stichting
mathematisch
centrum MC
AFDFLING NUMERIEKE WISKUNDE NN 15/77 DECEMBER

(DEPARTMENT OF NUMERICAL MATHEMATICS)

B.P. SOMMEIJER

AN ALGOL 68 IMPLEMENTATION OF TWO SPLITTING
METHODS FOR SEMI-DISCRETIZED PARABOLIC DIFFERENTIAL
EQUATIONS

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e¢ Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
profit institution aiming at the promotion of pure mathematics and Aits
applications. 1t 48 sponsored by the Netherlands Government through the
Netherlands Onganization for the Advancement of Pure Research (Z.W.0).

AMS(MOS) subject classification scheme (197Q): 65-04, 65M20

An ALGOL 68 implementation of two splitting methods for semi-discretized

parabolic differential equations

by

B.P. Sommeijer

ABSTRACT

This note describes an implementation of two splitting methods for
semi~discretized, non-linear parabolic equations in two dimensions. The
underlying formulas are described in [1]. The implementation is provided
with steplength and error control. An ALGOL 68 version of the implement-
ation.is available. Numerical results of this ALGOL 68 program, applied

to two semi-discretized problems, are reported.

KEY WORDS & PHRASES: Parabolic partial differential equations,

Semi-discretization, Numerical software

CONTENTS

1. Introduction
2. The underlying formulas
3. The implementation

4, The central algorithm
4.1. Auxiliary variables and routines
4.2. The ADI- central algorithm
4.3, The line hopscotch- central algorithm .

5. The parameterlist
6. Numerical examples

7. Reference

APPENDIX

1. INTRODUCTION

This report has been written as a contribution to a project of the
Department of Numerical Mathematics of the Mathematical Centre to develop
numerical algorithms for time-dependent partial differential equations.
Here we confine ourselves to semi-discretized parabolic equations in two
dimensions.

From the variety of non-linear splitting methods described in [1],
we choose an alternating direction method of the PEACEMAN and RACHFORD
type and the linehopscotch méthod suggested by GOURLAY. The alternating
direction method is applied to five-point coupled equations, while the
linehopscotch method is applied to nine-point coupled ones. Those two
methods are implemented in ALGOL 68 programs and applied to two examples.

It is emphasized that the programs are not in a final state. They
.should be considered as research programs and can be used for comparison.

The main purpose of this note is to give some first results.
2, THE UNDERLYING FORMULAS

In this section we shortly describe the underlying formulas which are
more extensively discussed in [1].

The idea of splitting is to break down a complicated multi-dimensional
process into a series of one-dimensional and less complicated processes. .

Here we confine our considerations to initial-boundary-value problems
for parabolic partial differential equations in two space dimensions. Ap-
plying the method of lines to discretize the space variables, we obtain

in many cases a system of ordinary differential equations

(=9

Y . P
(2.1) &= £(t,y,

with initial condition

y(t) =7

0 0’

Then, integration of (2.1) can be performed by using the two-stage formula

>(1) _ = ! - L (1) >
n+1 - yn + 2hn F(tn+2hn’ yn+]’yn)’
(2.2)
(1) >(1) >

3 =3 o F(e+n)
yn+1 yn+] 2 n n 2 n: yn+]’yn+1]

-—)
where F(t,z,;O is a function satisfying the relation
> - > > -
(2.3) £(t,y) = F(t,y,y).

Scheme (2.2) is second order accurate for every choice of the function %
and unconditionally stable provided that the Jacobian matrices 3%/33 and
3%/35 have negative eigenvalues (cf. [1]).

It is assumed that the components of the vectors ; and f can be
arranged in a two-dimensional array. Each array element, denoted by y[lr,k]
and f[r,k], is then associated to a grid-point of the two-dimensional grid
covering the region under consideration. Such a grid is not necessarily
rectangular, but may be of any shape, even containing "holes'". These "holes"
are considered as sets of gridpoints where no differential equation is given.
We shall assume that both ; and % are zero at these points, or, in other

words, that differential equations

dylr,k] _

dt 0

and initial conditions
ylr,k] =0

are added at these points. This is part of the semi-discretization process
which has to be performed by the user.

The grid is supposed to be defined by functions n(k), s(k), e(r) and
w(r) presenting the bounds on the indices r and k of ; and %. To be more
precise, the second index of the row vector y[r,] is bounded by w(r) and e(r)
and the first index of the column vector y[,k] is bounded by s(k) and n(k).
An example of a grid as described above is given in fig.l. The boundary

functions have to be defined by the user of the program.

n(k)

w(r) e(r)

s (k)
figure 1

Two-dimensional arrangement of the

- >
components of y and f

We shall define a function ¥ for five-point coupled equations and
also for nine-point coupled ones. For this purpose, the set of gridpoints

(see fig.l) is divided into four subsets-as shown in fig.2.

figure 2

Four subsets of gridpoints

Related to these subsets we define operators Po’ P., P, and PX working on

- . .
vectors v which leave unchanged the components of V corresponding to the

gridpoints o, e, + and x, respectively, and which sustitute a zero for

all other components.

For five-point coupled equations, T is then defined as ("ADI")

+

(2.4) F(e,3,%) = Po%(t,(%pow.)?’r + (4P_+P_)W)

+

> -
P E(t, (4P P)V + ($P_+P)W)

+

F 1 > 1 -
P'f(t,(zP.+Po)v + (2P.+P+)w)

z 1 > 1 -
P+f(t,(2P++Px)v + (2P++P.)w).

Here, tridiagonal systems of algebraic equations have to be solved alter-
natingly along the rows of oe o and + x + points and along the columns of
e + e and o x o points.

For a large class of five-point coupled differential equations which
_originate from parabolic equations it can be proved that both 3%/33 and

9% /3w have a negative spectrum [1].

+
For nine-point coupled equations F is defined as ("line hopscotch")
+
(2.5) F(e,9,w) = (2 +2)E(t,v) + (B_+P)E(L,w).

By solving in the first stage firstly the o and e components and then the
+ and x components and, vice versa, in the second stage, only tridiagonal
implicit schemes have to be solved. Again it can be proved that both Bffag
and af/3§ have a negative spectrum [1].

Contrary to the usual '"line hopscotch" approach, in our program the
splitting direction is alternated after every complete time step. In a
similar way as described above the splitting may be defined along vertical

grid lines.
3. THE IMPLEMENTATION

In actual computations, one has to solve the equations (2.2) for
>(1)
yn+1
of the partly implicit formulas, we use a Newton type process. By denoting

- . . . eq e .
and Yo+1? respectively. In order to maintain the stability properties

>(1)

- ‘ >(1) - .
the approximations to y n+1 and Yo+ by jyn+1 and jyn+1’ respectively, we

thus obtain

+(1) ¢) R -1 >(1) = >(1) >
AR AR L A A LGRS L R A RN
(3.1) |
-> _ > _ _1 -1- = _=(1) _ >(1) =
FE T e L LT SR A L F(t AL AWTE APRF

Where+Jl+and J2 are approximations to the tridiagonal Jacobians 3%/33
and 9F/dw.

From the definitions (2.4) and (2.5) it can be seen that the Newton
process (3.1) can be solved for each row and each column separately.

The program is implemented with the following strategies: at most
3 Newton-iterations will be performed to solve the implicit systems. As

‘convergence criterium we use

>(1) —>(]) TOL
j+]yn+l Jy +1 10

(3.2) and

IA

x (14l +(1),,)

> > TOL
liFanr = Fan’ 75 * O r 130,

where .l denotes the divided Euclidean norm and TOL is the user—specified
local tolerance. If no convergence can be obtained within 3 iterations, the
Jacobian of the particular row or column is re-—evaluated and the Newton
process is started once more. If again no convergence can be obtained with-
in 3 iterations the steplength h is decreased by a factor 4.

In order to maintain an order accuracy in cases where only one

. . . e e . . 1
iteration is performed, the initial approximations 3D and ; +1 to

o n+l
(3.1) are calculated by

->(]) _ > >

oon+l (a+ hnlzhn—l) n hn/Zhn—l In-1°
(3.3)

- -

oln+l (1 + hn/hn-l) Yn T hn/hn—l Yn-1°

We remark that the use of this predictor has no influence on the stability
properties of the scheme.
Furthermore we mention the error control used. The local truncation

error (LTE) is estimated by

_ q - _ e d ->
(3.4) LTE = ——]+q "qyn_'_l (]+q)yn + yn+1“ ,
where q = hn/hn—l and .l denotes the divided Euclidean norm. The new

steplength ahn is estimated using the well-known root formula. Let a be

defined by

1
(3.5) ad = ((TOL + TOL *ll§n+lll)/LTE)2.
Then we put
(3.6) a=a/ /2.

The factor V2 provides a conservative estimate. In order to prevent marginal
changes the steplength will not be altered when 0.85 < a < 1.15. Moreover,
in order to prevent an excessive decrease or increase of the steplength,
a is bounded by 0.1 and 3.0, respectively. No .error control is performed
after the first step of the integration process. However, if the second
step fails, all results are rejected and the process is restarted with |
h = h/4.

Finally we remark that the solution in the endpoint of the integra-

tion interval is calculated by means of quadratic interpolation.

4. THE CENTRAL ALGORITHM

In order to give a description of the central part of the algorithm
which resembles more or less the mathematical formulation, we need a number

of variables and routines.

4.1. AUXILIARY VARIABLES AND ROUTINES

First of all there is the procedure
F(r,k,t,v,w)

which provides the (r,k)-th component of the right hand side of the
differential equation in its splitted form. Furthermore, we need the

procedure
dectri(b,c,d)

which performs a triangular decomposition of a tridiagonal matrix given
by the vectors b(subdiagonal), c(diagonal) and d(superdiagonal) and which
overwrites the elements of these vectors.

We also need the procedure
soltri(b,c,d,rhs)

which calculates the solution of a tridiagonal system of linear equations
if the triangularly decomposed form as delivered by dectri is given by the
vectors b, ¢, d and if the right hand side is given by the vector rhs. For
the meaning of b, ¢ and d see the description of dectri.

Within the program six duxiliary arrays br, cr, dr, bk, ck, and dk
are used to store the matrices [I - %thIJ and [I - %thz] in their de-.
composed form. The vectors br[r,], crl[r,] and drlr,] define the tridiagonal
matrix corresponding to the r-th row of the grid. In a similar way the
vectors bk[,k], ck[,k] and dk[,k] define the tridiagonal matrix corre-
sponding to the k-th column.

The values of [I - %thIJ corresponding to the r-th row will be

calculated by the procedure
updaterowjac(r)

and temporarily stored into brlr,], crlr,] and dr[r,]. This is done in

the following way:

. (r,k-1) _
br[r’k—]] i= - %hn * F(r’k’t, ’(ky;y) F(r,k,t,y,y) ,
r,k-)d
y
(r,k) -
crfr,k] := 1 - jh» SCLEt, ° 7y,y)-F(r,k,t,y,y)
y
r,k+l
drlr,k] := - ih = F(r’k’t’(’)Y’y)_F(r’kstay’}') ’
? H 2 n (r’k-}-])dy

where (l’J)dy =100 « (1 + |yLi, 31D and (1’J)y is defined as:

GDyrc,e1 = yi,ed + GPay e i =1n -2

ylk,£] else.

In a similar way the procedure
updatecoljac(k)

calculates the matrix [I - %thzj corresponding to the k-th column and

temporarily stores the values into bk[,k], ck[,k] and dk[,k]. Thebprocedure
rowjacobian(r)

fills the vectors brl[r,], cr[r,] and drlr,] by calling updaterowjac(r),

followed by a call of dectri. Similarly, for the procedure
coljacobian(k).

Apart from the variables and procedures already introduced, the program

contains several other variables and procedures which are listed below:

Variables: rmin : m%n s (k)

rmax : mﬁx n(k)
kmin : min w(r)

r
kmax : max e(r)

r
t : current variable tn
te : endpoint of the integration interval

: successive vectors (D and P4

y : j+17n+1 i+17n+1

in formula (3.1)

Procedures:

yn

yhalf
h
hold

hmin

hstart

stepreject

rowrestart

colrestart

eps
error

alfa

steps

predictor

newtriconvergence

se

X3

auxiliary array to store the computed
solution in t .
auxiliary array to store the computed solu-
tion in to—1 although a one-step scheme is
used, ynml is necessary to compute a predic-
tor to start the iteration process (3.1), to
estimate the local truncation error and to

interpolate the solution in t,

auxiliary array to store the computed
(1)

n+l

current integration step

solution ¥ in formula (2.2)

stepsize of the last integration step
minimal stepsize allowed during the
integration process

the initial steplength

boolean variable, being true if the step
with stepsize h is rejected

boolean variable, being true if no con-
vergence can be obtained within 3 iterations
during the Newton iteration along rows, not
even after updating of the Jacobian of that
particular row

similar to rowrestart but now for iteration
along a column

local error bound

estimated local truncation error

factor by which the current stepsize is
multiplied to obtain the next stepsize

number of integration steps performed.

e e . . 1
calculates the initial approximations o§£+3
and 3 to start the Newton-iteration

o’ n+l
(3.1)

this boolean procedure performs the Newton-
iteration (3.1); delivers true if the pro-

cess did converge else false

10

newh : when rowrestart or colrestart is set to
true, newh divides the current stepsize
by 4 but never dropping it below hﬁin

newmatrix : new vectors br[r,], crlr,], drlr,] and
bkl ,k], ck[.k], dk[,k] are calculated
for all r and k, when the stepsize h is
changed. This is done straight forwardly
without performing a new decomposition.
(By this way we do not need to store the

Jacobians J, and J, along all rows and

1 2
columns).
localaccuracy : delivers eps, error and alfa.
interpolate : interpolates the solution in te.

We are now able to formulate the ADI- central algorithm applied to five-
point coupled equations (a listing of the complete program is inserted

in the appendix). In order to formulate the line hopscotch- central algo-
rithm, applied to nine-point coupled equations, we can use the major part
of the variables and procedures already declared.

The most important differences between these two algorithms are the
procedures newtriconvergence, updaterowjac and updatecoljac. By using line
hopscotch the space direction is fixed during both stages of one integra-
tionstep, being the x-direction for all "odd" and the y-direction for all
"even" integrationsteps. In order to formulate the line hopscotch- central

algorithm we need the procedure
rowvec(r,y).

This procedure calculates the values F(r,k,t+ih,y,y) for k = wlr],...,elr]

and combines these values to a vector.

For integration along columns a similar procedure
colvec(k,y)

should be declared.

4,2, THE ADI- CENTRAL ALGORITHM

yn := y; hold := h := hstart; steps := 0;

for r from rmin to rmax do rowjacobian(r) od;
for k from kmin.Eg kmax do coljacobian(k) od;
rowrestart := colrestart := stepreject := false;

while t < te

do if rowrestart or colrestart or stepreject

then y := yn

else ynml := yn; yn =y
£i;

for r from rmin to rmax

do predictor (ylr,J, ynlr,], ynml[r,], h/(2 * hold));

if not newtriconvergence(r,y[r,], "rows")

then ii rowrestart

then error
else rowjacobian(r)
if not newtriconvergence(r,ylr,], "rows'")

then newh; newmatrix; rowrestart := true;

goto endloop

od;

rowrestart := false;

yhalf := y;

for k from kmin to kmax

do predictor(y[,k], yn[,k], ynml[,k], h/hold);
if not newtriconvergence(k,y[,k],"columns")

then ig colrestart

then error

else coljacobian(k):

if not newtriconvergence(k,yl ,k], "colunns")

then newh; newmatrix; colrestart := true; goto endloop
fi

TR
Lipid Qe ST e i

Favio o R Ang

12

colrestart := false;
steps +:= 1;
if steps = 1
then alfa := I; t +:= h; hold :=h
else localaccuracy;
if eps >= error
then t +:= h; if t > te EEEE interpolate; goto endloop fij;
hold := h; stepreject := false

else stepreject := true;

if steps = 2

then t -:= h; newh; yn := ynml;
steps := 0
fi
fi;
if alfa # 1

then if steps # 0

then h *:= alfa; if h < hmin then error fi
fi;
newmatrix
fi
fi;
endloop: skip
od;

4,3. THE LINE HOPSCOTCH- CENTRAL ALGORITHM

initialization;

calculation of Jacobian-matrices;

while t < te

do if rowrestart or colrestart or stepreject

then y := yn

else ynm! := yn; yn :=y

fi; -
if 4 odd integrationstep #

then for r from rmin by 2 to rmax

do ylr,] := yo[r,] + h/2 * rowvec(r,yn) od;
for r from rmin + 1 by 2 to rmax
do predictor (ylr,], ynlr,], ymml[r,], h/ (2 % hold));
if not newtriconvergence(r,yn,ylr,], "rows")
then # same measures will be taken as in the case of a
five-point coupling #
£ ;
od;
yhalf := vy;
for r from rmin+! by 2 to rmax

do y[r,] := yhalf(r,] + h/2 % rowvec(r,yhalf) od;

for r from rmin by 2 to rmax
do predictor(y[r,], ynlr,], ynml[r,], h/hold);
if not newtriconvergence(r, yhalf, y[r,], "rows")
then # same measures will be taken as in the
case of a five-point coupling #
fi

od

else # the integration process along columns will be performed

in a similar way as described above for rows #
fl;

errorcontrol; see central part for five-point coupling
od;

5. THE PARAMETERLIST

For both algorithms a routine has been written. These routines

have the same "heading" which reads:

proc splitmethod = (ref real t, real te, mat y, function derivative,

ref [] int n,s,e,w, ref info info) void:

13

14

with

mode mat = ref [,] real,

mode function = proc(int, int, real, mat)real,

mode info = struct(real, hstart, hmin, tol, int steps);

The meaning of the formal parameters is:

t

te

derivative

n,s,e,w

info

independent variable of thevsemi—discretized system of
ordinary differential equations
entry: the initial value of the independent variable
exit : the last point reached in integration;
normally t is slightly greater than tend
entry: endpoint of integration interval at which the
solution is desired
dependent variable
entry: the initial value of the dependent variable
exit : the solution at te

procedure delivering the right hand side component by

component. The "heading" of this procedure reads:

proc derivative = (int r,k, real t, mat y) real:

derivative performs an evaluation of the right hand side

of the system for the field y, at time t, in the (r,k)-th

gridpoint

entry: integer arrays presenting the bounds on the indices’
r and k of the matrix y; the first index of the
column vector y[,k] is bounded by s[k] and n[k] and
the second index of the rowvector y[r,] is bounded
by wlr] and elr]

structured variable, containing four fields:

real hstart, real hmin, real tol, int steps.

The meaning of the field selectors is:

hstart: (entry) the initial steplength

hmin: (entry) the minimal steplength allowed
during the integration process

tol : (entry) local error tolerance

15

steps: number of integration steps performed, i.e.
accepted and rejected ones (the steps necessary

to make a restart are not taken into account).

6. NUMERICAL EXAMPLES

In order to test the procedure splitmethod, it is applied to several
problems. Two of these problems are discussed in this section. For both
problems the semi-discretization is performed by using finite differences.
We mention that for these problems only the exact solution of the partial
differential equation is known. The relative errors in several gridpoints

are given at the end of the integration interval. Both problems are in-

tegrated for three values of the tolerance parameter TOL, viz. 10_3, 10_4,
107>,
" Problem I
The first equation we consider is a non-linear one and reads
_ —t, 2. 2, -t

ug =u + u i + Uy (4tbxye "+x"+y7)e , 0<x<2,0<y<

(6.1) with boundary conditions
2 -t 2, -t
U(t,O,Y) =Yy e s U(t,Z,}’) = (4+y de ,
u(t,x,0) = xze_t . u(t,x,2) = (x2+4)e—t

and initial condition
2 2
u(0,x,y) = x"+y".

The exact solution of problem (6.1) is u(t,x,y) = (x2+y2)e_t. Here
we do not give the semi-discretized system of equations. We choose an
equidistant grid with increment O.! in both directions, resulting in 361
gridpoints; using central differences, semi-discretization of equation

(6.1) leads to a five-point coupled function. The integration interval is

16

[0,1]. For several gridpoints the relative errors at t

in table 6.1.

1.0 are listed

(x,y)
TOL (0.1,0.1){(0.1,1.0)|(0.1,1.9)|(1.0,0.5)|(1.0,1.5){(1.9,0.1){(1.9,1.0) (1.9,1.9)
1073 3.31072 [4.7107% 1.0107% 4.4 107% 3.0107% 1.0107% 3.7 1074 1.3 1072
1074 4.21072 | 6,410 1.31073] 4.3 1072 2.8 107> 1.3 1073| 4.8 10| 1.6 1072
1072 4.3107% 1 6.4107°1.3107 4.3107% 2.9107% 1.3 1074 4.8 1078 1.6 1072
table 6.1
Problem II

The second problem we consider is a linear one. Again we only state the

partial differential equation:

(6.2) u, = 00 u + 0.1 Ugy* 0.15 ugy, 0=<x<2,0
with boundary conditions
u(t,0,y) = exp(—0;35t)sin y, u(t,2,y) =
u(t,x,0) = exp(-0.35t)sin x, u(t,x,2) =
and initial condition
u(0,x,y) = sin(x+y).
This problem has the exact solution: u(t,x,y)

exp(-0.35t)sin(2+y),

exp(-0.35t)sin(x+2)

= exp(-0.35t)sin(x+y).

We use the same grid as described in problem I. This time, discretization

of the right hand side of (6.2) using central differences leads to a nine-

point coupled function. Again the integration interval is [0,1]. For

several gridpoints the relative errors at t

1.0 are listed in table 6.2.

17

(x,y)

TOL |(0.1,0.1)

(0.1,1.0)

(0.1,1.9)

1.0,0.5)

(1.0,1.5)

1.9,0.1)

1.9,1.0)

(1.9,1.9)

2.0 1073 3.8 10”

4

3.9 10 '] 7.110

1.1 107"

1 b.h 10

1.7 10°
3.910

4.7 10

1.7 1073

1.8 1074

3.3 1074

5.5 10

2.4 10

4.9 10

4 3

1.710

4 4

3.910

4 5

4,810

2.310°3

2.910°%

2.6107%

2.01073

5.010 %

8.5107°

7. REFERENCE

(1]

table 6.2

P.J. VAN DER HOUWEN & J.G. VERWER, Non-linear splitting methods for

semi-discretized parabolic differential equations, Report

NW 51/77, Mathematical Centre, Amsterdam, 1977.

18

APPENDIX

As mentioned before, the programs for five-point coupled equations
and for nine-point coupled ones bear a close resemblance. Here, as an

example, we list the complete program in the case of a five-point coupled

equation.
SPLIT 5:
‘BEGIN
‘MODE "~ 'VEC ~ = 'REF’[] 'REAL’,
MAT' = REF'[,] REAL';
‘MODE ~ 'FUNCTION = “PROC ('INT , "INT , 'REAL’, MAT’) 'REAL , .
‘SPLITFUNCTION = °'PROC " ('INT , "INT , 'REAL , 'MAT , 'MAT) 'REAL’,
“INFO " = 'STRUCT " ('REAL 'HSTART,HMIN,TOL, 'INT ‘STEPS),
‘TRIDIAMAT = 'STRUCT ('VEC ‘SUB,DIAG,SUP);
‘op” -~ = ('VEC'Y1,Y2) 'VEC':
("INT ‘MAX="UPB 'Y1l, MIN='LWB Y1l;
"HEAP "[MIN:MAX] 'REAL 'Y; o
‘FOR" I 'FROM ™ MIN 'TO " MAX 'DO” Y[I]):=Y1l[I]~-Y2[I] 'OD’;
Y)
‘OPp” * = ('REAL'R, 'VEC'Y) "VEC ":
("INT ‘MIN="LWB 'Y, MAX= UPB'Y; ’'HEAP [MIN:MAX] 'REAL V;
‘FOR™ I 'FROM ™ MIN 'TO MAX 'DO” V[I]:=Y[I]J*R ‘OD"; V);
‘OP° 'NORM ~ = ('VEC'Y) 'REAL ":

("INT ‘MIN="LWB 'Y, MAX="UPB Y; 'REAL S:=0;
‘FOR” I 'FROM®~ MIN 'TO MAX
‘DO° S+:=(REAL " YI=Y[I]; YI*YI) ‘OD’;
SQRT (S/ (MAX~MIN+1))) ;

‘OP” + = ('MAT Y1l,Y2) 'MAT :
("INT 'Nl= ‘LWB'Yl, N2= ‘UPB Y1,
M1=2 'LWB Y1, M2=2 UPB Y1l;
"HEAP "[N1:N2,M1:M2] 'REAL 'Y;
‘FOR" I 'FROM~ N1 ‘TO " N2
‘DO” FOR°~ J 'FROM ~ M1 'TO M2
‘DO Y[I,J):=Y1[I,J)+Y2[I,J]
b
‘0D *;
Y)

.
1

‘OP" ~ = ('MAT Y1,Y2) 'MAT :
("INT 'Nl= 'LWB'Yl, N2= ‘UPB Y1,
M1=2 ‘LWB ‘Y1, M2=2 UPB Yl;
‘EEAP "[N1:N2,M1:M2] 'REALY;
‘FOR™ I 'FROM N1 'TO" N2
‘DO° FOR™ J 'FROM ™ M1 'TO M2
‘DO° Y[I,J):=Y1[I,J]~Y2[I,J)
“ob -
‘0D "
Y)

‘op° * = ('REAL’'R, 'MATY) "MAT ":
("INT 'Nl= ‘'LWB'Y, N2= ‘UPB’Y,
M1=2 'LWB 'Y, M2=2 'UPB’Y:
"HEAP "[N1:N2,M1:M2] 'REAL 'Z:
‘FOR° I 'FROM ~ N1 'TO N2
‘DO° FOR° J 'FROM ™ M1 'TO M2
‘DO° Z[I,J):=Y[I,J]*R
’ ‘op”

oD “;
Z)

°
’

‘OP° / = ('MAT’Y, 'REAL 'R) 'MAT ":
‘IF" R /=0
‘THEN "~ 1.6/R * Y
"ELSE "~ ERROR; 'NIL’
‘BI’s

‘PROC” MIN = ('REF'[] "INT Z) "INT :
‘BEGIN ~ “INT L='LWB Z; “INT M:=Z[L];
‘FOR” K 'FROM’~ L+1 'TO 'UPB’Z
‘DO "IF° Z[K]<M °‘THEN M:=Z[K] 'FI°~ '0OD";
M
END “;

"PROC”~ MAX = ('REF'[] "INT Z) 'INT :
BEGIN INT 'L="LWB 'Z; '“INT M:=Z[L];
‘FOR” K. 'FROM~ L+1 'TO " 'UPB'%Z ,
‘DO° "IF° Z[K]>M 'THEN M:=Z[K] ‘'FI° ‘OD’
M
“END “;

~e

'PROC"ZEROVEC = (“VEC V) 'VOID “:
‘FOR" I 'FROM°~ 'LWB'V ‘'TO” ‘UPB'V ‘DO’ V[I]:=0.0 'OD ;

‘PROC~ ZEROMAT = ('MAT Z) 'VOID ":
‘FOR" R 'FROM°~ ‘LWB’'Z 'TO ~ ‘UPB’Z
‘DO’ ZEROVEC(Z[R,]) ‘OD";

‘PROC ° DECTRI = ("INT ‘MIN,MAX, TRIDIAMAT ‘MAT) 'VOID :
‘BEGIN 'VEC® SUB = SUB 'OF "~ MAT,
DIAG =DIAG 'OF = MAT,
SUP = SUP 'OF = MAT;

‘PROC ° TESTD= 'VOID “:
‘IF° °'ABS ‘D<=NORM1*1.E~8
‘THEN °~ PRINT ((NEWLINE,"ERROR IN LU~DECOMPOSITION")) ;
ERROR
‘FI";

‘REALS,U,NORM,NORM1,D:=DIAG[MIN] ,R:=SUP[MIN];
NORM:=NORM1:="ABS 'D+ 'ABS 'R;
TESTD; .
U:=SUP[MIN] :=R/D; S:=SUB[MIN];
‘FOR” I 'FROM® MIN+1 ‘TO MAX~1
‘DO’ D:=DIAG[I]; R:=SUP[I];
NORM1:= "ABS ‘D+ ‘ABS 'R+ 'ABS 'S;
DIAG[I] :=D~:=U*S;
TESTD;
U:=SUP[I]:=R/D; S:=SUB[I];
o “IF° NORM1>NORM ‘THEN NORM:=NORM1l ‘FI’
oD ;
D:=DIAG[MAX]; NORMl:= ABS D+ ABS’'S:
DIAG[MAX] :=D~:=U*S;
TESTD
‘END ~ #DECTRI#;

‘PROC°~ SOLTRI = (INT MIN,MAX, TRIDIAMAT MAT, 'VEC 'RHS) 'VEC :
‘BEGIN ~ 'VEC ® SUB = SUB 'OF MAT,
. DIAG =DIAG 'OF MAT,
SUP = SUP 'OF = MAT;

‘REAL ‘R:=RHS [MIN]/:=DIAG[MIN];
‘FOR° I 'FROM ~ MIN+1 ."TO MAX
‘DO° R:=RHS[I]):=(RHS[I]~SUB[I~1]*R)/DIAG[I] ‘OD;
‘FOR" I 'FROM ~ MAX~1 ‘BY ~1 'TO MIN
‘DO" R:=RHS[I]~:=SUP[I]*R 'OD ;
RHS
‘END ~ #SOLTRI#;

‘PROC°~ SPLITMETHOD = (:REF:'REAL'TC'REAL'TE,'MAT'Y,'FUNCTION' DERIVATIVE,
REF'[] "INT 'N,S,E,W, 'REF "INFO "INFO) 'VOID ":

‘BEGIN’ ‘REAL " HSTART = HSTART 'OF ~ INFO,
HMIN = HMIN ‘OF ° INFO,
TOL = TOL ‘OF ° INFO,

"REF°~ "INT STEPS STEPS 'OF INFO;

‘OP° 'NORM ~ = ('MAT'Y) 'REAL ":
(‘REAL " S:=0.0;
‘FOR" I 'FROM~ 'LWB'Y 'TO°~ ‘UPB’Y
‘DO° FOR° J 'FROM ™ 2'LWB’'Y 'TO 2 UPB’Y
‘DO S+:=(REAL " YIJ=Y[I,Jd); YIJ*YIJ)
b
‘0D "
SQRT (S/NM)) ;

‘PROC ~ NUMBER OF GRIDPOINTS = 'INT :
‘BEGIN " "INT N:=0;
: ‘FOR" R 'FROM~ RMIN 'TO RMAX
‘DO° N+:=E[R]~W[R]+1 'OD’;:
‘ N
‘END ";

"PROC "~ ROWVEC = (INT R, SPLITFUNCTION 'F) 'VEC’
‘BEGIN "~ 'HEAP [KMIN:KMAX] 'REAL ‘B; ZEROVEC (B)
‘FOR™ K ‘FROM ~ W[R] 'TO E[R] .
‘DO° B[K]:=F(R,K,T+H/2,Y,¥YN) -'OD ;
B
‘END “;

~e oo

"PROC~ COLVEC = (INT K, SPLITFUNCTION 'F) "VEC’
‘BEGIN "~ 'HEAP [RMIN:RMAX] 'REAL ‘B; ZEROVEC (B)
‘FOR" R ‘FROM ~ S[K] 'TO NI[K]
‘DO° B[R] :=F(R,K,T+H/2,YHALF,Y) 'OD’;
B
“END “;

~s oo

‘PROC™ F = (“INT R,K, 'REAL T, 'MAT 'V,W) 'REAL ":
‘BEGIN " [R~1:R+1,K~1:K+1] ‘'REAL " YSPLIT;
YSPLIT[‘AT 1, ‘AT 1] :=

((0.0 , (R=RMIN!@.0!W[R~1,K]), 0.0)+
((K=KMIN!@G.0!V[R,K~1]), (VI[R,K]+W[R,K])/2.0 , (K=KMAX!0.0!V[R,K+1])),
(0.0 ; (R=RMAX!0.0!W[R+1,K]), 0.0))

DERIVATIVE (R,K,T,YSPLIT)
"END° #F#;

‘PROC ~ UPDATEROWJAC = (INT'R) 'VOID :
‘BEGIN ~ 'INT ‘WR=W[R], ER=E[R]; 'REAL 'FU; [WR:ER] 'REAL 'DY;
"PROC ~ ADD=("INT 'K,KK) 'MAT ":
‘BEGIN " °‘HEAP '[R-1:R+1,K~1:K+1] 'REAL YPLUSDY;
‘FOR° I °'FROM (R=RMIN!RMIN!R~1) 'TO (R=RMAX!RMAX!R+1)
‘DO° “FOR’'J 'FROM (K=KMIN!KMIN!K~1) 'TO " (K=KMAX!KMAX!K+1)
‘DO” YPLUSDY[I,J]:=¥YN[I,J] ‘OD°
‘0D "3
YPLUSDY [R,KK]+:=DY [KK] ;
YPLUSDY
‘END ~ #ADD#;
‘FOR" K 'FROM WR 'TO " ER
‘DO° DY[K]:=1.E~6*(1+ ABS 'YN[R,K]) 'OD’;
FU:=F(R,WR,T,¥YN,¥YN) ;
CR[R,WR] :=1~H/2* (F (R,WR,T,ADD (WR,WR) ,YN)~FU) /DY [WR] ;
DR[R,WR] := ~H/2* (F(R,WR,T,ADD (WR,WR+1) ,YN)~FU) /DY [WR+1] ;
FOR° K 'FROM ® WR+1 ‘'TO ER~1
‘DO° FU:=F(R,K,T,¥YN,¥YN);

BR[R,K~1}:= ~H/2* (F(R,K,T,ADD(K,K~1),¥YN)~FU) /DY [K~1];
CR[R,K] :=1~H/2*(F(R,K,T,ADD(K,K),¥YN)~FU)/DY[K];
DR[(R,K] := ~H/2*(F(R,K,T,ADD(K,K+1),YN)~FU)/DY[K+1]
‘oD *;
FU:=F(R,ER,T,YN,¥N) ;
BR[R,ER~1]:= ~H/2* (F(R,ER,T,ADD (ER,ER~1) ,¥YN)~FU) /DY [ER~1];

CR[R,ER] :=1~H/2*(F(R,ER,T,ADD(ER,ER),YN)~FU) /DY [ER]
‘END ° #UPDATEROWJAC#;

‘PROC ° UPDATECOLJAC = (INT K) 'VOID :
‘BEGIN ~ "INT ‘SK=S[K], NK=N[K]; REAL FU; [SK:NK] 'REAL DY;
‘PROC "~ ADD=("INT ‘R,RR) 'MAT ":
‘BEGIN ~ 'HEAP '[R~1:R+1,K~1:K+1] 'REAL YPLUSDY;
‘FOR" I 'FROM (R=RMIN!RMIN!R~1) 'TO (R=RMAX!RMAX!R+1)
‘DO° “FOR’'J 'FROM " (K=KMIN!KMIN!K~1) “TO (K=KMAX!KMAX!K+1)
‘DO”° YPLUSDY[I,J]:=¥YN[I,J] ‘OD°
‘oD " :
YPLUSDY[RR,K]+:=DY[RR] ;
YPLUSDY
"END ~ #ADD#;
‘FOR" R 'FROM ~ SK 'TO NK
‘DO° DY[R]:=1.E-6%*(1+ ABS '¥YN[R,K]) 'OD";
FU:=F (SK,K,T,¥YN,¥YN) ;
CK[SK,K]:=1~H/2* (F(SK,K,T,YN,ADD (SK,SK))~FU) /DY[SK] ;
DK[SK,K]:= ~H/2* (F(SK,K,T,¥YN,ADD (SK,SK+1))~FU) /DY [SK+1];
‘FOR° R 'FROM ~ SK+1 'TO " NK-~1
‘DO’ FU:=F(R,K,T,¥YN,¥YN);

BK[R~1,K}:= ~H/2* (F(R,K,T,YN,ADD(R,R~1))~FU)/DY[R~1];
CKI[R,K] +=1~H/2* (F(R,K,T,YN,ADD(R,R))~FU) /DY [R];
. QK[R,K] := ~H/2* (F(R,K,T,¥YN,ADD(R,R+1))~FU) /DY [R+1]
oD ;
FU:=F(NK,K,T,YN,¥YN);
BK[NK~1,K}:= ~H/2* (F(NK,K,T,YN,ADD (NK,NK~1))~FU) /DY [NK~1];
CK[NK,K] :=1~H/2* (F(NK,K,T,YN,ADD (NK,NK))~FU) /DY [NK]

"END °~ #UPDATECOLJAC#:

‘PROC° NEWTRICONVERGENCE = (INT I, VEC RHS, 'STRING TEXT) BOOL :
‘BEGIN ['LWB RHS : 'UPB’ RHS] 'REAL ‘CORR; 'BOOL CONVERGENCE;
‘TO° 3
‘WHILE ~ CORR:="IF TEXT="ROWS"
‘THEN ~ SOLTRI (W[I],E[I],(BR[I,],CR[I,],DR[I,])
,RHS~YN[I,]1~H/2*ROWVEC(I,F))
‘ELSE "~ SOLTRI(S[I],N[I],(BK[,I],CK[,I],DK[,I])
o ,RHS~YHALF[,I]~H/2*COLVEC(I,F))
FI ;
CONVERGENCE : = "NORM 'CORR<TOL/10.0* (1. @+ NORM 'RHS) ;
RHS : =RHS~CORR:
‘NOT ~ CONVERGENCE
‘DO" 'SKIP°
‘0D
CONVERGENCE
‘END ~ #NEWTRICONVERGENCE#;

‘PROC° NEWH = 'VOID :
“IF° H=HMIN
“THEN ~ ERROR
‘ELSE "~ H/:=4; ALFA/:=4;
(HKHMIN ! ALFA*:=HMIN/H; H:=HMIN)

.

FI';

‘PROC " PREDICTOR = ('VEC Y,¥YN,YNM1l, 'REAL'Q) 'VOID ":
Y:=(Q + 1:0) * YN ~ Q * YNM1;

"PROC ° LOCALACCURACY = 'VOID :

“BEGIN ~ 'REAL " Q=H/HOLD;
EPS:=TOL* (1.0+ 'NORM 'Y) ;
ERROR:=Q/ (1.0+Q) * 'NORM "~ (Q*YNM1~ (1.0+Q) *YN+Y) ;
ALFA:=SQRT (EPS/ (2*ERROR)) ;
(ALFA > 0.85 ! (ALFA < 1.15 ! ALFA:=1.0));
(ALFA > 3.0 ! ALFA:=3.0);
(ALFA < 9.1 | ALFA:=0.1)

"END "

"PROC ~ INTERPOLATE = 'VOID :
‘BEGIN "~ 'REAL ‘A=(T~TE)/H, B=HOLD/H; 'REAL C=1~A+B;
. Y:=(B*C* (1~A) *Y+A*C* (1+B) *YN~A* (1~A) *YNM1) / (B* (1+B))
END “;

“PROC ° ROWJACOBIAN = (“INT R) 'VOID :
‘BEGIN ~ UPDATEROWJAC (R) ;
DECTRI (W([R] ,E[R], (BR[R,],CR[R,],DRIR, 1))
"END.";

‘PROC ~ COLJACOBIAN = (INT K) 'VOID ":
"BEGIN ~ UPDATECOLJAC (K) ;
)) DECTRI(S[K] ,N[K], (BK[,K],CK[,K],DK[,K]))
END “;

‘PROC ° NEWMATRIX = 'VOID :
‘BEGIN
‘FOR" R ‘FROM®~ RMIN 'TO RMAX
‘DO° NEWLU (W[R],E[R], (BR[R,],CR[R,],DR[R,])) ‘OD°
‘FOR™ K 'FROM ~ KMIN 'TO " KMAX
‘DO" NEWLU(S[K],N[K], (BK[,K],CK[,K],DK[,K])) ‘oD’
"END “;

~e

‘PROC "~ NEWLU = (INT MIN,MAX, TRIDIAMAT MAT) 'VOID :
‘BEGIN ° 'VEC ~ SUB SUB ‘OF "~ MAT,
DIAG DIAG °‘OF = MAT,
suP SUP 'OF MAT;

‘REAL " U,V,W;

U:=DIAG[MIN]; DIAG[MIN]:=1.0~ALFA* (1.0~U):;

V:=SUP[MIN]; SUP[MIN]:=ALFA*V*U/DIAGI[MIN];

W:=SUB[MIN]; SUB[MIN]*:=ALFA;

‘FOR" I 'FROM MIN+1 'TO MAX~1 v

‘DO ‘U:=DIAG{I];DIAG[I]:=1.08~ALFA* (1.0~U~W*V)~SUP[I~1]*SUB[I~1];
V:=SUP[I}; SUP[I]*:=ALFA*U/DIAGI[I]:
W:=SUB[I]; SUB[I]*:=ALFA

‘oD ; ,

DIAG[MAX] :=1.0~ALFA* (1.0~DIAG[MAX]~W*V)~SUP[MAX~1] *SUB[MAX~1]

‘END * #NEWLU#;

“INT "~ RMIN=MIN(S),

KMIN=MIN (W) ,

RMAX=MAX (N) ,

KMAX=MAX (E) ;
[RMIN:RMAX,KMIN:KMAX] ‘REAL BR,CR,DR,BK,CK,DK,;YN,YHALF,YNM1;
‘REAL H, ALFA, HOLD, EPS, ERROR ;

“INT " NM = NUMBER OF GRIDPOINTS;

ZEROMAT (BR) ; ZEROMAT (CR); ZEROMAT (DR) ;
ZEROMAT (BK) ; ZEROMAT (CK); ZEROMAT (DK) ;

START OF THE CENTRAL ALGORITHM

YN:=Y;
HOLD:=H:=HSTART; STEPS:=0;

‘FOR" R 'FROM°~ RMIN 'TO " RMAX 'DO° ROWJACOBIAN(R) 'OD :
‘FOR™ K 'FROM KMIN 'TO KMAX ‘DO ° COLJACOBIAN(K) 'OD’;

‘BOOL "~ ROWRESTART:= FALSE ,COLRESTART:= FALSE ,STEPREJECT:= FALSE ";
‘WHILE = T<TE
‘DO “IF " ROWRESTART ‘OR° COLRESTART 'OR’° STEPREJECT
‘THEN ~ Y:=YN
‘ELSE "~ YNM1l:=YN; YN:=Y
‘F1’s .
‘FOR° R ‘FROM~ RMIN 'TO RMAX
‘DO” PREDICTOR(Y[R,],¥YN[R,],¥YNM1[R,],H/(2.0*HOLD));
‘IF° 'NOT ‘NEWTRICONVERGENCE (R,Y[R,],"ROWS")
‘“THEN ~ "IF ~ ROWRESTART
‘THEN ~ ERROR
‘ELSE "~ ROWJACOBIAN (R) ;
“IF° 'NOT NEWTRICONVERGENCE (R,Y[R,],"ROWS")
‘THEN ~ NEWH; NEWMATRIX; ROWRESTART:= TRUE ';

ENDLOOP
‘FT
S
‘1
‘oD ;
ROWRESTART:= "FALSE ";
YHALF:=Y;

‘FOR"~ K 'FROM KMIN 'TO KMAX
‘DO° PREDICTOR(Y[,K],¥YN[,K],YNM1[,K],H/HOLD);
“IF° 'NOT ‘NEWTRICONVERGENCE (K,Y[,K],"COLUMNS")
‘THEN~ "IF ~ COLRESTART
‘THEN ~ ERROR
‘ELSE~ COLJACOBIAN (K) ;
‘IF° 'NOT NEWTRICONVERGENCE (K,Y[,K],"COLUMNS")
‘THEN ~ NEWH; NEWMATRIX; COLRESTART:= TRUE ;
ENDLOOP
_—
‘P
o
‘0D "3
COLRESTART:= 'FALSE ";

STEPS +:=1:;
‘IF° STEPS =1
‘THEN ~ ALFA:=1.0; T+:=H; HOLD:=H
‘ELSE°~ LOCALACCURACY;
‘IF " EPS >= ERROR
‘THEN "~ T+:=H; (T > TE ! INTERPOLATE; ENDLOOP); HOLD:=H;
STEPREJECT:= "FALSE ~
‘ELSE ° STEPREJECT:= "TRUE ";
(STEPS = 2 ! T-:=H; NEWH; YN:=YNMl; STEPS:=0)

‘FI’;
(ALFA /=1.0 ! (STEPS /= 6 ! H*:=ALFA; (H < HMIN ! ERROR));
NEWMATRIX)
‘BI’;
ENDLOOP: “SKIP’

‘oD’
END OF THE CENTRAL ALGORITHM

‘END~ #SPLITMETHOD#;

‘PR PROG ‘PR’

‘SKIP’
‘END © -

