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On generalized Runge-Kutta methods using an exact Jacobian at a non-step 

point*) 

by 

J.G. Verwer 

ABSTRACT 

In this note we investigate a two-stage generalized Runge-Kutta for

mula which can be used for the numerical integration of stiff systems of 

ordinary differential equations. Attention is focussed to formulas which 

evaluate the Jacobian at non-step points. 
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1. Introduction 

Let 

y' = f(y), (1) 

represent the initial value problem for a stiff system of ordinary differ

ential equations, written in autonomous form, of which the real vector 

function f(y) is sufficiently differentiable. An important class of numer

ical integration methods for this problem are formed by the so-called 

Rosenbrock formulas [7]. A Rosenbrock formula may be characterized as an 

explicit, one-step Runge-Kutta formula of which the scalar parameters have 

been replaced by particular rational functions of the stepsize hand the 

Jacobian matrix J(y) = af(y)/ay. The aim of this replacement is to obtain 

attractive stability properties, such as A-stability. In the original 

Rosenbrock method the treatment of each new Runge-Kutta stage, which means 

a new £-evaluation, may require a new J-evaluation. As each J-evaluation 

also involves an LU-decomposition, this is not recommended. Consequently, 

most authors discussing Rosenbrock type methods consider schemes which 

evaluate J once per integration step, viz. at the step pointy= yn 

[1,2,4,6,7,10,11,12]. However, if we allow one J-evaluation per integra

tion step, it is also possible to investigate schemes which evaluate 

J at some non-step.point, rather than at y = y. The aim is, e.g., the 
. n . 

development of schemes giving more accuracy at the cost of the same 

number of operations, or the development of schemes which are more flex

ible with respect to the implementation of some error control mechanism. 
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Two first investigations in this direction have been reported by Scholz, 

Brauer and Thomas [8] and Schblz [9], respectively. Scholz [gJ investigates 

a modification of the original Rosenbrock method. He constructs a one-stage 
I 

formula and several two-stage formulas, all evaluating J at a non-step point. 

In addition, he is able to show that his formulas satisfy the S-stability 

requirements [12]. 

In this note we apply the idea of Scholz, of evaluating the Jacobian 

once per integration step at a non-step point, to the two-stage formula 

Yn+1 = y + 0o(hJ )hf(y) n n+n n 
(2) 

+ 01 (hJ )hf(y +A(hJ )hf(y )). 
n+n n n+n n 

Here Jn+n = J(yn+nhf(yn)), n a scalar, and 00 , 01 and A are rational func

tions with real coefficients. Following van der Houwen [10], we do not 

specify thesP functions beforehand and call (2) a generalized Runge-Kutta 

formula. Class (2) contains the modified Rosenbrock formulas constructed 

by Scholz. 

2. The local truncation error and the stability function 

Let the operator equation y 1 = E (y) represent (2). Let y be an , n+ n n 
exact and sufficiently differentiable solution for (1). Denote 

By means of Taylor's theorem for functions of several variables, and using 

tensor notation [3], the local truncation error y(x 1 ) - E (y(x )) can be 
n+ n n 

expanded as 

h[1-(6 0+e 1)]f + 

h 2[~-ce0+ei+6 1A)]fjfj + 

(3) 



i.e. 

! 
·I 

h 4r..!..-c.!.e"'+ !.e :>i."+e':>i.'+!.e":>i.+!. e"')Jf fjfk/~- + 
-24 6 0 2 1 1 2 1 6 1 j k l 

4 1 1 1 2 1 j kl 
h [ 24 -(2 e0n+ne 1:>i.• + 2 e? +ze1n)]fjfklf f + 

h 4 t2
3
4 -(½00n + H •e 1+:>i.nei +; e1n).1fjkf1fk/. + 

hs [ 4 < 1 0 ,, 2 , , , 0 1 0 , , 2 1 0 .. 2 > J f fj fkfl ..m 
120 - 2 on +/\/\ n 1 + 2 1 n/\ + 2 1 n jk .t'.DL :t + 

In the sequel, the integer p will stand for the order of consistency, 

p is the largest integer satisfying y (x 1) E (y (x ) ) = O (hp+l) , h + o·. 
n+ n n 

3 
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Using the theory of Butcher series, van Kampen [11] has shown that for an 

m-stage method of type (2), with n = O, the order p cannot exceed 2m. For 

the case m $ 2 this result can be verified by inspection of (3). If n = 0 

and m = 1, i.e. 01 =·O, the ~ifferential f.kfjfk is not present and if n = 0 

and m = 2, we see that fjkfimfkflfm is mis~ing. An interesting question is 

now, whether by the introduction of the parameter nan increase of the or

der can be realized. It turns out that for the one-stage formula p = 3 can 

be obtained (see [9] and section 3), whereas for the two-stage formula we 

always have p $ 4 (see section 4). 

When applied to the stability test-model y' = oy, o € ~, 

(2) will result into the scalar relation yn+l = R(z)yn, z = ho, where 

R(z) (4) 

The stability properties of (2), such as A-stability, are determined by the 

so-called stability function R (see e.g. [SJ). In the remaining part of the 

note we shall make frequent use of the-concept of stability function. Here -

with we use the following definitions (cf. [SJ): R is said to be (a) A-ac

ceptable, if IR(z) I < 1 whenever Re(z) < O; (b) strongly A-acceptable, 

if it is A-acceptable and satisfies lim IRe(z) I < 1 as Re(z) ➔ - 00 ; (c) L

acceptable, if it is A-acceptable and satisfies lim R(z) = 0 as Re(z) ➔ - 00 • 

Further, we let q denote the 9rder of consistency of R, i.e. q is the largest 
z q+l 

integer satisfying R(z) - e = O(z ), z ➔ 0. 

3. One-stage formulas of order three 

In this section we concentrate on the class of formulas (01 = 0 in (2)) 

= y + 0O(hJ + )hf(y ). 
n n n n 

THEOREM 1. Let I denote the unit matrix. Let R represe~t some adaptive 

stability function of order q. The formula 

Yn+l = Y + (hJ + )-1 (R(hJ )-I)hf(y) n n n n+n n 
(6) 



is of order p = 3 if n 

ways have p = 2. D 

1 = 3 and q ~ 3. If n is arbitrary and q ~ 2, we al-
, 
./ 
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The proof follows from d simple calculation with (3). By pursuing this 

calculation somewhat further, it is also easy to see that we always have 

p ~ 3.Theapplicability of this theorem lies in the adaptivity of the sta

bility function R. In fact, (6), where n =; and q ~ 3, represents a large 

class of third order integration formulas of which, to a certain extent, 

the stability behaviour can be adapted to the problem under consideration 

(cf. [10]). 'For example, we can choose the third order stability functjon 

1 1 2 

R(z) = 
1+ (l+a.) z+ (3 + 2 a.) z 

1 1 2 1 +a.z- (6 + 2 a.) z 
(7) 

of Liniger and Willoughby (see [10], p.79), where the free parameter a. can 
1 
2 

be used ~r exponential fitting. Function (7) is A-acceptable if a.~ 
2 

and L-acceptable if a. = - 3 . Observe that if the stability function R in 

(6) is strongly A-acceptable, the method is also S-stable [12]. Another 

member of class (6) is defined by the third order function given by 

Scholz [9], viz. 

(8) 

which is strongly A-acceptable. An attractive property of (8), with res

pect to the aspect of computer.implementation (see [9]), is that the deno

minator is factorized into two equal linear terms. 

4. Two-stage formulas of order four 

Following [10, section 2.7!8], we express the derivatives of 00 , at 

z = O, into the derivatives of 01 , A and R: 

e O = R • co > - 0 1 , 0 0• = .!. R~' co> - 0 • - 0 A 0 " = :!. R " , co > - 0 " - 2 0 • A - 2 0 A!, 2 1 1'0 3 1 1· 1 

8 111 = .!_R"" (0) - 8 111 - 38"). - 68').' - 38 1).". 
0 4 1 1 1 

(9) 
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Assuming that Risa 4-th order consistent approximation to ez and substitu

tion of (9) into the (p ~ 4)-~xpressions of expansion (3), yields the re

maining conditions for 4-th order accuracy: 
1 

1 1 1 2 2 1 1 1 3 n(--6A) = 261 A , n c--0 A) = 12-3 61A ' 2 1 6 2 1 
(10) 

1 1 1 2 1 3 n(--6'A) = ---6'A n c- - 0 A'> = 24 - AA I 61. 6 1 24 2 1 ' 6 1 

16 3 
If the4 new p':'-ram9eter ~ = 0, the remaining parameters are: 61 = 27 , A = 4 , 
6i = 27 , A' = 32 . First we prove the following negative result: 

THEOREM 2. The introduction of the parameter n into the 2-stage generalized 

Runge-Kutta method does not result into an increase of the order of consis

tency. The maximal order remains p = 4. 

PROOF. We only need to show that p = 5 is impossible. Let~= 61A. The 

elimination of n between the first two equations of (10) yields 

3 1 The last term in (3) yields the order relation n (2 - ~) 

again eliminating n, we then find 

A simple calculation reveals that (11) and (12) are incompatible. 0 

The solution of system (10) can be written as the one-parameter solution 

( 11) 

(13) 

where 7.; = * if A = ¾ and ~ =, 2A 3 if A ~ ¾ . The free parameter A can take 

all values except zero. We are thus led to the following theorem: 
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THEOREM 3. Let R be an adaptive stability function of order q ~ 4. Equations 

(9) and (13) then define a four-parameter class of generalized Runge-Kutta 

formulas of order p = 4. The free parameters are 0" 0"' A" and A (Af0) 
I 1' 1 ' • 

Of interest, with respect to the stability behaviour, is the freedom 

which is left in the choice of Rand the functions 00 , 01 and A. A nice 

example is the fourth order modified Rosenbrock formula given by Scholz [9]. 

The stability function of that formula, which also appears in another type 

of Rosenbrock formula developed by Kaps [4], is L-acceptable and factorized. 

Further, the'functions 00 , 01 and A are such that the formula is also in

ternally S-stable (cf. [12]). Another example of a formula belonging to 

class (9), (13) is the L-stable formula discussed by van Kampen [11]. Here 

the parameter n = 0. 

5. Some final remarks 

From the foregoing it shall be clear that if we consider 2-stage for

mulas of order p = 3, we have a considerable degree of freedom with respect 

to the parameter choice. One possibility.is to construct a scheme with a 

build in error control. It is an easy task to show that, thanks to the in

troduction of the parameter n, one can construct 2-stage formulas of order 

p = 3 such that y 1 - [y +J\.(hJ )f(y )] provides an estimate of y"' (xn). 
n+ n n+n n 

Another conservative error estimator, which can be used for every 1-stage 

formula (6), is provided by the expression J 1 f(y 1) - J f(y ), where 
1 · n+ +n n+ n+n n 

n = 3. This expression also estimates y"' (xn) . 

For a 2-stage formula order 4 can already be achieved with four degrees 

of freedom. Therefore it is likely that p = 5 can be obtained if we perform 

a third f-ev·aluation. Along the lines of section 4 it is then possible to 

develop a family of 5-th order 4 3-stage formulas with an adaptive stability 

function. In this connection, the stability functions discussed by Kaps [4] 

are of interest. 

One might also think of generalized Runge-Kutta s9hemes which evaluate 

the Jacobian at some weighted sum a.y + Sy 1 + •••• Here we avoid the oc-n n-
currence of the explicit expression y + nhf(y) in the J-evaluation. For 

n n 
stiff, highly non-linear problems, that is problems with a strongly vary-



ing Jacobian J(y), we then expect a somewhat better stability-accuracy 

behaviour. 
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