stichting

mathematisch

centrum MC
AFDELING NUMERIEKE WISKUNDE NN 17/78 DECEMBER

(DEPARTMENT OF NUMERICAL MATHEVATICS)

H.J. BOS & D.T. WINTER
AFLINK: A NEW ALGOL 68 - FORTRAN INTERFACE

Preprint

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2¢ Boerhaavestraat, Amsierdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-
profit institution aiming at the promotion of pure mathematics and Ats
applications. 1t is sponsored by the Netherlands Government through the
Netherlands Organization for the Advancement of Pure Research (Z.W.0).

AMS (MOS) subject classification scheme (1970): 68-Ro5

AFLINK: A new ALGOL 68 — FORTRAN interface™’

by

H.J. Bos & D.T. Winter

ABSTRACT

This report contains an external description of AFLINK. AFLINK is a
newly designed ALGOL 68 - FORTRAN interface, which can be used with the
ALGOL 68 version 1.2.1 (78325) and FORTRAN version 4.6. level 460 compilers
on the CDC CYBER machines. The new interface can handlé all situations the
standard CDC ALGOL 68 - FORTRAN interface can. Moreover, AFLINK is capable
of passing a large variety of ALGOL 68 procedures as parameters to FORTRAN
routines. Special interface routines are available for use with the IMSL

and NAG libraries.

KEY WORDS & PHRASES: ALGOL 68 — FORTRAN - Interface

*)

This report will be submitted for publication elsewhere.

CONTENTS

1. INTRODUCTION ' 1
2. THE STRUCTURE OF THE INTERFACE 1
3. HOW TO USE THE INTERFACE 2
3.1. The preludes AFL and LAFL 2
3.2, Passing parameters from ALGOL 68 to FORTRAN 2
3.3. The interface routines A68FTIN, A68IMSL and A68NAG 4

3.4. Passing parameters from FORTRAN to ALGOL 68:
the procedure LINKA68FTN 6

4. EXAMPLES OF USE 11

1. INTRODUCTION

This paper contains a description of AFLINK (an abbreviation of ALGOL
68 ([1], [2])-FORTRAN ([31)-LINK). Such a language link (or interface) is
used to call FORTRAN subroutines from ALGOL 68 programs. In particular AFLINK
has been designed to be able to pass ALGOL 68 procedures as parameters to
the FORTRAN routines used.

Thus it provides the facility of calling an ALGOL 68 procedure from a
FORTRAN routine. Moreover, in its turn the ALGOL 68 procedure called may
call some (other) ALGOL 68 procedure or FORTRAN routine again (provided t..e
latter is not already active), or it may be a FORTRAN routine, supplied with
an ALGOL 68 heading.

"In principle this may be repeated to any depth. However, a problem may
occur when the ALGOL 68 program makes a heap request. This problem and how

to avoid it will be discussed in section 3.3.
2. THE STRUCTURE OF THE INTERFACE

AFLINK is a library consisting of two ALGOL 68 preludes (called AFL
and LAFL), two separately compiled ALGOL 68 procedures (called LINKA68FTN
and UERTSTX) and four COMPASS modules (called LINK, A68IMSL, A68NAG and
DECODE) .

An ALGOL 68 source program that passes one or more ALGOL 68 procedures
as parameters to one or more FORTRAN routines should be compiled (by means
of the P-option) with the prelude AFL if no long modes are used, and with
the prelude LAFL if long modes are used. Moreover, the ALGOL 68 source
program should contain a declaration of the procedure LINKA68FTN for each
ALGOL 68 procedure that has to be passed to some FORTRAN routine (see sec-—
tion 3.4.). Upon loading of the binary code an explicit call of the library
by a LIBRARY, AFLINK control statement is not necessary, since the program
has been compiled with the P-option, which already added AFLINK to the local

library set.

3, HOW TO USE THE INTERFACE

3.1. The preludes AFL and LAFL

The preludes AFL and LAFL contain declarations of the mode link (which
will be discussed in section 3.4) and the following TAG-symbols and bold-
TAG-symbols:

ref
plain
double
array
onedim
twodim
threedim
param

actual

These symbols are used to describe the parameters of an ALGOL 68 pro-
cedure that will be passed to FORTRAN. Why and how this is done will also

be discussed in section 3.4.

3.2. Passing parameters from ALGOL 68 to FORTRAN

Any FORTRAN routine to be called from an ALGOL 68 program should be

declared in the ALGOL 68 source program. This should be done as follows:

proc name = (model parl,...,moden parn) result:

pr xref a68ftn, name of the FORTRAN routine pr skip;

"name" may be any TAG-symbol.
"result" should be void if the FORTRAN routine is a subroutine. If the
FORTRAN routine is a function, the correspondence between the type of

the function and result is as follows:

type of FORTRAN function result

REAL real

INTEGER int

LOGICAL int (see remark at the end of this
section)

COMPLEX compl

DOUBLE PRECISION long real

"name of the FORTRAN routine" should be the symbolic name of the FORTRAN

routine.

"a68ftn" is the interface routine through which the FORTRAN routine is enter-
ed. Three of these interface routines are available: A68FTN (a subroutine

of LINK), A68IMSL and A68NAG. They will be discussed in section 3.3.

"parl" through "parn" are the ALGOL 68 parameters to be passed to the FORTRAN
routine in the same order as they appear in the FORTRAN heading. The corres-
pondence between the modes of these ALGOL 68 parameters (''model" through

"moden") and the types of the FORTRAN parameters is as follows:

FORTRAN expects AILGOL 68 passes
REAL | ref real
INTEGER ref int
LOGICAL ref int
COMPLEX ref compl
DOUBLE PRECISION ref long real
REAL ARRAY re: real]
INTEGER ARRAY reii int

ALGOL 68 should pass

LOGICAL ARRAY ref int
- r the first element only
COMPLEX ARRAY ref compl
DOUBLE PRECISION ARRAY ref long real
SUBROUTINE link (the construction of an object of
TYPE FUNCTION link t}'us mode will be discussed in sec—
tion3.4.)

(TYPE stands for REAL, INTEGER, LOGICAL, COMPLEX or DOUBLE PRECISION)

Two remarks should be made with relation to the correspondence between

the ALGOL 68 and FORTRAN parameters:

1)

2)

If FORTRAN expects a LOGICAL, ALGOL 68 should pass a ref int, and if the
FORTRAN routine is a LOGICAL FUNCTION, result should be int (as we saw).
An integer value <0 corresponds with a LOGICAL value *TRUE-, a value 20
with a LOGICAL value.<FALSE-.

FORTRAN expects all arrays stored columnwise and in contiguous memory
locations, whereas ALGOL 68 stores its multiples rowwise. Moreover, ALGOL
68 multiples may contain "holes" due to e.g. slicing. Therefore it is
advised to make a copy of the transposed multiple before it is passed to
FORTRAN, unless one is absolutely sure that the multiple contains no
holes and that it has to be used in its "transposed" form. Moreover,
ALGOL 68 should pass a reference to the first element only instead of a

reference” to the whole multiple.

3.3. The interface routines A68FTN, A68IMSL & A68NAG

As already mentioned in the preceding section, there are three inter-

face routines available: A68FTN (which is a subroutine of LINK), A68IMSL
and A68NAG.

A68FTN is the standard interface routine through which a FORTRAN rou-

tine is entered. A68FTN should be used if the FORTRAN routine is not from
the IMSL ([4]) or NAG ([5]) library. A68FTN performs the following actions:

1)

2)
5

4)

Check if the FORTRAN routine to be entered is already active (FORTRAN
allows no recursion). If so, the message: ATTEMPT TO CALL ALREADY ACTIVE
FIN ROUTINE is printed, the program is terminated and a complete trace-
back is given.

Check if one or more ALGOL 68 procedures have to be passed. If not, the
following two steps are skipped.

Check if at least 1000 words between the stack and the heap are available.
If not, make a heap request to get them.

Take actions to make the heap completely static (so it can't be moved or
changed). This is necessary because FORTRAN changes addresses in its code,
so the FORTRAN routine to be entered wouldn't be able to find objects

on the heap when an ALGOL 68 procedure entered from this FORTRAN routine

moves or changes the heap.

[Here the problem mentioned in the introduction may occur. Suppose the fol-

lowing situation arises:

A FORTRAN routine has been entered from the ALGOL 68 program, so the heap
has been made completely static and at least 1000 words are available be-
tween the stack and the heap. This FORTRAN routine has called an ALGOL 68
procedure, which has put some things on the heap. If this ALGOL 68 procedure
calls another FORTRAN routine, A68FTN will be entered, but now it could be
impossible to get 1000 words between the stack and the heap, because perhaps
less than 1000 words are available and the heap can't be moved. If this is
the case, the program will be terminated. Of course an error message will

be printed and a complete traceback will be given. This problem can be avoid-
ed if the program is executed with an EFL control statement (INTERCOM), a

CM parameter on the job card (BATCH) or a RFL control statement (BATCH). In
that case the top of the heap will be at the "top" of the specified field-

length, so the program can use the complete specified fieldlength.]

When the FORTRAN routine is left, A68FTN performs the following action:
— Check if some FORTRAN routine is still active. If not, take actions to

achieve that the heap is no longer static.

A68IMSL should be used if the FORTRAN routine is taken from the IMSL
library. A68IMSL performs the following actions:
- Add IMSL to the local library set (so a LIBRARY, IMSL statement will be
redundant for the current load).
- Instead of the IMSL error handling routine UERTST, load the following
three routines from AFLINK:
1) a new error handling routine UERTST (this is a subroutine of A68IMSL)
2) a separately compiled ALGOL 68 procedure UERTSTX (which helps UERTST
to print error messages)
3) a COMPASS module DECODE (which helps UERISTX to convert the error mes-
sages from display code to ASCII code).

These three routines take over the task of the original error handling
routine.

- Enter the IMSL routine through A68FTN.

A68NAG should be used if the FORTRAN routine is taken from the NAG
library. A68NAG performs the following actions:
- Add NAG to the local library set (so a LIBRARY, NAG statement will be
redundant for the current load)
- Instead of the NAG error trapping routine POlAAF, load a new routine
POIAAF (this is a subroutine of A68NAG). This routine takes over the task
of the original error trapping routine.

- Enter the NAG routine through A68FTN.

3.4, Passing Parameters from FORTRAN to ALGOL 68: The Procedure LINKA68FTN.

If the FORTRAN routine, which is called from an ALGOL 68 program, ex-—
pects a FORTRAN function or subroutine as a parameter, the ALGOL 68 program
does not directly pass a corresponding ALGOL 68 procedure, but instead, it
passes an object of the mode link. This iject of the mode link is deliver-
ed by the ALGOL 68 procedure LINKA68FTIN, which is a separately compiled pro-
cedure in the library AFLINK., For each creation of an object of the mode
link the ALGOL 68 source program should contain a declaration of LINKA6SFIN,
(see also the note at the end of this section). The declaration of

LINKA68FTN should read as follows:

proc linka68ftn = (procmode proc, ref [] bits pars)link:

pr xref xlink pr skip;

where "procmode" is the mode of the ALGOL 68 procedure that will be passed
to FORTRAN.
The actual parameters of LINKA68FTN should be as follows:

The first parameter of LINKA68FTN (procmode proc) should be the ALGOL

68 procedure to be passed. This procedure may have the mode

proc(amodel,...,amoden)bmode

where "amodei" (i = 1,...,n) may be any of the following modes:

cmode

ref cmode

ref [] cmode

ref [,] cmode

ref [,,] cmode

where cmode may be int, real, long real or compl and bmode may be a cmode

or void. If FORTRAN expects a subroutine as a parameter, bmode should be
void. If FORTRAN expects a function, the correspondence between the type of

the function and bmode should be as follows:

type of FORTIRAN function bmode

REAL real

INTEGER int

LOGICAL int (see remark at the end of section 3.2)
COMPLEX compl

DOUBLE PRECISION long real

.The second parameter of LINKA68FIN should be a reference to a row of
bits. This row of bits is used to identify the modes of the parameters of !
the procmode proc at run time. This is necessary because otherwise the modes
of the parameters would be unknown at run time, and FORTRAN passes only add-
resses of parameters. So, to distinguish between plain values, references
to values and references to rows of values, some appropriate action has to
be taken at runtime when parameters are passed from FORTRAN to ALGOL 68.

The elements of the row of bits (the '"descriptors') tell exactly what action
should be taken with relation to each parameter: there should be a one to
~one correspondence between the parameters and the descriptors. The descrip-
tors (and their constitutive parts) have been declared in the preludes, and
they all yield a value of mode bits. The correspondence between the ALGOL

68 parameters, the FORTRAN parameters and the descriptors is as follows:

ALGOL 63 expects Descriptor FTN
(parameters of procmode passes
proc)
int plain
ref int ref
ref [] int array onedim (op nl) > LOGICAL

. . (see re-
ref [,] int array twodim (op n;, op n2) mark at end
ref [,,] int array threedim (ﬂnl,_o_g_nz,gp_n:;) J of section

3.2)
int plain i
ref int ref
ref [] int array onedim (ﬂnl) » INTEGER
ref {,] int array twodim (_c_)P_nl,_g_an)
ref [,,] int array threedim (SEHI’QEHZ’Q-P-_H3) J
real plain 7
ref real ref
ref [] real array onedim (_%nl) » REAL
ref [,] real array twodim (o_pnl,o_pnz)
ref [,,] real array threedim (op n;,0pn,, 33“3)
long real double plain l
ref long real double ref
. DOUBLE

ref [1 long real double array onedim (Q_E_nl) ?PRECISION
ref [,] long real double array twodim (ggnl,_o_gnz)
ref [,,] long real double array threedim (g_p_nl,%nz,ggny_j
compl double plain 7
ref compl double ref
ref [] compl double array onedim (Q.Bnl) ?COMPLEX
ref [,] compl double array twodim (Q_Rnl,o_pnz)
ref [,,] compl double array threedim (9_1?_“1’9_13“2’ Qn:;)

where op stands for param or actual.

If the ALGOL 68 procedure expects a row, the following two rules are
obeyed: ’
1) All lowerbounds of rows passed to it are equal to 1.
2) The i-th upperbound
a) can be found in the ni—th parameter of procmode proc (i.e. also the
ni-th parameter in the FORTRAN routine that has been replaced by
procmode proc) if op is param
b) is equal to n. if op is actual (the operand n, should yield an

integer value)

As stated earlier in this section, LINKA68FTIN delivers an object of mode

link. This object should be passed to the FORTRAN routine instead of the

procmode proc. If the FORTRAN routine calls the procmode proc, a jump is
made to the address specified by the object of the mode link. Next, a re-
turn jump to FINA68 (a subroutine of LINK through which an ALGOL 68 pro-
cedure is entered) is made. FTNA68 knows, by means of the object of the
mode link, where the procedure word of the ALGOL 68 procedure and the

ref [] bits can be found. FINA68 modifies the parameters according to their
descriptors and finally the ALGOL 68 procedure is entered via G;CALL just
like any other ALGOL 68 procedure.

Note: When the modes of two or more ALGOL 68 procedures that are passed

to one or more FORTRAN routines are identical, the same declaration of

LINKA68FTN may be used to create more than one object of the mode link.

E.g., after the declarations

mode fun = proc(real)real;

fun f1 = (real x)real: x * x,
f2 = (real x)real: exp(x);

one may write

proc linka68ftn = (fun £, ref [] bits pars)link:
pr xref xlink pr skip;

link linkl linka68ftn(fl, heap [1:1] bits :

link2 = linka68ftn(f2, heap [1:1] bits :

(plain)),

|
Il

(plain));

10

instead of

link linkl =
(proc 1linka68ftn = (fun £, ref [] bits pars)link:

pr xref xlink pr skip;
linka68ftn(fl, heap [1:1] bits := (plain))),
link2 = '
(proc linka68ftn = (fun f, ref [] bits pars)link:

pr xref xlink pr skip;

linka68ftn(f2, heap [1:1] bits := (plain)));

4, EXAMPLES OF USE

11

1. (# EXAMPLE 1 #
2.
3. "MODE~ "ROUT = “PROC ('REF” [] 'REAL’, 'REAL’,
4, ‘REF” [] °“REAL’) 'VOID ;
5.
6.
7. "PROC " CHRISTIANSEN = (°ROUT F, 'REAL START, END,
8. ‘REF° ‘REAL ~ STEPSIZE,
9. ‘REF” [] °REAL" X) 'VOID:
10.
11. # THIS PROCEDURE SOLVES A SYSTEM OF FIRST ORDER ORDINARY
12. # DIFFERENTIAL EQUATIONS. FOR FURTHER INFORMATION SEE
13. # DESCRIPTION OF SUBROUTINE DASCRU FROM THE IMSL LIBRARY.
14.
15. "BEGIN® “INT° N := ‘UPB’ X; [l:4*N] 'REAL’ WK;
16. "MODE®~ “ROUT1 " = “PROC ('REF [] °‘REAL’, 'REAL’, 'INT ,
17. ‘REF” [] 'REAL’) 'VOID ;
18. ‘ROUT1" FF = ('REF’ [] 'REAL° X6, 'REAL" T, “INT N,
19. ‘REF” [] "REAL XP) 'VOID : F(X@, T, XP);
20. "PROC " LINKA68FTN = (ROUT1 PROC, 'REF° [] “BITS PARS) 'LINK :
21. ‘PR° XREF XLINK 'PR”° ’“SKIP'; :
22. "PROC " DASCRU = ('LINK~ L, 'REF’ ‘REAL" A, B, H, 'REF’ "INT N,
23. ‘REF° “REAL’ X@, WK, 'REF° "INT IER) 'VOID:
24. ‘PR° XREF A68IMSL,DASCRU ‘PR’ ’“SKIP';
25. DASCRU (LINKA68FTN (FF, 'HEAP [1:4] 'BITS := :
26. ("ARRAY " “ONEDIM” (PARAM° 3), PLAIN, PLAIN,
27. "ARRAY " "ONEDIM ~ (“PARAM” 3))),
28. ‘LOC"~ ‘REAL’ := START, 'LOC ~ 'REAL’ := END,
29. STEPSIZE, N, X[1], WK[1l]), ‘LOC” “INT")
30. "END”"; # CHRISTIANSEN #
31.
32. .
33. ‘REAL" STEPSIZE := 1.0E-4, [1:2) 'REAL" X := (1.0, 0.0);
34.
35.
36. ‘ROUT " F = ('REF” [] 'REAL X, 'REAL’ T,
37. ‘REF” [] °REAL’ DXDT) 'VOID ':
38. (DXDT[1] := X[2]); DXDT[2] := X[l] + T);
39.
40.
41. # SYSTEM : X'~ =X =T ; X(8) =1 ; X'(0) =0 #
42.
43,
44. CHRISTIANSEN(F, 0.0, 2.0, STEPSIZE, X);
45.
46.
47. PRINT (("COMPUTED SOLUTION : X(2.0) = ", X[1], NEWLINE,
48. "EXACT SOLUTION : X(2.0) = ", EXP(2.0) - 2.0))
49.
50.
51.)
PROGRAM LENGTH 008521B WORDS
REQUIRED CM 047600. CP 2.434 SEC.
SPECIFIED OPTIONS PDS
COMPUTED SOLUTION : X(2.8) = +5.389025825869879E +@
EXACT SOLUTION : X(2.8) = +5.389056098930610E +0

= =

12

1. (# EXAMPLE 2 #
2.
3. ‘MODE~ "ROUT1 = “PROC “('REAL’) 'LONG ~ °REAL’,
4, "ROUT2" = “PROC “(LONG"~ 'REAL’, 'REAL’, "INT’) 'LONG" °REAL";
5.
6.
7. "PROC " SMALL = ('REF°~ “REAL X, 'LINK® F, G) 'LONG ~ °REAL’:
8. ‘PR° XREF A68FTN,FTNSM 'PR°~ 'SKIP;
. 9.
10. .
11. ‘ROUT1 " LEXP = ('REAL" X) 'LONG ~ 'REAL : LONGEXP(LENG X);
12.
13.
14. ‘ROUT2 " LTERM = ('LONG ~ ‘REAL’ LAST, 'REAL’ X, "INT I) 'LONG ~ 'REAL:
15. (LAST * "LENG X / 'LENG ~ ‘REAL" (I));
16.
17.
18. "LINK ~ LINKLEXP =
19. ("PROC° LINKA68FTN = (ROUT1 PROC, 'REF’ [] 'BITS PARS) 'LINK:
20. ‘PR° XREF XLINK 'PR’° “SKIP';
21. LINKA68FTN (LEXP, "HEAP [1:1) 'BITS := (PLAIN))),
22.
23. LINKLTERM =
24. (“PROC " LINKA68FTN = (ROUT2 PROC, 'REF’ [] 'BITS PARS) 'LINK :
25. PR’ XREF XLINK 'PR° “SKIP';
26. LINKA68FTN (LTERM, 'HEAP [1:3] ‘BITS :=
27. (“DOUBLE ° PLAIN, PLAIN, PLAIN)));
28. '
29.
30. ‘FOR" I 'TO" 5
31. ‘DO° PRINT ((NEWLINE,
32. FIXED (SMALL('LOC" 'REAL’ := 'REAL’ (I), LINKLEXP, LINKLTERM),
33. 35, 29)))
34. ‘op”’
35.
36.
37.)
PROGRAM LENGTH @0B271B WORDS

REQUIRED CM ©052600. CP 1.798 SEC.
SPECIFIED OPTIONS PDS

19

100

DOUBLE PRECISION FUNCTION FTNSM(X,
EXTERNAL F, G
DOUBLE PRECISION F, G, RESULT, LAST

RESULT = F(X)
LAST =1
RESULT = RESULT = LAST

DO 106 J = 1, 50
LAST = G(LAST, X, J)

RESULT = RESULT - LAST
FTNSM = RESULT

RETURN

END

SYMBOLIC REFERENCE MAP (R=1)

ENTRY POINTS

5 FTNSM
VARIABLES SN
46 FTNSM
52 LAST
g X
EXTERNALS
F
STATEMENT LABELS
9 100
LOOPS LABEL I
22 1090 *J
STATISTICS

PROGRAM LENGTH

TYPE
DOUBLE
DOUBLE
REAL

TYPE
DOUBLE

NDEX

RELOCATION
54 J
50 RESULT
F.P.
ARGS
1 F.P. G
FROM-TO LENGTH PROPERTIES
79 13B EXT REFS
. 61B 49

52000B CM USED

-0.00000000000000000000000000006
-0.00000000000000000000000000001
-0.00000000000000000000000000016
-0.00000000000000000000000000047
+0.00000000000000000000000000137

F, G)

INTEGER
DOUBLE

DOUBLE

13

14

1a.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
49.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.

(

#

EXAMPLE 3 #

"MODE”~ “FUN’ = “PROC " ('REAL’) ‘REAL";

"PROC " ROMBERG = (FUN® FUN, 'REAL’" X@, XE, RELACC,
“INT " MAX, 'REF° “INT EVAL) 'REAL:

THIS PROCEDURE INTEGRATES THE FUNCTION FUN. FOR FURTHER INFOR-#
MATION SEE DESCRIPTION OF SUBROUTINE D@#1ABF FROM THE NAG
LIBRARY.

‘BEGIN ~ 'REAL’ ANS;
"PROC " LINKA68FTN = (FUN PROC,
‘REF° [] 'BITS PARS) 'LINK :
‘PR° XREF XLINK ‘PR’ “SKIP';
‘PROC " DOIABF = ('REF’ 'REAL A, B, 'LINK’ F, 'REF’ 'REAL ACC,
‘REF° "INT NMAX, N, 'REF’~ “REAL’ ANS,
‘REF” "INT ~ IFAIL) 'VOID :
"PR° XREF A68NAG,D@1ABF ‘PR’ 'SKIP ;
DO1ABF('LOC° “REAL := X0, 'LOC ~ 'REAL’ := XE,
LINKA68FTN (FUN, "HEAP [1:1] °‘BITS := (PLAIN)),
‘LOC”° “REAL’ := RELACC, °‘LOC”~ “INT := MAX, EVAL,
ANS, ‘LOC”° “INT := 0@);
ANS
"END”; # ROMBERG #

FUN® F = ('REAL " XF) 'REAL:

THIS FUNCTION WILL BE INTEGRATED, SO IT WILL BE PASSED TO AND #
CALLED FROM THE NAG ROUTINE DOlABF. BUT NOTE THAT THIS FUNC- #
TION CALLS ANOTHER FORTRAN ROUTINE (SUBROUT), WHICH, IN TURN, #
CALLS THE ALGOL68 PROCEDURE MESSAGE, WHICH PRINTS THE ARGUMENT#
OF AND THE VALUE DELIVERED BY THE FUNCTION. #

B o

"BEGIN’
"MODE ~ "MESSPROC” = “PROC “(REAL’, ‘REAL’) "VOID';
‘REAL " YF := XF * EXP(XF);
‘PROC " SUBROUT = ('LINK® F, 'REF’ "REAL’ XS, ¥S) 'VOID :
‘PR° XREF A68FTN,SUBROUT ‘PR’ ’“SKIP';
‘MESSPROC "~ MESSAGE = ' ‘REAL’ XM, YM) 'VOID :
PRINT ((NEWLINE, X}, YM));
"PROC " LINKA68FTN = (MESSPROC ~ PROC,
REF “[] 'BITS*~ PARS) 'LINK :
‘PR” XREF XLINK ‘PI°~ °SKIP';
SUBROUT (LINKA68FTN (MESSAGE, "HEAP [1:2] ‘BITS :=
(PLAIN, PLAIN)),
‘REAL" := XF, YF);

B .

LOC
YF
‘END"; # F #

“INT "~ EVAL;
‘REAL° RES = ROMBERG(F, 0.0, 2.0, 1.0E-3, 1824, EVAL);

15

56.
57.
58. PRINT ((NEWLINE, NEWLINE, "COMPUTED SOLUTION :", RES,
59. " NUMBER OF FUNCTION EVALUATIONS = ", WHOLE(EVAL, -5),
60. NEWLINE, "EXACT SOLUTION :", EXP(2.0) + 1.8))
61.
62.
63.)

PROGRAM LENGTH PBP567B WORDS

REQUIRED CM #500006. CP 2.587 SEC.

SPECIFIED OPTIONS PDS

16

1 SUBROUTINE SUBROUT (SUBRT, XX, YY)
EXTERNAL SUBRT
CALL SUBRT (XX, YY)
RETURN

5 END

SYMBOLIC REFERENCE MAP (R=1)

ENTRY POINTS

3 SUBROUT
VARIABLES SN TYPE RELOCATION

6 XX REAL F.P. 9 YY REAL
EXTERNALS TYPE ARGS

SUBRT 2 F.P.
STATISTICS
PROGRAM LENGTH 21B 17
52000B CM USED

+0.000000000000000E +0 +0.000000000000000E +0
+2.000000000000000E +0 +1.477811219786122E +1
+1.000000000000000E +0 +2.718281828459041E +0
+5.000000000000000E -1 +8.243606353500645E -1
+1.500000000000000E +0 +6.722533605507095E +0
+2.500000000000060E -1 +3.210063541719332E -1
+7.500000000000000E -1 +1.587750012459495E +0
+1.250000000000000E +0 +4.362928696827254E +0
+1.750000000000000E +0 +1.007055468300996E +1
COMPUTED SOLUTION +8.3890858729209694E +0 NUMBER OF FUNCTION EVALUATIONS

EXACT SOLUTION +8.389056098930610E +0

17

REFERENCES

[1] WIJNGAARDEN, A. VAN et al. (eds.) [19761, Revised report on the
algorithmic language ALGOL 68, MC Tract 50, Mathematisch

Centrum, Amsterdam.
[{2] ALGOL 68 VERSION 1 REFERENCE MANUAL
[3] FORTRAN EXTENDED VERSION 4 REFERENCE MANUAL

[4] IMSL, International Mathematical and Statistical Libraries, Library 3,

Reference manual.

[5] NAG, Numerical Algorithms Group, Mark 6, Reference manual.

=8y 4

AR RS T |

BBLOD

*v,;;;,

ONT

