
stichting

mathematisch

centrum

AFDELING NUMERIEKE WISKUNDE
(DEPARTMENT OF NUMERICAL MATHE~ATICS)

H.J. BOS & D.T. WINTER

NN 17 /78

AFLINK: A NEW ALGOL 68 - FORTRAN INTERFACE

Preprint

~
MC

DECEMBER

2e boerhaavestraat 49 amsterdam

5lBLIOTHEEI(M.:\THEM,\T!SCH CENTflUM
-AMSTcRDN/t-

PJun-te.d a..t :the. Ma..thematic.a.l Ce.n.tll..e., 49, 2e. BoeJz.ha.avv.,..tJr..aa;t, Am-0.:teJz.dam.

The. Ma..thema.:Uc.a.l Ce.n.tll..e., 6ou.nde.d :the. 11-.:th 06 Fe.bJr.u.aJl.y 1946, -i..6 a non­
pJr.06-lt ,i..n1.,;ti..tt.Ltion cu.ming a..t :the. pJr.omo:Uon 06 pull.e. ma..thematiC-6 and ill:,
appUc.ation-0. I.:t -i..6 -0pon1.,0Jr.e.d by :the. Ne..:theJT.1.a.ndf.i GoveJz.nme.n-t .:thJr.ou.gh :the.
Ne..:theJT.1.a.ncl~ 0Jr.gan,i..zation 6oJr. :the.. Advanc.eme..n.:t 06 PuJl.e.. ReJ.:ie..a.t1.c.h (Z. W. 0 l •

AMS(MOS) subject classLficat.i:on scheme(1970): 68:..:.Ao5

. *) AFLINK: A new ALGOL 68 - FORTRAN interface

by

H.J. Bos & D.T. Winter

ABSTRACT

This report contains an external description of AFLINK. AFLINK is a

newly designed ALGOL 68 - FORTRAN interface, which can be used with the

ALGOL 68 version 1.2.1 (78325) and FORTRAN version 4.6. level 460 compilers

on the CDC CYBER machines. The new interface can handle all situations the

standard CDC ALGOL 68 - FORTRAN interface can. Moreover, AFLINK is capable

of passing a large variety of ALGOL 68 procedures as parameters to FORTRAN

routines. Special interface routines are available for use with the IMSL

and NAG libraries.

KEY WORDS & PHRASES: ALGOL 68 - FORTRAN - Interface

*) This report will be submitted for publication elsewhere.

CONTENTS

I. INTRODUCTION

2. THE STRUCTURE OF THE INTERFACE

3. ROW TO USE THE INTERFACE

3.1. The preludes AFL and LAFL

3.2. Passing parameters from ALGOL 68 to FORTRAN

3.3. The interface routines A68FTN, A68IMSL and A68NAG

3.4. Passing parameters from FORTRAN to ALGOL 68:

the procedure LINKA68FTN

4. EXAMPLES OF USE

2

2

2

4

6

1 1

1 • INTRODUCTION

This paper contains a description of AFLINK (an abbreviation of ALGOL

68 ([I], [2])-FORTRAN ([3])-LINK). Such a language link (or interface) is

used to call FORTRAN subroutines from ALGOL 68 programs. In particular AFLINK

has been designed to be able to pass ALGOL 68 procedures as parameters to

the FORTRAN routines used.

Thus it provides the facility of calling an ALGOL 68 procedure from a

FORTRAN routine. Moreover, in its turn the ALGOL 68 procedure called may

call some (other) ALGOL 68 procedure or FORTRAN routine again (provided Le

latter is not already active), or it may be a FORTRAN routine, supplied with

an ALGOL 68 heading.

·In principle this may be repeated to any depth. However, a problem may

occur when the ALGOL 68 program makes a heap request. This problem and how

to avoid it will be discussed in section 3.3.

2. THE STRUCTURE OF THE INTERFACE

AFLINK is a library consisting of 'two ALGOL 68 preludes (called AFL

and LAFL), two separately compiled ALGOL 68 proce_dures (called LINKA68FTN

and UERTSTX) and four COMPASS modules (called LINK, A68IMSL, A68NAG and

DECODE).

An ALGOL 68 source program that passes one or more ALGOL 68 procedures

as parameters to one or more FORTRAN routines should be compiled (by means

of the P-option) with the prelude AFL if no long modes are used, and with

the prelude LAFL if long modes are used. Moreover, the ALGOL 68 source

program should contain a declaration of the procedure LINKA68FTN for each

ALGOL 68 procedure that has to be passed to some FORTRAN routine (see sec­

tion 3.4.). Upon loading of the binary code an explicit call of the library

by a LIBRARY, AFLINK control statement is not necessary, since the program

has been compiled with the P-option, which already added AFLINK to the local

library set,

2

3, HOW TO USE THE INTERFACE

3.1. The preludes AFL and LAFL

The preludes AFL and LAFL contain declarations of the mode link (which

will be discussed in section 3.4) and the following TAG-symbols and bold­

TAG-symbols:

ref

plain

double

array

onedim

twodim

threedim

param

actual

These symbols are used to describe the parameters of an ALGOL 68 pro­

cedure that will be passed to FORTRAN. Why and how this is done will also

be discussed in section 3.4.

3.2. Passing parameters from ALGOL 68 to FORTRAN

Any FORTRAN routine to be called from an ALGOL 68 program should be

declared in the ALGOL 68 source program. This should be done as follows:

proc name= (model parl, •.• ,moden parn) result:

pr xref a68ftn, name of the FORTRAN routine pr skip;

"name" may be any TAG-symbol.

"result" should be void if the FORTRAN routine is a subroutine. If the

FORTRAN routine is a function, the correspondence between the type of

the function and result is as follows:

3

type of FORTRAN function result

REAL

INTEGER

LOGICAL

COMPLEX

DOUBLE PRECISION

real

int

int (see remark at the end of this
section)

compl

long real

"name of the FORTRAN routine" should be the symbolic name of the .FORTRAN

routine.

"a68ftn" is the interface routine through which the FORTRAN routine is enter­

ed. Three of these interface routines are available: A68FTN (a subroutine

of LINK), A68IMSL and A68NAG. They will be discussed in section 3.3.

"parl" through "parn" are the ALGOL 68 parameters to be passed to the FORTRAN

routine in the same order as they appear in the FORTRAN heading. The corres­

pondence between the modes of these AL~OL 68 parameters ("model" through

"moden") and the types of the FORTRAN parameters is as follows:

FORTRAN expects

REAL

INTEGER

LOGICAL

COMPLEX

DOUBLE PRECISION

REAL ARRAY

INTEGER ARRAY

LOGICAL ARRAY

COMPLEX ARRAY

ALGOL 68 passes

ref real

ref int

ref int

re~ compl

re~ long real

re:: real

rej: int

ref int

ref compl

ALGOL 68 should pass

the first element only

DOUBLE PRECISION ARRAY ref long real

SUBROUTINE

TYPE FUNCTION

(TYPE stands for REAL, INTEGER,

link (the construction of an object of
this mode will be discussed in sec­link tion 3.4.)

LOGICAL, COMPLEX or DOUBLE PRECISION)

4

Two remarks should be made with relation to the correspondence between

the ALGOL 68 and FORTRAN parameters:

I) If FORTRAN expects a LOGICAL, ALGOL 68 should pass a ref int, and if the

FORTRAN routine is a LOGICAL FUNCTION, result should be int (as we saw).

An integer value <O corresponds with a LOGICAL value •TRUE•, a value ~O

with a LOGICAL valuea•FALSE•,

2) FORTRAN expects all arrays stored columnwise and in contiguous memory

locations, whereas ALGOL 68 stores its multiples rowwise. Moreover, ALGOL

68 multiples may contain "holes" due to e.g. slicing. Therefore it is

advised to make a copy of the transposed multiple before it is passed to

FORTRAN, unless one is absolutely sure that the multiple contains no

holes and that it has to be used in its "transposed" form. Moreover,

ALGOL 68 should pass a reference to the first element only instead of a

reference·to the whole multiple.

3.3. The interface routines A68FTN, A68IMSL & A68NAG

As already mentioned in the preceding section, there are three inter­

face routines available: A68FTN (which is a subroutine of LINK), A68IMSL

and A68NAG.

A68FTN is the standard interface routine through which a FORTRAN rou­

tine is entered. A68FTN should,be used if the FORTRAN routine is not from

the IMSL ([4]) or NAG ([5]) library. A68FTN performs the following actions:

I) Check if the FORTRAN routine to be entered is already active (FORTRAN

allows no recursion). If so, the message: ATTEMPT TO CALL ALREADY ACTIVE

FTN ROUTINE is printed, the program is terminated and a complete trace­

back is given.

2) Check if one or more ALGOL 68 procedures have to be passed. If not, the

following two steps are skipped.

3) Check if at least 1000 words between the stack and the heap are available.

If not, make a heap request to get them.

4) Take actions to make the heap completely static (so it can't be moved or

changed). This is necessary because FORTRAN changes addresses in its code,

so the FORTRAN routine to be entered wouldn't be able to find objects

on the heap when an ALGOL 68 procedure entered from this FORTRAN routine

5

moves or changes the heap.

[Here the problem mentioned in the introduction may occur. Suppose the fol­

lowing situation arises:

A FORTRAN routine has been entered from the ALGOL 68 program, so the heap

has been made completely static and at least 1000 words are available be­

tween the stack and the heap. This FORTRAN routine has called an ALGOL 68

procedure, which has put some things on the heap. If this ALGOL 68 procedure

calls another FORTRAN routine, A68FTN will be entered, but now it could be

impossible to get 1000 words between the stack and the heap, because perhaps

less than 1000 words are available and the heap can't be moved. If this is

the case, the program will be terminated. Of course an error message will

be printed and a complete traceback will be given. This problem can be avoid­

ed if the program is executed with an EFL control statement (INTERCOM), a

CM parameter on the job card (BATCH) or a RFL control statement (BATCH). In

that case the top of the heap will be at the "top" of the specified field­

length, so the program can use the complete specified fieldlength.]

wnen the FORTRAN routine is left, A68FTN performs the following action:

- Check if some FORTRAN routine is still active. If not, take actions to

achieve that the heap is no longer static.

A68IMSL should be used if the FORTRAN routine is taken from the IMSL

library. A68IMSL performs the following actions:

- Add IMSL to the local library set (so a LIBRARY, IMSL statement will be

redundant for the current load).

- Instead of the IMSL error handling routine UERTST, load the following

three routines from AFLINK:

1) a new error handling routine UERTST (this is a subroutine of A68IMSL)

2) a separately compiled ALGOL 68 procedure UERTSTX (which helps UERTST

to print error messages)

3) a COMPASS module DECODE (which helps UERTSTX to convert the error mes­

sages from display code to ASCII code).

6

These three routines take over the task of the original error handling

routine.

- Enter the IMSL routine through A68FTN.

A68NAG should be used if the FORTRAN routine is taken from the NAG

library. A68NAG performs the following actions:

- Add NAG to the local library set (so a LIBRARY, NAG statement will be

redundant for the current load)

- Instead of the NAG error trapping routine POIAAF, load a new routine

POIAAF (this is a subroutine of A68NAG). This routine takes over the task

of the original error trapping routine.

- Enter the NAG routine through A68FTN.

3.4. Passing Parameters from FORTRAN to ALGOL 68: The Procedure LINKA68FTN.

If the FORTRAN routine, which is called from an ALGOL 68 program, ex­

pects a FORTRAN function or subroutine as a parameter, the ALGOL 68 program

does not directly pass a corresponding ALGOL 68 procedure, but instead, it

passes an object of the mode link. This object of the mode link is deliver­

ed by the ALGOL 68 procedure LINKA68FTN, which is a separately compiled pro­

cedure in the library AFLINK. For each creation of an object of the mode

link the ALGOL 68 source program should contain a declaration of LINKA68FTN,

(see also the note at the end of this section). The declaration of

LINKA68FTN should read as follows:

proc linka68ftn = (procmode proc, ref [] bits pars)link:

pr xref xlink pr skip;

where "procmode" is the mode of the ALGOL 68 procedure that will be passed

to FORTRAN.

The actual parameters of LINKA68FTN should be as follows:

The first parameter of LINKA68FTN (procmode proc) should be the ALGOL

68 procedure to be passed. This procedure may have the mode

proc(amodel, .•• ,amoden)bmode

7

where "amodei" (i = 1, ••• ,n) may be any of the following modes:

cmode

ref cmode

ref [J cmode

ref[,] cmode

ref[,,] cmode

where cmode: may be int, real, long real or compl and bmode may be a cmode

or void. If FORTRAN expects a subroutine as a parameter, bmode should be

void. If FORTRAN expects a function, the correspondence between the type of

the function and bmode should be as follows:

type of FORTRAN function

REAL

INTEGER

LOGICAL

COMPLEX

DOUBLE PRECISION

bmode

real

int

int (see remark at the end of section 3. 2)

compl

long real

.The second parameter of LINKA68FTN should be a reference to a row of

bits, This row of bits is used to identify the modes of the parameters of

the procmode proc at run time, This is necessary because otherwise the modes

of the parameters would be unknown at run time, and FORTRAN passes only add­

resses of parameters. So, to distinguish between plain values, references

to values and references to rows of values, some appropriate action has to

be taken at runtime when parameters are passed from FORTRAN to ALGOL 68.

The elements of the row of bits (the "descriptors") tell exactly what action

should be taken with relation to each parameter: there should be a one to

one correspondence between the parameters and the descriptors. The descrip­

tors (and their constitutive parts) have been declared in the preludes, and

they all yield a value of mode bits. The correspondence between the ALGOL

68 parameters, the FORTRAN parameters and the descriptors is as follows:

8

ALGOL 68 expects Descriptor FTN
(parameters of procmode passes
proc)

int plain

ref int ref ----
ref [J int array onedim (op n 1) LOGICAL

ref [' J int array twodim (op n 1 , op n 2)
(see re-
mark at end

ref ["J int array threedim (op n 1 , op n 2 , ~n3) of section
3. 2)

int plain

ref int ref ----
ref [J int array onedim (op n 1) INTEGER

ref [' J int array twodim (op n 1, op n 2)

ref ["J int array threedim (op n 1 , op n 2 , .9_£n3)

real plain

ref real ref -----
ref [J real array onedim (op n 1) REAL

ref [,] real array twodim (op n 1, op n 2)

ref [,, J real array threedim (op n 1 , op n 2 , op n3)

long real double plain

ref long rea1:_ double ref

ref [J long real double onedim (op n 1)
DOUBLE

array
PRECISION

ref ['J long real double array twodim (op n 1, op n 2)

ref [, , J long real double array threedim (op n 1, op n 2 , ~ n 3)

compl double plain

ref compl double ref

ref [J comp!_ double array onedim (op n 1) COMPLEX

ref [' J compl double array twodim (op n 1, op n 2)

ref [" J compl double array threedim (op n 1, .9_£ n 2 , op n3)

9

where .£,E_ stands for param or actual.

If the ALGOL 68 procedure expects a row, the following two rules are

obeyed:

I) All lowerbounds of rows passed to it are equal to I.

2) The i-th upperbound

a) can be found in the n.-th parameter of procmode proc (i.e. also the
l. .

n.-th parameter
l.

in the FORTRAN routine that has been replaced by

procmode proc) if op is param

b) is equal ton. if op is actual (the operand n. should yield an
l. - --- l.

integer value)

As stated earlier in this section, LINKA68FTN delivers an object of mode

link. This object should be passed to the FORTRAN routine instead of the

procmode proc. If the FORTRAN routine calls the procmode proc, a jump is

made to the address specified by the object of the mode link. Next, a re­

turn jump to FTNA68 (a subroutine of LINK through which an ALGOL 68 pro­

cedure is entered) is made. FTNA68 knows, by means of the object of the

mode link, where the procedure word of _the ALGOL 68 procedure and the

ref [J bits can be found. FTNA68 modifies the parameters according to their

descriptors and finally the ALGOL 68 procedure is entered via G;CALL just

like any other ALGOL 68 procedure.

Note: When the modes of two or more ALGOL 68 procedures that are passed

to one or more FORTRAN routines are identical, the same declaration of

LINKA68FTN may be used to create more than one object of the mode link.

E.g., after the declarations

mode fun= proc(real)real;

fun fl = (real x)real: x * x,

f2 = (real x)real: exp(x);

one may write

proc linka68ftn = (fun f, ref [J bits pars)link:

.PE. xref xlink pr skip;

link linkl = linka68ftn(fl, heap [l:l] bits := (plain)),

link2 = linka68ftn(f2, heap [1:1] bits := (plain));

10

instead of

link link 1 . =
(proc linka68ftn = (fun f, ref [J bit$ pars)link:

pr xref xlink .EE skip;

linka68ftn(fl, heap [1:1] bits := (plain))),

link2 =
(proc linka68ftn = (fun f, ref [J bits pars)link:

pr xref xlink .EE skip;

linka68ftn(f2, heap [1:1] bits := (plain)));

4. EXAMPLES OF USE

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

EXAMPLE 1

0 MODE. 0 ROUT.

II

0 PROC. (.• REF. [] 0 REAL., 0 REAL.,
0 REF 0 I] 0 REAL 0

)
0 VOI0°;

0 PROC° CHRISTIANSEN (
0 ROUT° F, 0 REAL 0 START, ENO,
0 REF 0 0 REAL 0 STEPSIZE,
0 REF. [J 0 REAL. X) ·vorn.:

THIS PROCEDURE SOLVES A SYSTEM OF FIRST ORDER ORDIN~RY
DIFFERENTIAL EQUATIONS. FOR FURTHER INFORMATION SEE
DESCRIPTION OF SUBROUTINE DASCRU FROM THE IMSL LIBRARY.

0 BEGIN° 0 INT 0 N := ·ups· X; ll:4*N] 0 REAL 0 WK;
0 MODE. 0 ROUTl. = 0 PROC. (0 REF. I] 0 REAL., 0 REAL., 0 INT.,

0 REF 0 11 °REAL 0
) ·vorn·;

0 ROUTl° FF= (0 REF 0 11 °REAL 0 X0, 0 REAL 0 T, 0 INT 0 N,
0 REF 0 11 °REAL 0 XP) 0 VOI0°: F(X0, T, XP);

I I

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

0 PROC 0 LINKA68FTN = (0 ROUTl 0 PROC, 0 REF 0
(]

0 8ITS 0 PARS) 0 LINK 0
:

41.
42.
4 3.
44.
45.
46.
47.
48.
49.
50.
51.

0 PR. XREF XLINK 0 PR. 0 SKIP.; .
0 PROC 0 DASCRU = (0 LINK 0 L, 0 REF 0 0 REAL 0 A, B, H, 0 REF 0 0 INT 0 N,

0 REF 0 0 REAL 0 X0, WK, 0 REF 0 0 INT 0 IER) 0 VOID 0
:

0 PR 0 XREF A68IMSL,DASCRU 0 PR 0 0 SKIP 0
;

DASCRU(LINKA68FTN(FF, 0 HEAP 0 (1:4] 0 8ITS 0 :=
(

0 ARRAY .. ONEOIM 0
(

0 PARAM 0 3), PLAIN, PLAIN,
0 ARRAY. 0 0NEDIM. (0 PARAM. 3))),

0 LOC 0 0 REAL 0 := START, 'Loe· 0 REAL 0 := ENO,
STEPSIZE, N, Xlll, WK Ill, 'Loe· 0 INT 0

)

0 END 0
; #CHRISTIANSEN#

0 REAL 0 STEPSIZE := l.0E-4, 11:21 °REAL 0 X := (1.0, 0.0);

0 ROUT. F = (0 REF. I] 0 REAL. X, 0 REAL • T,
0 REF. I l 0 REAL. DXDT) ·vorn.:

(DXDT[ll := Xl21; DXDT[2l := Xlll + T) ;

SYSTEM x---x=T X(0) = 1

CHRISTIANSEN(F, 0.0, 2.0, STEPSIZE, X);

PRINT (("COMPUTED SOLUTION
"EXACT SOLUTION

X(2.0)
X(2.0)

0

X[ll, NEWLINE,
EXP (2. 0) - 2.0))

PROGRAM LENGTH 0005218 WORDS
REQUIRED CM 047600. CP 2.434 SEC.
SPECIFIED OPTIONS PDS

COMPUTED SOLUTION
EXACT SOLUTION

X(2.0) +5.3890258258698798 +0
X(2.0) = +5.3890560989306108 +0

12

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

EXAMPLE 2 II

'MODE• 'ROUT!.
'ROUT2'

'PROC.~ 'REAL') 'LONG. 'REAL.,
'PROC. ('LONG. 'REAL., 'REAL., 'INT') 'LONG. 'REAL.:

'PROC' SMALL= ('REF' 'REAL' X, 'LINK' F, G)'LONG' 'REAL':
'PR' XREF A68FTN,FTNSM 'PR' 'SKIP':

'ROUT!' LEXP = ('REAL' X) 'LONG' 'REAL': LONGEXP ('LENG. X):

'ROUT2' LTERM = ('LONG' 'REAL' LAST, 'REAL' X, 'INT' I) 'LONG' 'REAL':
(LAS'!' * 'LENG. X / 'LENG. 'REAL, (I)) :

'LINK' LINKLEXP =
('PROC' LINKA68FTN

'PR. XREF XLINK
LINKA68FTN(LEXP,

LINKLTERM =

= ('ROUT!' PROC, 'REF'[) 'BITS' PARS)'LINK':
'pR' 'SKIP':
'HEAP'[l:l]'BITS' := (PLAIN))),

('PROC' LINKA68FTN = ('ROUT2' PROC, 'REF' [) 'BITS' PARS) 'LINK.:
'PR' XREF XLINK 'PR' 'SKIP';

LINKA68FTN(LTERM, 'HEAP'[l:3] 'BITS' :=
('DOUBLE' PLAIN, PLAIN, PLAIN))):

'FOR. I 'To' 5
'Do' PRINT((NEWLINE,

FIXED(SMALL('Loc·
35, 29)))

'REAL' := 'REAL' (I), LINKLEXP, LINKLTERM),

PROGRAM LENGTH 000271B WORDS
REQUIRED CM 052600. CP 1.798 SEC.
SPECIFIED OPTIONS PDS

1 DOUBLE PRECISION FUNCTION FTNSM(X, F, G)
EXTERNAL F, G
DOUBLE PRECISION
RESULT F (X)

5 LAST= 1
RESULT = RESULT -
DO 100 J = 1, 50
LAST= G(LAST, x,

100 RESULT= RESULT -
10 FTNSM = RESULT

RETURN
END

SYMBOLIC REFERENCE MAP (R=l)

ENTRY POINTS
5 FTNSJII

F, G,

LAST

J)
LAST

VARIABLES SN TYPE
DOUBLE
DOUBLE
REAL

RELOCATION
46 FTNSM
52 LAST

0 X

EXTERNALS
F

STATEMENT LABELS
0 100

TYPE
DOUBLE

F.P.

ARGS
l F.P.

LOOPS LABEL INDEX
22 100 * J

FROM-TO
7 9

LENGTH
13B

STATISTICS
PROGRAM LENGTH

52000B CM USED
61B

-0.00000000000000000000000000006
-0.00000000000000000000000000001
-0.00000000000000000000000000016
-0.00000000000000000000000000047
+0.00000000000000000000000000137

49

RESULT, LAST

54 J
50 RESULT

G

PROPERTIES,
EXT REFS

13

INTEGER
DOUBLE

DOUBLE 3 F.P.

14

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.

EXAMPLE 3 #

'MODE. 'FUN.

'pRoc· ROMBERG= ('FUN' FUN, 'REAL' X0, XE, RELACC,
'INT' MAX, 'REF' 'INT' EVAL) 'REAL':

THIS PROCEDURE INTEGRATES THE FUNCTION FUN. FOR FURTHER INFOR-#
MATION SEE DESCRIPTION OF SUBROUTINE D01ABF FROM THE NAG #
LIBRARY. #

'BEGIN. 'REAL. ANS;
'PROC' LINKA68FTN = ('FUN' PROC,

'REF, [] 'BITS, PARS) 'LINK,:
'pR' XREF XLINK 'pR' 'SKIP';

'PROC' D01ABF = ('REF' 'REAL' A, B, 'LINK' F, 'REF' REAL ACC,
'REF' 'INT' NMAX, N, 'REF' 'REAL' ANS,
'REF' 'INT' IFAIL) ·vorn·:

PR XREF A68NAG,D01ABF 'pR' 'SKIP';
D01ABF ('LOC. 'REAL, : = X0, 'LOC. 'REAL, :·= XE,

LINKA68FTN(FUN, 'HEAP' [1:1] 'BITS':= (PLAIN)),
'Loe· 'REAL' := RELACC, 'Loe· 'INT':= MAX, EVAL,
ANS, 'Loe· 'INT' := 0);

ANS
'END'; #ROMBERG#

FUN F = ('REAL. XF) 'REAL,:

THIS FUNCTION WILL BE INTEGRATED, SO IT WILL BE PASSED TO AND#
t CALLED FROM THE NAG ROUTINE DOlABF. BUT NOTE THAT THIS FUNC- #
TION CALLS ANOTHER FORTRAN ROUTINE (SUBROUT), WHICH, IN TURN, i
CALLS THE ALGOL68 PROCEDURE MESSAGE, WHICH PRINTS THE ARGUMENT#
OF AND THE VALUE DELIVERED BY THE FUNCTION. #

'BEGIN.
'MODE 'MESSPROC' = 'PROC'('REAL','REAL')'vorn';
'REAL' YF := XF * EXP(XF);
'PRoc· SUBROUT = ('LINK' F, 'REF' 'REAL' XS, YS) 'VOID':

'pR' XREF A68FTN,SUBROUT 'pR' 'SKIP';
'MESSPRoc· MESSAGE= , 'REAL' XM, YM) 'VOID':

PRINT((NEWLINE, XI, YM));
'PROC' LINKA68FTN = (MESSPROC' PROC,

REF, [] 'BITS, PARS) 'LINK.:
'PR' XREF XL INK 'pf • 'SKIP';

SUBROUT (LINKA68FTN (MESSAGE, 'HEAP. [1: 2] 'BITS, : =
(PLAIN, PLAIN)),

'Loe· 'REAL' :=XF, YF);

'INT. EVAL;
'REAL' RES = ROMBERG(F, 0.0, 2.0, l.0E-3, 1024, EVAL);

15

56.

PRINT ((NEWLINE, NEWLINE, "COMPUTED SOLUTION : ", RES,
57.
58.
59.
60.
61.
62.

" NUMBER OF FUNCTION EVALUATIONS=", WHOLE(EVAL, -5),
NEWLINE, "EXACT SOLUTION:", EXP(2.0) + 1.0))

6 3.
PROGRAM LENGTH 000567B WORDS
REQUIRED CM 050000. CP 2.587 SEC.
SPECIFIED OPTIONS PDS

16

1 SUBROUTINE SUBROUT(SUBRT, XX, YY)
EXTERNAL SUBRT
CALL SUBRT(XX, YY)
RETURN

5 END

SYMBOLIC REFERENCE MAP (R=l)

ENTRY POINTS
3 SUBROUT

VARIABLES SN TYPE RELOCATION
0 xx REAL F.P.

EXTERNALS TYPE ARGS
SUBRT 2 F.P.

STATISTICS
PROGRAM LENGTH 21B 17

520008 CM USED

+0.000000000000000E +0 +0.000000000000000E
+2.000000000000000E +0 +l.477811219786122E
+l.000000000000000E +0 +2.718281828459041E
+5.000000000000000E -1 +8.243606353500645E
+l.500000000000000E +0 +6.722533605507095E
+2.500000000000000E -1 +3.2l0063541719332E
+7.500000000000000E -1 +l.587750012459495E
+l.250000000000000E +0 +4.362928696827254E
+l.750000000000000E +0 +l.007055468300996E

0 YY

+0
+l
+0
-1
+0
-1
+0
+0
+l

REAL

COMPUTED SOLUTION +8.389058729209694E +0 NUMBER OF FUNCTION EVALUATIONS
EXACT SOLUTION : +8.389056098930610E +0

F.P.

9

REFERENCES

[1] WIJNGAARDEN, A. VAN et al. (eds.) [1976], Revised report·on the

algorithmic "language ALGOL 68., MC Tract 50, Mathematisch

Centrum, Amsterdam.

[2] ALGOL 68 VERSION 1 REFERENCE MANUAL

[3] FORTRAN EXTENDED VERSION 4 REFERENCE MANUAL

17

[4] IMSL, International Mathematical and Statistical Libraries., Library 3,

Reference manual.

[5] NAG, Numerical, Algorithms Group., Mark 6, Reference manual.

