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On generalized Runge-Kutta methods using an exact Jacobian at a non-step 

point*) 

by 

J.G. Verwer 

ABSTRACT 

In this note we investigate a two-stage generalized Runge-Kutta for­

mula which can be used for the numerical integration of stiff systems of 

ordinary differential equations. Attention is focussed to formulas which 

evaluate the Jacobian at non-step points. 
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1. Introduction 

Let 

y' = f(y), (1) 

represent the initial value problem for a stiff system of ordinary differ­

ential equations, written in autonomous form, of which the real vector 

function f(y) is sufficiently differentiable. An important class of numer­

ical integration methods for this problem are formed by the so-called 

Rosenbrock formulas [7]. A Rosenbrock formula may be characterized as an 

explicit, one-step Runge-Kutta formula of which the scalar parameters have 

been replaced by particular rational functions of the stepsize hand the 

Jacobian matrix J(y) = af(y)/ay. The aim of this replacement is to obtain 

attractive stability properties, such as A-stability. In the original 

Rosenbrock method the treatment of each new Runge-Kutta stage, which means 

a new £-evaluation, may require a new J-evaluation. As each J-evaluation 

also involves an LU-decomposition, this is not recommended. Consequently, 

most authors discussing Rosenbrock type methods consider schemes which 

evaluate J once per integration step, viz. at the step pointy= yn 

[1,2,4,6,7,10,11,12]. However, if we allow one J-evaluation per integra­

tion step, it is also possible to investigate schemes which evaluate 

J at some non-step.point, rather than at y = y. The aim is, e.g., the 
. n . 

development of schemes giving more accuracy at the cost of the same 

number of operations, or the development of schemes which are more flex­

ible with respect to the implementation of some error control mechanism. 
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Two first investigations in this direction have been reported by Scholz, 

Brauer and Thomas [8] and Schblz [9], respectively. Scholz [gJ investigates 

a modification of the original Rosenbrock method. He constructs a one-stage 
I 

formula and several two-stage formulas, all evaluating J at a non-step point. 

In addition, he is able to show that his formulas satisfy the S-stability 

requirements [12]. 

In this note we apply the idea of Scholz, of evaluating the Jacobian 

once per integration step at a non-step point, to the two-stage formula 

Yn+1 = y + 0o(hJ )hf(y) n n+n n 
(2) 

+ 01 (hJ )hf(y +A(hJ )hf(y )). 
n+n n n+n n 

Here Jn+n = J(yn+nhf(yn)), n a scalar, and 00 , 01 and A are rational func­

tions with real coefficients. Following van der Houwen [10], we do not 

specify thesP functions beforehand and call (2) a generalized Runge-Kutta 

formula. Class (2) contains the modified Rosenbrock formulas constructed 

by Scholz. 

2. The local truncation error and the stability function 

Let the operator equation y 1 = E (y) represent (2). Let y be an , n+ n n 
exact and sufficiently differentiable solution for (1). Denote 

By means of Taylor's theorem for functions of several variables, and using 

tensor notation [3], the local truncation error y(x 1 ) - E (y(x )) can be 
n+ n n 

expanded as 

h[1-(6 0+e 1)]f + 

h 2[~-ce0+ei+6 1A)]fjfj + 

(3) 



i.e. 

! 
·I 

h 4r..!..-c.!.e"'+ !.e :>i."+e':>i.'+!.e":>i.+!. e"')Jf fjfk/~- + 
-24 6 0 2 1 1 2 1 6 1 j k l 

4 1 1 1 2 1 j kl 
h [ 24 -(2 e0n+ne 1:>i.• + 2 e? +ze1n)]fjfklf f + 

h 4 t2
3
4 -(½00n + H •e 1+:>i.nei +; e1n).1fjkf1fk/. + 

hs [ 4 < 1 0 ,, 2 , , , 0 1 0 , , 2 1 0 .. 2 > J f fj fkfl ..m 
120 - 2 on +/\/\ n 1 + 2 1 n/\ + 2 1 n jk .t'.DL :t + 

In the sequel, the integer p will stand for the order of consistency, 

p is the largest integer satisfying y (x 1) E (y (x ) ) = O (hp+l) , h + o·. 
n+ n n 

3 
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Using the theory of Butcher series, van Kampen [11] has shown that for an 

m-stage method of type (2), with n = O, the order p cannot exceed 2m. For 

the case m $ 2 this result can be verified by inspection of (3). If n = 0 

and m = 1, i.e. 01 =·O, the ~ifferential f.kfjfk is not present and if n = 0 

and m = 2, we see that fjkfimfkflfm is mis~ing. An interesting question is 

now, whether by the introduction of the parameter nan increase of the or­

der can be realized. It turns out that for the one-stage formula p = 3 can 

be obtained (see [9] and section 3), whereas for the two-stage formula we 

always have p $ 4 (see section 4). 

When applied to the stability test-model y' = oy, o € ~, 

(2) will result into the scalar relation yn+l = R(z)yn, z = ho, where 

R(z) (4) 

The stability properties of (2), such as A-stability, are determined by the 

so-called stability function R (see e.g. [SJ). In the remaining part of the 

note we shall make frequent use of the-concept of stability function. Here -

with we use the following definitions (cf. [SJ): R is said to be (a) A-ac­

ceptable, if IR(z) I < 1 whenever Re(z) < O; (b) strongly A-acceptable, 

if it is A-acceptable and satisfies lim IRe(z) I < 1 as Re(z) ➔ - 00 ; (c) L­

acceptable, if it is A-acceptable and satisfies lim R(z) = 0 as Re(z) ➔ - 00 • 

Further, we let q denote the 9rder of consistency of R, i.e. q is the largest 
z q+l 

integer satisfying R(z) - e = O(z ), z ➔ 0. 

3. One-stage formulas of order three 

In this section we concentrate on the class of formulas (01 = 0 in (2)) 

= y + 0O(hJ + )hf(y ). 
n n n n 

THEOREM 1. Let I denote the unit matrix. Let R represe~t some adaptive 

stability function of order q. The formula 

Yn+l = Y + (hJ + )-1 (R(hJ )-I)hf(y) n n n n+n n 
(6) 



is of order p = 3 if n 

ways have p = 2. D 

1 = 3 and q ~ 3. If n is arbitrary and q ~ 2, we al-
, 
./ 
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The proof follows from d simple calculation with (3). By pursuing this 

calculation somewhat further, it is also easy to see that we always have 

p ~ 3.Theapplicability of this theorem lies in the adaptivity of the sta­

bility function R. In fact, (6), where n =; and q ~ 3, represents a large 

class of third order integration formulas of which, to a certain extent, 

the stability behaviour can be adapted to the problem under consideration 

(cf. [10]). 'For example, we can choose the third order stability functjon 

1 1 2 

R(z) = 
1+ (l+a.) z+ (3 + 2 a.) z 

1 1 2 1 +a.z- (6 + 2 a.) z 
(7) 

of Liniger and Willoughby (see [10], p.79), where the free parameter a. can 
1 
2 

be used ~r exponential fitting. Function (7) is A-acceptable if a.~ 
2 

and L-acceptable if a. = - 3 . Observe that if the stability function R in 

(6) is strongly A-acceptable, the method is also S-stable [12]. Another 

member of class (6) is defined by the third order function given by 

Scholz [9], viz. 

(8) 

which is strongly A-acceptable. An attractive property of (8), with res­

pect to the aspect of computer.implementation (see [9]), is that the deno­

minator is factorized into two equal linear terms. 

4. Two-stage formulas of order four 

Following [10, section 2.7!8], we express the derivatives of 00 , at 

z = O, into the derivatives of 01 , A and R: 

e O = R • co > - 0 1 , 0 0• = .!. R~' co> - 0 • - 0 A 0 " = :!. R " , co > - 0 " - 2 0 • A - 2 0 A!, 2 1 1'0 3 1 1· 1 

8 111 = .!_R"" (0) - 8 111 - 38"). - 68').' - 38 1).". 
0 4 1 1 1 

(9) 
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Assuming that Risa 4-th order consistent approximation to ez and substitu­

tion of (9) into the (p ~ 4)-~xpressions of expansion (3), yields the re­

maining conditions for 4-th order accuracy: 
1 

1 1 1 2 2 1 1 1 3 n(--6A) = 261 A , n c--0 A) = 12-3 61A ' 2 1 6 2 1 
(10) 

1 1 1 2 1 3 n(--6'A) = ---6'A n c- - 0 A'> = 24 - AA I 61. 6 1 24 2 1 ' 6 1 

16 3 
If the4 new p':'-ram9eter ~ = 0, the remaining parameters are: 61 = 27 , A = 4 , 
6i = 27 , A' = 32 . First we prove the following negative result: 

THEOREM 2. The introduction of the parameter n into the 2-stage generalized 

Runge-Kutta method does not result into an increase of the order of consis­

tency. The maximal order remains p = 4. 

PROOF. We only need to show that p = 5 is impossible. Let~= 61A. The 

elimination of n between the first two equations of (10) yields 

3 1 The last term in (3) yields the order relation n (2 - ~) 

again eliminating n, we then find 

A simple calculation reveals that (11) and (12) are incompatible. 0 

The solution of system (10) can be written as the one-parameter solution 

( 11) 

(13) 

where 7.; = * if A = ¾ and ~ =, 2A 3 if A ~ ¾ . The free parameter A can take 

all values except zero. We are thus led to the following theorem: 
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THEOREM 3. Let R be an adaptive stability function of order q ~ 4. Equations 

(9) and (13) then define a four-parameter class of generalized Runge-Kutta 

formulas of order p = 4. The free parameters are 0" 0"' A" and A (Af0) 
I 1' 1 ' • 

Of interest, with respect to the stability behaviour, is the freedom 

which is left in the choice of Rand the functions 00 , 01 and A. A nice 

example is the fourth order modified Rosenbrock formula given by Scholz [9]. 

The stability function of that formula, which also appears in another type 

of Rosenbrock formula developed by Kaps [4], is L-acceptable and factorized. 

Further, the'functions 00 , 01 and A are such that the formula is also in­

ternally S-stable (cf. [12]). Another example of a formula belonging to 

class (9), (13) is the L-stable formula discussed by van Kampen [11]. Here 

the parameter n = 0. 

5. Some final remarks 

From the foregoing it shall be clear that if we consider 2-stage for­

mulas of order p = 3, we have a considerable degree of freedom with respect 

to the parameter choice. One possibility.is to construct a scheme with a 

build in error control. It is an easy task to show that, thanks to the in­

troduction of the parameter n, one can construct 2-stage formulas of order 

p = 3 such that y 1 - [y +J\.(hJ )f(y )] provides an estimate of y"' (xn). 
n+ n n+n n 

Another conservative error estimator, which can be used for every 1-stage 

formula (6), is provided by the expression J 1 f(y 1) - J f(y ), where 
1 · n+ +n n+ n+n n 

n = 3. This expression also estimates y"' (xn) . 

For a 2-stage formula order 4 can already be achieved with four degrees 

of freedom. Therefore it is likely that p = 5 can be obtained if we perform 

a third f-ev·aluation. Along the lines of section 4 it is then possible to 

develop a family of 5-th order 4 3-stage formulas with an adaptive stability 

function. In this connection, the stability functions discussed by Kaps [4] 

are of interest. 

One might also think of generalized Runge-Kutta s9hemes which evaluate 

the Jacobian at some weighted sum a.y + Sy 1 + •••• Here we avoid the oc-n n-
currence of the explicit expression y + nhf(y) in the J-evaluation. For 

n n 
stiff, highly non-linear problems, that is problems with a strongly vary-



ing Jacobian J(y), we then expect a somewhat better stability-accuracy 

behaviour. 
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