RIGHTHAND SIDES USING CHOLESKYS DECOMPOSITION AND PROVIDES DATA FOR CALCULATING THE DETERMI
SEVERAL RIGHT~MHAND SiDES USING CHOLESKY DECOMPOSITION,

SEVERAL RI1GHT.HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOS|TION HAS BEEN CAR

INTERVAL OF EQUISPACED VALUES,

ITERATION,
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Cléevip
F4{5SIMPRC
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F17RUNSAB
F17RUNSUD
F17RUNSAB
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DEFINITE LINEAR SYSTEM HMAVING
DEFINITE LINEAR SYSTEM HAVING
DEFINITE LINEAR SYSTEM HAVING
FANGULAR LINEAR SYSTEM MAVING
JANGULAR L INEAR SYSTEM HAVING
TH PERIODIC RAYLE iGH QUOTIENT
RIER SERIES BY USE OF LANCZ0S
X MATRIX BY MEANS OF DIAGONAL
OVER A FINITE INTERVAL USING
EVALUATES THE NTEGRAL BY
EVALUATES THE

CONSTRUCTS COEFFICIENTS OF A
EVALUATES A

COMPUTES THE

COMPUTES THE DOUBLE PRECISiON
COMPUTES THE COMPLEX

COMPUTES THE HYPERBOLIC
PERFORMS A

ROW OF a4 MATRIX USING E{THER
ARIANCES, AND COEFFICIENTS OF
T AND NP FUNCTION VALUES; THE
PERFORMS

PERFORMS

Fi1Ts A
REFINES iTERATIVELY a
DIRECT!ON AS A LEAST SQUARES

SEVERAL RIGHT-HAND SIDES PROVIDED THE MATR|X HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUTI
SEVERAL RIGHT-HAND SIDES WITHOUT USING THE SQUARE ROOT ROUTINE,

SEVERAL RIGHT-HAND SIDES USING SQUARE ROOT FREE DECOMPOS|TION,

SEVERAL RIGHT~HAND SIDES,

SEVERAL RIGHT«HAND SI1DES,

SHiFTING COMBINED WITH A STABLE, BAND~PRESERVING DEFLATION TECHN|QUE,

S1GMA FACTORS.,

SIM'LARITY TRANSFORMATIONS,

SIMPSONS RULE,

SIMPSONS RULE OF A BOUNDED FUNCTION OF ONE VARJABLE OVER A FINITE INTERVAL OF EGUISPACED VALUES,
SINE AND COSINE |NTEGRALS USING CHEBYSHEV APPROXIMATIONS,

SUNE POLYNOMIAL WiTH A LINEAR TREND GIVEN, A SET OF (ABSCISSA, ORDINATE) PAIRS WITH ARBITRARY SPACING
SINE POLYNOMIAL AT A GIVEN POINT,
SINE TRIGONOMETRIC FUNCTION,

SINE TRIGONOMETRIC FUNCTION,

SINE TRIGONOMETRIC FUNCTION,

S!'NE TRIGONOMETRIC FUNCTION,
SINGLE COMPLEX QR JTERATION ON A HESSENBERG MATRIX HAVING REAL SUBDIAGONAL ELEMENTS,

SINGLE CR DOUBLE PRECISION; OTHER SUBROUTINES ARE VIPA, VIPS, VIPD, VIPDA, VIPDS, INRPRD, PRDSUM,
SKEWNESS AND KURTOSIS FOR MULTIPLEXED ARRAYS,

SMOCTHING S OBTAINED BY EVALUATING THE LEAST SQUARES POLYNOM'AL OF DEGREE N BASED ON SUCCESSIVE PO!
SMOOTHING OF A FOURIER SERIES BY USE OF LANCZOS S|GMA FACTORS,

SMOOTHING OF A TWO D1IMENS|ONAL DATA SET BY MOVING EACH OF THE INPUT DATA POINTS TOWARD A CUBIC THROU
SMOOTHS A SET OF DATA; FACH SMOOTHED ORDINATE (S OBTAINED AS A WEIGHTED AVERAGE OF A SPECIFIED NUMBE
SMOOTH SURFACE WITH CONTINUOUS FIRST PARTIAL DERIVATIVES TO A SET OF POINTS DEFINED OVER A RECTANGUL
SOLUTION OF A LEAST SQUARES PROBLEM PROVIDED DECOMPOS!ITION WiTH HOUSEHOLDERS METHOD HAS BEEN CARRIED
SOLUTION OF THE SYSTEM OF LINEAR EQUATIONS IN THE NEWTON RAPHSON METHOD AND SWITCHING TO TME STEEPES
SOLVES AN OVER DETERMINED SYSTEM OF NONLINEAR EQUATIONS BY CALCULATING A STEP VECTOR DIRECTION AS A
SQLVES AN UPPER TRIANGULAR LINEAR SYSTEM,

SOLVES AN UPPER TRIANGULAR LINEAR SYSTEM MAVING SEVERAL RIGHT=HAND SIDES,

SOLVES LEAST SQUARES PROBLEM PROVIDED DECOMPOSITION WiTH HOUSEHOLDERS METHOD HAS BEEN CARRTED OUT,
SOLVES ILEAST SQUARES PROBLEM FOR A COMPLEX SYSTEM USING THE METHOD OF CONJUGATE GRADIENT,

SOLVES
SOLVES

POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT=HAND SIDES WITHOUT USING THE SQUARE RO
RECTANGULAR LINEAR REAL SYSTEM N THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRA

A

A
SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WIiTH SEVERAL RIGHT=-MAND SIDES PROVIDED THE TRIANGULAR DECOMP
SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT«HAND SIDES PROVIDED THE TRIANGULAR CECOMP
SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT~HAND SIDES USING GAUSSIAN ELIMINATION WIT
SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT~MAND SIDES USING GAUSSIAN ELIMINATICN W T
SOLVES A LINEAR SYSTEM FOR A SYMMETRIC POS|TiVE QEFINITE BANDMATRIX WiTH SEVERAL RIGHT=HAND SIDES PR
SOLVES A L INEAR SYSTEM FOR A SYMMETRIC POS|TIVE REFINITE BANDMATRIX W{TH SEVERAL RIGHT«HAND SIDES US
SOLVES A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT«HMAND SIDES PROVIDED THE TRIANGULAR DE
SOLVES A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT=HAND SIDES US!NG CROUTS ALGORITHM WIT
SOLVES A LINEAR SYSTEM WITH SEVERAL RIGHT=HAND SIDES PROVIDED TRIANGULAR DECOMPOS|TION ACCORDING TO
SOLVES A LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPQSITION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL
SOLVES A LINEAR SYSTEM WITH SEVERAL RIGHT«HAND SIDES ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIV
SOLVES A LINEAR SYSTEM ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION,
SOLVES A LINEAR SYSTEM USING CROUTS ALGORITHM w!TH PARTIAL PIVOTING W|THOUT ROW EQUILIBRATIONS THE P
SOLVES A LINEAR SYSTEM USING CROUTS ALGORITHM wITHOUT PIVOTING; THE DETERMINANT IS AVAILABLE,
SOLVES A LINEAR LEAST SQUARES PROBLEM USiING HOUSEMOLDER TRANSFORMATIONS, \
SOLVES A LINEAR LEAST SQUARES PROBLEM W!ITH SEVERAL RIGHT=~HAND SIDES USING HOUSEMOLDER TRANSFORMATION
SOLVES A LLINEAR SYSTEM FOR A LARGE SPARSE RECTANGULAR MATRIX USING THE CONJUGATE GRADIENT METHOD,
SOLVES A L INEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOS!ITION WITH PARTIAL PIVOTING HAS BEE
SOLVES A LLINEAR SYSTEM FOR A TRIDITAGONAL MATRIX USING PARTIAL PIVOTING,
SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITHOUT PIVOTING MWAS BEEN CAR
SOLVES A LINEAR SYSTEM FOR A TRID!IAGONAL MATRIX WITHOUT PIVOTING,
SOLVES A LOWER TRIANGULAR LINEAR SYSTEM,
SOLVES A LOWER TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES,
SOLVES A POSITIVE DEFINITE LINEAR SYSTEM PROVIDED THE MATRIX HAS BEEN DECOMPOSED W|THOUT USING THE S
SOLVES A POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHTeHAND SIDES PROVIDED THE MATRIX HAS BEE
SOLVES A POSITIVE DEFINITE LINEAR SYSTEM W|THOUT USiNG THE SQUARE ROOT ROUTINE,

A

A
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UBROUTINE TO MULTIPLY A LARGE
0 MULTIPLY A TRANSPOSED LARGE
S A LINEAR SYSTEM FOR A LARGE
COMPUTES A SWQUENCE OF
CONSTRUCTS A FiFTH DEGREE
CONSTRUCTS A NONL.NEAR CUBIC
CONSTRUCTS CUB!C

OI!NTS DETERMINED BY THE cUB'C
TRUCTS, IN THE SENSE OF LEAST
. FITS, N THE SENSE OF LEAST
SYSTEM IN THE SENSE OF LEAST
FINDS By THE METHOD OF LEAST
CONSTRUCTS A LEAST

CONSTRUCTS A LEAST

AINED BY EVALUATING THE LEAST
SOLVES A LEAST

SOLVES A LEAST

ATIVELY a4 SOLUTION OF A LEAST
SOLVES A L:MEAR LEAST

SOLVES A LiINEAR LEAST

SOLVES SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM USING CHOLESKY DECOMPOS|TION,

SOLVES SYSTEM OF NONLINEAR EQUATIONS BY USING THE NEWTON RAPHSON METHOD 1IN THE F{RST !TERATICN AND
SOLVES SYSTEM OF NONLINEAR EQUATIONS BY CALLING SUBROUTINE QNWT A NUMBER OF TIMES WiTH DIFFERENT |
SCLVES DIFFERENTIAL EQUATIONS AS PROCEDURE RKINIT BUT RUNS FASTER AND REQUIRES MORE STORAGE,
SOLVES LINEAR BCUNDARY VALUE PROBLEMS IN A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS, WHERE THE SOLU
SOLVES NONLINEAR BOUNDARY VALUE PROBLEMS IN ORDINARY DIiFFERENTIAL EQUATIONS BY COMBINING AN INJTIAL
SOLVES THE EIGENSYSTEM FOR THE SECOND ORDER DIFFERENTIAL EQUATION AwX,
SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WiTH SEVERAL RIGHT«HAND SIDES PROV
SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX W!TH SEVERAL RIGHT=HAND SIDES PROV
SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR BANDMATRIX W!TH SEVERAL RIGHT=HAND SIDES USN
SOLVES WITH 1TERATIVE REFINEMENT A LINEAR SYSTEM FOR SYMMETR!C PQSITIVE DEFINITE BANDMATRIX WiTH §
SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR BANDMATRIX WiTH SEVERAL RIGHT~HAND SIDES USIN
SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH §
SOLVES WiTH {TERATIVE REFINEMENT A LINEAR SYSTEM FOR COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES
SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR COMPLEX MATRIX WITH SEVERAL RIGHT~HAND SIDES
SOLVES WITH I1TERATIVE REFINEMENT A LINEAR SYSTEM WITH SEVERAL RIGHT~HAND SIDES PROV!IDED TRIANGULAR
SOLVES WITH 1TERATIVE REFINEMENT A LINEAR SYSTEM PROVIDED TR|ANGULAR DECOMPOSITION WITH PARTIAL PIVO
SOLVES WITH I1TERATIVE REFINEMENT A LINEAR SYSTEM WITH SEVERAL RIGHT=-HAND SIDES USING CROUTS ALGORIT
SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGOR!THM WITH PARTIAL PIVOTING AND RO

A

A

A

A

A

A

A

A

A

A

A
SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT=-HAND SIDES USING CMOLESKY DE
SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY
SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES PROVIDED TRIANGUL
SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A PREDICTOR CORRECTOR METHOD OF
SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNI
SOLVES A SYSTEM OF -FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TEC
SOLVES A SYSTEM OF NONL!NEAR EQUATIONS BY COMPYTING IN EACH |TERATION A CORRECTION VECTOR TO THE TR!
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SOLVES W!TH ITERATIVE REFINEMENT SYMMETR1IC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED DECOMPOSITION

SOLVES WiTH ITERATIVE REFINEMENT SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT=HAND
SOLVES WITH ITERATIVE REF|NEMENT SYMMETRIC POS{TIVE DEFINITE LINEAR SYSTEM PROVIDED SQUARE ROOT FR
SOLVES WITH ITERATIVE REFINEMENT SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL R|IGHT=HAND
SOLVES W!TH ITERATIVE REFINEMENT LINEAR SYSTEM USING CROUTS ALGORITHM WiTH PARTIAL PIVOTING wiTHOU
SOLVES wiTH ITERATIVE REFINEMENT LINEAR SYSTEM USING CROUTS ALGOR!THM WITHOUT PIVOTING AND PROVILCE
SOLVES WITH !TERAT!IVE REFINEMENT LINEAR LEAST SQUARES PROBLEM USING MOUSEHOLDERS METHOD,

SOLVES WITH ITERATIVE REFINEMENT L. INEAR SYSTEM USING CHOLESKY DECOMPOS|TION AND PROVIDES DATA FOR
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SQUARES PROBLEM FOR A COMPLEX SYSTEM USING THE METHOD OF CONJUGATE GRADIENT,

SQUARES PROBLEM PROVIDED DECOMPOS!TION WITH HOUSEWOLDERS METHOD HAS BEEN CARRIED QUT,

SQUARES PROBLEM USING HOUSEHOLDER TRANSFORMATIONS,

SQUARES PROBLEM WiTH SEVERAL RIGHT=HAND SIDES USING HOUSEMWOLDER TRANSFORMATIONS,

F16PDLBOS
FL6PDLSOM
F16PDSFBS
FL6PDSFEM
FLl4BLCKDO
FL14DRATEX
FL4RKINIT
F18NEWT
FLB8LINSYS
F18NONL IO
FL8ONWT
FLB8RONWT
F14NRKUS
F14L INBVD
F148vD
FLl6DEIG
F16B1 TRNP
F16BI TERM
FLEBITRFM
F16BITRPD
F16BITWNP
FL6BPDITM
FL6CG I TRF
FL6CITERF
F161TERFM
F16iTERFS
F16GITRFM
Fi6GITRFS
F161TRPDM
F16 1 TRPDS
F16 | TRSPM
F16|TRSPS
FL6L | TWNE
FLEL I TWNP
FLO6LSQSIT
F16PD!TRS
FLéPD I TRM
F16SPiTRMm
F165P | TRS
F17VARORD
Cl16SMvX
ClESMTVX
F16SCONG
F1388y
FL5SPLINE
F15UNCSPL
Fi5COMCUB
Fi5smocug
F1BRATL
F150RTHFT
FL6FCGM2
Fi5FLSQFY
Fi8FDLSG
F16FCLEQ
F{5SMOOTH
FL6BSUBHY
FLOCCONGR
F16 1 TRLSQ
FL6LSQHTS
FL6LSQHTM



IVE REFINEMENT A LINEAR LEAST
TH LINEAR TREND, IN THE LEAST
P VECTOR DIRECTION AS A LEAST
» COMPUTES CH!
TRIBUTION FUNCTION OF THE CKI
FACTORS W!THOUT CALCULATING A
FINITE LINEAR SYSTEM PROVIDED
Al. RIGHT-HAND SIDES PROVIDED
DEFINITE LINEAR SYSTEM USING
EVERAL RIGHT=HAND SIDES USING
COMPUTES THE

COMPUTES THE

COMPUTES THE

DECOMPOSED WITHOUT USING THE
DECOMPOSED WITHOUT USING ThE
NEAR SYSTEM WITHOUT USING THE
~HAND SIDES WITHOUT USING THE
. COMPUTES CH!I
PERFORMS CH1

PERFORMS CHI

PERFORMS CH1

COMPUTES MEANS,

OMPLEX POLYNOMIAL BY APPLY!NG
N METHOD AND SWITCHING TO THE
VECTOR DIRECTION THE OPTIMAL
DISTRIBUTION FUNCTION OF THE
DISTRIBUTION FUNCTION OF THE
TRIDIAGONAL MATRIX USING THE
TRIDTAGONAL MATRIX USING THE
RATION OR LR ITERATION OR THE
HESSENBERG MATRIX HAVING REAL
CALCULATES a

PERFORMS THE DESIREP BACK
PUTES THE VECTOR OF MEANS AND
MATRIARCH SUBROUTINE TO
MATRIARCH SUBROUTINE TO
COMPUTES THE DOUBLE PRECISION
PUTES THE COEFFICIENTS OF THE
PUTES THE COEFFICIENTS OF THE
IS BASED ON THE PRINCIPLE OF
FITS A SMOOTH

ASSOCIATED EIGENVECTORS OF A
€ NUMBER OF RUNS (EXPECTED IN
UE EIGENVECTOR PA(R OF A REAL
O SOME EIGENVECTORS OF A REAL
RAYLEIGH QUOTIENT FOR A REAL
TRANSFORMS A

Y THE CHOLESKY METHOD A REAL,

INEMENT A LINEAR SYSTEM FOR A
CINEMENT A LINEAR SYSTEM FOR A
SOLVES A LINEAR SYSTEM FOR A
SOLVES A LINEAR SYSTEM FOR A
CECOMPOSES A

S WiITH +1TERATIVE REFINEMENT A
S WITH 1TERATIVE REFINEMENT A
S WiTH 1 TERATIVE REFINEMENT A
S WITH ITERATIVE REFINEMENT A
SOLVES A

SOLVES A

SOLVES A

SQUARES PROBLEM USING HOUSEMOLDERS METMOD,

SQUARES SENSE, TO A SET OF EQUISPACED DATA,
SQUARES SOLUTION OF THE SYSTEM OF LINEAR EQUATIONS
SQUARE CUMULATIVE DISTRIBUTION FUNCTION,

SQUARE DISTRIBUTION,

SQUARE ROOT; THE DETERMINANT 1S AVAILABLE,

SQUARE ROOT FREE DECOMPOSIT|ON HAS BEEN CARRIED QUT,
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SQUARE ROOT OF A DOUBLE PREC!SION REAL ARGUMENT,
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SOLVES A SYMMETR!IC POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT«HAND SIDES PROVIDED TRIANGULAR DECOMP FL6PDSFBM
DECOMPOSES A SYMMETRIC POSITIVE DEFINITE MATRIX INTO LOWER TRIANGULAR, DIAGONAL AND UPPER TRIANGULAR PACTORS WITH F16SPDCOM
LCULATES ALL EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING M F16SERPAR
A SUBSET OF EIGENVALUES OF a SYMMETRIC TRIDIAGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MI F16SEPARZ
LCULATES ALL EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING LR (TERATION, F16SYMLR
LCULATES ALL EIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX US!NG QR |TERATION, F16SYMQR
PERFORMS CHI SQUARE TEST FOR SYMMETRY ABOUT ZERO, F17CHIRAB
VES A LOWER TRIANGULAR LiNEAR  SYSTEM, FL16TRILOM
ES AN UPPER TRIANGULAR LIiNEAR SYSTEM, FL6TRIUPM
SOLVES A LINEAR SYSTEM ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION, F16GLESOS
SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT=HAND S|DES PROVIDED THE TRIANGULAR DECOMPOSITION WITHOUT FL6BFBANP
SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHTHAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PAR F4L6BFBSUM
I TERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT-HAND SiDES PROVIDED THE TRIANGULAR DECOMPOSITION WITHOUT F1681TRNP
ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT~-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION WITH PAR F16B1TERM
ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT=MAND SIDES USING GAUSSIAN ELIMINATION WITH PARTIAL PiVOT! F16BITRFM
ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT=-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVOTING AN FL16BITWNP
SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHTWHAND SIDES USING GAUSSIAN ELIMINATION WITH PARTIAL PIVOT! F16BLESOM
SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT=HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVOTING} T F16BLSWNP
SOLVES A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION FOLL F16CFBSUM
ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A COMPLEX MATRIX WiTH SEVERAL RIGHT.HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION ACCO F16C6 | TRF
SOLVES A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHTHAND SIDES USING CROUTS ALGOR{ITHM WITH PARTIAL PIVOTI F16CGLESM
ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT<HAND SIDES PROViDED TRJANGULAR DECOMPOSITION ACCCRDIN F16CITERF
SOLVES A LiNEAR SYSTEM FOR A LARGE SPARSE RECTANGULAR MATRIX USING THE CONJUGATE GRADIENT METHOD, F16SCONG
JTERATIVE REF INEMENT A LINEAR SYSTEM FOR A SYMMETRIC POS!TIVE DEFINITE BANDMATRIX WiTH SEVERAL RIGHT<HAND SIDES PROVIDED TRIANGULA F16BI1TRPD
ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT«HAND SIDES USING CHOLESKYS ME FL16BPDITM
SOLVES A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT=HAND SIDES PROVIDED TRIANGULA F16BFDFSB
SOLVES A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRiIX WiTH SEVERAL RIGHT=HAND SIDES USING CHOLESKYS ME F16BPDSOM
SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITH PARTIAL PIVOTING HAS BEEN CARRIED CUT, F16TROF BM
SOLVES A LiNEAR SYSTEM FOR A TRID!AGONAL MATRIX USING PART(AL PIVOTING, FL6TRDSOM
SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOS{TION WITHOUT PIVOTING HAS BEEN CARRIED OUT, F16TRDSUB
SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX WiITHOUT PIVOTING, F16 TRDWNP
ITERATIVE REFINEMENT A LINEAR SYSTEM HAVING SEVERAL RIGHT«HAND SIDES USING CHOLESKYS DECOMPOSITION AND PROVIDES DATA FOR CALCULAT! F16PD I TRM
TRIC POS|TIVE DEFIN'TE L{NEAR SYSTEM HAViNG SEVERAL RIGHT«HAND SIDES USING CHOLESKY DECOMPOSITION, F16PDLSOM

TRIC POSITIVE DEFINITE LINEAR SYSTEM HWAVING SEVERAL RIGHT=HAND SIDES PROVIDED TRIANGULAR DECOMPOSIT|ON USING CHOLESKY DECOMPOSITIO F48PDSFBM
£ES A POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT«HAND SIDES PROV!IDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQU F46SPDFBS

ES A POS|TIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT=HAND SIDES W{THOUT USING THE SQUARE ROOT ROUTINE, FL168PDSOS
NT A POS|TIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT~HAND SIDES USING SQUARE ROOT FREE DECOMPOSITION, F16SP|TRS
VES A LOWER TRIANGULAR LiINEAR SYSTEM HAVING SEVERAL RIGHT=HAND SIDES, FL6TRILOS
ES AN UPPER TRIANGULAR L1INEAR SYSTEM HAVING SEVERAL RIGHT-HAND SIDES, FL6TRIUPS
VES A RECTANGULAR L INEAR REAL SYSTEM IN THE SENSE OF LLEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD, FL6FCGM2
SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A PREDICTOR CORRECTOR METHOD OF EIGHTH O Fi4BLCKDQ
SOLVES A SYSTEM OF FIRST ORDER ORDiNARY DIFFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHN|QUE BASED F44DRATEX
SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENT!AL EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TECHWNIGUE EF FL4RKINIT
SOLVES A SYSTEM OF LINEAR EQUATIONS OR SEVERAL SYSTEMS wiTH THE SAME LEFT HAND SIDE BY GAUSSIAN ELIMINATION VU FLBLINSYS

SolLvEs a SYSTEM OF NONL INEAR EQUATIONS BY COMPUTING IN EAQH ITERATION A CORRECTION VECTOR TO THE TRIAL SOLUT! FLBNEWT
' SOLVES A SYSTEM CF NONLINEAR ALGEBRAIC EQUATIONS USING THE GENERALIZED SECANT METHOD MODIPYING THE STEP VECTO FLBNONL tQ

SOLVES AN OVER DETERMINED SYSTEM OF NONLINEAR EQUATIONS BY CALCULATING A STEP VECTOR DIRECT!ION A8 A LEAST SQUARES SOLUTION OF F18NRSG

SOLVES A SYSTEM CF NONLINEAR EQUATIONS BY USING THE NEWTON RAPHSON METHOD IN THE FIRST ITERATION AND BY UPDAT FLBANWT

SOLVES A SYSTEM OF NONL INEAR EQUATIONS BY CALLING SUBROUTINE @NWT A NUMBER OF TIMES WIiTH DIFFERENT INIT1AL GV FLBRANWT
BOUNDARY VALUE PROBLEMS IN A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS, WHERE 'THE SOLUTION S BASED ON THE PRINCIPLE OF SUPERPOS! FL4LINBVD
SOLVES A LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION ACCORDING TQ CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW FL6FBSUBS
ITERATIVE REFINEMENT A LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOTING ACCORDING TO CROUTS ALGORITHM HAS BEE FL61TERFS
TRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED DECOMPOSITION WITH CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROVIDES DATA FOR ESTIM F16 I TRPDM

TRIC POS|TIVE DEFINITE LINEAR SYSTEM PROVIDED SQUARE ROOT FREE DECOMPOSITION HAS BEEN CARRIED oOUT, Fi6 1 TRSPM
TRIC POS|TIVE DEFINITE LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSITION HAS BEEN CARRIED OUT, FL6PDSFBS
ES A POSITIVE DEFINITE LINEAR SYSTEM PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE SQUARE ROOT ROUTINE, FL16SPDF BM
ITERATIVE REFINEMENT A LINEAR SYSTEM USING CHOLESKY DECOMPOSITION AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND ESTIMATING FL6PD I TRS
TRIC POSiT|VE DEFINITE LINEAR SYSTEM USING CHOLESKY DECOMPOSITION, F16PDLSOS
I TERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATA FOR ESTI FL6GITRFS

SOLVES A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING W!ITHOUT ROW EQUILIBRATION) THE DETERMINANT (§ AV FLO6LESWNE
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TRANSFORMS A MATRIX INTO UPPER TRIANGULAR FORM BY HOUSEHOLDERS METHOD,

TRANSFORMS A REAL MATRIX TO UPPER HESSENBERG FORM USING WilKINSONS METHOD,

TRANSFORMS A REAL MATRIX INTO UPPER HESSENBERG FQRM ACCORDING TC HOUSEMHOLDERS METHOD,
TRANSFORMS A SYMMETRIC MATRIX INTO TRIDIAGONAL FORM US|ING HOUSEHOLDERS TRANSFORMATION,
TRANSFORM OF AN ARRAY OF COMPLEX FOURIER AMPLITURES, )

TRANSLATION IN THE ARGUMENT OF A REAL POLYNOMIAL,

TRANSLATION IN THE ARGUMENT OF A COMPLEX POLYNOMILAL,

TRANSPOSED COMPLEX MATRIX BY A COMPLEX VEGTOR,

TRANSPOSED LARGE SPARSE MATRIX BY A VECTOR ON THE RIiGHT,

TRANSPOSED MATRIX BY A VECTOR,

TRANSPOSED MATRIX BY A MATRIX ON THE R|GHT,

TRANSPOSE A RECTANGULAR MATRIX,

TREND, 1IN THE LEAST SQUARES SENSE,

TREND GIVEN A SET OF (ABSCISSA,

TO A SET OF EQUISPACED DATA.

ORDINATE) PAIRS WITH ARBITRARY SPACING,

v

FLOLESWNP
FL6L | TWNE
FL6LITUNP
F16SP i TRM
FL6SPDSOM
F16FBSUBM
FL16 | TERFM
FL6GLESOM
FL6GI TRFM
F161TRPDS
F161TRSPS
Fi5TBLUL
F15TBLU2
F15TBLUZ
F15HRMTY
FY{SACF |
F17NRMNO
C12TAN
C12TANH
F14DRATEX
FL14RKINIT
C12AL0G610
C120L0610
FL1FAFRAC
FLLFMFRAC
F17CHS0O
FL7CHIDST
F17CHIRUD
F17CHIRAB
FL7BRTLTYT
FL3CEL3
Fi3ELJ
FL3ELY
Fi5TBLUZ
F16LSQHTS
FL6LSQHTHM
FL6BALANC
F170P1RAY
F170P2RAY
FL3CEL3
FL3ELK
FL3ELF
FL6TRIDI
FL3ELS
FL6LATNTR
FL6TCDIAG
F16DCBAHT
F16MHSSN
F16SUBDIR "
F4L6TRIDI
F17HARM
F{3PTRAN
F13CPTRAN
CLOFMTVCX
CLESMTVX
CLEFMTVYX
CLOFMTMX
CL6FMTR
FLSFOURAP
F15S INSER



FOURITER SERIES WITH A LINEAR

FOURIER SERIES WITH A LINEAR
RIGHT=-HAND SiDES PROVIDED THE
RIGHT-HAND SIDES PROVIDED THE
RIGHT=HAND SI1DES PROVIDED THE
RIGHT=-HAND SiDES PROVIDED THE
RAL RIGHT=HAND SIDES PROVIDED
S"ING CHOLESKYS METHOD FOR THE
RAL RIGHT<HAND S1DES PROVIDED
SING CHOLESKYS METHOD FOR THE
RIGHT=HAND SiDES PROVIDED THE
RIGHT=~HAND SIDES PROVIDED THE
RAL RIGHT=HAND SIDES PROVIDED
ERMINANT OF A MATRIX PROVIDED
AL R!GHT-HAND SI1DES PROVIDED
LVES A LiNEAR SYSTEM PROVIDED
AL RIGHT-HAND SIDES PROVIDED
MENT A LINEAR SYSTEM PROVIDED

INVERSE OF A MATRIX PROVIDED
FINtTE L!NEAR SYSTEM PROVIDED
RAL RIGHT~HAND SIDES PROVIDED

NDMATRIX INTO UPPER AND LOWER
NOMATRIX INTO UPPER AND LOWER
NDMATRIX INTO UPPER AND LOWER
OMPOSES A COMPLEX MATRIX INTO
POSITIVE DEFINITE MATRIX INTO
DECOMPOSES A MATRIX INTO
DECOMPOSES A MATRIX INTO
DECOMPOSES A MATRIX INTO

L MATRIX INTO LOWER AND UPPER
SES A TRIDIAGONAL HMATRIX INTO
RANSFORMS. A MATRIX INTO UPPER
SOLVES A LOWER

SOLVES 4 LOWER

SOLVES AN UPPER

SOLVES AN UPPER

iNVERTS A LOWER

INVERTS AN UPPER

OUSEHOLDERS TRANSFORMATION 70
FORMS A SYMMETRIC MATRIX INTO
LL EFGENVALUES OF A SYMMETRIC
OF EIGENVALMES OF A SYMMETRIC
LL EtGENVALVES OF A SYMMETRIC
LL EIGENVALUES OF A SYMMETRIC
DECOMPOSES
SYSTEM FOR
SYSTEM FOR
DECOMPOSES
A LINEAR SYSTEM FOR
A LINEAR SYSTEM FOR A
THE HYPERBOLIC COSINE
COMPUTES THE SINE

TES THE DOUBLE PRECISION SINE
COMPUTES THE COMPLEX SINE
COMPUTES THE COSINE

S THE DOUBLE PRECISION COS'NE
COMPUTES THE COMPLEX COSINE
COMPUTES THE TANGENT

COMPUTES THE ARCS:NE

COMPUTES THE ARCOS:NE

SOLVES A LINEAR
SOLVES 4 LINEAR

»r>prr

SOLVES
. SOLVES
OMPUTES

TREND THAT

IS OBTAINED BY INTEGRATION

OF A TRIGONOMETRIC POLYNOMI|AL,

TREND THROUGH A SET OF EQUISPACED POINTS,

TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGUL AR
TRIANGULAR
TR ANGULAR
TREANGULAR
TRUANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TRIANGULAR
TR!DIAGCNAL
TRiIDIAGONAL
TRIDIAGCNAL
TRIDIAGONAL
TRIDIAGCNAL
TRiDJAGCNAL
TR!DIAGONAL
TRiDIAGCNAL
TRIDIAGONAL
TRIDIAGONAL
TR DIAGCNAL
TR!DTAGCNAL
TRIGONOVETR
TRIGONOMETR

DECQOMPOSITION WITHOUT PIVOT
DECOMPOSITION WITH PARTIAL
DECOMPOS!TION WITHOUT PIVOT
DECOMPOSITION WITH PARTIAL
DECOMPOSITION BY CHOLESKYS
DECOMPOS | TION,
DECOMPOSITION BY CHOLESKYS
DECOMPOS|TON,
DECOMPOSITION FOLLOWING CRO
DECOMPOSITION ACCORDING TO
DECOMPOSITION ACCORDING TO
DECOMPOSITION USING CROUTS
DECOMPOSITION ACCORDING TO
DECOMPOSITIOM ACCORDING TO
DECOMPOSITION WITH PARTIAL
DECOMPOSITION WITH PARTIAL
DECOMPOSITION USING CROUTS
DECOMPOSITION USING CHOLESK
DECOMPOSITION USING CHOLESK
FACTORS,
FACTORS;
FACTORS,
FACTORS
FACTCRS
FACTORS
FACTORS
FACTCRS
FACTCRS
FACTORS
FORM B8Y
L INEAR
LINEAR
L INEAR
L INEAR
MATRIX,
MATRIX,
FORM FOLLOWED BY E!THER QR
FORM USING HOUSEHOLDERS TR
MATRIX USING THE STURM SE@Q
MATRIX USING THE STURM SEQ
MATRIX USING LR ITERATION,
MATRIX USING QR |TERATION,
MATRIX INTO LOWER AND UPPE
MATRIX PROVIDED DECOMPOSIT
MATRIX
MATRIX

THE DETERMINANT IS

USING
USiNG
USING
US ING

CROUTS ALGOR!
CHOLESKYS MET
CROUTS ALGOR!
CROUTS ALGOR!
USING CROUTS ALGORI
USING PARTI!AL PIVOT
WITHOUT PIVOTING,
HOUSEHOLDERS METHOD
SYSTEM,

SYSTEM HAVING SEVERA
SYSTEM,

SYSTEM HAVING SEVERA

INTO TRJANGULAR FAC
MATRiX PROVIDED DECOMPOSIT
MATRIX WITHOUT PIVOTING,
IC FUNCTION,

1C FUNCTION,

TRIGONGMETRIC
TRIGONOMETRIC
TRIGONOMETR!IC
TRIGONOMETRIC
TRIGONQNMETRIC

TRIGONOMETR1C

TRIGOMOMETRIC

TRiGONOVETR!IC

FUNCTION,
FUNCTION.
FUNCTION.
FUNCTION,
FUNCTION,
FUNCTION,
FUNCTION,
FUNCTION,

ING HAS BEEN
PIVOTING AND

CARRIED OUT, POSSIBLY By SUBROUTINE BDCWNP,
IMPLICIT EQUILIBRATION HAS -BEEN CARRIED OUT, POSS
ING HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURAC
PIVOTING AND [MPLICIT EQUILIBRATION HAS BEEN CARRIED OUT AND 6
METHOD HAS BEEN CARRIED OUT.
METHOD HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BCHSDC,
UTS ALGORITHM WiTH PARTIAL PIVOTING AND ROW EQUILIBRAT|ON HAS
CROUTS ALGORITHM WiTH PARTIAL PIVOTING AND ROW EQUILIBRATION h
CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION h
ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN
CROUTS ALGQRITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION H
CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUIL|}ERATION H
PIVOTING AGCORDING TO CROUTS ALGOR|THM HAS BEEN CARRIED €UT AN
PIVOTING ACCORDING TO CROUTS ALGORITHM HAS BEEN CARRIED OUT AN
ALGORTTHM WITH PARTIAL PiVOTING AND ROW EQUILIBRATION HAS BEEN
vy DECOMPOSITION HAS BEEN CARRIED OUT,

¥ DECOMPOSITION HAS BEEN CARRIED QUT,

ALSO AVAILABLE,

THM W!TH PARTIAL PIVOTING AND RoW EQUILIBRATIONS
HOD) THE DETERMINANT 1S AVAILABLE,

THM WITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATIONS
THM WITHOUT PIVOTING; THE DETERMINANT 1S AVAILABLE,
THM WITH PARTIAL PiVOTING AND ROW EQUIL!BRATION; THE DETERMINA
ING,

AL SO COMPUTES

THE DETER

L RIGHT=HAND SIDES,

L RIGHT-HAND SIDES,

ITERATION OR LR
ANSFORMATIQN,
UENCE PROPERTY OF THE DETERMINANTS
UENCE PROPERTY OF THE DETERMINANTS

ITERATION OR THE STURM SEQUENCE METHCD; EIGEN
OF THE LEADING MINCRS,
OF THE LEADING MINORS,

R TR{ANGULAR FACTORS USING PARTIAL
TON WiTH PARTIAL PiVOTING HAS BEEN

PIVOTIING,
CARR{ED oOuT,

USING PARTHAL PIVOTING,

TORS WITHOUT PIVOTING,
ION WITHOUT PIVOTING HAS BEEN CARRIED 0OUT,

FL5TRGINT
FL5FOUR|
F16BFBANP
F16BFBSUM
F46BITRNP
F16BITERM
F16B1TRPD
FL{6BPDITM
F168PDFSH
FL168PDSOM
FL6CFBSUM
F16CGtTRF
F16CITERF
FL6DETERM
F16FBSUBM
F16FBSUBS
F16 | TERFM
F16 | TERFS
FL6ITERIN
F16PDSFBS
FL6PDSFBM
F16BCHSDC
FL6BDCWNP
FL6BDECOM
F16CDECOM
F16CHSDEC
F16DCWNE
F16DCWNP
F16DECOM
F16TRDCOM
FL6TRDCNP
FL6DCBHT
FL6TR{LOM
F16TRILOS
FL16TRIUPM
FL16TRUPS
FL6TRLOIN
FL18TRUPIN
F16TCDIAG
F16TRIDI
F16SEPAR
F16SEPAR2
F16SYMLR
F165YMQR
F16TRDCOM
F16TRDFBM
F46TRDSOM
FL16 TRDCNP
FL{6TRDSUB °
F16TRDUNP
F12COSH
CL12SIN
C120S1N
cl2cs N
c12c¢0s
ci2pcos
cl2ccos
CL2TAN
C12AB N
Cl12Aacos



COMPUTES THE ARCTANGENT
COMPUTES THE ARCTANGENT

E DOUBLE PRECISION ARCTANGENT
£ DOUBLE PRECISION ARCTANGENT
COMPUTES THE HYPERBOLIC S|NE
MPUTES THE HYPERBOLIC TANGENT
GIVEN THE COEFFICTENTS OF THE
OBTAINED BY INTEGRAT!ION OF a4
DISTRIBUTION FUNCTION OF THE
DISTRIBUTION FUNCTIOM OF TRE
LAGRANGIAN INTERPOLATION IN
TION FUNCTION OF THE STUDENTS
TION FUNCTION OF THE STUDENTS
DI!STRIBUTION FUNCTION OF THE
TION FUNCTION OF THE DISCRETE
DISTRIBUTION FUNCTION OF THE
TION FUNCTION OF THE DISCRETE
RATES RANDOM NUMBERS HAVING A
NERATES RANDOM NUMBERS HAVING
GENERATES

GENERATES

IN THE F.RST ITERATIOM AND gY
SCLVES AN

SOLVES AN

INVERTS AN

SOLVES NONLINEAR BOUNDARY
SOLVES LINEAR BOUNDARY

$ MEANS, STANDARD DEVIATIONS,
TION COEFFICIENTS OR THE AuTO
THE HOMOGENE ! TY OF A GROUP OF
TRIBUTION FUNCTION OF THE F (
TRIBUTION FUNCTION OF THE F (
RECISION tNNER PRODUCT OF Two
LATE THE INNER PRODUCT OF Two
1PLY A TRANSPOSED MATR!X BY 4
A COMPLEX MATRIX BY A COMPLEX
D COMPLEX MATRIX BY A COMPLEX
MPUTE THE EUCLiDIAN NORM OF A
0 SUBTRACT A CONSTANT TIMES A
RCH SUBROUTINE TO NORMALIZE A
SUBROUT!INE TO SUBTRACT FROM a
RCH SUBROUTINE TO DO A MATRIX
LY A LARGE SPARSE MATRIX BY A
OSED LARGE SPARSE MATRIX By A
CHANGES a

CISI10ON; OTHER SUBROUTINES ARE
OUTINES ARE VIPA, VIPS, VIPD,
ARE VIPA, VIPS, ViPD, VIPFDA,
R SUBROUTINES ARE VvIPA, VIpPS,
3 OTHER SUBROUTINES ARE VIPA,
DISTRIBUTION FUNCTION OF THE
DISTRIBUTION FUNCTION OF THE
HED ORDINATE 15 OBTAINED AS A
HESSENBERG MATRIX BY MEANS OF
X USING THE METHOD OF INVERSE
ORM HAS BEEN CARRIED OUT W.TH
0 UPPER HESSENBERG FORM USiNG
CALCULATES THE NUMBER oFf
FINDS ALL THE

FINDS ALL THE

TR!GONOMETRIC FUNCTION,

TRIGONOMETR!IC FUNCTION OF A QUOTIENT U/V,

TRI'GONOVETRIC FUNCTION,

TRIGONQVETRIC FUNCTION OF A QUOTIENT uzv,

TR:GONOVETRIC FUNCT!ON,

TRGONOMETRIC FUNCTION,

TRIGONOFETRIC PCLYNOM: AL,

TRIGONQMETR!C POLYNOM{AL,

TRUNCATED NORMAL D!STRIBUT|ON,

TRUNCATED NORMAL DISTRIBUTION,

TWO DIMENSIONAL TABLE; ARBITRARY ORDER,

T D'STRIBUTION,

T D'STRIBUTION,

UN+FORM DISTRIBUTION,

UN/FORM DISTRIBUTION,

UN'FORM DISTRIBUTION,

UNIFORM DISTRIBUTION,

UN:FORM DISTRIBUTION AND STORES THE VALUES AS ONE VAR1TABLE
UNIFORM OR NORMAL DISTRIBUTION,

UNI1FORM RANDOM INTEGERS BETWEEN TWO GIVEN VALUES,

UNIFORM RANDOM FLOATING POINT NUMBERS BETWEEN TWO G1VEN VALUES,

UPDAT!NG THE APPROXIMATION OF THE JACOB!AN IN THE NEXT ITERATIONS (QUAS!
UPPER TRTANGULAR LINEAR SYSTEM,

UPPER TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-MHAND SIDES,

UPPER TRIANGULAR MATR X

VALUE PROBLEMS !N ORDINARY DIFFERENT!IAL EQUAT!ONS BY COMBINING AN INITIAL VALUE SOLVER WITH A NONLIN
VALUE PROBLEMS 'N A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS, WHERE THE SOLUT{ON 1S BASED ON THE PR
VARIANCES, AND COEFFICIENTS OF SKEWNESS AND KURTOS|S FOR MULTIPLEXED ARRAYS,

VAR'ANCE COEFFICIENTS FOR ONE VARIABLE IN A MULTIPLEXED ARRAY,

VAR'ANCE EST!MATES,

VAR ANCE RAT'0 )} DISTRIBUTION,

VARTANCE RATIO ) DISTRIBUTION,

VECTORS HAVING COMPLEX ELEMENTS,

VECTORS WHiCH MAY BE A COLUMN OR A ROW OF A MATRIX USING EITHER StNGLE OR DOUBLE PRECISION) OTHER SU
VECTOR,

VECTOR,

VECTOR,

VECTOR,

VECTOR FROM ANOTHER VECTOR,

VECTOR N THE 2 NORM,

VECTOR |ITS COMPCNENT ALONG ANOTHER VECTOR,

VECTOR MULTIPL ' CATION,

VECTOR CN THE RIGHT,

VECTOR CN THE RIGHT,

VECTOR WITH FRACTIONAL COMPONENTS INTO ONE WiTH INTEGER COMPOMENTS TIMES A SCALAR FUNCTION,

ViPA, ViPS, VIPD, VIPPA, VIPDS, INRFRD, PRDSUM,

VIPDA, VIPDS, !NRPRD, PRDSUM,

VIPDS, +NRPRD, PRDSUM, !
VIiPD, VIPDA, VIPDS, INRPRD, PRDSUM,

VPSS, ViPD, VIPDA, VIPDS, INRPRD, PRDSUM,

WEIBULL DISTR!BUTION,

WE ! BULL DISTRIBUTION,

WEI1GHTED AVERAGE OF A SPECIFIED NUMBER OF OTHER POINTS IN ITS NEIGHBORHOOD;

WIELANDT INVERSE I1TERATION,

WIELANDT ITERATION WiTH PERIOD!C RAYLEIGH QUOTIENT SHIFTING COMBINED WITH A STABLE, BANDPRESERVING
WILKENSCNS METHOD,

WILKINSCONS METHOD,

ZEROS, DECREASED BY THE NUMBER OF POLES, OF A COMPLEX FUNCTION IN AN AREA IN THE COMPLEX PLANE ENCLO
ZEROS OF A COMPLEX POLYNOMIAL BY APPLYING STEEPEST DESCENT W|TH ACCELERATION DEVICES AND USING EXPL!
ZERCS OF A COMPLEX POLYNOMIAL BY LEMMERS METHOD US(ING SCHURS METHOD FOR ISOLATING ONE ZERO,

IN A MULTIPLEXED ARRAY,

NEWTON METHOD),

CL2ATAN
CL2ATAN2
C120ATAN
CL12DATAN2
C12SiNH
CL2TANH
FL5TRGDIF
FLSTRGINT
FL17P 1 TRNM
F1 7P TRNRM
Fi5TBLU2
FL7PIT
FL7PTDIST
F17P1UNF
FL7PIUNFD
F4,7PRBUNF
F17PUNFD
F17URAND
F47RAND
F17 1RAND
FL7XIRAND
F48CONWT
F16TRiUPM
F1L6TRIUPS
F16TRUP IN
FL148VD
F14LINBVD
F1,70SCRPT
F17CORCOV
FL7BRTLTY
F17PFDIST
FL7PiFDIS
F16CINPRD
CL6ViP
CL16FMTVX
C16FMVCX
CLEFMTVEX
CL6FABSY
c16FcomB
C16FNORMY
C16FPUR
C16FMVX
C165MVX
Cl6SMTVX
FL1FFRAC
CL6VIP
cL6vIP
Ci6ViP
ciévip
cil6vIp
F17P IWEBL
Fi7PWEBL
FL5MILN2
FL16E1GIMP
FL6BANEIG
F16SIMP
FL6HSSN
F4{BZCOUNT
F18CPOLRT
F18HELP



FINDS A REQUIRED NUMBER CF
FINDS A REQUIRED NUMBER OF
F"NDS ALL

NDS A REQUIRED NUMBER OF REAL
FINDS alLL THE

Z2ERCS
ZEROS
ZEROS
ZEROS
2FEROS

> >

COMPLEX FUNCTION USING A METHOD DESCRIBED BY JARRATT AND NUDDS FOR APPROXIMAT|ON OF ONE Z
COMPLEX FUNCTION WITH MULLERS METHOD AND FACTORING OUT PREVIOUSLY FOUND ZEROS,

POLYNOMiAL WITH REAL COEFFICIENTS W|TH NEWTONS METHOD QR BAIRSTOWS METHOD 8Y PERFORNING S
REAL FUNCTION WiTH A METHOD DESCRIBED BY JARRATT AND NUDDS FOR APPROXIMATION OF ONE ZERO
SINGLE ZERD OF A COMPLEX POLYNOMIAL 8Y MULLERS METHOD WITH DEFLATION,

F18ZAFUY
FL18ZAFUM
F18PROOT
F182ZAFUR
FLB8MULLP



Cl2acos
C12AL0G10
C22AL06
C12ASTN
C12ATAN2
CL2ATAN
C12CBRT
ciaccos
C12CEXP
€12¢CL06
cl2cos
€12CSIN
C12CSQRT
C12DATAN2
C12DATAN
€120C0S
C12DEXP
€120L0610
€12pL06
C120SIN
C12DSQRT
CL2EXP
C12PS1132

€125 1NH
C12SiN
CL12SQRT
C12TANH
C12TAN
CL6FABSY
Cl6FCOMB
C16FMMX
C1l6FMTMX
CL6FMTR
Cl6FMTVEX
CL6FMTVX
CLH6FMVCX
C16FMVX
CLl6FNORMY
CL6FPUR
CLESMTVX
C168MVX
CL6V IR

FL11FAFRAC
FL11FFRAC
F1iFMFRAC
FLL1HCF
FlilCMm
F12CBAREX
F12C08H
F13ADR
F13AMCON
F13BESNIS
F13BESNKS

F138SJ

F13CADR

COMPUTES THE ARCOSINE TRIGONOMETRIC FUNCTION,

COMPUTES THE BASE TEN LOGARITHM OF A REAL ARGUMENT,

COMPUTES THE NATURAL LOGARITHM OF A REAL ARGUMENT,

COMPUTES THE ARCSINE TRIGONOMETRIC FUNCTION,

COMPUTES THE ARCTANGENT TRIGCNOMETR: C FUNCTION OF A QUOTIENT U/v,

COMPUTES THE ARCTANGENT TRIGONOMETRIC FUNCTION,

COMPUTES THE CUBE ROCT OF A REAL ARGUMENT,

COMPUTES THE COMPLEX COS'NE TRIGONOMETRIC FUNCTJ|ON,

COMPUTES THE EXPCNENT. AL FUNCTION OF A COMPLEX ARGUMENT,

COMPUTES THE NATURAL LOGARITHRM OF A COMPLEX ARGUMENT,

COMPUTES THE COSINE TRIGONOMETRIC FUNCTION,

COMPUTES THE COMPLEX S!'NE TRIGONOMETRIC FUNCTION,

COMPUTES THE SGUARE ROCT OF A QUMPLEX ARGUMENT,

COMPUTES THE DCUBLE PREC!'SION ARCTAMGENT TRIGONOMETRIC FUNCTION OF A QUOTIENT u/v,

COMPUTES THE DOUBLE PRECISION ARCTANGENT TRIGONOMETRIC FUNCTION,

COMPUTES THE DOUBLE PRECI!SION COSINE TRiIGONOMETRIC FUNCTION,

COMPUTES THE EXPONENT! AL FUNCTION OF A DOUBLE PRECIS!'ON REAL ARGUMENT,

COMPUTES THE BASE TEN LOGAR!THM OF A DOUBLE PRECISION REAL ARGUMENT,

COMPUTES THE NATURAL LOGARITHM OF A DOUBLE PRECISION REAL ARGUMENT,

COMPUTES THE DOUBLE PRECISION SINE TRIGONCMETRIC FUNCTION,

COMPUTES THE SQUARE ROOT OF A DOUBLE PRECISION REAL ARGUMENT,

COMPUTES THE EXPONENT!AL FUNCTION OF A REAL ARGUMENT,

A SET OF PROGRAMS TO PERFORM GENERAL EXPONENTIATION, A#«B, FOR VARIOUS COMBINATIONS OF A AND B, INTEGER, REAL, COMPLEX, AND DOUBLE PR
ECisSION,

COMPUTES THE HYPERBOLiC SINE TRIGONOMETRIC FUNCTION,

COMPUTES THE SINE TRIGONGMETRIC FUNCTION,

COMPUTES THE SQUARE ROOT OF A REAL ARGUMENT,

COMPUTES THE HYPERSBOL.C TANGENT TR|GONOMETRIC FUNCTION,

COMPUTES THE TANGENT TRIGONOMETR!C FUNCTION,

MATRIARCH SUBROUTINE TO COMPUTE THE EUCL!DIAN NORM OF A VECTOR,

MATRIARCH SUBROUT: NE TO SUBTRACT A CONSTANT TIMES A VECTOR FROM ANOTHER VECTOR,

MATRIARCH SUBROUTINE TO PERFCRM A MATRIX MATRIX MULTIPLICATION,

MATRIARCH SUBROUTINE TO MULTIPLY A TRANSPOSED MATRIX BY A MATRIX ON THE RIGHT,

MATR!ARCH SUBROUTINE TO TRANSPOSE A RECTANGULAR MATRIX,

MATRIARCH SUBROUTINE TO MULTIPLY A TRANSPOSED COMPLEX MATRIX BY A COMPLEX VECTOR,

MATRIARCH SUBROUTINE TO MULTIPLY A TRANSPOSED MATRIX BY A VECTOR,

MATRIARCH SUBROUTINE TO MULTIPLY A COMPLEX MATRIX BY A COMPLEX VECTOR,

MATRIARCH SUBROUTINE TO DO A MATRIX VECTOR MULTIPLICATION,

MATRIARCH SUBROUTINE TC NORMALIZE A VECTOR IN THE 2 NORM,

MATRIARCH SUBROUT!NE TO SUBTRACT FROM A VECTOR TS GOMPONENT ALONG ANOTHER VECTOR,

MATRIARCH SUBROUT:NE TO MULTIPLY A TRANSPOSED LARGE SPARSE MATR|X 8y A VECTOR ON THE RIGHT,

MATR1ARCH SUBROUTINE TO MULTIPLY A LARGE SPARSE MATRIX BY A VECTOR ON THE RIGHT,

ONE OF A SET OF SUBROUT!NES TO CALCULATE THE INNER PRODUCT OF TWO VECTORS WHICH MAY BE A COLUMN OR A ROW OF A MATR!X USING EITHER SN
GLE OR DOUBLE PREC!STON; OTHER SUBROUTINES ARE VIPA, VIPS, VIPD, VIPDA, VIPDS, INRPRD, PRDSUM,

ADDS TWo FRACTIONS AND EXPRESSES THE RESULT AS A FRACTION IN TS LOWEST TERMS,

CHANGES A VECTOR WITKH FRACTICNAL COMPONENTS INTO ONE WiTH INTEGER COMPONENTS TIMES A SCALAR FUNCTION,
MULTIPLIES TWO FRACTIONS AND EXPRESSES THE RESULT AS A FRACTION IN (TS LOWEST TERMS,

FINDS THE H1GHEST COMMON FACTOR OF TWO INTEGERS BY EUCLIDS ALGORITHM,

FINDS THE LEAST COMMON MULTIPLE OF TWO INTEGERS BY USING SUBROUTINE HCF,

EVALUATES GENERAL EXPONENTIATION C#®#R FOR COMPLEX BASE AND REAL EXPONENT,

COMPUTES THE HYPERBOL'C COSINE TRIGONOMETRIC FUNCTION,

COMPUTES THE COEFFICIENTS OF THE SUM OF TWOo REAL POLYNOMIALS,

PROVIDES CERTAI!N MACHINE AND MATHEMATICAL CONSTANTS AS SINGLE PRECISION NUMBERS OF MAXIMUM ACCURACY,
COMPUTES A SEQUENCE CF MCODIFTED BESSEL FUNCTIONS OF THE FIRST KIND FOR REAL ARGUMENT BY USING BACKWARD RECURS|ON,
COMPUTES » SEQUENCE CF MODIFIED BESSEL FUNCTIONS OF THE SECOND KIND FQR REAL ARGUMENT BY USING POLYNOMIAL APPROX!MAT|ONS AND THE SUBR
QUTINE BESN!S,

COMPUTES A SWQUENCE OF SPHERICAL BESSEL FUNCTIONS OF THE FIRST KIND FQR REAL ARGUMENT BY FORWARD OR BACKWARD RECURSION WITH STARTING
VALUES,

COMPUTES THE COEFFICIENTS OF TRE SUM OF TWo COMPLEX POLYNOMIALS,



F13CCOMPE
F13CDERIV

F13CEL3
FL3CINT
F13cLDliv
F13CMPYR
£13COMBES
F13COMPEY
F13CPDIV
F13CPTRAN
F13cQDiv
FL3CREV
F13CSBR
F13CSHRNK
FL13DERIV
F13EL3

F13ELF
F13ELK
F13ERF INV
FL3IERF
F13EVREAL
FL3FMULTYL
FL3GAMMA
F13HANKEL
F13INT
FL3LDTY
F13L0G6GAM
F13MPYR
FL3INBESY
F13PARFAC

FL3POIV
F13PTRAN
FL13aD1V
F13RBESY
FL3REV
F1388R
F13SHRINK
F13s1Cl
Fl4BLCKDQ

F148VD
F1l4DRATEX
F14L INBVD

FL4NRKUS
FL4RKINIT

F15acCF1
FL5A I TKEN

F15CFQME
F15CHEBAP

F15coMmcusa
F15COSEVL

EVALUATES A POLYNOMIAL HAVING COMPLEX COEFFICIENTS AT A COMPLEX POINT BY SUMM{NG THE PRODUCT OF THE POWERS TIMES THE COEFFICIENTS,
COMPUTES THE COEFFICIENTS OF A POLYNOMIAL WHICH 1S THE DERIVATIVE OF ANOTHER COMPLEX POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER,

COMPUTES THE COMPLETE ELLIPTIC INTEGRAL OF THE THIRD KIND BY THE LANDEN TRANSFORMATION,

COMPUTES THE COEFFICIENTS OF A POLYNOMiAL WHICH 1S THE INTEGRAL OF ANOTHER COMPLEX POLYNOM|AL GIVEN THE COEFFICIENTS OF THE LATTER,
DIVIDES A COMPLEX POLYNOMIAL BY A L INEAR FACTOR, X+B, WHERE B MAY BE COMPLEX,

FINDS THE PRODUCT OF TWO COMPLEX POLYNOMIALS,

COMPUTES SEQUENCES OF THE BESSEL FUNCTIONS OF THE FIRST OR SECOND KINDS FOR COMPLEX ARGUMENT AND COMPLEX ORDER,

EVALUATES A REAL POLYNOM AL AT A COMPLEX POINT BY FACTORIZING W{TH A QUADRATIC TERM,

PROVIDES THE QUOTIENT AND REMAINDER OBTAINED BY DIVIDING ONE COMPLEX POLYNOMIAL BY ANOTHER,

EFFECTS ‘A COORD!NATE TRANSLATION IN THE ARGUMENT OF A COMPLEX POLYNOMIAL,

DIVIDES A COMPLEX POLYNOMIAL BY A QUADRATiIC EXPRESSION,

REVERSFES THE ORDER OF COMPLEX POLYNOMIAL COEFFICIENTS IN AN ARRAY,

COMPUTES THE COEFFICI!ENTS OF THE DIFFERENCE OF TWO COMPLEX POLYNOMIALS,

COMPUTES THE COEFFICIENTS OF THE COMPLEX POLYNOMIAL P(AX) FROM THE COEFFICIENTS OF P(X).

COMPUTES THE COEFFICIENTS OF A POLYNOMIAL WHICH 1S THE DERIVATIVE OF ANOTHER REAL POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER,
EVALUATES THE INCOMPLETE ELLIPTIC INTEGRAL OF THME TH'RD KIND BY USING THE GAUSS TRANSFORMAT{ONj COULD BE USED FOR GOMPLETE ELLIPTIC |
NTEGRAL OF THE THIRD K!ND SOMETIMES,

EVALUATES THE INCOMPLETE ELLIPTIC INTEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION,

EVALVUATES "HE COMPLETE ELL!PTIC INTEGRAL OF THE FIRST AND SECOND KINDS BY USING LANDENS TRANSFORMATION,

COMPUTES THE {NVERSE OF THE ERROR FUNCTION BY NEWTONS METHOD,

COMPUTES THE ERRCR FUNCT ON BY EXPANSION IN CHEBYSHEV SERIES,

EVALUATES A POLYNOMIAL HAVING REAL COEFFICIENTS AT A REAL VALUE OF THE INDEPENDENT VARIABLE BY NESTED MULTIPLICATION,

MULTIPLIES A POLYNOMIAL BY A LINEAR FACTOR,

EVALUATES THE GAMMA FUNCTIiON OF A REAL ARGUMENT BY USING RATIONAL APPROXIMATION,

EVALUATES THE COMPLEX VALUED HANKEL FUNCTION FOR REAL ARGUMENT AND INTEGER ORDER BY SUMMAT|ON OF SERIES FOR BESSEL FUNCTIONS,
COMPUTES THE COEFFICIENTS OF A POLYNOMIAL WHICH IS THE INTEGRAL OF ANOTHER REAL POLYNOMIAL GIVEN THE COQEFFICIENTS OF THE LATTER,
DIViDES A REAL POLYNCMIAL BY A LINEAR FACTOR, X+B, WHERE B MAY BE COMPLEX, :

COMPUTES THE NATURAL LOGARITHM OF THE GAMMA FUNCTION FOR COMPLEX ARGUMENT BY USING CONTINUED FRACTIONS,

FINDS THE PRODUCT OF TwO REAL POLYNOMIALS,

COMPUTES BESSEL FUNCT{ONS OF THE FIRST KIND FOR REAL ARGUMENT AND INTEGER ORDERS BY USING BACKWARD RECURSION,

RESOLVES A RATIONAL FUNCTION INTO PARTIAL FRACTIONS GIVEN THE ROOTS OF THE DENOM|NATOR POLYNOMI|AL AND THE COEFF|CIENTS OF THE NUMERAT
OR POLYNOM!aAL,

PROVIDES THE QUOTIENT AND REMAINDER OBTAINED BY DIVIDING ONE REAL POLYNOMIAL BY ANOTHER,

EFFECTS A COORD!NATE TRANSLATION IN THE ARGUMENT OF A REAL POLYNOMIAL,

DIVIDES A REAL POLYNCMIAL BY A QUADRATIC EXPRESSION,

COMPUTES A SEQUENCE CF BESSEL FUNCTIONS OF THE SECOND KIND FOR POSITIVE REAL ARGUMENT AND INTEGER ORDERS,

REVERSES THE ORDER OF REAL PCLYNOMIAL COEFFICIENTS !N AN ARRAY,

COMPUTES THE COEFFICIENTS OF THE DIFFERENCE OF TWO REAL POLYNOM|ALS,

COMPUTES THE COEFFICIENTS OF THE REAL POLYNOMIAL P(AX) FROM THE COEFFICIENTS OF P(X).

EVALUATES THE SINE AND COSINE INTEGRALS USING CHEBYSHEV APPROXIMATIONS,

SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A PREDICTOR CORRECTOR METHOD OF E1GHTH ORDER AND PICARDS METHOD
OF SUCCESS‘'VE SUBST!TUTION,

SOLVES NONL'NEAR BOUNDARY VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUAT(IONS BY COMBINING AN INiTIAL VALUE SOLVER WITH A NONLINEAR EQU
ATION SOLV!NG PROGRAN,

SOLVES A SYSTEM OF FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS USING A RATIONAL EXTRAPOLATION TECHNIQUE BASED ON A MODIFIED MIDPOINT
RULE; EFFICIENT FOR HiGH ACCURACY WORK,

SOLVES LINEAR BOUNDARY VALUE PROBLEMS IN A SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS, WHERE THE SOLUTION IS BASED ON THE PRINCIPLE OF
SUPERPOSITiION, US!NG SUBROUTINE BLCKDQ TO PERFORM THE SOLUT!ION OF THE REQUIRED INITIAL VALUE PROBLEMS, )
SOLVES DIFFERENT!'AL EQUATIONS AS PROCEDURE RKINIT BUT RUNS FASTER AND REQUIRES MORE STORAGE,

SOLVES A SYSTEM OF FIRST ORDER ORD!NARY DIFFERENTIAL EQUATIONS USING A VARIABLE STEP RUNGE KUTTA TECHNIQUE EFFICIENT FOR LOW ACCURACY
WORK ,

PERFORMS A SINGLE CONTINUED FRACT'ON INTERPOLATION USING INVERTED DIFFERENCES ON TABULAR DATA WITH ARBITRARY SPACING,

COMPUTES BY AITKENS METHCD THE POLYNOM!AL iNTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS TO FIT EXACTLY BY A POLYNOMIAL OF D
GREE Nwz (N<11),

CONSTRUCTS, USING THE EXCHANGE ALGORITHM, THE MINIMAX POLYNOMIAL THROUGH A DISCRETE, WEIGHTED SET OF POINTS,

CONSTRUCTS THE COEFFI!CIENTS CF THE CHEBYCHEFF POLYNOMIAL THAT GIVES A GCLOSE APPROXIMATION TO A MINIMAX FIT OF A GIVEN FUNCT|ON OVER a
GIVEN NTERVAL,

CONSTRUCTS CUBI!C SPLINE THROUGH N POINTS; MONOTONE ABSCISSAS REQUIREDJ) SECOND ORDER CONT!NYITY,

EVALUATES A COSINE POLYNOMIAL AT A GIVEN POINT,
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CONSTRUCTS COEFFICIENTS OF A POLYNOMIAL WHICH 18 THE DERIVATIVE OF ANOTHER POLYNOMIAL GIVEN THE COEFFICIENTS OF THE LATTER,

DIFFERFNTIATES NUMERICALLY A FUNCTION GIVEN AS A TABLE WITH EQUISPACED ARGUMENTS, AT A TABULAR POINT OR AT THE MIDPCINT OF AN INTERVa

L,

CONSTRUCTS A LEAST SGUARES PCLYNOMiAL OF A SPECIFIED DEGREE WHOSE GRAPH APPROXIMATES A SET OF DATA-POINTS WITH WE)GHT ATTACRED TO EAC

H POINT AND !S CONSTRAINED TC PASS THROUGH SOME OF THE DATA POINTS,

CONSTRUCTS A LEAST SGUARES PCLYNOMIAL APPROXIMATION OF SOME PREASSIGNED DEGREE TO A SET OF DATA POINTS WITH GIVEN WEIGHT WHERE THE PO

LYNOM:iAL 1S CONSTAMT AT N POINTS AND THE DERIVATIVE 1S ALSO CONSTRAINED AT M OF THE N POINTS,

CONSTUCTS COEFFICIENTS OF THE N+M+«1 DEGREE HWERMITIAN INTERPOLATING POLYNOMIAL THROUGH N+1 POINTS WITH FIRST DER|VATIVES GIVEN AT THE

FIRST M+l POINTS (M NOT GREATER THAN N},

CONSTRUCTS A BEST FITTING LINE TO A NUMBER OF DATA POINTS, IN THE SENSE THAT THE SUM OF THE SQUARES OF THE PERPENDICULAR DISTANCES FR

OM THE POINT TO THE LINE 1S A MINIMUM,

CONSTRUCTS COEFFICIENTS OF THE N<TH DEGREE LAGRANGIAN INTERPOLATING PQLYNOMIAL THROUGH N+1 POINTS,

FINDS BY THE METHOD CF LEAST SQUARES A POLYNOM!IAL OF SPECIFIED DEGREE WHOSE GRAPH APPROXIMATES A SET OF DATA POINTS WITH WEIGHT ATTAC

HED TO EACH POINT, USiNG ORTHOGONAL POLYNOMIALS, .

CONSTRUCTS COEFFICIENTS OF THE BEST FOURIER SERIES WITH LINEAR TREND, IN THE LEAST SQUARES SENSE, TO A SET OF EQUISPACED DATA,

CONSTRUCTS COEFFICIENTS OF A FINITE FOURIER SERIES WiTH A LINEAR TREND THROUGH A SET OF EQUISPACED POINTS,

EVALUATES A M«TUPLE 'NTEGRAL (M LESS 11) OF AN INTEGRAND BETWEEN ARBITRARY LIMITS; THE INTEGRATION IS PERFORMED BY USING A 5«POINT Ga
USS LEGENDRE FORMULA TO A NUMBER OF SUBINTERVALS SPECIFIED BY THE USER,

EVALUATES AN EXPONENT AL INTEGRAL BY HERMITE GAUSS QUADRATURE FORMULAS,

PERFORMS HERMITE iNTERPOLATION AT ONE POINT GIVEN THE ABSCISSA AND A TABLE OF CORRESPONDING VALUES OF THE INDEPENDENT AND DEPENDENT V

ARTABLES AND 1TS FIRST DER!VATIVE,

PERFORMS HERMITE iNTERPOLATICN FOR SEVERAL VALUES OF 1NDEPENDENT VARIABLE,

DIFFERENTIATES NUMER'CALLY AN EQUALLY SPACED TABULAR FUNCTION AT ANY POINT USING AN [INTERPOLATING POLYNOMIAL OF SPECIFIED ORDER,

COMPUTES THE LAGRANGIAN POLYNOMIAL INTERPOLATED VALUE AT A GIVEN ABSCISSA, GIVEN N POINTS 7O FIT EXACTLY BY A POLYNCMIAL OF DEGREE Na

1.

EVALUATES THE INTEGRAL OF A REAL FUNCTION OF ONE VARIABLE BASED ON LAGRANGIAN INTERPOLATION,

EVALUATES AN EXPONENT!AL INTEGRAL BY LAGUERRE GAUSS QUADRATURE FORMULAS,

EVALUATES THE INTEGRAL OF ONE VARIABLE OVER A FINITE INTERVAL USING LEGENDRE GAUSS QUADRATURE FORMULAS,

CONSTRUCTS A MINIMAX FUNCT!ON APPROXIMATION TO A SET OF GIVEN POINTS IN TERMS OF A LiINEAR COMBINATION OF A PRESCRIBED SET OF AT MOST
SEVEN FUNCT!ONS,

SMOOTHS A SET OF DATA; EACH SMOOTHED ORDINATE 1S OBTAINED AS A WEIGHTED AVERAGE OF A SPECIFIED NUMBER OF OTHER POINTS IN 175 NEIGHBOR
HoOD,

CONSTRUCTS A MINIMAX RATIONAL FUNCTION APPROXIMATION OF GIVEN DEGREE TO A DISCRETE DATA SET.

ENRICHES A SET OF PO'NTS BY ADDING POINTS ON AN INTERPOLATING CURVE THROUGH THE GIVEN POINTS; POINTS ARE GENERATED ON A CUBRIC INTERPD
LATING CURVE.

FITS, I'N THE SENSE OF LEAST SQUARES, TO A GIVEN SET OF POINTS THE BEST LINEAR COMBINATION OF A SET OF PRESCRIBED GENERAL FUNCTIONS OF
ONE OR MORE VARIABLES,

CONSTRUCTS THE COEFFICIENTS CF THE PADE APPROXIMATION TO A FUNCT|[ON OF wHICH THE MACLAURIN EXPANSION S GIVEN,

EVALUATES THE INTEGRAL BY SIMPSONS RULE OF A BOUNDED FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL OF EQUISPACED VALUES,

CONSTRUCTS AN APPROXIMATION, WHICH |§ THE SUM OF A PRESCRIBED NUMBER OF EXPONENT!ALS, TO A SET OF N EQUALLY SPACED DATA POINTS,
EVALUATES THE INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A F[NITE INTERVAL, USING LEGENDRE GAUSS FORMULAS AND UNEQUAL SUBINTERVALS,

CONSTRUCTS, IN ThE SENSE OF LEAST SQUARES, THE BEST APPROXIMATION TO A SET OF DATA POINTS BY A RATIONAL FUNCTION WiTH NUMERATOR AND D
ENOMINATOR OF A SPECIFIED DEGREE. ’

ENRICHES A GIVEN CURVE DEFINED BY AN ARRAY OF POINTS SO AS TO SATISFY A SPECIFIED CHORD HE1GHT TOLERANCE USING AN INTERPOLATING FUNCT
TON WHiCH ATTEMPTS TO MiNJMIZE THE RIPPLE N CURVATURE,

EVALUATES THE INTEGRAL OF A FUNCTION OF ONE VARIABLE OVER A FINITE INTERVAL USING ROMBERG INTEGRATION,
PERFORMS SMOOTHING OF A FOURIER SERIES BY USE OF LANCZO0S SIGMA FACTORS,

EVALUATES THE INTEGRAL OF A FUNCTION OVER A FINITE INTERVAL USING SIMPBONS RULE,

EVALUATES A SINE POLYNOMIAL AT A GIVEN POINT,

CONSTRUCTS COEFFICIENTS OF A SINE POLYNOMiAL WITH A LINEAR TREND GIVEN A SET OF (ABSCISSA, ORDINATE) PAIRS WITH ARBITRARY SPACING,
PERFORMS SMOOTHING OF A TWO DIMENSIONAL DATA SET BY MOVING EACH OF THE {NPUT DATA POINTS TOWARD A CUBIC THROUGH THE ADJACENT POINTS N
AVING SLOPES AT THOSE POINTS DETERMINED BY THE CUBIC SPLINE THROUGH THE WHOLE DATA SET.

COMPUTES NP SMOOTHED FUNCTION VALUES GIVEN A SET OF NP ARGUMENT AND NP FUNCTION VALUES} THE SMOOTHING IS OBTAINED BY EVALUATING THE L
EAST SQUARES POLYNOMIAL OF DEGREE N BASED ON SUCCESSIVE POINTS,

CONSTRUCTS A FIFTH DEGREE SPLINE INTERPOLATING A SET OF EQUISPAGCED DATA,

FiTS A SMOOTH SURFACE wiITH CCNTINUOUS FIRST PARTIAL DERIVATIVES TO A SET OF POINTS DEFINED OVER A RECTANGULAR GRID WITH ARB!TRARY SPa

CING !N EACH DIRECTION,

LAGARANGIAN INTERPOLATION IN ONE DIMENSIONAL TABLE; ARBITRARY ORDER,

LAGRANG!AN INTERPOLATION IN TWO DIMENSIONA[. TABLE; ARB!TRARY ORDER.

LAGRANG i AN INTERPOLATION IN THREE DIMENSIONAL TABLE} ARBITRARY ORDER,
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F16B1TWNP
FleLESOM
Fl6BLSWNP
F16BPDFSH
F168PDITM
F16BPDSOM
F16BSUBHT
F16CCONGR
FL6CDECOM
FLECFBSUM

F16CGTRF

FL6CGLESM
F16CHSDEC

.F16CINPRD
FLl6CITERF

F16DCBHT
FL6DCWNE

FLODCWNP
FL6DECOM

FL6DEIG

CONSTRUCTS COEFFICIENTS OF THE DERIVATIVE OF A FOURIER SERIES, GIVEN THE COEFFICIENTS OF THE TRIGONOMETRIC POLYNOMIAL.,

CONSTRUCTS COEFFICIENTS OF THE FOURIER SER!ES WITH A LINEAR TREND THAT IS OBTAINED BY INTEGRATION OF A TRIGONOMETRIC POLYNOMI!AL,
CONSTRUCTS A NONL!NEAR CUBIC SPLINE INTERPOLATING A SET OF POINTS WITH ARBITRARY SPAC|ING, .

BALANCES A COMPLEX MATRIX BY MEANS OF DIAGONAL STMILARITY TRANSFORMATIONS,

COMPUTES THE SMALLEST EIGENVALUES AND ASSOCIATED EIGENVECTORS OF A SYMMETRIC, NONNEGATIVE DEFINITE, NARROW BANDMATRIX USING THE METHO
D OF INVERSE WIELANDT ITERATION WITH PERIODIC RAYLEIGH QUOTIENT SHIFTING COMBINED WITH A STABLE, BAND-PRESERVING DEFLATION TECHNIQUE,

DECOMPOSES BY THE CHOLESKY METHOD A REAL, SYMMETRIC POSITIVE DEFINITE BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS,

DECOMPOSES 8Y GAUSSIAN ELIMINATION WITHOUT PIVOTING A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULAR FACTORS) THE DETERMINANT IS ALS

O AVAILABLE,

DECOMPOSES BY GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT EQUILIBRATION A REAL BANDMATRIX INTO UPPER AND LOWER TRIANGULAR
FACTORS,

SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WiTH SEVERAL RIGHT-HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION W|THOUT PIVOTING HAS BEEN
CARRIED OUT, POSS!BLY BY SUBROUT!INE BDCWNP,

SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT~MAND SIDES PROVIDED THE TRIANGULAR DECOMPOS|TION WITH PART/AL PIVOTING AND
iMPLICIT EQUIL:BRAT'ON HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE BDECOM,

SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WiTH SEVERAL RIGHT«HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION
WITH PART!AL PIVOTING AND IMPLICIT EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBE

R,

SOLVES W!TH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT=HAND SIDES USING GAUSSIAN ELIMINATION W!TH PART)|

AL PIVOTING AND IMPLI!CIT EQUILIBRATICN AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE COND|T{ON NUMBER,

SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHTwHAND SiDES PROVIDED THE TRIANGULAR DECOMPOSITION
WITHOUT PIVOTING HAS BEEN CARR'ED OUT AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDiTION NUMBER,

SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINJTE BANDMATRIX WtTH SEVERAL RIGHT=HAND SIDES PROVIDED

TRIANGULAR DECOMPOSIT;ON BY CHOLESKYS METHOD HAS BEEN CARRIED OUT,

SOLVES W!TH ITERATIVE REFINEMENT A L INEAR SYSTEM FOR A BANDMATR{X WITH SEVERAL RIGHT«HAND SIDES USING GAUSSIAN ELIMINATION ¥WITHOUT P

VOT1NG AND GIVES AN ESTIMATE FOR THE ACCURACY AND THE CONDITION NUMBER,

SOLVES A LINEAR SYSTEM FOR A BANDMATRIX WITH SEVERAL RIGHT«HAND SIDES US'NG GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING AND IMPLICIT E

QUILIBRATION; THE DETERMINANT 1S ALSO AVA:1LABLE,

SOLVES A LINEAR SYSTEM FOR A BANDMATRIX Wi!TH SEVERAL RIGHT-HAND SIDES USING GAUSSIAN ELIMINATION WITHOUT PIVOTING; THE DETERMINANT 1§
ALSO AVAILABLE,

SOLVES A L!'NEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT~HAND SIDES PROVIDED TRIANGULAR DECOMPOSITION B

Y CHOLESKYS METHOD HAS BEEN CARRIED QUT, POSS!I8BLY BY SUBROUTINE BCHSDG,

SOLVES #ITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL RIGHT~HAND SiDES USING CHo

LESKYS METHOD FOR THE TRIANGULAR DECOMPOSITION,

SOLVES A L!NEAR SYSTEM FOR A SYMMETRIC POSITIVE DEFINITE BANDMATRIX WITH SEVERAL R!GHT«HAND S|DES USING CHOLESKYS METHOD FQR THE TRIA

NGULAR DECOMPOS I TION.

SOLVES A LEAST SQUARES PROBLEM PROVIDED DECOMPOSITION WITH HOUSEHMOLDERS METHOD HAS BEEN CARRIED OUT,

SOLVES A LEAST SOQUARES PROBLEM FOR A COMPLEX SYSTEM USING THE METHOD OF CONJUGATE GRADIENT,

DECOMPOSES A COMPLEX MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGOR!ITHM W|TH PARTIAL PIVOTING AND ROW EQUILIBRATION} ALSO COMPUTES
ITS DETERMINANT,

SOLVES A LINEAR SYSTEM FOR A COMPLEX MATRIX W!TH SEVERAL RIGHT«HAND SIDES PROVIDED THE TRIANGULAR DECOMPOSITION FOLLOWING CROUTS aLGOD

RITHM wiTH PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE CDECOM,

SOLVES WITH [TERATIVE REFINEMENT A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT=-HAND S{DES PROVIDED THE TRIANGULAR DECOMPOS|

TION ACCORDING TO CROUTS ALGORITHM WITH PARTIAL P!VOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT; THE DETERMINANT ANC CCNDITION Ny

MBER ARE AVAILABLE,

SOLVES A L!NEAR SYSTEM FOR A COMPLEX MATRIX WI!TH SEVERAL RIGHT=HAND SIDES USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUIL|

BRATION,

DECOMPOSES A SYMMETRIC POS!TIVE DEFINITE MATRIX INTO TRIANGULAR FACTORS USING CHOLESKYS METHOD; THE DETERMINANT IS AVAILABLE.

COMPUTES THE DOUBLE PREC!ISION INNER PRODUCT OF TWO VECTORS HAVING COMPLEX ELEMENTS,

SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM FOR A COMPLEX MATRIX WITH SEVERAL RIGHT=HAND SIDES PROVIDED TRIANGULAR DECCMPOSITION
ACCORDING TO CROUTS ALGORITHM WITH FARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT AND GIVES AN ESTIMATE FOR THE ACCURAC

Y AND THE CONDITION NUMBER,

TRANSFORMS A MATRIX INTO UPPER TRIANGULAR FORM 8Y HOUSEHOLDERS METHOD,

DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM w!ITH PARTIAL PIVOTING W|THOUT ROW EQUILIBRATION; THE DETERMINANT |

S AVAILABLE,

DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM ¥WITHOUT PIVOTING; THE DETERMINANT |8 AVAILABLE,

DECOMPOSES A MATRIX INTO TRIANGULAR FACTORS USING CROUTS ALGORITHM wiTH PART!AL PIVOTING AND ROW EQU!LIBRATION; THE DETERMINANT |5 AV

AITLABLE,

SOLVES THE ETGENSYSTEM FOR THE SECOND ORDER DIFFERENTIAL EQUATION AuX,
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CALCULATES MANT!SSA AND EXPONENT (BASE 2) OF THE DETERMINANT OF A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM WIiT

H PARTIAL PIVOTING AND ROW EQUILIBRATION HAS BEEN CARRIED OUT BY SUBROUTINE DECOM,

CALCULATES A GUESS OF AN EIGENVALUE TO A COMPLEX HESSENBERG MATRIX USING HYMANS METHOD TO EVALUATE. THE DETERMINANT,

CALCULATES SOME E:!GENVALUES CF A REAL MATR|X BY MEANS OF A MODIFICATION OF LAGUERRES METHOD,

{MPROVES AN APPROXIMATE E1GENVALUE EIGENVECTOR PAIR OF A REAL SYMMETRIC MATRIX BY CALCULATING THE RAYLEIGH QUOTIENT AND GIVES ERROR B

OUNDS,

CALCULATES THE E!GENVALUE EIGENVECTOR PAIR WHICH IS NEAREST TO AN APPROXIMATION OF AN EIGENVALUE OF A REAL MATRiIX HAVING DISTINCT REA

L EIGENVALUES, :

REFINES AN EIGENVECTCR BELONGING TO A SINGLE REAL EIGENVALUE OF A REAL HESSENBERG MATRIX By MEANS OF WIELANDT INVERSE {TERATION,

CALCULATES ALL E/GENVALUES AND SOME EJGENVECTORS OF A REAL SYMMETR!C MATRIX,

CALCULATES AN EIGENVECTOR BELONGING TO A SINGLE REAL EIGENVALUE OF A REAL MESSENBERG MATRIX BY MEANS OF INVERSE ITERATION,

SOLVES A LINEAR SYSTEM WITH SEVERAL RIGHT-~HAND S{DES PROVIDED TRIANGULAR DECOMPOS!TION ACCORDING TO CROUTS ALGORITHM WiTh PARTIAL P|

VOTING AND ROW EQUIL IBRATION HAS BEEN CARRIED OUT, POSSIBLY BY SUBROUTINE DECOM,

SOLVES A LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOS!TION AGCORDING TO CROUTS ALGORITHM W!TH PARTIAL PIVOTING AND ROW EQUILIBRATION Ha

S BEEN CARRIED OUT,

SOLVES A RECTANGULAR LI'NEAR REAL SYSTEM IN THE SENSE OF LEAST SQUARES ACCORDING TO THE CONJUGATE GRADIENT METHOD,

SOLVES WITH |TERATIVE REFINEMENT A LINEAR SYSTEM WITH SEVERAL RIGHTHAND SIDES US!NG CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW
EQUIL!BRAT ON AND PROVIDES DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NUMBER OF THE MATRIX AND THE NUMBER OF CORRECT DIGITS N
THE FIRST COMPUTED SOLUTION, .

SOLVES WITH ITERATIVE REFiNEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION AND PROVIDES DATa
FOR ESTIMATING THE DETERMINANT AND CONDITION NUMBER OF THE MATRIX AND THE NUMBER OF CORRECT DIGITS IN THE FIRST COMPUTED SCLUTION,
SOLVES A L!'NEAR SYSTEM WIiTH SEVERAL RIGHT=HAND SIDES ACCORDING TO CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILiBRATION,
SOLVES A LINEAR SYSTEM ACCORDING TO CROUTS ALGOR!THM WI!TH PARTIAL PIVOTING AND ROW EQUILIBRATION,

TRANSFORMS A REAL MATRIX TO UPPER HESSENBERG FORM USING WILKINSONS METHOD,

INVERTS A MATRIX USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQUILIBRATION,

INVERTS WITH iTERATIVE REFINEMENT A MATRIX USING CROUTS ALGORITHM WiTH PARTIAL PIVOTING AND ROW EQUILIBRATION,

SOLVES WITH ITERAT!VE REFINEMENT A LINEAR SYSTEM WITH SEVERAL RIGHTAHAND SIDES PROVIDED TRIANGULAR DECOMPOSITION WITH PARTIAL PIVOT)
NG ACCORDING TO CROUTS ALGORITHM HAS BEEN CARRIED OUT AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND CONDITION NUMBER OF THE M
ATRi X,

SOLVES WITH ITERATIVE REFiNEMENT A LINEAR SYSTEM PROVIDED TRIANGULAR RECOMPOS(TION WITH PARTIAL PIVOTING ACCORDING To CROUTS ALGORITH
M HAS BEEN CARRIED OUT AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND CONDITION NUMBER OF THE MATRIX,

REF{NES ITERATIVELY THE INVERSE OF A MATRIX PROVIDED TRIANGULAR DECOMPOSITION USING CROUTS ALGORITHM WITH PARTIAL PIVOTING AND ROW EQ
ViLIBRAT!ON HAS BEEN CARRIED oOuT,

REFINES ITERATIVELY A SOLUTION OF A LEAST SQUARES PROBLEM PROVIDED DEGOMPOSITION w:TH HOUSEHOLDERS METHOD HAS BEEN CARRIED CVUT,

SOLVES WITH ITERATIVE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED DECOMPOSIT!ION WITH CHOLESKYS METHOD HAS BEEN Ca

RRIED OUT AND PROVIDES DATA FOR ESTIMATING THE GCONDIT|ON NUMBER AND THE NUMBER OF CGORRECT DIG|TS IN THE FIRST COMPUTED SOLUTION,

SOLVES WITH ITERATIVE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL R!GHT-MAND SIDES PROVIDED DECOMPOSITION ¥

TH CHOLESKYS METHOD HAS BEEN CARRIED OUT AND PROVIDES DATA FOR ESTIMATING THE CONDITION NUMBER AND THE NUMBER OF CORRECT DIGITS IN T
E FIRST COMPUTED SOLUTION,

SOLVES WITH ITERATIVE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED SQUARE ROOT FREE DECOMPOSIT|ON HAS BEEN CARRIED
ouUT.

SOLVES WITH ITERATIVE REFINEMENT A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM WITH SEVERAL RIGHT=~HAND SIDES PROVIDED SQUARE ROOT FREE
DECOMPOS I TION HAS BEEN CARRIED OUT,

CALCULATES THE EIGENVALUES (COMPLEX AND REAL) OF A REAL MATR!X USING HOUSEHOLDERS TRANSFORMATION FOLLOWED BY DOUBLE QR ITERATION,

SOLVES A L!NEAR SYSTEM US!NG CROUTS ALGORITHM wITH PARTIAL PIVOTING WITHOUT ROW EQUILIBRATION; THE DETERMINANT 1S AVAILABLE,

SOLVES 4 LINEAR SYSTEM USING CROUTS ALGORITHM W)THOUT PIVOTING; THE DETERMINANT IS AVAILABLE,

SOLVES wiTH ITERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGORITHM WITH PARTIAL PIVOTING WiTHOUT ROW EQUILIBRATION AND PROVIDES

DATA FOR ESTIMATING THE DETERMINANT AND CONDITION NUMBER,

SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM USING CROUTS ALGOR|THM wiTHOUT PIVOTING AND PROVIDES DATA FOR ESTIVATING THE DETERM) ~

NANT AND CONDITIiON NUMBER,

SOLVES A L'NEAR LEAST SQUARES PROBLEM W!TH SEVERAL RI'GHT=~HAND S|DES USING HOUSEHOLDER TRANSFORMATIONS,

SOLVES A LI'NEAR LEAST SQUARES PROBLEM USING HOUSEHOLDER TRANSFORMATIONS,

SOLVES WITH !TERATIVE REFINEVMENT A LINEAR LEAST SQUARES PROBLEM USING HOUSEHOLDERS METHOD,

SOLVES WITH ITERATIVE REFINEMENT A LINEAR SYSTEM HAVING SEVERAL RIGHT=HAND S!DES USING CHOLESKYS DECOMPOSITION AND PROVIDES DATA FOR
CALCULATING THE DETERMINANT AND EST!MATING THE CONDITION NUMBER OF THE MATRIX,

SOLVES WITH ITERATIVE REFINEVENT A LINEAR SYSTEM US!NG CHOLESKY DECOMPOSITION AND PROVIDES DATA FOR CALCULATING THE DETERMINANT AND E
STIMATING THE CONDI!TION NUMBER OF THE MATRIX.

SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGMT~HAND SIDES USING CHOLESKY DECOMPOSITION,

SOLVES A SYMMETR'!'C PCSITIVE DEFINITE LINEAR SYSTEM USING CHOLESKY DECOMPOSITION,

SOLVES A SYMMETRIC POSIT'VE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT=~HAND SIDES PROVIDED TRIANGULAR DECOMPOSIT|ON USING CHOLESKY p



F16PLSFBS

F16QR1

FLB6OREIGN
FL6RAYLGH
EL6RECOV]

FLORECOV2

FLl6REDSYL
FL16REDSY2
FLoSCONG

F16SEPAR2

FL16SEPAR
FloS1MP
FlL6sPDCOM

F165PDFBM
F168PDFBS

FL16SPDSOM
F16s8PDS0OS
F16SP I TRM
FloSPITRS

F165uBD!A
F165UBD IR
FL6SYMLR
F16SYMQR
F16TCDIAG

FL10TRDCNP
FL16TROCOM
FL1OTRDFBM
FLOTRDSOM
F16TRDSUB
FL6TRDWNP
F16TRID!

FL6TRILOM
F16TRILOS
FLO6TRIUPM
FL6TRIUPS
FLO6TRLOIN
FL6TRUPIN
FL6VALVEC

FL16VECORD

F16VECTOR
F17BETAR

FL17B8RTLTT
FL17¢HiDST
FL7CHIPRB
F17CHIRAB
FL7CHIRUD
F17CHSQO

ECOMPOS I TION HAS BEEN CARRIED OUT,

SOLVES A SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEM PROVIDED TRIANGULAR DECOMPOSITION USING CHOLESKY DECOMPOSITION HAS BEEN CARRIED Oy

T,

PERFORMS A SINGLE COMPLEX QR ITERATION ON A YESSENBERG MATRIX HAVING REAL SUBDIAGONAL ELEMENTS,

CALCULATES alL EIGENVALUES AND EIGENVECTORS OF A COMPLEX MATRIX BY MEANS OF QR ITERATION ON A S|MILAR BALANGED HMESSENBERG MATRIX,

CALCULATES THE RAYLEIGH QUOTIENT FOR A REAL SYMMETRIC MATRIX,

RECOVER E!GENVECTORS AFTER A REDUCTICN USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EIGENV

ALUE PROBLEM,

RECOVER EIGENVECTORS AFTER A REDUCTION USING A TRIANGULAR MATRIX IN THE SIMILARITY TRANSFORMATION USED FOR SOLVING THE GENERAL EIGENV

ALUE PROBLEM,

REDUCE THE GENERAL EIGENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM,

REDUCE THE GENERAL E!1GENVALUE PROBLEM TO A STANDARD EIGENVALUE PROBLEM,

SOLVES A L!NEAR SYSTEM FOR A LARGE SPARSE RECTANGULAR MATRIX USING THE CONJUGATE GRADIENT METHOD,

CALCULATES A SUBSET OF E!GENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX WSING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS CF THE LEa
DING MINORS,

CALCULATES ALL E!'GENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USING THE STURM SEQUENCE PROPERTY OF THE DETERMINANTS OF THE LEADING MIN

ORS,

PERFORMS THE DESIRED BACK SUBSTITUTION ON THE EIGENVECTORS OF A HESSENBERG MATRiX PROVIDED THE TRANSFORMATION TO MESSEBERG FORM HAS B
EEN CARRIED OUT WiTH WILKENSONS METHOD,

DECOMPOSES A SYMMETRIC POSITIVE DEF:NITE MATRIX INTO LOWER TRIANGULAR, DI!AGONAL AND UPPER TRTIANGULAR FACTORS WITHOUT CALCULATING A S@Q
UARE ROOT; THE DETERM:NANT S AVAILABLE,

SOLVES A POSITIVE DEFIN!TE LINEAR SYSTEM PROVIDED THE MATRIX HAS BEEN DECOMPOSED W!THOUT USING THE SQUARE ROOT ROUTINE,

SOLVES A POSITIVE DEFINtTE LINEAR SYSTEM HAVING SEVERAL RIGHT«HAND S!QES PROVIDED THE MATRIX HAS BEEN DECOMPOSED WITHOUT USING THE So

UARE ROOT ROUTINE,

SOLVES A POSITIVE DEFIN.TE LINEAR SYSTEM WiTHOUT US!NG THE SQUARE ROOT ROUTINE,

SOLVES A POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT<HAND SIDES W!THOUT US!ING THE SQUARE ROOT ROUTINE,

SOLVES WITH ITERATIVE REFINEMENT A POSITIVE DEFINITE LINEAR SYSTEM USING SQUARE ROOT FREE DECOMPOSITION,

SOLVES WITH ITERATIVE REFINEMENT A POSITIVE DEFINITE LINEAR SYSTEM HAVING SEVERAL RIGHT«HAND SIDES USING SQUARE ROOT FREE DECOMPOSIT:

ON,

REDUCES A COMPLEX MATRIX TO HESSENBERG FORM USING A MODIFICATION OF HOUSEHOLDERS METHOD,

TRANSFORMS A REAL MATRIX INTO UPPER RESSENBERG FORM ACCORDING TO HOUSEHOLDERS METHOD,

CALCULATES ALL EVIGENVALUES OF A SYMMETRIC TRIDIAGONAL MATRI!X USING LR {TERATION,

CALCULATES ALL E!GENVALUES OF A SYMMETRIC TRIDIAGONAL MATRIX USiNG QR |TERATION,

CALCULATES A NUMBER OF EIGENVALUES AND EIGENVECTORS OF A HERMITIAN MATRIX USING HOUSEHOLDERS TRANSFORMATION TO TRIDIAGONAL FORM FOLLO
WED BY EITHER QR ITERATI'ON OR LR !TERATION OR THE STURM SEQUENCE METHOD; EIGENVECTORS ARE FOUND BY MEANS OF INVERSE I[TERAT!ON,
DECOMPOSES A TRIDIAGONAL MATRIX INTO TRIANGULAR FACTORS WiTHOUT PIVOTING,

DECOMPOSES A TRIDIAGONAL MATRIX INTO LOWER AND UPPER TRIANGULAR FACTORS USING PART)IAL PIVOTING,

SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROVIDED DECOMPOSITION WITH PARTiAL P|IVOTING HAS BEEN CARRIED OUT,

SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX USING PART!AL P|{VOTING,

SOLVES A LINEAR SYSTEM FOR A TRIDIAGONAL MATRIX PROV!DED DECOMPOSITION WITHOUT PIVOTING HAS BEEN CARRIED OUT,

SOLVES A LINEAR SYSTEM FOR A TRIDIAGCNAL MATRIX WITHOUT PIVOTING,

TRANSFORMS A SYMMETRIC MATRIX {NTO TRIDIAGONAL FORM USING HOUSEHOLDERS TRANSFORMAT!ON,

SOLVES A LOWER TRIANGULAR LINEAR SYSTEM,

SOLVES A LOWER TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT-HAND 51DES,

SOLVES AN UPPER TRIANGULAR LINEAR SYSTEM,

SOLVES AN UPPER TRIANGULAR LINEAR SYSTEM HAVING SEVERAL RIGHT«HAND SIDES,

INVERTS A LOWER TRJIANGULAR MATRIX,

INVERTS AN UPPER TRIANGULAR MATRIX,

CALCULATES THE EI!GENVALUES AND A NUMBER OF EIGENVECTORS OF A COMPLEX MATRIX USING QR ITERATYON ON A SIMILAR HESSENBERG MATRIX FOR THE
EV1GENVALUES AND INVERSE ITERATION FOR THE EIGENVECTORS,

ORDERS A SET OF COMPLEX NUMBERS ACCORDING TO EITHER DECREASING OR INCREASING MAGN|TUDE IN A WAY WHICH IS NOT EFFICIENT FOR A LARGE SE
T OF NUMBERS,

CALCULATES AN EIGENVECTOR BELONGING TO A GOOD APPROXIMATION OF AN E|GENVALUE USING INVERSE ITERATION,

COMPUTES THE INCOMPLETE BETA RATIO,

PERFORMS BARTLETTS TEST OF THE HOMOGENEITY OF A GROUP OF VARIANCE ESTIMATES,

PERFORMS CHi SQUARE TEST FOR GOODNESS OF FIT,

COMPUTES CHi SQUARE CUMULATIVE DISTRIBUTION FUNCTION,

PERFORMS CHI SQUARE TEST FOR SYMMETRY ABOUT ZEROD,

PERFORMS CH! SQUARE TEST FOR RUNS UP AND DOWN,

COMPUTES CHI SQUARE TEST=STATISTIC FOR GIVEN EXPECTED AND OBSERVED FREQUENCIES,



F17CONRAY
F17CORCOV
F17DLETE
F170SCRP2
F17DSCRPT
FL7EXRAND
FLIFILTER
FL17GAMAIN
F17HARM
FL7HSTGRM
F171RAND
FL17NRAND
FL17NRML
FL17NRMNO

F170P1RAY
F170P2RAY
FL7PBETA
F17PB8INOM
FL7PTHY
FL7PFDIST
F17PGEOM
FL7PGMMA
F17PHYPGE
F17P1BETA
FL7PIBIN
Fi7PICH"
FL7PICHY -
F17P1EXP
F17PIFDIS
FL7PiGAMA
F17PIGED
F17PIHYPG
F17P1ILGNM
F17PINBI I
F17P1NORY
Fi7P 1 POIS
F17P1RAYL
F1{7P 1 TRNM
Fi17P47
FL17P 1UNFD
F17P1UNF
FL7P (WEBL
F17PLGNRWY
F17PNBIN
F17PNORM
F17P01S
FL7PORAND
FL7PRAYL
F17PRBEXP
F17PRBUNF
F17PTDIST
F17P TRNRM
FL17PUNFD
FL7PWEBL
F17RAND
FL7RUNSAB

FL17RUNSUD
F175UMPS

PERFORMS AR!ITHMET|IC CPERATIONS ON THE VALUES OF ONE VARIABLE
COMPUTES EITHER AUTO CORRELATION COEFFICIENTS OR THE AUTO VARIANCE COEFFICIENTS FOR ONE VARIABLE
REMOVES SPECIFIED OBSERVATIONS FROM A DATA ARRAY,

COMPUTES MED!AN, MINIMUM, MAXIMUM, AND RANGE FOR ONE OR ALL VARIABLES

COMPUTES MEANS,

STANDARD DEVIAT!ONS,

VARIaNCE

S,

GENERATES RANDOM NUMBERS HAVING A NEGATIVE EXPONENT!IAL DISTRIBUTION,
COMPUTES THE OUTPUTS OF A MOVING AVERAGE AUTO REGRESSIVE FILTER,

INCOMPLETE GAMMA FUNCTICN,
COMPUTES THE FAST FOUR'!ER TRANSFORM OF AN ARRAY OF COMPLEX FOURIER AMPL|TUDES,
COMPUTES THE NUMBER CF OBSERVATIONS

COMPUTES

GENERATES UNIFORM RANDOM
GENERATES RANDOM NUMBERS
GENERATES RANDOM NUMBERS
GENERATES RANDOM NUMBERS

TI1PLEXED
PERFORMS
PERFORMS
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES

GENERATES RANDOM

COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES
COMPUTES

THE

ARRAY,

TRANSFORMATIONS
AR THMETIC TRANSFORMATIONS ON THE OBSERVATIONS OF TWO VARIABLES

THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE
THE

_THE

THE
THE

THE
THE
THE
THE
THE
THE
THE

CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULAT ! VE
CUMULATIVE
CUMULATIVE
CUMULAT!'VE

IN SPECIFIED

INTERVALS;

INTEGERS BETWEEN TWO GIVEN VALUES,

HAVING A NORMAL DISTRIBUTION AND STORES THE VALUES

HAVING A NORMAL DISTRIBUTION,

HAVING A NORMAL DISTRIBUTION,

ON THE OBSERVATIONS OF ONE VARIABLE IN A MULTIPiEXED ARRAY,

DISTRIBUTION
DISTRIBUTION
DISTRIBUTION
CISTRIBUTION
D!STRIBUTION
DISTRIBUTION
D/STRIBUTION

FUNCTION
FUNCT 1ON
FUNCTION
FUNCT 1 ON
FUNCT I ON
FUNCT 1 ON
FUNCT I ON

oF
oF

THE
THE
THE
THE
THE
THE
THE

BETA DISTRIBUTION,
BINOMIAL DISTRIBYTION,
CAUCHY DISTRIBUTION,

F ( VARIANCE RATIO ) DISTRIBUTION,

GEOMETRIC DISTR!BUTION,
GAMMA DISTRIBUTION,
HYPER GEOMETRIC DISTRIBUTION,

IN A MULTIPLEXED ARRAY AND A GIVEN CONSTANT,
IN A MULTIPLEXED

IN A MULTIPLEXED ARRAY,
AND COEFFICIENTS OF SKEWNESS AND KURTOSIS FOR MULTIPLEXED ARRAYS,

USED TO PRODUCE HiSTOGRAMS,
IN A MULTIPLEXED ARRAY,

PROVIDING A CONVENIENT WAY OF HANDLING THE TAIL AND STORES

IN MULTIPLEXED ARRAYS,

INVERSE
INVERSE
iNVERSE
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
{NVERSE
INVERSE
INVERSE
INVERSE
I'NVERSE
INVERSE
iNVERSE
INVERSE
INVERSE
INVERSE

CUMULATIVE DISTRIBUTION
CUMULATIVE DISTRIBUTION
CUMULATIVE DISTRIBUTION
CUMULATIVE D:STRIBUTION
INTEGERS HAVING THE

CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE
ZUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE

DISTRIBUTION
DiSTRIBUTION
DISTRIBUTION
DiSTRIBUTION
DISTRIBUTION
DISTRIBUTION
DISTRIBUTION
DISTRIBUTION
DISTRIBUTION
DISTRIBUTIDON
DiSTRIBUTION
DiISTRIBUTION
DiISTRIBUT ON
DrSTRIBUTION
DISTRIBUTION
DISTRIBUTION
DISTRIBUTION
DISTRIBUTION
DISTRIBUTION

FUNCTION
FUNCTION
FUNCTrON
FUNCTION
FUNCT!ON
FUNCT i ON
FUNCT | ON
FUNCTION
FUNCT | ON
FUNCTION
FUNCTION
FUNCT | ON
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

FUNCTION OF THE LOG

OF THE
OF THE
OF THE
OF THE
OF THE
OF THE
OF THE
OF THE
OF THE
OF THE
OF THE
OF THE
OF THE
OF THE
OF THE
OF THE
OF THE
OF THE
OF THE

BETA DiSTRIBUTION,
BINOMIAL DISTRIBUTION,
CHI SAQUARE DISTRIBUTION,
CAUCHY DISTRIBUTION,
EXPONENTIAL DISTR!BUT!'ON,

F ( VARIANCE RATIO ) DISTRIBUTION,

GAMMA DISTRIBUTION,

GEOMETRIC DISTRIBUTION,

HYPER GEQMETRIC DISTR!BUTION,
LOG NORMAL DISTR{BUTION,
NEGATIVE BINQMIAL DISTRIBUTION,
NORMAL, DISTRIBUTION,

PO1SSON DISTRIBUTION,

RAYLEIGH DISTRIBUTION,
TRUNCATED NORMAL DISTRIBUTION,
STUDENTS T DISTRIBUTION,
DISCRETE UNIFORM D|STRIBUTION,
UN{FORM D1STRIBUTION,

WE{BULL DiISTRIBUTION,

NORMAL DISTRIBUTION,
FUNCTION OF THE NEGAT!IVE BINOMiAL DISTRIBUTION,
FUNCTION OF THE NORMAL DISTRIBUTION,

FUNCTIiON QF THE POISSON DISTRIBUTION,

POISSON D!STRIBUTION,

CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULATIVE
CUMULAT I VE

DISTRIBUTION
DIiSTRIBUTION
DISTRIBUTION
DISTRIBUTION
DISTRIBUT'ON
DISTRIBUT!ON
DISTRIBUTION

FUNCT 1 ON
FUNCT10N
FUNCT 1 ON
FUNCT1ON
FUNCT I ON
FUNCT+ ON
FUNCTION

oF
oF
oF
oF
oF
oF
OF

THE
THE
THE
THE
THE
THE
THE

RAYLEIGH DISTRIBUTION,
EXPONENT AL DISTR{BUTION,
UNIFORM DISTRIBUTION,

STUDENTS T DISTRIBUTION,
TRUNCATED NORMAL DISTRIBUTION,
DISCRETE UNIFORM DISTRIBUTION,
WEIBULL DISTRIBUTION,

GENERATES RANDOM NUMEERS HAVING UNIFORM OR NORMAL DiSTRIBUTION,
COMPUTES THE NUMBER OF

RUNS (EXPECTED

IN SYMMETRIC DISTRIBUT!ON AND OBSERVED) ABOVE AND

COMPUTES THE NUMBER OF RUNS (EXPECTED AND OBSERVED) UP AND DOWN FOR A SAMPLE,
COMPUTES THE DOUBLE PRECISION SUMS OF POWERS OF OBSERVATIONS,

ARRAY,

THE VALUES

IN A MUL

BEL,OW ZERC OF DIFFERENT LENGTHS FOR A SAMPLE,



F17URAND
F17VARORD
F17X1RAND
FL7XYPLOT
F17YPLOT
F172ZRNM
FLBCNSLVL
¥F18CPOLRT

FL8HELP
F18L INSVYS

F18MULLP
FL8NEWT
F18NONL I Q

FLE8NRSG

FLENSLVL
F18PROOT
F18QNWT

FLBRANWT.
F18ZAFUJ

F18ZAFUM
F18ZAFUR

F18ZCOUNT

GENERATES RANDOM NUMBERS HAVING ‘A UNIFORM DISTRIBUTHION AND STORES THE VALUES AS ONE VARIABLE IN A MULTIPLEXED ARRAY,

SORTS THE VALUES OF ONE VARIABLE IN A MULTIPLEXED ARRAY IN INCREASING ORDER,

GENERATES UNIFORM RANDOM FLOATING POINT NUMBERS BETWEEN TWO GIVEN VALUES,

PROVIDES A PRINTER PLOT OF THE VALUES FOR UP TO 5 VARIABLES ( ORDINATES ) AGAINST A SiINGLE VARIABLE ( ABSCISSA ),

PROVIDES A PRINTER PLOT OF THE VALUES FOR UP TO 5 VARIABLES ( ORDINATES ) IN THEIR STORED ORDER ( ABSCISSA ),

COMPUTES THE VECTOR OF MEANS AND SUBTRACTS THE MEAN FROM EACH OBSERVATION OF A SET,

ESTIMATES THE ROUNDING ERROR IN THE EVALUATION OF A COMPLEX POLYNOMIAL NEAR ONE OF iTs ROOTS THROUGH FORWARD ERROR ANALYSIS,

FINDS ALL THE ZEROS OF A COMPLEX POLYNOMIAL BY APPLYING STEEPEST DESCENT WITH ACCELERATION DEVICES AND USING EXPLICIT DEFLATION WHEN
ONE ZERO iS ACCEPTED.

FINDS ALL THE ZEROS CF A COMPLEX POLYNOMIAL BY LEMMERS METHOD USING SCHURS METHOD FOR ISOLATING ONE ZERO, )
SOLVES A SYSTEM OF LINEAR EQUATIONS OR SEVERAL SYSTEMS WITH THE SAME LEFT HAND SIDE By GAUSSIAN ELIMINATION USING DOOL ITTLES METHOD A
ND APPLY!NG PARTIAL P.VOTING AND DOUBLE PRECISION ARITHMETIC FOR THE GALCULATI{ON OF [INNER PRODUCTS,

FINDS ALL THE ZEROS OR A SINGLE ZERO OF A COMPLEX POLYNOMIAL BY MULLERS METHOD WITH DEFLATION,

SOLVES A SYSTEM OF NON{ INCAR EQUATIONS BY COMPUTING IN EACH ITERATION A CORRECTION VECTOR TO THE TRIAL SOLUTION VECTOR WITH THE NEWTO
N RAPHSON METHOD MODIFYiNG THIS CORRECTION VECTOR WHEN IT 1S TOO LARGE OR WHEN THE CORRECTION DOES NOT IMPROVE THE RESIDUAL OF THE EQ
UATIONS,

SOLVES A SYSTEM OF NOHNL NEAR ALGEBRAIC EQUATIONS USING THE GENERALIZED SECANT METHOD MODIFYING THE STEP VECTOR WHEN THE SET OF GUESSE
§ TEND TO BECOME LINFARLY DEPENDENT OR WHEN THE RESIDUALS DO NOT DECREASE,

SOLVES AN OVER DETERM,NED SYSTEM OF NONLINEAR EQUATIONS BY CALCULATING A STEP VECTOR DIRECTION AS A LEAST SQUARES SOLUTION OF THE SYS
TEM OF LINEAR EQUATIONS IN THE NEWTON RAPHSON METHOD AND SWITCHING TO THE STEEPEST DESCENT METHOD IF THE FORMER METHOD GIVES DIVERGEN
CEY IN THE STEP VECTOR DVRECTION THE OPTIMAL STEP VECTOR (S CALCULATED BY PARABOLIC INTERPOLATION,

ESTIMATES THE ROUNDING ERROR iN THE EVALUATION OF A POLYNOMIAL WITH REAL COEFFICIENTS NEAR ONE OF ITS COMPLEX ROOTS THROUGH FORWARD E
RROR ANALYSTS,

FiNDS ALL ZEROS OF A POLVNOMIAL W!TH REAL COEFFICIENTS WiTH NEWTONS METHOD OR BAIRSTOWS METHOD BY PERFORMING SIMULTANEOUSLY ONE ITERA
TION OF EACH METHOD AND DEFLATING THE ORIGINAL POLYNOMIAL WMEN A LINEAR OR QUADRATIC FACTOR 1S FOUND,

SOLVES A SYSTEM OF NONLINEAR EQUATIONS BY USING THE NEWTON RAPHSON METHMOD IN THE FI{RST ITERATION AND BY UPDATING THE APPRCOX{MATION OF
THE JACOBIAN IN THE NEXT !TERATIONS (QUASI NEWTON METHOD),

SOLVES A SYSTEM OF NONL!NEAR EQUATIONS BY CALLING SUBROUTINE QNWT A NUMBER OF TIMES WITH DIFFERENT INITIAL GUESSES,

FINDS A REQUIRED NUMBER OF ZEROS OF A COMPLEX FUNCTION USING A METHOD DRESCR{BED BY JARRATT AND NUDDS FOR APPROXIMATION OF ONE ZERO AN

D FACTORING OUT PREV'OUSLY FOUND ZEROS,

FiNDS A REQUIRED NUMBER OF ZEROS OF A COMPLEX FUNCTION WITH MULLERS METHOD AND FACTOR|NG OUT PREVIOUSLY FOUND ZEROS,

FINDS A REQUIRED NUMBER OF REAL ZEROS OF A REAL FUNCTION wiTH A METHOD DESCRIBED BY JARRATT AND NUDDS FOR APPROXIMATION CF ONE ZERO a
ND FACTORING OUT PREV:QUSLY FOUND ZEROS.

CALCULATES THE NUMBER OF ZEROS, DECREASED 8Y THE NUMBER OF POLES, OF A COMPLEX FUNCTION N AN AREA IN THE COMPLEX PLANE ENCLOSED BY a
POLYGONM,



