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ABSTRACT

In this note we investigate a two-stage generalized Runge-Kutta for-
mula which can be used for the numerical integration of stiff systems of
ordinary differential equations. Attention is focussed to formulas which

evaluate the Jacobian at non-step points.
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1. Introducﬁion

Let

y' = £(y), y(xo) =Y, (1)

represent the initial value problem for'a stiff system of ordinary differ-
ential equations, written in autonomous form, of which the real vector
function f(y) is sufficiently differentiable. An important class of numer-
ical integration methods for this prob;em are formed by the so-called
Rosenbrock formulas [7]. A Rosenbrock formula may be characterized as an
explicit, one-step Runge-Kutta formula of which the scalar parameters have
been replaced by particular rational functions of the stepsize h and the
Jacobian matrix J(y) = 39f(y)/dy. The aim of this replacement is to obtain
attractive stability properfies, such as A-stability. In the original
Rosenbrock method the treatment of each new Runge-Kutta stage, which means
a new f-evaluation, may require a new J-evaluation. As each J-evaluation
also involves an LU-decomposition, this is not recommended. Consequently,
most authors discussing Rosenbrock type methods consider schemes which
evaluate J once per integration step, viz. at the step point y = Y,
[1,2,4,6,7,10,11,12]. However, if we allow one J-evaluation per integra-
tion step, it is also possible to investigate schemes which evaluate

J at some non-step. point, rathe; than at y = Y, The a;m is, e.g., the
development of schemes giving more accuracy at the cost of the same

number of operations, or the development of schemes which are more flex-

ible with respect to the implementation of some error control mechanism.



Two first investigations in this direction have been reported by Scholz,
Briduer and Thomas [8] and Scholz [9], respectively. Scholz [9] investigates
a modification of thg origin?1 Rosenbrock method. He constructs a one-stage
formula and several two-stage formulas, all evaluating J at a non-step point.
In addition, he is able to show that his formulas satisfy the S-stability
requirements [12].

In this note we apply the idea of Scholz, of evaluating the Jacobian
once per integration step at a non-step point, to the two-stage formula

Y

n+1 - yn + G)O(th+n)hf(yn) ’ (2)

+ 61 (th+n)hf(yn+A (th_m)hf(yn) ).

0’ 91 and A are rational func-
tions with real coefficients. Following van der Houwen [10], we do not

Here Jn+n = J(yn+nhf(yn)), n a scalar, and 0
specify these functions beforehand and call (2) a generalized Runge-Kutta
formula. Class (2) contains the modified Rosenbrock formulas constructed

by Scholz.

2. The local truncation error and the stability function

Let the operator equation yn+1 = En(yn) represent (2). Let y be an

exact and sufficiently differentiable solution for (1). Denote

= '=i = '-——d—
8, = 0,(0),01 = —0(2)|,_, A=4(0), 2 =M= __s... .

By means of Taylor's theorem for functions of several variables, and using

tensor notation [3], the local truncation error y(xn ) - En(y(xn)) can be

+1
expanded as

y(x

n+1) - En(y(xn)) = (3)
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In the sequel, the integer p will stand for the order of consistency,

+ .
i.e. p is the largest integer satisfying y(x ) - En(y(xn)) = O(hP 1), h~>0.

n+1



Using the theory of Butcher series, van Kampen [11] has shown that for an
m-stage method of type (2), with n = 0, the order p cannot exceed 2m. For
the case m < 2 this ;esult can be verified by-inspection of (3). If n=20
and m = 1, i.e. 9, =0, the.diffzrential fjkfjfk is not present and if n=0
and m = 2, we see that fjkf%mfkf fm is missing. An interesting question is
now, whether by the introduction of the parameter n an increase of the or-
der can be realized. It turns out that for the one-stage formula p = 3 can.
be obtained (see [9] and section 3), whereas for the two-stage formula we
always have\p < 4 (see section 4).

When applied to the stability test-model y' = S8y, § € €,

(2) will result into the scalar relation Yo = R(z)yn, z = h§, where

1

R(z) =1 + ZOO(Z) + zOl(z) + zzel(z)A(z). (4)

The stability properties of (2), such as A-stability, are determined by the
so-called stability function R (see e.g. [5]). In the remaining part of the
note we shall make frequent use of the:concept of stability function. Here -
with we use the following definitions (cf. [5]1): R is said to be (a) A-ac-
ceptable, if |R(z)| < 1 whenever Re(z) < 0; (b) strongly A-acceptable,

if it is A-acceptable and satisfies lim |Re(z)| < 1 as Re(z) »> -»; (c) L-
acceptable, if it is A-acceptable and satisfies lim R(z) = 0O as Re(z) > -=.
Further, we let g denote the order of consistency of R, i.e. g is the largest

integer satisfying R(z) - e? = O(zq+1)

3. One-stage formulas of order three

In this section we concentrate on the class of formulas (O1 = 0in (2))

Y n)hf(yn). (5)

n+1 - yn + OO(th

-+

THEOREM 1. Let I denote the unit matrix. Let R represent some adaptive

stability function of order q. The formula

Y

_ -1
ne1 = Yyt (WI T R -D)hE(y) (6)



is of order p = 3 if n = %-and g =2 3. If n is arbitrary and q = 2, we al-

ways have p = 2. [J

The proof follows from a simple calculation with (3). By pursuing this
calculation somewhat further, it is also easy to see that we always have
p £ 3. Theapplicability of this theorem lies in the adaptivity of the sta-
bility function R. In fact, (6), where n = %-and g = 3, represents a large
class of third order integration formulas of which, to a certain extent,
the stability behaviour can be adapted to the problem under consideration
(cf. [10]). For example, we can choose the third order stability function

1+(1+a)z+(-§-+%a)z2

R(z) = (7)
1 1 2
1+oz- (E+§a) Z

of Liniger and Willoughby (see [10], p.79), where the free parameter o can
be used for exponential fitting. Function (7) is A-acceptable if o < - %
and L-acceptable if a = - %—. Observe that if the stability function R in
(6) is strongly A-acceptable, the method is also S-stable [12]. Another
member of class (6) is defined by the third order function given by
Scholz [9], viz.
1-1/32-4+1/3).2
3 6 6
R(z) = 1 1 > ’ (8)
(1-(G+£V3)z2)

which is strongly A—acceptablé. An attractive property of (8), with res-
pect to the aspect of computer. implementation (see [9]), is that the deno-

minator is factorized into two equal linear terms.

4, Two-stage formulas of order four

Following [10, section 2.7:8], we express the derivatives of @0, at

z = 0, into the derivatives of @1, A and R:

' : 1 1
= ! - ' = —R" - v . W= —_pm - /" - " - N
90 R' (0) 61, 90 5 R" (0) 61 le, eo 3P (0) 61 291X '281 '
1 .
m—_ —_pnn - wmeoo_ " — 6O'MA' - 36 A".
0p'= ZR""(0) - 8 3691 - 66/ 36, (9)



Assuming that R is a 4-th order consistent approximation to ez and substitu-

tion of (9) into the (p < 4)-expressions of expansion (3), yields the re-

maining conditions for 4-th order accuracy:
. 1

1 _1_1g,2 21 g0 1 1,3
nG-8 A =g -8 G0N = e -38AT
1 _ gy =L _1gy2 1 o) = 3 e
Nig=0M) =272 8A nEo8 At = o - ARTE,.
s 16
If the new parameter n = 0, the remaining parameters are: 91 = 277
ei = é%—, Al = é%—. First we prove the following negative result:

(10)

=3
A=

THEOREM 2. The introduction of the parameter n into the 2-stage generalized

Runge-Kutta method does not result into an increase of the order of consis-

tency. The maximal order remains p = 4.

PROOF. We only need to show that p = 5 is impossible. Let & = elx.
elimination of n between the first two equations of (10) yields

(6%2)§2 + (12A-12A2—6)E + 1 ="0.

. . . 3,1 1 1..3

The last term in (3) yields the order relation n (E—F’) = 2—0——Z£>\
again eliminating n, we then find

(30A3)£2 + (15A+20A2—4SA3—18)€ + 4 = 0.
A simple calculation reveals that (11) and (12) are incompatible.

The
(11)
. By
(12)
O

The solution of system (10) can be written as the one-parameter solution

= _ 2 _a 2,2_2 2 _ 11 2,,.1_
91 = (1-2x+2X -Hf(l 2A+277) 3>\ )/¢, n = (6 261)\ '/(2 elx)'
1 1 1,2 3 1
V= (— 2 1 _ I 1 _
0] = (Gz-gM/GA" =0, A= (Gp-gm/(Ae -n8), (13)
_ 81 . _ 3 _ 3 . 3
where ¢ = -Z'lf A= Z-and g =21 if X # i The free parameter )\ can take

all values except zero. We are thus led to the following theorem:



THEOREM 3. Let R be an adaptive stability function of order q > 4. Equations
(9) and (13) then define a four-parameter class of generalized Runge-Kutta

formulas of order p = 4. The free parameters are 6;, ey', A" and A (A#0).
. 1

Of interest, with respect to the stability behaviour, is the freedom
which is left in the choice of R and the functions 90, @1 and A. A nice
example is the fourth order modified Rosenbrock formula given by Scholz [9].
The stability function of that formula, which also appears in another type'
of Rosenbrock formula developed by Kaps [4], is L-acceptable and factorized.

Further, the functions 60, O, and A are such that the formula is also in-

1
ternally S-stable (cf. [12]). Another example of a formula belonging to
class (9), (13) is the L-stable formula discussed by van Kampen [11]. Here

the parameter n = 0.

5. Some final remarks

From the foregoing it shall be clear that if we consider 2-stage for-
mulas of order p = 3, we have a considerable degree of freedom with respect
to the parameter choice. One possibility is to construct a scheme with a
build in error control. It is an easy task to show that, thanks to the in-
troduction of the parameter n, one can construct 2-stage formulas of order
p = 3 such that yn+1 - [yn+A(th+n)f(yn)] provides an estimate of y'" (xj).

Another conservative error estimator, which can be used for every l-stage

formula (6), is provided by thg expression Jn+1+nf(yn+1) - Jn+nf(yn)' where
1 . . .
n= 3 This expression also estimates y'" (x,).

For a 2-stage formula order 4 can already be achieved with four degrees
of freedom. Therefore it is likely that p = 5 can be obtained if we perform
a third f-evaluation. Along the lines of section 4 it is then possible to
develop a family of 5-th order , 3-stage formulas with an adaptive stability
function. In this connection, the stability functions discussed by Kaps [4]
are of interest. ‘

One might also think of generalized Runge-Kutta schemes which evaluate

the Jacobian at some weighted sum ayn + By + ... . Here we avoid the oc-

n-1
currence of the explicit expression Y, + nhf(yn) in the J-evaluation. For

stiff, highly non-linear problems, that is problems with a stron@ly vary-



ing Jacobian J(y), we then expect a somewhat better stability-accuracy

behaviour.
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