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A proposal for the classification and documentation of test problems in the 
. . . *) field of nonlinear programming 

by 

J.C.P. Bus 

ABSTRACT 

We give a proposal for the classification and documentation of test­

problems in the field of nonlinear programming. The ideas given here are 

meant to be the first step on our way to create a set of classified and 

well-documented testproblems. This paper is explicitly meant as a contri 

bution to the discussions about testing methodologies for mathematical 

programming algorithms. 

KEY WORDS & PHRASES: Nonlinear progrconming, testing methodologies, clas­

sification and documentation of testproblems. 

This report will be submitted for publication elsewhere 





I. INTRODUCTION 

In the last years there has been considerable discussion about the 

evaluation of software in the field of Mathematical Programming. In an effort 

to canalize these discussions the Mathematical Programming Society established 

the Working Committee on Algorithms with the charge to concern itself, among 

other things, with testing methodologies for mathematical programming algo­

rithms (see Math. Prog. 9.!). Since a set of standard test problems is one 

of the basic tools necessary for evaluating software in this field, the 

Dutch Working Group on Nonlinear Programming decided to contribute to these 

discussions by working on a proposal for classification and documentation 

of test problems, especially in the field of nonlinear programming. The 

result of this work is given in this paper. Meanwhile, a set of about JOO 

test problems is gathered from literature and practice. By now, some members 

of the group started to classify and describe these problems according to 

the guidelines given in this proposal in order to give us practice. Our 

ultimate goal is to obtain a representative set of test problems in the 

field of nonlinear programming. The classification of this set should be 

suitable for testing software in this fie,ld and the description should be 

given in a standardized format and in machine readable form. Moreover, the 

documentation should be such that it becomes easy to extend the set of 

test problems. This set may be used, for instance, in a clearing house 

(cf. LOOTSMA [1976]), for comparison, certification and validation of non­

linear programming software. It may also be used to create standard driver 

programs for testing on different computers and in various languages. 

We expect that this proposal fits very well into the discussions and 

activities of the Working Committee on Algorithms. 

2. CLASSIFICATION OF TEST PROBLEMS 

A problem classification to be used for the classification of test 

problems should satisfy two general criteria. Firstly, the tester of a 

program should be able to choose (classes of) test problelns to which the 

program is applicable. Moreover, he should have enough information about 

special properties of the test problems to be able to recognize a special 
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behaviour of the program. Secondly, the user of the programs tested should 

be able to classify his real-life problems so that he can choose a program 

which appeared to be "best" for the class to which his problem belongs. With 

this in mind we consider the following special properties of nonlinear 

programming problems (see also LOOTSMA [1976]). 

a. The type of the objective function. We may distinguish linear and quadrat­

ic functions, functions which are sums of squares and other functions. 

b. The type of the constraints. We may distinguish unconstrained and linearly 

constrained problems and problems with nonlinear constraints. Furthermore, 

the constraints may be bounds on the variables, equality constraints or 

inequality constraints. 

c. The functions (objective function and constraint functions) may be regular 

(sufficiently differentiable) or irregular on the feasible region. The 

algorithm underlying a program to be tested should have a sound mathe­

matical basis. Most frequently differentiability is assumed in such 

mathematical theory. For example, when the functions are regular we may 

use first- and second-order theory (see FIACCO & McCORMICK [1968]) to 

prove optimality of some point. For irregular functions optimality con­

ditions may become very complicated. 

d. The size of the problem. This includes the number of variables and the 

number of constraints. Computation time and memory required by a program 

as well as numerical stability of a program depend on the size of the 

problem. An important criterion for the usefulness of a program is the 

maximum size of the problem that can generally be solved by the program. 

e. First and/or second order partial derivatives are calculated analytically 

or numerically (see also COLVILLE [1968]). One reason for distinguishing 

between analytically and numerically calculated derivatives is the fact 

that numerical approximation does not require the same amount of compu­

tation time as evaluation of the analytical derivatives. The ratio be­

tween these quantities depends.heavily on the problem. Therefore, the 

efficiency of a program may be highly influenced by the way the deriva­

tives are calculated. A second reason for this distinction is that one 

program may be more sensitive to errors due to approximation of the 

derivatives than another. And finally the program tester should be able 

to recognize whether a program break-down is due to numerical 



approximation of the derivatives or to something else. 

f. The problem is a fully analysed theoretical problem. The functions can 

be calculated in almost full precision of arithmetic and the solution 

is also known in full precision of arithmetic. Clearly, this property 

is not relevant to the user, in fact his problems do not have this 

property. However, it is very important for practical testing to have 

such problems at hand for a careful examination of the program to be 

tested, since for real-life problems rounding errors may confuse the 

algorithmic aspects, to be tested. 
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g. The problem is convex. Some programs may take advantage of this property 

(FIACCO & McCORMICK [1968]). However the user will frequently be unable 

to prove convexity. 

h. The objective function has several local minima or other stationary 

points in the feasible region. In this case, one usually cannot expect 

that the program finds the global solution. Moreover, the program may 

break down in the neighbourhood of a stationary point which is not a 

local minimum. As an example one may consider Box' function (BOX [1966]). 

As is illustrated in BUS [ 1972] gradient methods sometimes break down 

on this problem. 

1. The hessian of the Lagrangian function at the solution is ill-conditioned 

or even singular. Usually such a property makes a problem difficult to 

solve. As an example one may consider the problem of calculating the un­

constrained minimum of Powell's function of four variables (POWELL [1962]). 

Numerical results with this function are also reported in FLETCHER [1970] 

and BUS [1975]. 

Usually, the properties a toe can be verified for real-life problems. 

Therefore, they are suitable as primary classification criteria. However, 

the properties g to i may be difficult or even impossible to verify in 

practice. Therefore, these properties should not be used as primary clas­

sification cri~teria. We will give, them as "special properties" in the 

documentation so that they can be used for testing. These properties may 

give an indication for the degree of difficulty of a problem. However, one 

can imagine other properties that make a problem difficult to solve by some 

program. In our opinion it would be desirable to develop measures for the 

degree of difficulty of a problem so that we may create graded sets of 



4 

testproblems. We think thdt it is easy to incorporate such measures in the 

classification and documentation scheme proposed here at the time they are 

available. 

The classification scheme 

The classification number of a problem has the form 

OCD-KI-s, 

where the letters has the following meaning: 

O reflects properties of the objectfunction: 

0 = S 

L 

Q 

G 

the objective function 1.s a sum of squares; 

linear objective function; 

quadratic objective function; 

nonlinear, non-quadratic objective function which 1.s no sum 

of squares. 

C reflects properties of the constraints: 

C = U 

L 

N 

unconstrained problem; 

linear constraints; 

nonlinear constraints. 

D reflects the differentiability of the problem functions: 

D = R the problem is "regular"; at least the first and second deri­

vatives of the problem functions exist on the feasible region; 

I "irregular" problem; there are points in the feasible region 

where the first and/or second derivative of one of the problem 

functions do not exist. 

K denotes whether a problem 1.s a so-called theoretical problem or a practical 

problem: 

K = T "theoretical" and well-analyzed problem; 1.n order to avoid 

ambiguity we use as a criterion that the solutions of the 



problem are given in full precision 

P "practical" problems; all problems which are not theoretical 

in the sense given above. 

I denotes which partial derivatives are calculated analytically: 

I= 2 : first and second order partial derivatives are calculated 

analytically; 
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the first order partial derivatives are calculated analytically; 

0 no partial derivatives are calculated analytically. 

s gives a serial number within the class of testproblems identified by 

OCD-KI. 

Remarks 

I. The classification code is split into two groups. The first group gives 

information about the exact problem which is relevant to the tester as 

well as to the user. The second group is mainly relevant to the tester. 

This group gives information how the problem is given in the testset and 

in the documentation. 

2. The properties a,b,c,e and fare reflected in this classification code. 

The other properties are given in standard format in the heading of 

the problem documentation. 

Example 

The problem 

minimize 

belongs to class SUR-T2. When its serial number within this class is I, 

we denote this problem by SUR-T2-.I. 
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3. DOCUMENTATION OF TEST PROBLEMS 

PROPOSAL 

PROBLEM: OCD-KI-s 

NAME: name of the problem, if it has any -
SOURCE: author [year], problem/page number 

NO. OF VARIABLES: N 

NO. OF CONSTRAINTS: 

bounds on variables Ml 

linear equalities M2 

linear inequalities M3 

nonlinear equalities M4 

nonlinear inequalities MS 

(Note: if the problem is defined for fixed values of N and/or Ml to MS then 

these values are specified here, otherwise they are considered as 

parameters; one or more may be expr~ssed as formulas depending on 

the others. Specific values for these parameters are given in the 

block DATA AND RESULTS.) 

SPECIAL PROPERTIES: 

convex problem 

several stationary points 

condition hessian of Lagrangian 

yes/no/unknown 

yes/no/unknown 

= ... /~ ... /unknown 

(Note: quantities given here may depend on parameters of the problem) 

OBJECTIVE FUNCTION: 

f(x) = 

or, if f(x) is a sum of squares: 

f(x) = l~=l [fi (x)J2 

fl (x) 

f (x) 
p 



(proposal contin.) 

CONSTRAINTS: 

1. ~ x. 
l. • l. • 

J J 
~ u. 

l • 
J 

or 1. 
l.. 

J 
~ x. 

l. • 
J 

h. (x) = 0, J = I , ••• ,M2 
J 

g.(x) 2 O, j = I, ••. ,M3 
J 

h.(x) 0, J = M2+1, ••• ,M2+M4 
J 

g. (x) :;::: 0, J = M3+1, ••• ,M3+M5 
J 

(the total number of in­

equality signs equals Ml) 

(Note: the objective and constraint functions may depend on quantities 

(parameters) whose value(s) are specified in the block DATA AND 

RESULTS.) 

DATA AND RESULTS: 

(Note: we give here the starting point(s), the results and all additional 

data necessary to define the problem uniquely. This part of the 

documentation may consist of several blocks if the problem depends 

on parameters (e.g.: N, Ml to MS or parameters in the definition 
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of the problem function). Then each block defines one problem. Such 

a problem may have several starting points and several local solu­

tion points and is identified by OCD-KI-s/i, where i is the number of 

the block.) 

BLOCK i (only if more than one block is given) 

starting point(s) 

(O) 
a. X = [ ... ]T (non)-feasible 

b. 

additional data 

(for example, if N is a parameter of the problem which is given the 

value IO) 

N = JO 

results: 

a. x* = [ ]T 

* f(x) = 

b. 
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PRECISIONS: 

We define here tolerance values_ E 1 and E 2 which are to be regarded as 

input to a program to be tested. 

We say that this program is successful in solving this problem if the 

computed solution, x, satisfies: 

* for some solution point x. We distinguish three levels of precision 

which, in general, depend on the precision of arithmetic used and on 

the rounding errors in the evaluation of the functions. We suggest: 

high precision: El and E2 as small as possible with respect to rounding 

errors in the function. 
-2 

low precision: El= E2 = 10 • 

medial precision: precisions between low and high precision. 

ADDITIONAL DETAILS: 

A description of typical properties of the problem should be given here. 

We mention: 

- the precision of the data; 

- the precision of the calculated values of the problem functions; 

- further information about other stationary points; 

- further information about the condition of the hessian of the 

Lagrangian function or the objective function; 

- the shape of the feasible region; 

- appearance of linear variables that may be separated from variables 

that appear nonlinearly; 

- nonlinearity of the problem, functions. 

These and other properties may be illustrated by figures and tables. 
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DERIVATIVES: 

If the I parameter in the classification code equals O then no deriva­

tives are given; 

If I= I then we give here 

af. 
1 

ax. ' 
J 

ah. 
1 

ax. ' 
J 

ag. 
1 

ax. ' 
J 

1 = I, ••. ,N; 

i = I, ... ,P, J = 

1 = I, ••• ,M2+M4, 

i = I, ••• ,M3+M5, 

If I= 2 then we also give 

i,j = I, ..• ,N; 

I, ••• ,N, if f is a sum of squares; 

j = I, ••• ,N; 

j = 1, ••• ,N. 

i = I, ... ,P, j,k = I, ... ,N, if f is a sum of squares; 

i = I , ••• ,M2+M4, j , k = I , ••• , N; 

i = I , ••• , M3+M5 , j , k = I , ••• , N. 

PROGRAMS: 

These programs will be given in FORTRAN, ALGOL 60 and ALGOL 68. The 

parameterlists are: 

fun (n,x,fx) 

funsq (n,x,i,fx) 

dfun (n,x,dfx) 

dfunsq (n,x,i,dfx) 

ddfun (n,x,ddfx) 
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ddfunsq 

constr 

dconstr 

ddconstr 

(n,x,i,ddfx) 

(n,x,j,gx) 

(n,x,j,dgx) 

(n,x,j,ddgx) 

funsq, dfunsq and ddfunsq are given if the function is a sum of squares, 

otherwise fun, dfun and ddfun are given. ddfun, ddfunsq and ddconstr are 

only given if I= 2, dfun, dfunsq and dconstr are only given if I= 1 

or I= 2. The parameters have the following meaning: 

n input, the number of variables; 

i input, the index of the term in the sum of squared terms which has 

to be evaluated or whose derivative has to be evaluated; 

j input, the index of the constraint function to be evaluated; these 

functions are given in the same order as in the heading of the 

documentation; 

x input, the vector of variables; 

fx output, the value of the objective function (fun) or the i-th term 

of the sum of squares (funsq); 

dfx output, the gradient vector of the objective function (dfun) or 

of the i-th term of a sum of squares (dfunsq); 

ddfx 

gx 

dgx 

ddgx 

output, the matrix of second order partial derivatives of the 

objective function (ddfun) or of the i-th term of a sum of squares 

(ddfunsq); 

output, the value of the i-th constraint function; 

output, the gradient vector of the i-th constraint function; 

output, the matrix of second order partial derivatives of the 

i-th constraint function. 

TESTREPORTS: 

Numerical experience with this problem has been reported in: 

(One may refer here to papers given 1n literature and also to unpublished 

experiences which will be given in appendices to this documentation.) 
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REFERENCES: 

(end of proposal). 

Remarks 

I. All problems are described as minimization problems. 

2. Problems with an objective function which is a sum of squares (O=S) may 

also be considered as a normal problem. It is easy to program the deri­

vatives of such a problem using the derivatives of terms of the sum of 

squares. 

3. Stopping criteria have to be part of the program to be tested. Therefore, 

the precision of the solution vector asked for should be input to a 

program and we say that a program has failed to solve a problem if the 

computed solution does not satisfy the conditions given in the documenta-

4. 

tion. When comparing the efficiency one should judge a program by the 

work that has to be done to satisfy its·own stopping criteria, provided 

the program did not fail in the above sense. 

Program source text are given such that the objective function and its 

derivatives and the various constraint functions are evaluated separately. 

This may be an inefficient way to solve these particular test problems 

with a given program. 

For example, some programs for unconstrained minimization only ask for 

evaluation of the function and its gradient at the same point and for 

some problems it may save a lot of computation time if both the function 

and its gradient are given in one routine. However, if one uses computa­

tion time as a measure for the efficiency, one should measure the time 

required to solve the problem minus the time required for the evaluation 

of the problem functions and apart from this the number of problem func­

tion evaluations. In this manner one obtains a measure for the efficiency 

which does not depend on the time necessary for the evaluation of the 

problem functions. This is very desirable since otherwise we would also 

618LIOTHEEK 
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introduce the evaluation time as a property of the problem. In our opinion, 

giving the source-texts as we propose will be adequate for testing programs 

in the way given above or some other way which does not use the total 

computation time as a measure for the efficiency of a program. 

5. The progrannning of the problem functions will be such that run-time 

errors due to limitations of the arithmetrical system of a computer are 

avoided. For example, overflow/underflow, exponential or logarithm errors 

will not occur. Therefore, we need to introduce a number of machine con­

stants, which are assumed to be known globally. By now we confine our­

selves to refer to work done by the IFIP Working Group 2.5 on Numerical 

Software, especially to FORD & SMITH [1976a,I976b], CODY [1976] and 

DEKKER [1976]. 

6. Our ultimate goal is to present a set of testproblems in a manual which 

can be upgraded from time to time. Apart from this manual we should have 

available short documentation in machine readable form. This may consist 

of the outlined parts at the heads of the problem documents together with 

the DATA AND RESULTS, the PRECISIONS and the PROGRAMS parts. In our 

opinion this will be all that is required by a driver program to test 

programs, so that the data for such a driver program can be obtained 

automatically. 
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APPENDIX (example of documentation) 

PROBLEM: SUR-T2-1 

NAME: Rosenbrock's parabolic valley 

SODRCE: Rosenbrock [1960] 

NO,. OF VARIABLES: 2 

NO. OF CONSTRAINTS: 

bounds on variables 

linear equalities 

linear inequalities 

nonlinear equalities 

nonlinear inequalities 

SPECIAL PROPERTIES: 

convex problem 

several stationary points 

condition hessain of Lagrangian 

OBJECTIVE FUNCTION: 

2 
2 

[f.(x)] I 
i=I 

f(x) = 
1 

f I (x) 

DATA AND RESULTS: 

starting point(s) 

x(O) = [-l.2,JJ1 

f(x(O)) = 24.20 

0 

0 

0 

0 

0 

no 

no 

2504 

i 
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results 

* T X = [1,1] 

* f(x) = 0 

PRECISIONS 

high precision El = e:2 = IE , with Ethe precision of arithmetic 

10 
medial precision El = Ez = ½ ( log(/E)-2) 

low precision El = E2 = 10-2 

ADDITIONAL DETAILS 

This function has a steep-sided parabolic valley, which is shown in 

the following figure 

2 

l . 5 

1 

,5 

0 

,5 

-1 L 

-2 --1-5 -1 - • 5 a .5 

contours of Rosenbrock's function 



DERIVATIVES: 

af 1 
-20x 

af 1 
IO = -- = ax 1 I ax2 

at2 
-I 

af2 
0 -- = -- = 

ax) ax2 

a2f 
2 

I -20 
a f 1 

0 = = ax 1 ax 1 ax2ax 1 

a2f a2f 
I 0 I 0 = = 

ax) ax2 ax2ax2 

a2f a2f 2 0 2 0 = = ax 1ax 1 ax2ax 1 

a2f 
2 

2 0 
a f 2 

0 = = 
ax) ax2 ax2ax2 

PROGRAMS 

ALGOL 60 

procedure funsq(n,x,i,fx); value n,i; 

integer n,i; real fx; array x; 

fx := if 1. = then (x[2]-x[1]**2)*10 else I - x[I]; 

procedure dfunsq(n,x,i,dfx); value n,i; 

integer n,i; array x,dfx; 

if i = I then 

begin dfx[I] 

begin dfx[l] 

:= -x[l]*20; dfx[2] := 10 end else 

:= -I; dfx[2] := 0 end dfunsq; 

procedure ddfunsq(n,x,i,ddfx); value n,i; 

integer n,i; array x,ddfx; 

iii 



iv 

if i == 1 then 

begin ddfx[l,l] :== -20; 

ddfx[l,2] :== ddfx[2,l] :== ddf'x[2,2] :== 0 

end else 

begiri ddfx[l,l] :== ddfx[l,2] := ddfx[2,l] := ddfx[2,2] := 0 

end ddfunsq; 
/ 

FORTRAN 

ALGOL 68 

TESTREPORTS: 

Numerical experience with this problem has been reported in various 

papers~ We mention 

FLETCHER [1970] 

FLETCHER & POWELL [1963]. 
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